1
|
Ni Z, Kundu P, McKean DF, Wheeler W, Albanes D, Andreotti G, Antwi SO, Arslan AA, Bamlet WR, Beane-Freeman LE, Berndt SI, Bracci PM, Brennan P, Buring JE, Chanock SJ, Gallinger S, Gaziano JM, Giles GG, Giovannucci EL, Goggins MG, Goodman PJ, Haiman CA, Hassan MM, Holly EA, Hung RJ, Katzke V, Kooperberg C, Kraft P, LeMarchand L, Li D, McCullough ML, Milne RL, Moore SC, Neale RE, Oberg AL, Patel AV, Peters U, Rabe KG, Risch HA, Shu XO, Smith-Byrne K, Visvanathan K, Wactawski-Wende J, White E, Wolpin BM, Yu H, Zeleniuch-Jacquotte A, Zheng W, Zhong J, Amundadottir LT, Stolzenberg-Solomon RZ, Klein AP. Genome-Wide Analysis to Assess if Heavy Alcohol Consumption Modifies the Association between SNPs and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:1229-1239. [PMID: 38869494 DOI: 10.1158/1055-9965.epi-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related death globally. Risk factors for pancreatic cancer include common genetic variants and potentially heavy alcohol consumption. We assessed if genetic variants modify the association between heavy alcohol consumption and pancreatic cancer risk. METHODS We conducted a genome-wide interaction analysis of single-nucleotide polymorphisms (SNP) by heavy alcohol consumption (more than three drinks per day) for pancreatic cancer in European ancestry populations from genome-wide association studies. Our analysis included 3,707 cases and 4,167 controls from case-control studies and 1,098 cases and 1,162 controls from cohort studies. Fixed-effect meta-analyses were conducted. RESULTS A potential novel region of association on 10p11.22, lead SNP rs7898449 (interaction P value (Pinteraction) = 5.1 × 10-8 in the meta-analysis; Pinteraction = 2.1 × 10-9 in the case-control studies; Pinteraction = 0.91 in the cohort studies), was identified. An SNP correlated with this lead SNP is an expression quantitative trait locus for the neuropilin 1 gene. Of the 17 genomic regions with genome-wide significant evidence of association with pancreatic cancer in prior studies, we observed suggestive evidence that heavy alcohol consumption modified the association for one SNP near LINC00673, rs11655237 on 17q25.1 (Pinteraction = 0.004). CONCLUSIONS We identified a novel genomic region that may be associated with pancreatic cancer risk in conjunction with heavy alcohol consumption located near an expression quantitative trait locus for neuropilin 1, a protein that plays an important role in the development and progression of pancreatic cancer. IMPACT This work can provide insights into the etiology of pancreatic cancer, particularly in heavy drinkers.
Collapse
Affiliation(s)
- Zhanmo Ni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David F McKean
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Samuel O Antwi
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
- Department of Population Health, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - William R Bamlet
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Laura E Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - J M Gaziano
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Aging, Brigham and Women's Hospital, Boston, Massachusetts
- Boston VA Healthcare System, Boston, Massachusetts
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Edward L Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Peter Kraft
- Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Ann L Oberg
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kari G Rabe
- Department of Quantitative Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachael Z Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
2
|
Skultecka A, Nyberg F, Lissner L, Rosvall M, Thelle DS, Olin AC, Torén K, Björck L, Rosengren A, Mehlig K. Comparison of associations between alcohol consumption and metabolic syndrome according to three definitions: The Swedish INTERGENE study. Metabol Open 2024; 23:100292. [PMID: 38983451 PMCID: PMC11231701 DOI: 10.1016/j.metop.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Background While prevalence estimates differ by definition of metabolic syndrome (MetS), it is less clear how different definitions affect associations with alcohol consumption. Methods We included 3051 adults aged 25-77 from the baseline examination of the Swedish INTERGENE cohort (2001-2004). Using multiple logistic regression, we investigated cross-sectional associations between ethanol intake and MetS defined according to the Adult Treatment Panel III (ATP III), the International Diabetes Federation (IDF), and the Joint Interim Statement (JIS). Alcohol exposure categories comprised abstinence, and low, medium, and high consumption defined via sex-specific tertiles of ethanol intake among current consumers. Covariates included sociodemographics, health, and lifestyle factors. Results MetS prevalence estimates varied between 13.9 % (ATP III) and 25.3 % (JIS), with higher prevalence in men than women. Adjusted for age and sex, medium-high alcohol consumption was associated with lower odds of MetS compared to low consumption, while no difference was observed for abstainers. Only the most specific (and thus severe) definition of MetS (ATP III) showed decreasing odds for ethanol intake when adjusted for all covariates. Conclusion Our study shows that alcohol-related associations differ by definition of MetS. The finding that individuals with the most stringently defined MetS may benefit from alcohol consumption calls for further well-controlled studies.
Collapse
Affiliation(s)
- Alina Skultecka
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Nyberg
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lauren Lissner
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Rosvall
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Socialmedicinskt centrum, Regionhälsan, Västra Götalandsregionen, Sweden
| | - Dag S. Thelle
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björck
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine, Geriatrics and Emergency Medicine, Sahlgrenska University Hospital, Östra Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital/Östra, Region Västra Götaland, Gothenburg, Sweden
| | - Kirsten Mehlig
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Sinkala M, Retshabile G, Mpangase PT, Bamba S, Goita MK, Nembaware V, Elsheikh SSM, Heckmann J, Esoh K, Matshaba M, Adebamowo CA, Adebamowo SN, Amih OE, Wonkam A, Ramsay M, Mulder N. Mapping Epigenetic Gene Variant Dynamics: Comparative Analysis of Frequency, Functional Impact and Trait Associations in African and European Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.11.24311816. [PMID: 39185519 PMCID: PMC11343269 DOI: 10.1101/2024.08.11.24311816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Epigenetic modifications influence gene expression levels, impact organismal traits, and play a role in the development of diseases. Therefore, variants in genes involved in epigenetic processes are likely to be important in disease susceptibility, and the frequency of variants may vary between populations with African and European ancestries. Here, we analyse an integrated dataset to define the frequencies, associated traits, and functional impact of epigenetic gene variants among individuals of African and European ancestry represented in the UK Biobank. We find that the frequencies of 88.4% of epigenetic gene variants significantly differ between these groups. Furthermore, we find that the variants are associated with many traits and diseases, and some of these associations may be population-specific owing to allele frequency differences. Additionally, we observe that variants associated with traits are significantly enriched for quantitative trait loci that affect DNA methylation, chromatin accessibility, and gene expression. We find that methylation quantitative trait loci account for 71.2% of the variants influencing gene expression. Moreover, variants linked to biomarker traits exhibit high correlation. We therefore conclude that epigenetic gene variants associated with traits tend to differ in their allele frequencies among African and European populations and are enriched for QTLs.
Collapse
Affiliation(s)
- Musalula Sinkala
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Phelelani T Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Salia Bamba
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Modibo K Goita
- Faculté de Médecine et d'Odontostomatologie, USTTB, Bamako, Mali
| | - Vicky Nembaware
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeannine Heckmann
- Neurology Research Group, Neurosciences Institute, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205
| | - Mogomotsi Matshaba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
- Department of Pediatrics, Section of Retrovirology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Clement A Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Institute of Human Virology, Abuja, Nigeria
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ofon Elvis Amih
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ambroise Wonkam
- McKusick-Nathans Institute & Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Mulder
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- University of Cape Town, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa
| |
Collapse
|
4
|
Lee M, Park T, Shin JY, Park M. A comprehensive multi-task deep learning approach for predicting metabolic syndrome with genetic, nutritional, and clinical data. Sci Rep 2024; 14:17851. [PMID: 39090161 PMCID: PMC11294629 DOI: 10.1038/s41598-024-68541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex disorder characterized by a cluster of metabolic abnormalities, including abdominal obesity, hypertension, elevated triglycerides, reduced high-density lipoprotein cholesterol, and impaired glucose tolerance. It poses a significant public health concern, as individuals with MetS are at an increased risk of developing cardiovascular diseases and type 2 diabetes. Early and accurate identification of individuals at risk for MetS is essential. Various machine learning approaches have been employed to predict MetS, such as logistic regression, support vector machines, and several boosting techniques. However, these methods use MetS as a binary status and do not consider that MetS comprises five components. Therefore, a method that focuses on these characteristics of MetS is needed. In this study, we propose a multi-task deep learning model designed to predict MetS and its five components simultaneously. The benefit of multi-task learning is that it can manage multiple tasks with a single model, and learning related tasks may enhance the model's predictive performance. To assess the efficacy of our proposed method, we compared its performance with that of several single-task approaches, including logistic regression, support vector machine, CatBoost, LightGBM, XGBoost and one-dimensional convolutional neural network. For the construction of our multi-task deep learning model, we utilized data from the Korean Association Resource (KARE) project, which includes 352,228 single nucleotide polymorphisms (SNPs) from 7729 individuals. We also considered lifestyle, dietary, and socio-economic factors that affect chronic diseases, in addition to genomic data. By evaluating metrics such as accuracy, precision, F1-score, and the area under the receiver operating characteristic curve, we demonstrate that our multi-task learning model surpasses traditional single-task machine learning models in predicting MetS.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Ji-Yeon Shin
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Jennings MV, Martínez-Magaña JJ, Courchesne-Krak NS, Cupertino RB, Vilar-Ribó L, Bianchi SB, Hatoum AS, Atkinson EG, Giusti-Rodriguez P, Montalvo-Ortiz JL, Gelernter J, Artigas MS, Elson SL, Edenberg HJ, Fontanillas P, Palmer AA, Sanchez-Roige S. A phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals. EBioMedicine 2024; 103:105086. [PMID: 38580523 PMCID: PMC11121167 DOI: 10.1016/j.ebiom.2024.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).
Collapse
Affiliation(s)
- Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - José Jaime Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA
| | | | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Hatoum
- Department of Psychology & Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA; National Center of Posttraumatic Stress Disorder, VA CT Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- VA CT Healthcare Center, Department Psychiatry, West Haven, CT, USA; Departments Psychiatry, Genetics, and Neuroscience, Yale Univ. School of Medicine, New Haven, CT, USA
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
7
|
Koyanagi YN, Nakatochi M, Namba S, Oze I, Charvat H, Narita A, Kawaguchi T, Ikezaki H, Hishida A, Hara M, Takezaki T, Koyama T, Nakamura Y, Suzuki S, Katsuura-Kamano S, Kuriki K, Nakamura Y, Takeuchi K, Hozawa A, Kinoshita K, Sutoh Y, Tanno K, Shimizu A, Ito H, Kasugai Y, Kawakatsu Y, Taniyama Y, Tajika M, Shimizu Y, Suzuki E, Hosono Y, Imoto I, Tabara Y, Takahashi M, Setoh K, Matsuda K, Nakano S, Goto A, Katagiri R, Yamaji T, Sawada N, Tsugane S, Wakai K, Yamamoto M, Sasaki M, Matsuda F, Okada Y, Iwasaki M, Brennan P, Matsuo K. Genetic architecture of alcohol consumption identified by a genotype-stratified GWAS and impact on esophageal cancer risk in Japanese people. SCIENCE ADVANCES 2024; 10:eade2780. [PMID: 38277453 PMCID: PMC10816704 DOI: 10.1126/sciadv.ade2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
An East Asian-specific variant on aldehyde dehydrogenase 2 (ALDH2 rs671, G>A) is the major genetic determinant of alcohol consumption. We performed an rs671 genotype-stratified genome-wide association study meta-analysis of alcohol consumption in 175,672 Japanese individuals to explore gene-gene interactions with rs671 behind drinking behavior. The analysis identified three genome-wide significant loci (GCKR, KLB, and ADH1B) in wild-type homozygotes and six (GCKR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, and GOT2) in heterozygotes, with five showing genome-wide significant interaction with rs671. Genetic correlation analyses revealed ancestry-specific genetic architecture in heterozygotes. Of the discovered loci, four (GCKR, ADH1B, ALDH1A1, and ALDH2) were suggested to interact with rs671 in the risk of esophageal cancer, a representative alcohol-related disease. Our results identify the genotype-specific genetic architecture of alcohol consumption and reveal its potential impact on alcohol-related disease risk.
Collapse
Affiliation(s)
- Yuriko N. Koyanagi
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hadrien Charvat
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
- Division of International Health Policy Research, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France
| | - Akira Narita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Comprehensive General Internal Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuyuki Nakamura
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division for Regional Community Development, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Kozo Tanno
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
- Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukino Kawakatsu
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yukari Taniyama
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masahiro Tajika
- Department of Endoscopy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Etsuji Suzuki
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yasuyuki Hosono
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Atsushi Goto
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Yokohama, Japan
| | - Ryoko Katagiri
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Yakovchik AY, Tolynyova DV, Kashtanova DA, Sutulova ER, Ivanov MV, Mamchur AA, Erema VV, Matkava LR, Terekhov MV, Rumyantseva AM, Blinova OI, Akinshina AI, Mitrofanov SI, Yudin VS, Makarov VV, Keskinov AА, Kraevoy SA, Yudin SM. Genetics of psycho-emotional well-being: genome-wide association study and polygenic risk score analysis. Front Psychiatry 2024; 14:1188427. [PMID: 38328521 PMCID: PMC10847277 DOI: 10.3389/fpsyt.2023.1188427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 02/09/2024] Open
Abstract
Background Psycho-emotional well-being is essential for living a life of satisfaction and fulfillment. However, depression and anxiety have become the leading mental health issues worldwide, according to the World Health Organization. Both disorders have been linked to stress and other psychological factors. Their genetic basis remains understudied. Methods In 2020-2021, the psycho-emotional well-being of 30,063 Russians with no known psychiatric history was assessed using the Hospital Anxiety and Depression Scale (HADS) for general mental health and the HADS subscale A (anxiety) for anxiety. Following the original instructions, an anxiety score of ≥11 points was used as the anxiety threshold. A genome-wide association study was performed to find associations between anxiety and HADS/HADS-A scores using linear and logistic regressions based on HADS/HADS-A scores as binary and continuous variables, respectively. In addition, the links between anxiety, sociodemographic factors (such as age, sex, and employment), lifestyle (such as physical activity, sleep duration, and smoking), and markers of caffeine and alcohol metabolism were analyzed. To assess the risk of anxiety, polygenic risk score modeling was carried out using open-access software and principal component analysis (PCA) to simplify the calculations (ROC AUC = 89.4 ± 2.2% on the test set). Results There was a strong positive association between HADS/HADS-A scores and sociodemographic factors and lifestyle. New single-nucleotide polymorphisms (SNPs) with genome-wide significance were discovered, which had not been associated with anxiety or other stress-related conditions but were located in genes previously associated with bipolar disorder, schizophrenia, or emotional instability. The CACNA1C variant rs1205787230 was associated with clinical anxiety (a HADS-A score of ≥11 points). There was an association between anxiety levels (HADS-A scores) and genes involved in the activity of excitatory neurotransmitters: PTPRN2 (rs3857647), DLGAP4 (rs8114927), and STK24 (rs9517326). Conclusion Our results suggest that calcium channels and monoamine neurotransmitters, as well as SNPs in genes directly or indirectly affecting neurogenesis and synaptic functions, may be involved in the development of increased anxiety. The role of some non-genetic factors and the clinical significance of physiological markers such as lifestyle were also demonstrated.
Collapse
Affiliation(s)
- Anna Yurievna Yakovchik
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cowan B, Kvale M, Yin J, Patel S, Jorgenson E, Mostaedi R, Choquet H. Risk factors for inguinal hernia repair among US adults. Hernia 2023; 27:1507-1514. [PMID: 37947923 PMCID: PMC10700424 DOI: 10.1007/s10029-023-02913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To investigate demographic, clinical, and behavioral risk factors for undergoing inguinal hernia repair within a large and ethnically diverse cohort. METHODS We conducted a retrospective case-control study from 2007 to 2020 on 302,532 US individuals from a large, integrated healthcare delivery system with electronic health records, who participated in a survey of determinants of health. Participants without diagnosis or procedure record of an inguinal hernia at enrollment were included. We then assessed whether demographic (age, sex, race/ethnicity), clinical, and behavioral factors (obesity status, alcohol use, cigarette smoking and physical activity) were predictors of undergoing inguinal hernia repair using survival analyses. Risk factors showing statistical significance (P < 0.05) in the univariate models were added to a multivariate model. RESULTS We identified 7314 patients who underwent inguinal hernia repair over the study period, with a higher incidence in men (6.31%) compared to women (0.53%). In a multivariate model, a higher incidence of inguinal hernia repair was associated with non-Hispanic white race/ethnicity, older age, male sex (aHR = 13.55 [95% confidence interval 12.70-14.50]), and more vigorous physical activity (aHR = 1.24 [0.045]), and alcohol drinker status (aHR = 1.05 [1.00-1.11]); while African-American (aHR = 0.69 [0.59-0.79]), Hispanic/Latino (aHR = 0.84 [0.75-0.91]), and Asian (aHR = 0.35 [0.31-0.39]) race/ethnicity, obesity (aHR = 0.33 [0.31-0.36]) and overweight (aHR = 0.71 [0.67-0.75]) were associated with a lower incidence. The use of cigarette was significantly associated with a higher incidence of inguinal hernia repair in women (aHR 1.23 [1.09-1.40]), but not in men (aHR 0.96 [0.91-1.02]). CONCLUSION Inguinal hernia repair is positively associated with non-Hispanic white race/ethnicity, older age, male sex, increased physical activity, alcohol consumption and tobacco use (only in women); while negatively associated with obesity and overweight status. Findings from this large and ethnically diverse study may support future prediction tools to identify patients at high risk of this surgery.
Collapse
Affiliation(s)
- B Cowan
- UCSF-East Bay General Surgery, Oakland, CA, USA
| | - M Kvale
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - J Yin
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - S Patel
- UCSF-East Bay General Surgery, Oakland, CA, USA
| | - E Jorgenson
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - R Mostaedi
- KPNC, Richmond Medical Center, Richmond, CA, USA
| | - H Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA.
| |
Collapse
|
10
|
Liu X, Li Y. Genetic correlation for alcohol consumption between Europeans and East Asians. BMC Genomics 2023; 24:652. [PMID: 37904118 PMCID: PMC10614326 DOI: 10.1186/s12864-023-09766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified many genetic variants associated with alcohol consumption in Europeans and East Asians, as well as other populations. However, the genetic homogeneity and heterogeneity between these populations have not been thoroughly investigated, despite evidence of varying effect sizes of variants between ethnicities and the presence of population-specific strong signals of selection on loci associated with alcohol consumption. In order to better understand the relationship between Europeans and East Asians in the genetic architecture of alcohol consumption, we compared their heritability and evaluated their genetic correlation using GWAS results from UK Biobank (UKB) and Biobank Japan (BBJ). We found that these two populations have low genetic correlation due to the large difference on chromosome 12. After excluding this chromosome, the genetic correlation was moderately high ([Formula: see text] = 0.544, p = 1.12e-4) and 44.31% of the genome-wide causal variants were inferred to be shared between Europeans and East Asians. Given those observations, we conducted a meta-analysis on UKB and BBJ and identified new signals, including the CADM2 gene on chromosome 3, which has been associated with various behavioral and metabolic traits. Overall, our findings suggest that the genetic architecture of alcohol consumption is largely shared between Europeans and East Asians, but there are exceptions such as the enrichment of heritability on chromosome 12 in East Asians.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, China
| | - Yongang Li
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, China.
| |
Collapse
|
11
|
Cho Y, Lin K, Lee SH, Yu C, Valle DS, Avery D, Lv J, Jung K, Li L, Smith GD, China Kadoorie Biobank Collaborative Group, Sun D, Chen Z, Millwood IY, Hemani G, Walters RG. Genetic influences on alcohol flushing in East Asian populations. BMC Genomics 2023; 24:638. [PMID: 37875790 PMCID: PMC10594868 DOI: 10.1186/s12864-023-09721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although it is known that variation in the aldehyde dehydrogenase 2 (ALDH2) gene family influences the East Asian alcohol flushing response, knowledge about other genetic variants that affect flushing symptoms is limited. METHODS We performed a genome-wide association study meta-analysis and heritability analysis of alcohol flushing in 15,105 males of East Asian ancestry (Koreans and Chinese) to identify genetic associations with alcohol flushing. We also evaluated whether self-reported flushing can be used as an instrumental variable for alcohol intake. RESULTS We identified variants in the region of ALDH2 strongly associated with alcohol flushing, replicating previous studies conducted in East Asian populations. Additionally, we identified variants in the alcohol dehydrogenase 1B (ADH1B) gene region associated with alcohol flushing. Several novel variants were identified after adjustment for the lead variants (ALDH2-rs671 and ADH1B-rs1229984), which need to be confirmed in larger studies. The estimated SNP-heritability on the liability scale was 13% (S.E. = 4%) for flushing, but the heritability estimate decreased to 6% (S.E. = 4%) when the effects of the lead variants were controlled for. Genetic instrumentation of higher alcohol intake using these variants recapitulated known associations of alcohol intake with hypertension. Using self-reported alcohol flushing as an instrument gave a similar association pattern of higher alcohol intake and cardiovascular disease-related traits (e.g. stroke). CONCLUSION This study confirms that ALDH2-rs671 and ADH1B-rs1229984 are associated with alcohol flushing in East Asian populations. Our findings also suggest that self-reported alcohol flushing can be used as an instrumental variable in future studies of alcohol consumption.
Collapse
Affiliation(s)
- Yoonsu Cho
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Su-Hyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Dan Schmidt Valle
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Keumji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | | | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
King SE, Waddell JT, Corbin WR. A preliminary investigation of salivary α-amylase as a novel biomarker of subjective response to alcohol: A brief report. Exp Clin Psychopharmacol 2023; 31:888-894. [PMID: 36757961 PMCID: PMC10409871 DOI: 10.1037/pha0000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Alcohol misuse represents a universal public health concern that spans multiple demographics. As such, understanding shared, biological indicators of alcohol-related risk is vital to implementing targeted prevention and intervention efforts. Self-report measures of subjective response to alcohol (SR) capture both psychological and pharmacological effects of alcohol and robustly predict patterns of alcohol use, negative consequences, and the development of alcohol use disorders. Importantly, several biological markers of alcohol's sedating effects, including cortisol, have been identified and complement subjective response assessments. However, biological markers of alcohol's stimulating effects are less understood. Studies have implicated alcohol-induced changes in heart rate as a viable marker, but heart rate measurements are susceptible to measurement error. Salivary α-amylase, a reliable indicator of sympathetic nervous system activation, represents a promising alternative biomarker of alcohol-induced stimulation. Using data from a large, placebo-controlled alcohol administration study (N = 448), the present study examined the extent to which α-amylase is a viable marker of alcohol-induced stimulation. To test this, a measurement model was estimated in which baseline and ascending limb subjective stimulation latent variables were created using two validated measures of subjective response. Ascending self-reports of stimulation and levels of α-amylase were then regressed onto beverage conditions and allowed to correlate with each other. Findings indicated that α-amylase is sensitive to acute alcohol consumption and is positively, but not statistically reliably, related to the ascending limb stimulant SR. Future studies should consider including salivary α-amylase as a noninvasive physiological indicator of alcohol's stimulating effects. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Scott E King
- Department of Psychology, Arizona State University
| | | | | |
Collapse
|
13
|
van Wijk MH, Davies AG, Sterken MG, Mathies LD, Quamme EC, Blackwell GG, Riksen JAG, Kammenga JE, Bettinger JC. Natural allelic variation modifies acute ethanol response phenotypes in wild strains of C. elegans. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1505-1517. [PMID: 37356915 DOI: 10.1111/acer.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Genetic variation contributes to the likelihood that an individual will develop an alcohol use disorder (AUD). Traditional laboratory studies in animal models have elucidated the molecular pharmacology of ethanol, but laboratory-derived genetic manipulations rarely model the naturally occurring genetic variation observed in wild populations. Rather, these manipulations are biased toward identifying genes of central importance in the phenotypes. Because changes in such genes can confer selective disadvantages, they are not ideal candidates for carrying AUD risk alleles in humans. We sought to exploit Caenorhabditis elegans to identify allelic variation existing in the wild that modulates ethanol response behaviors. METHODS We tested the acute ethanol responses of four strains recently isolated from the wild (JU1511, JU1926, JU1931, and JU1941) and 41 multiparental recombinant inbred lines (mpRILs) derived from them. We assessed locomotion at 10, 30, and 50 min on low and high ethanol concentrations. We performed principal component analyses (PCA) on the different phenotypes, tested for transgressive behavior, calculated heritability, and determined the correlations between behavioral responses. RESULTS We observed a range of responses to ethanol across the strains. We detected a low-concentration locomotor activation effect in some of the mpRILs not seen in the laboratory wild-type strain. PCA showed different ethanol response behaviors to be independent. We observed transgressive behavior for many of the measured phenotypes and found that multiple behaviors were uncorrelated. The average broad-sense heritability for all phenotypes was 23.2%. CONCLUSIONS Genetic variation significantly affects multiple acute ethanol response behaviors, many of which are independent of one another. This suggests that the genetic variation captured by these strains likely affects multiple biological mechanisms through which ethanol acts. Further study of these strains may allow these distinct mechanisms to be identified.
Collapse
Affiliation(s)
- Marijke H van Wijk
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
14
|
Li R, Reiter JL, Chen AB, Chen SX, Foroud T, Edenberg HJ, Lai D, Liu Y. RNA alternative splicing impacts the risk for alcohol use disorder. Mol Psychiatry 2023; 28:2922-2933. [PMID: 37217680 PMCID: PMC10615768 DOI: 10.1038/s41380-023-02111-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Alcohol use disorder (AUD) is a complex genetic disorder characterized by problems arising from excessive alcohol consumption. Identifying functional genetic variations that contribute to risk for AUD is a major goal. Alternative splicing of RNA mediates the flow of genetic information from DNA to gene expression and expands proteome diversity. We asked whether alternative splicing could be a risk factor for AUD. Herein, we used a Mendelian randomization (MR)-based approach to identify skipped exons (the predominant splicing event in brain) that contribute to AUD risk. Genotypes and RNA-seq data from the CommonMind Consortium were used as the training dataset to develop predictive models linking individual genotypes to exon skipping in the prefrontal cortex. We applied these models to data from the Collaborative Studies on Genetics of Alcoholism to examine the association between the imputed cis-regulated splicing outcome and the AUD-related traits. We identified 27 exon skipping events that were predicted to affect AUD risk; six of these were replicated in the Australian Twin-family Study of Alcohol Use Disorder. Their host genes are DRC1, ELOVL7, LINC00665, NSUN4, SRRM2 and TBC1D5. The genes downstream of these splicing events are enriched in neuroimmune pathways. The MR-inferred impacts of the ELOVL7 skipped exon on AUD risk was further supported in four additional large-scale genome-wide association studies. Additionally, this exon contributed to changes of gray matter volumes in multiple brain regions, including the visual cortex known to be involved in AUD. In conclusion, this study provides strong evidence that RNA alternative splicing impacts the susceptibility to AUD and adds new information on AUD-relevant genes and pathways. Our framework is also applicable to other types of splicing events and to other complex genetic disorders.
Collapse
Affiliation(s)
- Rudong Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill L Reiter
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andy B Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Steven X Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Sterrett-Hong EM, Aliev F, Dick DM, Hooper LM, Mustanski B. Genetic Risk, Neighborhood Characteristics, and Behavioral Difficulties Among African American Adolescents Living in Very Low-Income Neighborhoods. Res Child Adolesc Psychopathol 2023; 51:653-664. [PMID: 36645613 PMCID: PMC10121776 DOI: 10.1007/s10802-023-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 01/17/2023]
Abstract
Behavioral difficulties among African American youth are disproportionately detrimental to their future well-being compared to when demonstrated by White American youth. The majority of gene-environment studies of behavior have been conducted with European ancestry samples, limiting our knowledge of these processes among African Americans. This study examined the influence of positive and negative neighborhood conditions, in the context of genetic risk, on behavioral difficulties among low-income African American adolescents. Data were from the Genes, Environment, and Neighborhood Initiative study of African American youth in high-poverty neighborhoods, n = 524, M age = 15.89, SD = 1.42. DNA samples were collected using the Oragene Discovery 500 series, and polygenic risk scores for behavioral difficulties computed. Neighborhood informal social control, social cohesion, physical disorder, and social disorder were assessed. Adolescent alcohol use, hyperactivity/inattention and conduct problems were examined as outcomes. After controlling for polygenic risk, lower levels of neighborhood social disorder and higher levels of social cohesion were associated with fewer youth-reported hyperactivity/inattention and conduct problems. Less social disorder also was associated with fewer parent-reported behavioral difficulties. Neighborhood characteristics did not moderate associations between genetic risk and the outcomes. Higher levels of positive and lower levels of negative neighborhood characteristics can be associated with lower levels of behavioral difficulties among African American youth living in poverty, even after taking into account genetic risk.
Collapse
Affiliation(s)
- Emma M Sterrett-Hong
- Kent School of Social Work & Family Science, University of Louisville, Oppenheimer Hall #102, 2217 S. 3rd St, 40292, Louisville, KY, USA.
| | - Fazil Aliev
- Rutgers University, New Brunswick, United States
| | | | - Lisa M Hooper
- University of Northern Iowa, Cedar Falls, United States
| | | |
Collapse
|
16
|
Yuan S, Chen J, Ruan X, Sun Y, Zhang K, Wang X, Li X, Gill D, Burgess S, Giovannucci E, Larsson SC. Smoking, alcohol consumption, and 24 gastrointestinal diseases: Mendelian randomization analysis. eLife 2023; 12:e84051. [PMID: 36727839 PMCID: PMC10017103 DOI: 10.7554/elife.84051] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Background Whether the positive associations of smoking and alcohol consumption with gastrointestinal diseases are causal is uncertain. We conducted this Mendelian randomization (MR) to comprehensively examine associations of smoking and alcohol consumption with common gastrointestinal diseases. Methods Genetic variants associated with smoking initiation and alcohol consumption at the genome-wide significance level were selected as instrumental variables. Genetic associations with 24 gastrointestinal diseases were obtained from the UK Biobank, FinnGen study, and other large consortia. Univariable and multivariable MR analyses were conducted to estimate the overall and independent MR associations after mutual adjustment for genetic liability to smoking and alcohol consumption. Results Genetic predisposition to smoking initiation was associated with increased risk of 20 of 24 gastrointestinal diseases, including 7 upper gastrointestinal diseases (gastroesophageal reflux, esophageal cancer, gastric ulcer, duodenal ulcer, acute gastritis, chronic gastritis, and gastric cancer), 4 lower gastrointestinal diseases (irritable bowel syndrome, diverticular disease, Crohn's disease, and ulcerative colitis), 8 hepatobiliary and pancreatic diseases (non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis, liver cancer, cholecystitis, cholelithiasis, and acute and chronic pancreatitis), and acute appendicitis. Fifteen out of 20 associations persisted after adjusting for genetically predicted alcohol consumption. Genetically predicted higher alcohol consumption was associated with increased risk of duodenal ulcer, alcoholic liver disease, cirrhosis, and chronic pancreatitis; however, the association for duodenal ulcer did not remain statistically significant after adjustment for genetic predisposition to smoking initiation. Conclusions This study provides MR evidence supporting causal associations of smoking with a broad range of gastrointestinal diseases, whereas alcohol consumption was associated with only a few gastrointestinal diseases. Funding The Natural Science Fund for Distinguished Young Scholars of Zhejiang Province; National Natural Science Foundation of China; Key Project of Research and Development Plan of Hunan Province; the Swedish Heart Lung Foundation; the Swedish Research Council; the Swedish Cancer Society.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineZhejiangChina
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Jie Chen
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineZhejiangChina
- Department of Gastroenterology, The Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Xixian Ruan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Yuhao Sun
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Ke Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Xue Li
- School of Public Health and The Second Affiliated Hospital, Zhejiang University School of MedicineZhejiangChina
- Centre for Global Health Research, Usher Institute, University of EdinburghEdinburghUnited Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of CambridgeCambridgeUnited Kingdom
- Department of Public Health and Primary Care, University of CambridgeCambridgeUnited Kingdom
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
| |
Collapse
|
17
|
Sinkala M, Elsheikh SSM, Mbiyavanga M, Cullinan J, Mulder NJ. A genome-wide association study identifies distinct variants associated with pulmonary function among European and African ancestries from the UK Biobank. Commun Biol 2023; 6:49. [PMID: 36641522 PMCID: PMC9840173 DOI: 10.1038/s42003-023-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023] Open
Abstract
Pulmonary function is an indicator of well-being, and pulmonary pathologies are the third major cause of death worldwide. We analysed the UK Biobank genome-wide association summary statistics of pulmonary function for Europeans and individuals of recent African descent to identify variants associated with the trait in the two ancestries. Here, we show 627 variants in Europeans and 3 in Africans associated with three pulmonary function parameters. In addition to the 110 variants in Europeans previously reported to be associated with phenotypes related to pulmonary function, we identify 279 novel loci, including an ISX intergenic variant rs369476290 on chromosome 22 in Africans. Remarkably, we find no shared variants among Africans and Europeans. Furthermore, enrichment analyses of variants separately for each ancestry background reveal significant enrichment for terms related to pulmonary phenotypes in Europeans but not Africans. Further analysis of studies of pulmonary phenotypes reveals that individuals of European background are disproportionally overrepresented in datasets compared to Africans, with the gap widening over the past five years. Our findings extend our understanding of the different variants that modify the pulmonary function in Africans and Europeans, a promising finding for future GWASs and medical studies.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa.
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mamana Mbiyavanga
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Joshua Cullinan
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Nicola J Mulder
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
18
|
Wu Q, Li J, Zhu J, Sun X, He D, Li J, Cheng Z, Zhang X, Xu Y, Chen Q, Zhu Y, Lai M. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr 2022; 9:936220. [PMID: 36505257 PMCID: PMC9729530 DOI: 10.3389/fnut.2022.936220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Gamma-glutamyl dipeptides are bioactive peptides involved in inflammation, oxidative stress, and glucose regulation. Gamma-glutamyl-leucine (Gamma-Glu-Leu) has been extensively reported to be associated with the risk of cardio-metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. However, the causality remains to be uncovered. The aim of this study was to explore the causal-effect relationships between Gamma-Glu-Leu and metabolic risk. Materials and methods In this study, 1,289 subjects were included from a cross-sectional survey on metabolic syndrome (MetS) in eastern China. Serum Gamma-Glu-Leu levels were measured by untargeted metabolomics. Using linear regressions, a two-stage genome-wide association study (GWAS) for Gamma-Glu-Leu was conducted to seek its instrumental single nucleotide polymorphisms (SNPs). One-sample Mendelian randomization (MR) analyses were performed to evaluate the causality between Gamma-Glu-Leu and the metabolic risk. Results Four SNPs are associated with serum Gamma-Glu-Leu levels, including rs12476238, rs56146133, rs2479714, and rs12229654. Out of them, rs12476238 exhibits the strongest association (Beta = -0.38, S.E. = 0.07 in discovery stage, Beta = -0.29, S.E. = 0.14 in validation stage, combined P-value = 1.04 × 10-8). Each of the four SNPs has a nominal association with at least one metabolic risk factor. Both rs12229654 and rs56146133 are associated with body mass index, waist circumference (WC), the ratio of WC to hip circumference, blood pressure, and triglyceride (5 × 10-5 < P < 0.05). rs56146133 also has nominal associations with fasting insulin, glucose, and insulin resistance index (5 × 10-5 < P < 0.05). Using the four SNPs serving as the instrumental SNPs of Gamma-Glu-Leu, the MR analyses revealed that higher Gamma-Glu-Leu levels are causally associated with elevated risks of multiple cardio-metabolic factors except for high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (P > 0.05). Conclusion Four SNPs (rs12476238, rs56146133, rs2479714, and rs12229654) may regulate the levels of serum Gamma-Glu-Leu. Higher Gamma-Glu-Leu levels are causally linked to cardio-metabolic risks. Future prospective studies on Gamma-Glu-Leu are required to explain its role in metabolic disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jiankang Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Jinghan Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di He
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China,Affiliated Hangzhou Center of Disease Control and Prevention, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yuying Xu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Chen
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China,*Correspondence: Qing Chen,
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, China,Yimin Zhu,
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China,State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Maode Lai,
| |
Collapse
|
19
|
Saunders GRB, McGue M, Iacono WG, Vrieze S. Longitudinal effects and environmental moderation of ALDH2 and ADH1B gene variants on substance use from age 14 to 40. Dev Psychopathol 2022; 34:1-9. [PMID: 36102130 PMCID: PMC10011021 DOI: 10.1017/s0954579422000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alcohol use and dependence are strongly affected by variation in aldehyde dehydrogenase (ALDH2) and, to a lesser extent, alcohol dehydrogenase (ADH1B) genes. We use this genetic variation with an adoption design to test the causal role of alcohol use on other drug use, as well as the moderating role of adoptive parent, sibling, and peer alcohol use. Longitudinal models were run on 412 genotyped adopted individuals of East Asian ancestry with multiple assessments between ages 14 and 40. We found robust associations between alcohol frequency, quantity, and maximum drinks and ALDH2, but not ADH1B, status. The magnitude of the ALDH2 protective effect increased with age, particularly for maximum drinks, though estimates were smaller than previously reported in ancestrally similar individuals in East/North-East Asian countries. These results suggest that sociocultural factors in Minnesota may reduce the protective effects of ALDH2. We found that peer alcohol use, but not parent or sibling use, predicted adopted offspring's use, and that these environmental influences did not vary by ALDH2 status. Finally, we did not find strong evidence of associations between ALDH2 status and tobacco, marijuana, or illegal drug use, contrary to expectation if alcohol serves as a gateway to use of other drugs.
Collapse
Affiliation(s)
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN55455, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN55455, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN55455, USA
| |
Collapse
|
20
|
Aliev F, Barr PB, Davies AG, Dick DM, Bettinger J. Genes regulating levels of ω-3 long-chain polyunsaturated fatty acids are associated with alcohol use disorder and consumption, and broader externalizing behavior in humans. Alcohol Clin Exp Res 2022; 46:1657-1664. [PMID: 35904282 PMCID: PMC9509483 DOI: 10.1111/acer.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Individual variation in the physiological response to alcohol is predictive of an individual's likelihood to develop alcohol use disorder (AUD). Evidence from diverse model organisms indicates that the levels of long-chain polyunsaturated omega-3 fatty acids (ω-3 LC-PUFAs) can modulate the behavioral response to ethanol and therefore may impact the propensity to develop AUD. While most ω-3 LC-PUFAs come from diet, humans can produce these fatty acids from shorter chain precursors through a series of enzymatic steps. Natural variation in the genes encoding these enzymes has been shown to affect ω-3 LC-PUFA levels. We hypothesized that variation in these genes could contribute to the susceptibility to develop AUD. METHODS We identified nine genes (FADS1, FADS2, FADS3, ELOVL2, GCKR, ELOVL1, ACOX1, APOE, and PPARA) that are required to generate ω-3 LC-PUFAs and/or have been shown or predicted to affect ω-3 LC-PUFA levels. Using both set-based and gene-based analyses we examined their association with AUD and two AUD-related phenotypes, alcohol consumption, and an externalizing phenotype. RESULTS We found that the set of nine genes is associated with all three phenotypes. When examined individually, GCKR, FADS2, and ACOX1 showed significant association signals with alcohol consumption. GCKR was significantly associated with AUD. ELOVL1 and APOE were associated with externalizing. CONCLUSIONS Taken together with observations that dietary ω-3 LC-PUFAs can affect ethanol-related phenotypes, this work suggests that these fatty acids provide a link between the environmental and genetic influences on the risk of developing AUD.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Psychiatry & Behavioral SciencesSUNY Downstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Andrew G. Davies
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| | - Jill C. Bettinger
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Virginia Commonwealth University Alcohol Research CenterRichmondVirginiaUSA
| |
Collapse
|
21
|
Zhou H, Kalayasiri R, Sun Y, Nuñez YZ, Deng HW, Chen XD, Justice AC, Kranzler HR, Chang S, Lu L, Shi J, Sanichwankul K, Mutirangura A, Malison RT, Gelernter J. Genome-wide meta-analysis of alcohol use disorder in East Asians. Neuropsychopharmacology 2022; 47:1791-1797. [PMID: 35094024 PMCID: PMC9372033 DOI: 10.1038/s41386-022-01265-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. Genome-wide association studies (GWAS) have identified ~30 AUD risk genes in European populations, but many fewer in East Asians. We conducted GWAS and genome-wide meta-analysis of AUD in 13,551 subjects with East Asian ancestry, using published summary data and newly genotyped data from five cohorts: (1) electronic health record (EHR)-diagnosed AUD in the Million Veteran Program (MVP) sample; (2) DSM-IV diagnosed alcohol dependence (AD) in a Han Chinese-GSA (array) cohort; (3) AD in a Han Chinese-Cyto (array) cohort; and (4) two AD Thai cohorts. The MVP and Thai samples included newly genotyped subjects from ongoing recruitment. In total, 2254 cases and 11,297 controls were analyzed. An AUD polygenic risk score was analyzed in an independent sample with 4464 East Asians (Genetic Epidemiology Research in Adult Health and Aging (GERA)). Phenotypes from survey data and ICD-9-CM diagnoses were tested for association with the AUD PRS. Two risk loci were detected: the well-known functional variant rs1229984 in ADH1B and rs3782886 in BRAP (near the ALDH2 gene locus) are the lead variants. AUD PRS was significantly associated with days per week of alcohol consumption (beta = 0.43, SE = 0.067, p = 2.47 × 10-10) and nominally associated with pack years of smoking (beta = 0.09, SE = 0.05, p = 4.52 × 10-2) and ever vs. never smoking (beta = 0.06, SE = 0.02, p = 1.14 × 10-2). This is the largest GWAS of AUD in East Asians to date. Building on previous findings, we were able to analyze pleiotropy, but did not identify any new risk regions, underscoring the importance of recruiting additional East Asian subjects for alcohol GWAS.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Rasmon Kalayasiri
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yan Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yaira Z Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Amy C Justice
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert T Malison
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Chang XW, Sun Y, Muhai JN, Li YY, Chen Y, Lu L, Chang SH, Shi J. Common and distinguishing genetic factors for substance use behavior and disorder: an integrated analysis of genomic and transcriptomic studies from both human and animal studies. Addiction 2022; 117:2515-2529. [PMID: 35491750 DOI: 10.1111/add.15908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Genomic and transcriptomic findings greatly broaden the biological knowledge regarding substance use. However, systematic convergence and comparison evidence of genome-wide findings is lacking for substance use. Here, we combined all the genome-wide findings from both substance use behavior and disorder (SUBD) and identified common and distinguishing genetic factors for different SUBDs. METHODS Systemic literature search for genome-wide association (GWAS) and RNA-seq studies of alcohol/nicotine/drug use behavior (partially meets or not reported diagnostic criteria) and alcohol use behavior and disorder (AUBD), nicotine use behavior and disorder (NUBD) and drug use behavior and disorder (DUBD) was performed using PubMed and the GWAS catalog. Drug use was focused upon cannabis, opioid, cocaine and methamphetamine use. GWAS studies required case-control or case/cohort samples. RNA-seq studies were based on brain tissues. The genes which contained significant single nucleotide polymorphism (P ≤ 1 × 10-6 ) in GWAS and reported as significant in RNA-seq studies were extracted. Pathway enrichment was performed by using Metascape. Gene interaction networks were identified by using the Protein Interaction Network Analysis database. RESULTS Total SUBD-related 2910 genes were extracted from 75 GWAS studies (2 773 889 participants) and 17 RNA-seq studies. By overlapping the genes and pathways of AUBD, NUBD and DUBD, four shared genes (CACNB2, GRIN2B, PLXDC2 and PKNOX2), four shared pathways [two Gene Ontology (GO) terms of 'modulation of chemical synaptic transmission', 'regulation of trans-synaptic signaling', two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 'dopaminergic synapse', 'cocaine addiction'] were identified (significantly higher than random, P < 1 × 10-5 ). The top shared KEGG pathways (Benjamini-Hochberg-corrected P-value < 0.05) in the pairwise comparison of AUBD versus DUBD, NUBD versus DUBD, AUBD versus NUBD were 'Epstein-Barr virus infection', 'protein processing in endoplasmic reticulum' and 'neuroactive ligand-receptor interaction', respectively. We also identified substance-specific genetic factors: i.e. ADH1B and ALDH2 were unique for AUBD, while CHRNA3 and CHRNA4 were unique for NUBD. CONCLUSIONS This systematic review identifies the shared and unique genes and pathways for alcohol, nicotine and drug use behaviors and disorders at the genome-wide level and highlights critical biological processes for the common and distinguishing vulnerability of substance use behaviors and disorders.
Collapse
Affiliation(s)
- Xiang-Wen Chang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jia-Na Muhai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yang-Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Su-Hua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China.,Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
23
|
de Marco A, Scozia G, Manfredi L, Conversi D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes (Basel) 2022; 13:genes13081303. [PMID: 35893041 PMCID: PMC9330731 DOI: 10.3390/genes13081303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
It is currently unknown which genetic polymorphisms are involved in substance use disorder (SUD) comorbid with bipolar disorder (BD). The research on polymorphisms in BD comorbid with SUD (BD + SUD) is summarized in this systematic review. We looked for case-control studies that genetically compared adults and adolescents with BD and SUD, healthy controls, and BD without SUD. PRISMA was used to create our protocol, which is PROSPERO-registered (identification: CRD4221270818). The following bibliographic databases were searched indefinitely until December 2021 to identify potentially relevant articles: PubMed, PsycINFO, Scopus, and Web of Science. This systematic review, after the qualitative analysis of the study selection, included 17 eligible articles. In the selected studies, 66 polymorphisms in 29 genes were investigated. The present work delivers a group of potentially valuable genetic polymorphisms associated with BD + SUD: rs11600996 (ARNTL), rs228642/rs228682/rs2640909 (PER3), PONQ192R (PON1), rs945032 (BDKRB2), rs1131339 (NR4A3), and rs6971 (TSPO). It is important to note that none of those findings have been confirmed by two or more studies; thus, we believe that all the polymorphisms identified in this review require additional evidence to be confirmed.
Collapse
Affiliation(s)
- Adriano de Marco
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - Gabriele Scozia
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- PhD Program in Behavioral Neuroscience, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
| | - Lucia Manfredi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - David Conversi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- Correspondence:
| |
Collapse
|
24
|
O’Farrell F, Jiang X, Aljifri S, Pazoki R. Molecular Alterations Caused by Alcohol Consumption in the UK Biobank: A Mendelian Randomisation Study. Nutrients 2022; 14:2943. [PMID: 35889900 PMCID: PMC9317105 DOI: 10.3390/nu14142943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol consumption is associated with the development of cardiovascular diseases, cancer, and liver disease. The biological mechanisms are still largely unclear. Here, we aimed to use an agnostic approach to identify phenotypes mediating the effect of alcohol on various diseases. METHODS We performed an agnostic association analysis between alcohol consumption (red and white wine, beer/cider, fortified wine, and spirits) with over 7800 phenotypes from the UK biobank comprising 223,728 participants. We performed Mendelian randomisation analysis to infer causality. We additionally performed a Phenome-wide association analysis and a mediation analysis between alcohol consumption as exposure, phenotypes in a causal relationship with alcohol consumption as mediators, and various diseases as the outcome. RESULTS Of 45 phenotypes in association with alcohol consumption, 20 were in a causal relationship with alcohol consumption. Gamma glutamyltransferase (GGT; β = 9.44; 95% CI = 5.94, 12.93; Pfdr = 9.04 × 10-7), mean sphered cell volume (β = 0.189; 95% CI = 0.11, 0.27; Pfdr = 1.00 × 10-4), mean corpuscular volume (β = 0.271; 95% CI = 0.19, 0.35; Pfdr = 7.09 × 10-10) and mean corpuscular haemoglobin (β = 0.278; 95% CI = 0.19, 0.36; Pfdr = 1.60 × 10-6) demonstrated the strongest causal relationships. We also identified GGT and physical inactivity as mediators in the pathway between alcohol consumption, liver cirrhosis and alcohol dependence. CONCLUSION Our study provides evidence of causality between alcohol consumption and 20 phenotypes and a mediation effect for physical activity on health consequences of alcohol consumption.
Collapse
Affiliation(s)
- Felix O’Farrell
- Division of Biomedical Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (F.O.); (X.J.); (S.A.)
| | - Xiyun Jiang
- Division of Biomedical Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (F.O.); (X.J.); (S.A.)
| | - Shahad Aljifri
- Division of Biomedical Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (F.O.); (X.J.); (S.A.)
| | - Raha Pazoki
- Division of Biomedical Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (F.O.); (X.J.); (S.A.)
- Department of Epidemiology and Biostatistics, School of Public Health, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
25
|
Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11071374. [PMID: 35883865 PMCID: PMC9311529 DOI: 10.3390/antiox11071374] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a highly prevalent, comorbid, and disabling disorder. The underlying mechanism of ethanol neurotoxicity and the involvement of oxidative stress is still not fully elucidated. However, ethanol metabolism has been associated with increased oxidative stress through alcohol dehydrogenase, the microsomal ethanol oxidation system, and catalase metabolic pathways. We searched the PubMed and genome-wide association studies (GWAS) catalog databases to review the literature systematically and summarized the findings focusing on AUD and alcohol abstinence in relation to oxidative stress. In addition, we reviewed the ClinicalTrials.gov resource of the US National Library of Medicine to identify all ongoing and completed clinical trials that include therapeutic interventions based on antioxidants. The retrieved clinical and preclinical studies show that oxidative stress impacts AUD through genetics, alcohol metabolism, inflammation, and neurodegeneration.
Collapse
|
26
|
Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy. Genomics 2022; 114:110405. [PMID: 35709925 DOI: 10.1016/j.ygeno.2022.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.
Collapse
|
27
|
Laville V, Majarian T, Sung YJ, Schwander K, Feitosa MF, Chasman DI, Bentley AR, Rotimi CN, Cupples LA, de Vries PS, Brown MR, Morrison AC, Kraja AT, Province M, Gu CC, Gauderman WJ, Rao DC, Manning AK, Aschard H. Gene-lifestyle interactions in the genomics of human complex traits. Eur J Hum Genet 2022; 30:730-739. [PMID: 35314805 PMCID: PMC9178041 DOI: 10.1038/s41431-022-01045-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The role and biological significance of gene-environment interactions in human traits and diseases remain poorly understood. To address these questions, the CHARGE Gene-Lifestyle Interactions Working Group conducted series of genome-wide interaction studies (GWIS) involving up to 610,475 individuals across four ancestries for three lipids and four blood pressure traits, while accounting for interaction effects with drinking and smoking exposures. Here we used GWIS summary statistics from these studies to decipher potential differences in genetic associations and G×E interactions across phenotype-exposure-ancestry combinations, and to derive insights on the potential mechanistic underlying G×E through in-silico functional analyses. Our analyses show first that interaction effects likely contribute to the commonly reported ancestry-specific genetic effect in complex traits, and second, that some phenotype-exposures pairs are more likely to benefit from a greater detection power when accounting for interactions. It also highlighted modest correlation between marginal and interaction effects, providing material for future methodological development and biological discussions. We also estimated contributions to phenotypic variance, including in particular the genetic heritability conditional on the exposure, and heritability partitioned across a range of functional annotations and cell types. In these analyses, we found multiple instances of potential heterogeneity of functional partitions between exposed and unexposed individuals, providing new evidence for likely exposure-specific genetic pathways. Finally, along this work, we identified potential biases in methods used to jointly meta-analyze genetic and interaction effects. We performed simulations to characterize these limitations and to provide the community with guidelines for future G×E studies.
Collapse
Affiliation(s)
- Vincent Laville
- Department of Computational Biology, Institut Pasteur, Université de Paris, F-75015, Paris, France.
| | - Timothy Majarian
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yun J Sung
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-221, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 2118, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20982, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-221, USA
| | - Mike Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-221, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90032, USA
| | - D C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Alisa K Manning
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hugues Aschard
- Department of Computational Biology, Institut Pasteur, Université de Paris, F-75015, Paris, France.
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Abstract
The ALDH2*2 missense variant that commonly causes alcohol flushing reactions is the single genetic polymorphism associated with the largest number of traits in humans. The dysfunctional ALDH2 variant affects nearly 8% of the world population and is highly concentrated among East Asians. Carriers of the ALDH2*2 variant commonly present alterations in a number of blood biomarkers, clinical measurements, biometrics, drug prescriptions, dietary habits and lifestyle behaviors, and they are also more susceptible to aldehyde-associated diseases, such as cancer and cardiovascular disease. However, the interaction between alcohol and ALDH2-related pathology is not clearly delineated. Furthermore, genetic evidence indicates that the ALDH2*2 variant has been favorably selected for in the past 2000-3000 years. It is therefore necessary to consider the disease risk and mechanism associated with ALDH2 deficiency, and to understand the possible beneficial or protective effect conferred by ALDH2 deficiency and whether the pleiotropic effects of ALDH2 variance are all mediated by alcohol use.
Collapse
Affiliation(s)
- Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Genome-wide association and Mendelian randomization study of blood copper levels and 213 deep phenotypes in humans. Commun Biol 2022; 5:405. [PMID: 35501403 PMCID: PMC9061855 DOI: 10.1038/s42003-022-03351-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Metal elements are present in the human body, and their levels in the blood have important impacts on health. In this study, 2488 Chinese individuals were included in a genome-wide association study of 21 serum metal levels, with approximately 179,000 East Asian individuals in a bidirectional two-sample Mendelian randomization (MR) analysis, and 628,000 Europeans in a two-sample MR analysis. We identified two single nucleotide polymorphisms (SNPs) rs35691438 and rs671 that were significantly associated with serum copper levels (SCLs). The bidirectional two-sample MR analysis in the East Asian population showed that gamma-glutamyl transpeptidase levels have a causal effect on SCLs. SCLs have causal effects on six outcomes, namely risks of esophageal varix, glaucoma, sleep apnea syndrome, and systemic lupus erythematosus, white blood cell count, and usage of drugs affecting bone structure and mineralization. The two-sample MR analyses in the European population showed causal effects of erythrocyte copper levels on risks of carpal tunnel syndrome and compression fracture. Our results provide original insights into the causal relationship between blood metal levels and multiple human phenotypes. A genome-wide association study in a Chinese population identifies SNPs associated with serum copper levels. Mendelian randomization analysis reveals causal effects on multiple human phenotypes in East Asian and European populations.
Collapse
|
30
|
Jeong SM, Lee HR, Han K, Jeon KH, Kim D, Yoo JE, Cho MH, Chun S, Lee SP, Nam KW, Shin DW. Association of Change in Alcohol Consumption With Risk of Ischemic Stroke. Stroke 2022; 53:2488-2496. [PMID: 35440171 DOI: 10.1161/strokeaha.121.037590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The effect of serial change in alcohol consumption on stroke risk has been limitedly evaluated. We investigated the association of change in alcohol consumption with risk of stroke. METHODS This study is a population-based retrospective cohort study from National Health Insurance Service database of all Koreans. Four lakh five hundred thirteen thousand seven hundred forty-six participants aged ≥40 years who underwent 2 subsequent national health examinations in both 2009 and 2011. Alcohol consumption was assessed by average alcohol intake (g/day) based on self-questionnaires and categorized into non-, mild, moderate, and heavy drinking. Change in alcohol consumption was defined by shift of category from baseline. Cox proportional hazards model was used with adjustment for age, sex, smoking status, regular exercise, socioeconomic information, and comorbidities, Charlson Comorbidity Index, systolic blood pressure, and laboratory results. Subgroup analysis among those with the third examination was conducted to reflect further change in alcohol consumption. RESULTS During 28 424 497 person-years of follow-up, 74 923 ischemic stroke events were identified. Sustained mild drinking was associated with a decreased risk of ischemic stroke (adjusted hazard ratio, 0.88 [95% CI, 0.86-0.90]) compared with sustained nondrinking, whereas sustained heavy drinking was associated with an increased risk of ischemic stroke (adjusted hazard ratio, 1.06 [95% CI, 1.02-1.10]). Increasing alcohol consumption was associated with an increased risk of ischemic stroke (adjusted hazard ratio, 1.11 [95% CI, 1.06-1.17] from mild to moderate; adjusted hazard ratio, 1.28 [95% CI, 1.19-1.38] from mild to heavy) compared with sustained mild drinkers. Reduction of alcohol consumption from heavy to mild level was associated with 17% decreased risk of ischemic stroke through 3× of examinations. CONCLUSIONS Light-to-moderate alcohol consumption is associated with a decreased risk of ischemic stroke, although it might be not causal and could be impacted by sick people abstaining from drinking. Reduction of alcohol consumption from heavy drinking is associated with a decreased risk of ischemic stroke.
Collapse
Affiliation(s)
- Su-Min Jeong
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (S.-M.J., H.R.L., D.W.S.)
| | - Han Rim Lee
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (S.-M.J., H.R.L., D.W.S.)
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea (K.H.)
| | - Keun Hye Jeon
- Department of Family Medicine, CHA Gumi Medical Center, Gumi, Republic of Korea (K.H.J.)
| | - Dahye Kim
- Department of Medical Statistics, The Catholic University of Korea, Seoul, Republic of Korea (D.K.)
| | - Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Republic of Korea. (J.E.Y.)
| | - Mi Hee Cho
- Samsung C&T Medical Clinic, Kangbuk Samsung Hospital, Jongno-gu, Seoul, Republic of Korea (M.H.C.)
| | - Sohyun Chun
- International Healthcare Center, Samsung Medical Center, Seoul, Republic of Korea (S.C.)
| | - Seung Pyo Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Republic f Korea. (S.P.L.)
| | - Ki-Woong Nam
- Department of Neurology, Seoul National University Hospital, Republic of Korea. (K.-W.N.)
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (S.-M.J., H.R.L., D.W.S.).,Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea (D.W.S.)
| |
Collapse
|
31
|
Schaschl H, Göllner T, Morris DL. Positive selection acts on regulatory genetic variants in populations of European ancestry that affect ALDH2 gene expression. Sci Rep 2022; 12:4563. [PMID: 35296751 PMCID: PMC8927298 DOI: 10.1038/s41598-022-08588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
ALDH2 is a key enzyme in alcohol metabolism that protects cells from acetaldehyde toxicity. Using iHS, iSAFE and FST statistics, we identified regulatory acting variants affecting ALDH2 gene expression under positive selection in populations of European ancestry. Several SNPs (rs3184504, rs4766578, rs10774625, rs597808, rs653178, rs847892, rs2013002) that function as eQTLs for ALDH2 in various tissues showed evidence of strong positive selection. Very large pairwise FST values indicated high genetic differentiation at these loci between populations of European ancestry and populations of other global ancestries. Estimating the timing of positive selection on the beneficial alleles suggests that these variants were recently adapted approximately 3000-3700 years ago. The derived beneficial alleles are in complete linkage disequilibrium with the derived ALDH2 promoter variant rs886205, which is associated with higher transcriptional activity. The SNPs rs4766578 and rs847892 are located in binding sequences for the transcription factor HNF4A, which is an important regulatory element of ALDH2 gene expression. In contrast to the missense variant ALDH2 rs671 (ALDH2*2), which is common only in East Asian populations and is associated with greatly reduced enzyme activity and alcohol intolerance, the beneficial alleles of the regulatory variants identified in this study are associated with increased expression of ALDH2. This suggests adaptation of Europeans to higher alcohol consumption.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Tobias Göllner
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
32
|
Strong and weak cross-inheritance of substance use disorders in a nationally representative sample. Mol Psychiatry 2022; 27:1742-1753. [PMID: 34759357 PMCID: PMC9085976 DOI: 10.1038/s41380-021-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022]
Abstract
Substance use disorders (SUDs) are moderately to highly heritable and are in part cross-transmitted genetically, as observed in twin and family studies. We performed exome-focused genotyping to examine the cross-transmission of four SUDs: alcohol use disorder (AUD, n = 4487); nicotine use disorder (NUD, n = 4394); cannabis use disorder (CUD, n = 954); and nonmedical prescription opioid use disorder (NMPOUD, n = 346) within a large nationally representative sample (n = 36,309), the National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III). All diagnoses were based on in-person structured psychiatric interview (AUDADIS-5). SUD cases were compared alone and together to 3959 "super controls" who had neither a SUD nor a psychiatric disorder using an exome-focused array assaying 363,496 SNPs, yielding a representative view of within-disorder and cross-disorder genetic influences on SUDs. The 29 top susceptibility genes for one or more SUDs overlapped highly with genes previously implicated by GWAS of SUD. Polygenic scores (PGS) were computed within the European ancestry (EA) component of the sample (n = 12,505) using summary statistics from each of four clinically distinct SUDs compared to the 3959 "super controls" but then used for two distinctly different purposes: to predict SUD severity (mild, moderate, or severe) and to predict each of the other 3 SUDs. Our findings based on PGS highlight shared and unshared genetic contributions to the pathogenesis of SUDs, confirming the strong cross-inheritance of AUD and NUD as well as the distinctiveness of inheritance of opioid use disorder.
Collapse
|
33
|
Jiang Q, Chen ML. Risk of Incident Atrial Fibrillation in ALDH2-Deficient Variant Carriers: Genetic Predisposition or Habitual Lifestyle? JACC. ASIA 2022; 2:71-72. [PMID: 36340253 PMCID: PMC9627933 DOI: 10.1016/j.jacasi.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Qi Jiang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming-long Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Flippo KH, Trammell SAJ, Gillum MP, Aklan I, Perez MB, Yavuz Y, Smith NK, Jensen-Cody SO, Zhou B, Claflin KE, Beierschmitt A, Fink-Jensen A, Knop FK, Palmour RM, Grueter BA, Atasoy D, Potthoff MJ. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit. Cell Metab 2022; 34:317-328.e6. [PMID: 35108517 PMCID: PMC9093612 DOI: 10.1016/j.cmet.2021.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Samuel A J Trammell
- Section for Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthew P Gillum
- Section for Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Misty B Perez
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nicholas K Smith
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37323, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Bolu Zhou
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Amy Beierschmitt
- School of Veterinary Medicine, Ross University, Basseterre KN 0101, Saint Kitts and Nevis; Behavioral Science Foundation, Basseterre KN 0101, Saint Kitts and Nevis
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University Hospital of Copenhagen, Edel Sauntes Allé 10, DK-2100 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 7, 3rd floor, DK-2900 Hellerup, Denmark; Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Roberta M Palmour
- Behavioral Science Foundation, Basseterre KN 0101, Saint Kitts and Nevis; Departments of Psychiatry and Human Genetics, McGill University, Montreal, QC, Canada
| | - Brad A Grueter
- Department of Anesthesiology, Vanderbilt University, Nashville, TN 37323, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Hoek AG, van Oort S, Mukamal KJ, Beulens JWJ. Alcohol Consumption and Cardiovascular Disease Risk: Placing New Data in Context. Curr Atheroscler Rep 2022; 24:51-59. [PMID: 35129737 PMCID: PMC8924109 DOI: 10.1007/s11883-022-00992-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW A clear link between excessive alcohol consumption and cardiovascular disease (CVD) has been established, but no consensus exists on the effects of moderate alcohol consumption on CVD. RECENT FINDINGS A lower risk of coronary heart disease and myocardial infarction among moderate drinkers compared to abstainers has been consistently observed in epidemiological studies and meta-analyses of these studies. However, ambiguity remains on the effect of alcohol on other CVDs and all-cause mortality. Short-term randomized controlled trials (RCT) have identified potentially beneficial effects of alcohol consumption on cardiovascular risk factors, but studies investigating genetic polymorphisms that influence alcohol consumption (i.e., Mendelian randomization) have yielded inconclusive results. To date, a long-term RCT providing causal evidence is lacking but urgently needed. Triangulation of evidence from different study designs, including long-term RCTs, pragmatic trials and the evaluation of policy measures, combined will lead to the best available evidence.
Collapse
Affiliation(s)
- Anna G. Hoek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology & Data Science, Amsterdam Cardiovascular Sciences Research Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sabine van Oort
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology & Data Science, Amsterdam Cardiovascular Sciences Research Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Kenneth J. Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard TH Chan School of Public Health, Boston, MA USA
| | - Joline W. J. Beulens
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology & Data Science, Amsterdam Cardiovascular Sciences Research Institute, De Boelelaan 1117, Amsterdam, The Netherlands
- University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
36
|
Chang YC, Hsu LA, Huang YH. Alcohol consumption, aldehyde dehydrogenase 2 gene rs671 polymorphism, and psoriasis in Taiwan. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_21_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
De Angelis F, Wendt FR, Pathak GA, Tylee DS, Goswami A, Gelernter J, Polimanti R. Drinking and smoking polygenic risk is associated with childhood and early-adulthood psychiatric and behavioral traits independently of substance use and psychiatric genetic risk. Transl Psychiatry 2021; 11:586. [PMID: 34775470 PMCID: PMC8590689 DOI: 10.1038/s41398-021-01713-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Alcohol drinking and tobacco smoking are hazardous behaviors associated with a wide range of adverse health outcomes. In this study, we explored the association of polygenic risk scores (PRS) related to drinks per week, age of smoking initiation, smoking initiation, cigarettes per day, and smoking cessation with 433 psychiatric and behavioral traits in 4498 children and young adults (aged 8-21) of European ancestry from the Philadelphia neurodevelopmental cohort. After applying a false discovery rate multiple testing correction accounting for the number of PRS and traits tested, we identified 36 associations related to psychotic symptoms, emotion and age recognition social competencies, verbal reasoning, anxiety-related traits, parents' education, and substance use. These associations were independent of the genetic correlations among the alcohol-drinking and tobacco-smoking traits and those with cognitive performance, educational attainment, risk-taking behaviors, and psychopathology. The removal of participants endorsing substance use did not affect the associations of each PRS with psychiatric and behavioral traits identified as significant in the discovery analyses. Gene-ontology enrichment analyses identified several neurobiological processes underlying mechanisms of the PRS associations we report. In conclusion, we provide novel insights into the genetic overlap of smoking and drinking behaviors in children and young adults, highlighting their independence from psychopathology and substance use.
Collapse
Affiliation(s)
- Flavio De Angelis
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
38
|
Simonin-Wilmer I, Orozco-del-Pino P, Bishop DT, Iles MM, Robles-Espinoza CD. An Overview of Strategies for Detecting Genotype-Phenotype Associations Across Ancestrally Diverse Populations. Front Genet 2021; 12:703901. [PMID: 34804113 PMCID: PMC8602802 DOI: 10.3389/fgene.2021.703901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have been very successful at identifying genetic variants influencing a large number of traits. Although the great majority of these studies have been performed in European-descent individuals, it has been recognised that including populations with differing ancestries enhances the potential for identifying causal SNPs due to their differing patterns of linkage disequilibrium. However, when individuals from distinct ethnicities are included in a GWAS, it is necessary to implement a number of control steps to ensure that the identified associations are real genotype-phenotype relationships. In this Review, we discuss the analyses that are required when performing multi-ethnic studies, including methods for determining ancestry at the global and local level for sample exclusion, controlling for ancestry in association testing, and post-GWAS interrogation methods such as genomic control and meta-analysis. We hope that this overview provides a primer for those researchers interested in including distinct populations in their studies.
Collapse
Affiliation(s)
- Irving Simonin-Wilmer
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Queretaro, Mexico
| | | | - D. Timothy Bishop
- Leeds Institute for Data Analytics and Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | - Mark M. Iles
- Leeds Institute for Data Analytics and Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Queretaro, Mexico
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
39
|
Abstract
Substance use disorders (SUDs) are prevalent and result in an array of negative consequences. They are influenced by genetic factors (h2 = ~50%). Recent years have brought substantial progress in our understanding of the genetic etiology of SUDs and related traits. The present review covers the current state of the field for SUD genetics, including the epidemiology and genetic epidemiology of SUDs, findings from the first-generation of SUD genome-wide association studies (GWAS), cautions about translating GWAS findings to clinical settings, and suggested prioritizations for the next wave of SUD genetics efforts. Recent advances in SUD genetics have been facilitated by the assembly of large GWAS samples, and the development of state-of-the-art methods modeling the aggregate effect of genome-wide variation. These advances have confirmed that SUDs are highly polygenic with many variants across the genome conferring risk, the vast majority of which are of small effect. Downstream analyses have enabled finer resolution of the genetic architecture of SUDs and revealed insights into their genetic relationship with other psychiatric disorders. Recent efforts have also prioritized a closer examination of GWAS findings that have suggested non-uniform genetic influences across measures of substance use (e.g. consumption) and problematic use (e.g. SUD). Additional highlights from recent SUD GWAS include the robust confirmation of loci in alcohol metabolizing genes (e.g. ADH1B and ALDH2) affecting alcohol-related traits, and loci within the CHRNA5-CHRNA3-CHRNB4 gene cluster influencing nicotine-related traits. Similar successes are expected for cannabis, opioid, and cocaine use disorders as sample sizes approach those assembled for alcohol and nicotine.
Collapse
Affiliation(s)
- Joseph D. Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
The Aldehyde Dehydrogenase ALDH2*2 Allele, Associated with Alcohol Drinking Behavior, Dates Back to Prehistoric Times. Biomolecules 2021; 11:biom11091376. [PMID: 34572589 PMCID: PMC8465343 DOI: 10.3390/biom11091376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/02/2023] Open
Abstract
Human alcohol-consumption behavior is partly genetically encoded. The alcohol consumption of 987 residents in Keelung, Taiwan, was evaluated by using the Alcohol Use Disorder Identification Test (AUDIT). We assessed ~750,000 genomic variants of 71 residents who drank hazardously (AUDIT score ≥ 8) and 126 residents who did not drink in their daily lives (AUDIT score = 0), using high-density single nucleotide polymorphism (SNP) arrays. The rs671 G > A manifests the highest significance of the association with drinking behavior (Fisher’s exact P = 8.75 × 10−9). It is a pleiotropic, non-synonymous variant in the aldehyde dehydrogenase 2 (ALDH2) gene. The minor allele “A”, commonly known as ALDH2*2, is associated with non-drinkers. Intriguingly, identity-by-descent haplotypes encompassing genomic regions with a median length of 1.6 (0.6–2.0) million nucleotide bases were found in all study participants with either heterozygous or homozygous ALDH2*2 (n = 81 and 13, respectively). We also analyzed a public-domain dataset with genome-wide genotypes of 2000 participants in Guangzhou, a coastal city in Southern China. Among them, 175 participants have homozygous ALDH2*2 genotype, and again, long ALDH2*2-carrying haplotypes were found in all 175 participants without exceptions. The median length of the ALDH2*2-carrying haplotype is 1.7 (0.5–2.8) million nucleotide bases. The haplotype lengths in the Keelung and Guangzhou cohorts combined indicate that the origin of the ALDH2*2 allele dates back to 7935 (7014–9381) years ago. In conclusion, the rs671 G > A is the leading genomic variant associated with the long-term drinking behavior among residents of Keelung, Taiwan. The ALDH2*2 allele has been in Asian populations since prehistoric times.
Collapse
|
41
|
Richards VL, Liu Y, Orr J, Leeman RF, Barnett NP, Bryant K, Cook RL, Wang Y. Sociodemographic and clinical factors associated with transdermal alcohol concentration from the SCRAM biosensor among persons living with and without HIV. Alcohol Clin Exp Res 2021; 45:1804-1811. [PMID: 34342009 DOI: 10.1111/acer.14665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Transdermal alcohol biosensors can objectively monitor alcohol use by measuring transdermal alcohol concentration (TAC). However, it is unclear how sociodemographic and clinical factors that influence alcohol metabolism are associated with TAC. The main aim of this study was to examine how sociodemographic factors (sex, age, race/ethnicity) and clinical factors (body mass index, liver enzymes: alanine aminotransferase [ALT] and aspartate transaminase [AST]), alcohol use disorder, and HIV status were associated with TAC while controlling for level of alcohol use. METHODS We analyzed data from a prospective study involving contingency management for alcohol cessation among persons living with and without human immunodeficiency virus (HIV) that used the Secure Continuous Remote Alcohol Monitoring (SCRAM) biosensor. Forty-three participants (Mage = 56.6 years; 63% male; 58% people living with HIV) yielded 183 SCRAM-detected drinking days. Two indices derived from SCRAM: peak TAC (reflecting level of intoxication) and TAC area under the curve (TAC-AUC; reflecting alcohol volume)-were the main outcomes. Self-reported alcohol use (drinks/drinking day) measured by Timeline Followback was the main predictor. To examine whether factors of interest were associated with TAC, we used individual generalized estimating equations (GEE), followed by a multivariate GEE model to include all significant predictors to examine their associations with TAC beyond the effect of self-reported alcohol use. RESULTS Number of drinks per drinking day (B = 0.29, p < 0.01) and elevated AST (B = 0.50, p = 0.01) were significant predictors of peak TAC. Positive HIV status, female sex, elevated AST, and number of drinks per drinking day were positively associated with TAC-AUC at the bivariate level, whereas only self-reported alcohol use (B = 0.85, p < 0.0001) and female sex (B = 0.67, p < 0.05) were significant predictors of TAC-AUC at the multivariate level. CONCLUSIONS HIV status was not independently associated with TAC. Future studies should consider the sex and liver function of the participant when using alcohol biosensors to measure alcohol use.
Collapse
Affiliation(s)
- Veronica L Richards
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Yiyang Liu
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Jessica Orr
- Division of Infectious Diseases, University of Miami, Miami, Florida, USA
| | - Robert F Leeman
- Department of Health Education and Behavior, University of Florida, Gainesville, Florida, USA.,Yale School of Medicine, New Haven, Connecticut, USA
| | - Nancy P Barnett
- Brown University School of Public Health, Providence, Rhode Island, USA
| | - Kendall Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Robert L Cook
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Yan Wang
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Treur JL, Munafò MR, Logtenberg E, Wiers RW, Verweij KJH. Using Mendelian randomization analysis to better understand the relationship between mental health and substance use: a systematic review. Psychol Med 2021; 51:1593-1624. [PMID: 34030749 PMCID: PMC8327626 DOI: 10.1017/s003329172100180x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Poor mental health has consistently been associated with substance use (smoking, alcohol drinking, cannabis use, and consumption of caffeinated drinks). To properly inform public health policy it is crucial to understand the mechanisms underlying these associations, and most importantly, whether or not they are causal. METHODS In this pre-registered systematic review, we assessed the evidence for causal relationships between mental health and substance use from Mendelian randomization (MR) studies, following PRISMA. We rated the quality of included studies using a scoring system that incorporates important indices of quality, such as the quality of phenotype measurement, instrument strength, and use of sensitivity methods. RESULTS Sixty-three studies were included for qualitative synthesis. The final quality rating was '-' for 16 studies, '- +' for 37 studies, and '+'for 10 studies. There was robust evidence that higher educational attainment decreases smoking and that there is a bi-directional, increasing relationship between smoking and (symptoms of) mental disorders. Another robust finding was that higher educational attainment increases alcohol use frequency, but decreases binge-drinking and alcohol use problems, and that mental disorders causally lead to more alcohol drinking without evidence for the reverse. CONCLUSIONS The current MR literature increases our understanding of the relationship between mental health and substance use. Bi-directional causal relationships are indicated, especially for smoking, providing further incentive to strengthen public health efforts to decrease substance use. Future MR studies should make use of large(r) samples in combination with detailed phenotypes, a wide range of sensitivity methods, and triangulate with other research methods.
Collapse
Affiliation(s)
- Jorien L. Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Addiction Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus R. Munafò
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, the University of Bristol, Bristol, UK
| | - Emma Logtenberg
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Reinout W. Wiers
- Addiction Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J. H. Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
43
|
Sun X, Ho JE, Gao H, Evangelou E, Yao C, Huan T, Hwang SJ, Courchesne P, Larson MG, Levy D, Ma J, Liu C. Associations of Alcohol Consumption with Cardiovascular Disease-Related Proteomic Biomarkers: The Framingham Heart Study. J Nutr 2021; 151:2574-2582. [PMID: 34159370 PMCID: PMC8417922 DOI: 10.1093/jn/nxab186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alcohol consumption and cardiovascular disease (CVD) have a complex relation. OBJECTIVES We examined the associations between alcohol consumption, fasting plasma proteins, and CVD risk. METHODS We performed cross-sectional association analyses of alcohol consumption with 71 CVD-related plasma proteins, and also performed prospective association analyses of alcohol consumption and protein concentrations with 3 CVD risk factors (obesity, hypertension, and diabetes) in 6745 Framingham Heart Study (FHS) participants (mean age 49 y; 53% women). RESULTS A unit increase in log10 transformed alcohol consumption (g/d) was associated with an increased risk of hypertension (HR = 1.14; 95% CI: 1.04, 1.26; P = 0.007), and decreased risks of obesity (HR = 0.80; 95% CI: 0.71, 0.91; P = 4.6 × 10-4) and diabetes (HR: 0.68; 95% CI: 0.58, 0.80; P = 5.1 × 10-6) in a median of 13-y (interquartile = 7, 14) of follow-up. We identified 43 alcohol-associated proteins in a discovery sample (n = 4348, false discovery rate <0.05) and 20 of them were significant (P <0.05/43) in an independent validation sample (n = 2397). Eighteen of the 20 proteins were inversely associated with alcohol consumption. Four of the 20 proteins demonstrated 3-way associations, as expected, with alcohol consumption and CVD risk factors. For example, a greater concentration of APOA1 was associated with higher alcohol consumption (P = 1.2 × 10-65), and it was also associated with a lower risk of diabetes (P = 8.5 × 10-6). However, several others showed unexpected 3-way associations. CONCLUSIONS We identified 20 alcohol-associated proteins in 6745 FHS samples. These alcohol-associated proteins demonstrated complex relations with the 3 CVD risk factors. Future studies with integration of more proteomic markers and larger sample size are warranted to unravel the complex relation between alcohol consumption and CVD risk.
Collapse
Affiliation(s)
- Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Jennifer E Ho
- Division of Cardiology, Department of Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Chen Yao
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Tianxiao Huan
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Paul Courchesne
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Martin G Larson
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA,Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA,Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
44
|
Thompson A, King K, Morris AP, Pirmohamed M. Assessing the impact of alcohol consumption on the genetic contribution to mean corpuscular volume. Hum Mol Genet 2021; 30:2040-2051. [PMID: 34104963 PMCID: PMC8522631 DOI: 10.1093/hmg/ddab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between the genetic loci that influence mean corpuscular volume (MCV) and those associated with excess alcohol drinking are unknown. We used white British participants from the UK Biobank (n = 362 595) to assess the association between alcohol consumption and MCV, and whether this was modulated by genetic factors. Multivariable regression was applied to identify predictors of MCV. GWAS, with and without stratification for alcohol consumption, determined how genetic variants influence MCV. SNPs in ADH1B, ADH1C and ALDH1B were used to construct a genetic score to test the assumption that acetaldehyde formation is an important determinant of MCV. Additional investigations using mendelian randomisation and phenome-wide association analysis were conducted. Increasing alcohol consumption by 40 g/week resulted in a 0.30% (95% CI: 0.30 to 0.31%) increase in MCV (P < 1.0x10-320). Unstratified (irrespective of alcohol intake) GWAS identified 212 loci associated with MCV, of which 108 were novel. There was no heterogeneity of allelic effects by drinking status. No association was found between MCV and the genetic score generated from alcohol metabolising genes. Mendelian randomisation demonstrated a causal effect for alcohol on MCV. Seventy-one SNP-outcome pairs reached statistical significance in phenome-wide association analysis, with evidence of shared genetic architecture for MCV and thyroid dysfunction, and mineral metabolism disorders. MCV increases linearly with alcohol intake in a causal manner. Many genetic loci influence MCV, with new loci identified in this analysis that provide novel biological insights. However, there was no interaction between alcohol consumption and the allelic variants associated with MCV.
Collapse
Affiliation(s)
- Andrew Thompson
- Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, UK
| | - Katharine King
- Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK.,Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, UK.,Liverpool University Hospital, Liverpool, UK.,Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
45
|
Peng Q, Ehlers CL. Long tracks of homozygosity predict the severity of alcohol use disorders in an American Indian population. Mol Psychiatry 2021; 26:2200-2211. [PMID: 33398086 PMCID: PMC8254832 DOI: 10.1038/s41380-020-00989-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
Runs of homozygosity (ROH) arise when an individual inherits two copies of the same haplotype segment. While ROH are ubiquitous across human populations, Native populations-with shared parental ancestry arising from isolation and endogamy-can carry a substantial enrichment for ROH. We have been investigating genetic and environmental risk factors for alcohol use disorders (AUD) in a group of American Indians (AI) who have higher rates of AUD than the general U. S. population. Here we explore whether ROH might be associated with incidence and severity of AUD in this admixed AI population (n = 742) that live on geographically contiguous reservations, using low-coverage whole genome sequences. We have found that the genomic regions in the ROH that were identified in this population had significantly elevated American Indian heritage compared with the rest of the genome. Increased ROH abundance and ROH burden are likely risk factors for AUD severity in this AI population, especially in those diagnosed with severe and moderate AUD. The association between ROH and AUD was mostly driven by ROH of moderate lengths between 1 and 2 Mb. An ROH island on chromosome 1p32.3 and a rare ROH pool on chromosome 3p12.3 were found to be significantly associated with AUD severity. They contain genes involved in lipid metabolism, oxidative stress and inflammatory responses; and OSBPL9 was found to reside on the consensus part of the ROH island. These data demonstrate that ROH are associated with risk for AUD severity in this AI population.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Kinreich S, Meyers JL, Maron-Katz A, Kamarajan C, Pandey AK, Chorlian DB, Zhang J, Pandey G, Subbie-Saenz de Viteri S, Pitti D, Anokhin AP, Bauer L, Hesselbrock V, Schuckit MA, Edenberg HJ, Porjesz B. Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study. Mol Psychiatry 2021; 26:1133-1141. [PMID: 31595034 PMCID: PMC7138692 DOI: 10.1038/s41380-019-0534-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022]
Abstract
Predictive models have succeeded in distinguishing between individuals with Alcohol use Disorder (AUD) and controls. However, predictive models identifying who is prone to develop AUD and the biomarkers indicating a predisposition to AUD are still unclear. Our sample (n = 656) included offspring and non-offspring of European American (EA) and African American (AA) ancestry from the Collaborative Study of the Genetics of Alcoholism (COGA) who were recruited as early as age 12 and were unaffected at first assessment and reassessed years later as AUD (DSM-5) (n = 328) or unaffected (n = 328). Machine learning analysis was performed for 220 EEG measures, 149 alcohol-related single nucleotide polymorphisms (SNPs) from a recent large Genome-wide Association Study (GWAS) of alcohol use/misuse and two family history (mother DSM-5 AUD and father DSM-5 AUD) features using supervised, Linear Support Vector Machine (SVM) classifier to test which features assessed before developing AUD predict those who go on to develop AUD. Age, gender, and ancestry stratified analyses were performed. Results indicate significant and higher accuracy rates for the AA compared with the EA prediction models and a higher model accuracy trend among females compared with males for both ancestries. Combined EEG and SNP features model outperformed models based on only EEG features or only SNP features for both EA and AA samples. This multidimensional superiority was confirmed in a follow-up analysis in the AA age groups (12-15, 16-19, 20-30) and EA age group (16-19). In both ancestry samples, the youngest age group achieved higher accuracy score than the two other older age groups. Maternal AUD increased the model's accuracy in both ancestries' samples. Several discriminative EEG measures and SNPs features were identified, including lower posterior gamma, higher slow wave connectivity (delta, theta, alpha), higher frontal gamma ratio, higher beta correlation in the parietal area, and 5 SNPs: rs4780836, rs2605140, rs11690265, rs692854, and rs13380649. Results highlight the significance of sampling uniformity followed by stratified (e.g., ancestry, gender, developmental period) analysis, and wider selection of features, to generate better prediction scores allowing a more accurate estimation of AUD development.
Collapse
Affiliation(s)
- Sivan Kinreich
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
| | - Jacquelyn L Meyers
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Chella Kamarajan
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Ashwini K Pandey
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - David B Chorlian
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jian Zhang
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Gayathri Pandey
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | | | - Dan Pitti
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Andrey P Anokhin
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Lance Bauer
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Marc A Schuckit
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernice Porjesz
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
47
|
Bagley JR, Chesler EJ, Philip VM, Jentsch JD. Heritability of ethanol consumption and pharmacokinetics in a genetically diverse panel of collaborative cross mouse strains and their inbred founders. Alcohol Clin Exp Res 2021; 45:697-708. [PMID: 33619752 PMCID: PMC8441258 DOI: 10.1111/acer.14582] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Interindividual variation in voluntary ethanol consumption and ethanol response is partially influenced by genetic variation. Discovery of the genes and allelic variants that affect these phenotypes may clarify the etiology and pathophysiology of problematic alcohol use, including alcohol use disorder. Genetically diverse mouse populations, which demonstrate heritable variation in ethanol consumption, can be utilized to discover the genes and gene networks that influence this trait. The Collaborative Cross (CC) recombinant inbred strains, Diversity Outbred (DO) population and their 8 founder strains are complementary mouse resources that capture substantial genetic diversity and can demonstrate expansive phenotypic variation in heritable traits. These populations may be utilized to discover candidate genes and gene networks that moderate ethanol consumption and other ethanol-related traits. METHODS We characterized ethanol consumption, preference, and pharmacokinetics in the 8 founder strains and 10 CC strains in 12-hour drinking sessions during the dark phase of the circadian cycle. RESULTS Ethanol consumption was substantially heritable, both early in ethanol access and over a chronic intermittent access schedule. Ethanol pharmacokinetics were also heritable; however, no association between strain-level ethanol consumption and pharmacokinetics was detected. The PWK/PhJ strain was the highest drinking strain, with consumption substantially exceeding that of the C57BL/6J strain, which is commonly used as a model of "high" or "binge" drinking. Notably, we found strong evidence that sex moderated genetic effects on voluntary ethanol drinking. CONCLUSIONS Collectively, this research serves as a foundation for expanded genetic study of ethanol consumption in the CC/DO and related populations. Moreover, we identified reference strains with extreme consumption phenotypes that effectively represent polygenic models of excessive ethanol use.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
48
|
Corpas M, Megy K, Mistry V, Metastasio A, Lehmann E. Whole Genome Interpretation for a Family of Five. Front Genet 2021; 12:535123. [PMID: 33763108 PMCID: PMC7982663 DOI: 10.3389/fgene.2021.535123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Institute of Continuing Education Madingley Hall Madingley, University of Cambridge, Cambridge, United Kingdom.,Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Madrid, Spain
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge & National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
| | | | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| |
Collapse
|
49
|
Wang Q, Chang B, Li X, Zou Z. Role of ALDH2 in Hepatic Disorders: Gene Polymorphism and Disease Pathogenesis. J Clin Transl Hepatol 2021; 9:90-98. [PMID: 33604259 PMCID: PMC7868706 DOI: 10.14218/jcth.2020.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme of alcohol metabolism and it is involved in the cellular mechanism of alcohol liver disease. ALDH2 gene mutations exist in about 8% of the world's population, with the incidence reaching 45% in East Asia. The mutations will result in impairment of enzyme activity and accumulation of acetaldehyde, facilitating the progression of other liver diseases, including non-alcoholic fatty liver diseases, viral hepatitis and hepatocellular carcinoma, through adduct formation and inflammatory responses. In this review, we seek to summarize recent research progress on the correlation between ALDH2 gene polymorphism and multiple liver diseases, with an attempt to provide clues for better understanding of the disease mechanism and for strategy making.
Collapse
Affiliation(s)
- Qiaoling Wang
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Binxia Chang
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Li
- Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Zou
- Peking University, 302 Clinical Medical School, Beijing, China
- Diagnosis and Treatment Center for Non-Infectious Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Zhengsheng Zou, The Center for Diagnosis and Treatment of Non-Infectious Liver Disease, The General Hospital of Chinese People’s Liberation Army No. 5 Medical Science Center, No. 100 Xisihuan Middle Road, Beijing 100039, China. E-mail:
| |
Collapse
|
50
|
Modjadji P, Pitso M. Maternal Tobacco and Alcohol Use in Relation to Child Malnutrition in Gauteng, South Africa: A Retrospective Analysis. CHILDREN-BASEL 2021; 8:children8020133. [PMID: 33670265 PMCID: PMC7918556 DOI: 10.3390/children8020133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
Tobacco and alcohol use among mothers is associated with numerous adverse consequences for affected offspring, including poor growth and development. This study determined the association between maternal tobacco and alcohol use, and malnutrition, among infants aged ≤ 12 months (n = 300), in selected health facilities situated in Gauteng, South Africa. Data on alcohol and tobacco use were collected using a validated questionnaire, in addition to mothers’ socio-demographic characteristics and obstetric history. Stunting (low height/length-for-age), underweight (low weight-for-age) and thinness (low body mass index-for-age) were calculated using z-scores based on the World Health Organization child growth standards. The association of tobacco and alcohol use with stunting, underweight and thinness was analysed using logistic regression analysis. The results showed a mean age of 29 years (24.0; 35.0) for mothers and 7.6 ± 3 months for infants, and over half of the mothers were unemployed (63%). Approximately 18.7% of mothers had used tobacco and 3% had used alcohol during pregnancy. The prevalence of current tobacco and alcohol use among mothers were estimated at 14.3% and 49.7%, respectively, and almost three-quarters (67.3%) of them were still breastfeeding during the study period. Stunting (55%) was the most prevalent malnutrition indicator among infants, while underweight was 41.7%, and thinness was 22%. Current tobacco use was associated with increased odds of being thin [OR = 2.40, 95% CI: 1.09–5.45), and after adjusting for confounders, current alcohol use was associated with the likelihood of being underweight [AOR = 1.96, 95% CI: 1.06–3.63] among infants. Future prospective cohort studies that examine growth patterns among infants who are exposed to maternal tobacco and alcohol use from the intrauterine life to infancy are necessary to inform, partly, the public health programmes, to reduce malnutrition among children.
Collapse
|