1
|
Song H, Hao T, Han P, Wang H, Zhang X, Li X, Wang Y, Chen J, Li Y, Jin X, Duan X, Zhang W, Bi Y, Jin R, Sun L, Wang N, Gao GF. Receptor binding, structure, and tissue tropism of cattle-infecting H5N1 avian influenza virus hemagglutinin. Cell 2025; 188:919-929.e9. [PMID: 39848246 DOI: 10.1016/j.cell.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.4b strains, poses a significant threat to animal and public health. Recent outbreaks in cattle highlight concerns about cross-species transmission and zoonotic spillover. Here, we found that the hemagglutinin (HA) protein from a cattle-infecting H5N1 virus has acquired slight binding to human-like α2-6-linked receptors while still exhibiting a strong preference for avian-like α2-3-linked sialic acid receptors. Immunohistochemical staining revealed HA binding to bovine pulmonary and mammary tissues, aligning with clinical observations. HA also binds effectively to human conjunctival, tracheal, and mammary tissues, indicating a risk for human transmission, notably in cases of conjunctivitis. High-resolution cryo-electron microscopy (cryo-EM) structures of this H5 HA in complex with either α2-3 or α2-6 receptors elucidate the molecular mechanisms underlying its receptor-binding properties. These findings provide critical insights into the tropism and transmission potential of this emerging pathogen.
Collapse
MESH Headings
- Animals
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Cattle
- Humans
- Influenza A Virus, H5N1 Subtype/metabolism
- Viral Tropism
- Cryoelectron Microscopy
- Receptors, Virus/metabolism
- Receptors, Virus/chemistry
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/metabolism
- Protein Binding
- Influenza, Human/virology
- Influenza, Human/metabolism
- Influenza, Human/transmission
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/chemistry
- Female
Collapse
Affiliation(s)
- Hao Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Tianjiao Hao
- Beijing Life Science Academy, Beijing 102200, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, Shanxi, China
| | - Haichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xu Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China
| | - Xiaomei Li
- Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, Shanxi, China
| | - Yuxuan Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Jiamin Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ying Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiyue Jin
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ronghua Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing 100730, China; Henan Academy of Innovations in Medical Science, Zhengzhou 450052, Henan, China.
| | - George F Gao
- Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
2
|
Gu J, Yan Y, Zeng Z, Liu D, Hu J, Hu S, Wang X, Gu M, Liu X. Hemagglutinin with a polybasic cleavage site confers high virulence on H7N9 avian influenza viruses. Poult Sci 2025; 104:104832. [PMID: 39862488 PMCID: PMC11803838 DOI: 10.1016/j.psj.2025.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs). Notably, the polybasic cleavage site motifs are diversified, of which PEVPKRKRTAR↓GLF motif is prevalent. To elucidate the reasons accounting for its dominance, recombinant H7N9 virus carrying PEVPKRKRTAR↓GLF (rJT157-2) motif was generated based on LP H7N9 virus A/chicken/Eastern China/JT157/2016 (JT157). Besides, another two viruses containing PEVPKGKRTAR↓GLF (rJT157-1) and PEIPKRKRTAR↓GLF (rJT157-3) cleavage site motifs were also constructed as comparisons. We found that rJT157-2 showed better biological characterizations in vitro including replication kinetics, plaque size, thermal and acid stability. In addition, animal experiments demonstrated that rJT157-2 was more pathogenic to both chickens and mice with higher virus titers and induced more severe changes in the lungs. These results suggested that HP H7N9 viruses carrying PEVPKRKRTAR↓GLF motif in the HA cleavage site were most likely adaptive mutants during the evolution of H7N9 AIVs.
Collapse
Affiliation(s)
- Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, PR China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Dong Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
3
|
Hou Y, Deng G, Cui P, Zeng X, Li B, Wang D, He X, Yan C, Zhang Y, Li J, Ma J, Li Y, Wang X, Tian G, Kong H, Tang L, Suzuki Y, Shi J, Chen H. Evolution of H7N9 highly pathogenic avian influenza virus in the context of vaccination. Emerg Microbes Infect 2024; 13:2343912. [PMID: 38629574 PMCID: PMC11060016 DOI: 10.1080/22221751.2024.2343912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.
Collapse
Affiliation(s)
- Yujie Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Bin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Dongxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xinwen He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Jiongjie Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Jinming Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS,Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Nakhaie M, Rukerd MRZ, Shahpar A, Pardeshenas M, Khoshnazar SM, Khazaeli M, Bashash D, Nezhad NZ, Charostad J. A Closer Look at the Avian Influenza Virus H7N9: A Calm before the Storm? J Med Virol 2024; 96:e70090. [PMID: 39601174 DOI: 10.1002/jmv.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9. The H7N9 virus exhibits a complex reassortment history, receiving genes from H9N2 and other avian influenza viruses. The presence of certain molecular markers, such as mutations in the hemagglutinin and polymerase basic protein 2, enhances the virus's adaptability to human hosts. The virus activates innate immune responses through pattern recognition receptors, leading to cytokine production and inflammation. Clinical manifestations range from mild to severe, with complications including pneumonia, acute respiratory distress syndrome, and multiorgan failure. Diagnosis relies on molecular assays such as reverse transcription-polymerase chain reaction. The increasing frequency of human infections, along with the virus's ability to bind to human receptors and cause severe disease, highlights its pandemic potential. Continued surveillance, vaccine development, and public health measures are crucial to limit the risk posed by H7N9. Understanding the virus's ecology, transmission dynamics, and pathogenesis is essential for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pardeshenas
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mana Khazaeli
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Zeinali Nezhad
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Viñán Garcés AE, Cáceres E, Gómez JO, Martín-Loeches I, Reyes LF. Inflammatory response to SARS-CoV 2 and other respiratory viruses. Expert Rev Anti Infect Ther 2024; 22:725-738. [PMID: 39228288 DOI: 10.1080/14787210.2024.2400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.
Collapse
Affiliation(s)
- André Emilio Viñán Garcés
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Liu L, Wang F, Wu Y, Mi W, Zhang Y, Chen L, Wang D, Deng G, Shi J, Chen H, Kong H. The V223I substitution in hemagglutinin reduces the binding affinity to human-type receptors while enhancing the thermal stability of the H3N2 canine influenza virus. Front Microbiol 2024; 15:1442163. [PMID: 39104583 PMCID: PMC11299061 DOI: 10.3389/fmicb.2024.1442163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Given the intimate relationship between humans and dogs, the H3N2 canine influenza viruses (CIVs) pose a threat to public health. In our study, we isolated four H3N2 CIVs from 3,758 dog nasal swabs in China between 2018 and 2020, followed by genetic and biological analysis. Phylogenetic analysis revealed 15 genotypes among all available H3N2 CIVs, with genotype 15 prevailing among dogs since around 2017, indicating the establishment of a stable virus lineage in dogs. Molecular characterization identified many mammalian adaptive substitutions, including HA-G146S, HA-N188D, PB2-I292T, PB2-G590S, PB2-S714I, PB1-D154G, and NP-R293K, present across the four isolates. Notably, analysis of HA sequences uncovered a newly emerged adaptive mutation, HA-V223I, which is predominantly found in human and swine H3N2 viruses, suggesting its role in mammalian adaptation. Receptor-binding analysis revealed that the four H3N2 viruses bind both avian and human-type receptors. However, HA-V223I decreases the H3N2 virus's affinity for human-type receptors but enhances its thermal stability. Furthermore, attachment analysis confirmed the H3N2 virus binding to human tracheal tissues, albeit with reduced affinity when the virus carries HA-V223I. Antigenic analysis indicated that the current human H3N2 vaccines do not confer protection against H3N2 CIVs. Collectively, these findings underscore that the potential threat posed by H3N2 CIVs to human health still exists, emphasizing the necessity of close surveillance and monitoring of H3N2 CIVs in dogs.
Collapse
Affiliation(s)
- Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Fujun Wang
- Department of Biotechnology, Heilongjiang Vocational College for Nationalities, Harbin, China
- Harbin Fuai Pet Hospital, Harbin, China
| | - Ying Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Weiyong Mi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Lei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Dongxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
7
|
James J, Thomas SS, Seekings AH, Mahmood S, Kelly M, Banyard AC, Núñez A, Brookes SM, Slomka MJ. Evaluating the epizootic and zoonotic threat of an H7N9 low-pathogenicity avian influenza virus (LPAIV) variant associated with enhanced pathogenicity in turkeys. J Gen Virol 2024; 105:002008. [PMID: 38980150 PMCID: PMC11316556 DOI: 10.1099/jgv.0.002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.
Collapse
Affiliation(s)
- Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Saumya S. Thomas
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sahar Mahmood
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Michael Kelly
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J. Slomka
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
8
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Human neutralizing antibodies target a conserved lateral patch on H7N9 hemagglutinin head. Nat Commun 2024; 15:4505. [PMID: 38802413 PMCID: PMC11130183 DOI: 10.1038/s41467-024-48758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Avian influenza A virus H7N9 causes severe human infections with >30% fatality. Currently, there is no H7N9-specific prevention or treatment for humans. Here, from a 2013 H7N9 convalescent case in Hong Kong, we isolate four hemagglutinin (HA)-reactive monoclonal antibodies (mAbs), with three directed to the globular head domain (HA1) and one to the stalk domain (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralize H7N9 and protect female mice from lethal H7N9/AH1 challenge. Cryo-EM structures reveal that H7.HK1 and H7.HK2 bind to a β14-centered surface and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on an adjacent protomer, thereby blocking viral entry. Sequence analysis indicates the lateral patch targeted by H7.HK1 and H7.HK2 to be conserved among influenza subtypes. Both H7.HK1 and H7.HK2 retain HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, consistent with structural data showing that the antigenic mutations during this timeframe occur at their epitope peripheries. The HA2-directed mAb H7.HK4 lacks neutralizing activity but when used in combination with H7.HK2 moderately augments female mouse protection. Overall, our data reveal antibodies to a conserved lateral HA1 supersite that confer neutralization, and when combined with a HA2-directed non-neutralizing mAb, augment protection.
Collapse
Grants
- ZIA AI005022 Intramural NIH HHS
- W911NF-14-C-0001 U.S. Department of Defense (United States Department of Defense)
- FNIH SHAP19IUFV Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Donations from Richard Yu and Carol Yu, Shaw Foundation Hong Kong, Michael Seak-Kan Tong, The Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Chan Yin Chuen Memorial Charitable Foundation, Marina Man-Wai Lee, Jessie and George Ho Charitable Foundation, Kai Chong Tong, Tse Kam Ming Laurence, Foo Oi Foundation Limited, Betty Hing-Chu Lee, and Ping Cham So
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Peter D Kwong
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China.
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China.
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
10
|
Murray J, Martin DE, Hosking S, Orr-Burks N, Hogan RJ, Tripp RA. Probenecid Inhibits Influenza A(H5N1) and A(H7N9) Viruses In Vitro and in Mice. Viruses 2024; 16:152. [PMID: 38275962 PMCID: PMC10821351 DOI: 10.3390/v16010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.
Collapse
Affiliation(s)
- Jackelyn Murray
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | | | - Sarah Hosking
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Nichole Orr-Burks
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Robert J. Hogan
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
| | - Ralph A. Tripp
- Animal Health Research Center, Department of Infectious Diseases, College of Veterinary Medicine Athens, University of Georgia, Athens, GA 30605, USA; (J.M.); (S.H.); (N.O.-B.); (R.J.H.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
| |
Collapse
|
11
|
Tan M, Zeng X, Xie Y, Li X, Liu J, Yang J, Yang L, Wang D. Reported human infections of H9N2 avian influenza virus in China in 2021. Front Public Health 2023; 11:1255969. [PMID: 38155898 PMCID: PMC10753182 DOI: 10.3389/fpubh.2023.1255969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction The continued emergence of human infections of H9N2 avian influenza virus (AIV) poses a serious threat to public health. The prevalent Y280/G9 lineage of H9N2 AIV in Chinese poultry can directly bind to human receptors, increasing the risk of spillover infections to humans. Since 2013, the number of human cases of H9N2 avian influenza has been increasing continuously, and in 2021, China reported the highest number of human cases, at 25. Methods In this study, we analyzed the age, geographic, temporal, and sex distributions of humans with H9N2 avian influenza in 2021 using data from the National Influenza Center (Beijing, China). We also conducted evolutionary, gene homology, and molecular characterization analyses of the H9N2 AIVs infecting humans. Results Our findings show that children under the age of 12 accounted for 80% of human cases in 2021, and females were more frequently affected than males. More cases occurred in winter than in summer, and most cases were concentrated in southern China. Human-infecting H9N2 viruses showed a high level of genetic homology and belonged to the prevalent G57 genotype. Several additional α2,6-SA-binding sites and sites of mammalian adaptation were also identified in the genomes of human-infecting H9N2 viruses. Discussion Therefore, continuous monitoring of H9N2 AIV and the implementation of further measures to control the H9N2 virus in poultry are essential to reduce the interspecies transmission of the virus.
Collapse
Affiliation(s)
- Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Yiran Xie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Jiaying Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| |
Collapse
|
12
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
13
|
Chang P, Sadeyen JR, Bhat S, Daines R, Hussain A, Yilmaz H, Iqbal M. Risk assessment of the newly emerged H7N9 avian influenza viruses. Emerg Microbes Infect 2023; 12:2172965. [PMID: 36714929 PMCID: PMC9930780 DOI: 10.1080/22221751.2023.2172965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Since the first human case in 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1500 human infections with a mortality rate of approximately 40%. Despite large-scale poultry vaccination regimes across China, the H7N9 AIVs continue to persist and evolve rapidly in poultry. Recently, several strains of H7N9 AIVs have been isolated and shown the ability to escape vaccine-induced immunity. To assess the zoonotic risk of the recent H7N9 AIV isolates, we rescued viruses with hemagglutinin (HA) and neuraminidase (NA) from these H7N9 AIVs and six internal segments from PR8 virus and characterized their receptor binding, pH of fusion, thermal stability, plaque morphology and in ovo virus replication. We also assessed the cross-reactivity of the viruses with human monoclonal antibodies (mAbs) against H7N9 HA and ferret antisera against H7N9 AIV candidate vaccines. The H7N9 AIVs from the early epidemic waves had dual sialic acid receptor binding characteristics, whereas the more recent H7N9 AIVs completely lost or retained only weak human sialic acid receptor binding. Compared with the H7N9 AIVs from the first epidemic wave, the 2020/21 viruses formed larger plaques in Madin-Darby canine kidney (MDCK) cells and replicated to higher titres in ovo, demonstrating increased acid stability but reduced thermal stability. Further analysis showed that these recent H7N9 AIVs had poor cross-reactivity with the human mAbs and ferret antisera, highlighting the need to update the vaccine candidates. To conclude, the newly emerged H7N9 AIVs showed characteristics of typical AIVs, posing reduced zoonotic risk but a heightened threat for poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | |
Collapse
|
14
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
15
|
Huang Q, Wang Y, Zhao T, Wang Y, Wang X, Li S, Su W, Ren X, Zhang X, Liu J, Wei J. Examination of the cross-reactivity between vaccinia virus Tiantan strain and monkeypox virus. J Virol Methods 2023; 320:114772. [PMID: 37473582 DOI: 10.1016/j.jviromet.2023.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
AIM To investigate the cross-reactivity between the sera collected from Vaccinia Virus Tiantan Strain vaccinated rabbits and viral antigens of monkeypox virus. METHODS Vaccinia viruses were prepared on chicken embryo fibroblasts (CEF) and Vero cells respectively named as CEF-VTT NVSI-1 and Vero-VTT NVSI-1. Rabbits were inoculated with a total of three doses of adjuvanted 1.3 × 108 PFU CEF-VTT NVSI-1 each dose or adjuvanted 3.9 × 107 PFU Vero-VTT NVSI-1 (Freunds complete adjuvant) via the subcutaneous route. We then performed the enzyme-linked immunosorbent assay (ELISA) and bio-layer interferometry (BLI) for determination of the binding activity and affinity of immune sera to five crucial surface antigens on monkeypox virus including A35, B6R, H3 and to corresponding homologous antigens A33R, B5 and L1R of vaccinia virus. For comparison, plaque reduction neutralizing tests were used to evaluate the neutralization of immune sera against vaccinia virus. RESULTS Both CEF-VTT NVSI-1 and Vero-VTT NVSI-1 vaccinations following planned schedule could induce neutralizing antibody titers greater than 1:2048 in rabbit sera. Binding antibodies targeting monkeypox viral antigens were confirmed by both indirect ELISA and BLI methods. Indirect ELISA for rabbit sera revealed 1:51200 binding antibody titers to A35/B6R/H3 monkeypox virus antigens while BLI tests yielded affinities at 2 × 10-6 to 8 × 10-7 between the sera and the three antigens. Similarly, such sera showed binding strength to vaccinia virus antigens A33R/B5/L1R consistent with that to three preceding monkeypox virus antigens. These results demonstrated the cross-reactivity between the sera of vaccinia virus vaccinated animals and monkeypox virus antigens. Traditional ELISA test and BLI method displayed a high consistency in antigen screening and they were further proved to correlate to the results of plaque reduction neutralizing test, which indicates that BLI could be utilized as an indirect alternative for assessment of neutralizing activity of samples in response to live virus. CONCLUSIONS Sera of vaccinia virus-vaccinated rabbits exhibited cross-reactivity with viral antigens of monkeypox virus. Potential in improving the accuracy of antigen discovery while reducing the lengthy work needed for the screening as BLI method possesses, it contributes greatly to the rapid preliminary evaluation of immune response generated by vaccines.
Collapse
Affiliation(s)
- Qiufang Huang
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Yuwei Wang
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Tingting Zhao
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Yinan Wang
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Xiaojie Wang
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Shishi Li
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Wenhao Su
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Xiuxiu Ren
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Xiaohuan Zhang
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Jingjing Liu
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China
| | - Jiangbo Wei
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China.
| |
Collapse
|
16
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
17
|
Kastner M, Karner A, Zhu R, Huang Q, Geissner A, Sadewasser A, Lesch M, Wörmann X, Karlas A, Seeberger PH, Wolff T, Hinterdorfer P, Herrmann A, Sieben C. Relevance of Host Cell Surface Glycan Structure for Cell Specificity of Influenza A Viruses. Viruses 2023; 15:1507. [PMID: 37515193 PMCID: PMC10385328 DOI: 10.3390/v15071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Influenza A viruses (IAVs) initiate infection via binding of the viral hemagglutinin (HA) to sialylated glycans on host cells. HA's receptor specificity towards individual glycans is well studied and clearly critical for virus infection, but the contribution of the highly heterogeneous and complex glycocalyx to virus-cell adhesion remains elusive. Here, we use two complementary methods, glycan arrays and single-virus force spectroscopy (SVFS), to compare influenza virus receptor specificity with virus binding to live cells. Unexpectedly, we found that HA's receptor binding preference does not necessarily reflect virus-cell specificity. We propose SVFS as a tool to elucidate the cell binding preference of IAVs, thereby including the complex environment of sialylated receptors within the plasma membrane of living cells.
Collapse
Affiliation(s)
- Markus Kastner
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Andreas Karner
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Rong Zhu
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Andreas Geissner
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anne Sadewasser
- Division of Influenza and other Respiratory Viruses, Robert Koch-Institute, 13353 Berlin, Germany
| | - Markus Lesch
- Molecular Biology Department, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Xenia Wörmann
- Molecular Biology Department, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Alexander Karlas
- Molecular Biology Department, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Peter H. Seeberger
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thorsten Wolff
- Division of Influenza and other Respiratory Viruses, Robert Koch-Institute, 13353 Berlin, Germany
| | - Peter Hinterdorfer
- Institute for Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Andreas Herrmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Altensteinstraße 23a, 14195 Berlin, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
19
|
Khavani M, Mehranfar A, Mofrad MRK. On the potentials of sialic acid derivatives as inhibitors for the mumps virus: A molecular dynamics and quantum chemistry investigation. Virus Res 2023; 326:199050. [PMID: 36682462 DOI: 10.1016/j.virusres.2023.199050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Mumps virus is an infectious pathogen causing major health problems for humans such as encephalitis, orchitis, and parotitis. Therefore, designing an inhibitor for this virus is of great medical and public health importance. With this goal in mind, we investigate the affinity of different sialic acid-based compounds (ligands) against the hemagglutinin-neuraminidase (HN) protein of the mumps virus, using a combination of molecular dynamics (MD) simulations and quantum chemistry calculations. Our MD simulation results indicate that the ligands form stable complexes with the HN protein through a combination of electrostatic, van der Waals (vdW), and hydrogen bond (H-bond) interactions, which the electrostatic interactions play a more important role in the complexation process. Based on the obtained results from the structural analysis Arg381, Arg291, and Arg49 play a key role in the binding site interactions with the different ligands, in comparison with other residues. There are some candidates such as Neu5Acα2-6Galβ1-4GlcNAcβ, Neu5Acα2-3Galβ1-3GlcNacβ1-3Galβ1-4Glc, and Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc that form more stable complexes with the HN than the α2-3-Sialyllactose confirmed by the calculated Gibbs binding energies (-39.65, -46.93, and -36.49 kcal.mol-1, respectively). To investigate the relationship between the molecular properties of the selected compounds and their affinity to the HN receptor, density functional theory dispersion corrected (DFT-D3) calculations were employed. According to our DFT-D3 results, neutral sialic acid-based compounds have lower reactivity to the mumps virus than the negativity charge structures. Moreover, by increasing the electronic chemical potential (μ) the vdW and H-bond interactions between drugs and the HN protein increase. In other words, by elevating the electron tendency of the selected ligands their affinity to the mumps virus increases. Our quantum chemistry calculations reveal that in addition to the structural features the molecular properties of the drugs can play important roles in their affinity and reactivity against the virus. The results of this study can provide useful details to design new compounds or improve their properties against the mumps virus.
Collapse
Affiliation(s)
- Mohammad Khavani
- Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Aliyeh Mehranfar
- Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
21
|
Antigenic Characterization of Human Monoclonal Antibodies for Therapeutic Use against H7N9 Avian Influenza Virus. J Virol 2023; 97:e0143122. [PMID: 36541801 PMCID: PMC9888198 DOI: 10.1128/jvi.01431-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,500 human infections and the culling of millions of poultry. Despite large-scale poultry vaccination, H7N9 AIVs continue to circulate among poultry in China and pose a threat to human health. Previously, we isolated and generated four monoclonal antibodies (mAbs) derived from humans naturally infected with H7N9 AIV. Here, we investigated the hemagglutinin (HA) epitopes of H7N9 AIV targeted by these mAbs (L3A-44, K9B-122, L4A-14, and L4B-18) using immune escape studies. Our results revealed four key antigenic epitopes at HA amino acid positions 125, 133, 149, and 217. The mutant H7N9 viruses representing escape mutations containing an alanine-to-threonine substitution at residue 125 (A125T), a glycine-to-glutamic acid substitution at residue 133 (G133E), an asparagine-to-aspartic acid substitution at residue 149 (N149D), or a leucine-to-glutamine substitution at residue 217 (L217Q) showed reduced or completely abolished cross-reactivity with the mAbs, as measured by a hemagglutination inhibition (HI) assay. We further assessed the potential risk of these mutants to humans should they emerge following mAb treatment by measuring the impact of these HA mutations on virus fitness and evasion of host adaptive immunity. Here, we showed that the L4A-14 mAb had broad neutralizing capabilities, and its escape mutant N149D had reduced viral stability and human receptor binding and could be neutralized by both postinfection and antigen-induced sera. Therefore, the L4A-14 mAb could be a therapeutic candidate for H7N9 AIV infection in humans and warrants further investigation for therapeutic applications. IMPORTANCE Avian influenza virus (AIV) H7N9 continues to circulate and evolve in birds, posing a credible threat to humans. Antiviral drugs have proven useful for the treatment of severe influenza infections in humans; however, concerns have been raised as antiviral-resistant mutants have emerged. Monoclonal antibodies (mAbs) have been studied for both prophylactic and therapeutic applications in infectious disease control and have demonstrated great potential. For example, mAb treatment has significantly reduced the risk of people developing severe disease with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition to the protection efficiency, we should also consider the potential risk of the escape mutants generated by mAb treatment to public health by assessing their viral fitness and potential to compromise host adaptive immunity. Considering these parameters, we assessed four human mAbs derived from humans naturally infected with H7N9 AIV and showed that the mAb L4A-14 displayed potential as a therapeutic candidate.
Collapse
|
22
|
Wong KH, Lal SK. Alternative antiviral approaches to combat influenza A virus. Virus Genes 2023; 59:25-35. [PMID: 36260242 PMCID: PMC9832087 DOI: 10.1007/s11262-022-01935-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 01/14/2023]
Abstract
Influenza A (IAV) is a major human respiratory pathogen that contributes to a significant threat to health security, worldwide. Despite vaccinations and previous immunisations through infections, humans can still be infected with influenza several times throughout their lives. This phenomenon is attributed to the antigenic changes of hemagglutinin (HA) and neuraminidase (NA) proteins in IAV via genetic mutation and reassortment, conferring antigenic drift and antigenic shift, respectively. Numerous findings indicate that slow antigenic drift and reassortment-derived antigenic shift exhibited by IAV are key processes that allow IAVs to overcome the previously acquired host immunity, which eventually leads to the annual re-emergence of seasonal influenza and even pandemic influenza, in rare occasions. As a result, current therapeutic options hit a brick wall quickly. As IAV remains a constant threat for new outbreaks worldwide, the underlying processes of genetic changes and alternative antiviral approaches for IAV should be further explored to improve disease management. In the light of the above, this review discusses the characteristics and mechanisms of mutations and reassortments that contribute to IAV's evolution. We also discuss several alternative RNA-targeting antiviral approaches, namely the CRISPR/Cas13 systems, RNA interference (RNAi), and antisense oligonucleotides (ASO) as potential antiviral approaches against IAV.
Collapse
Affiliation(s)
- Ka Heng Wong
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia.
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
23
|
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y. Phylogenetic Inference of the 2022 Highly Pathogenic H7N3 Avian Influenza Outbreak in Northern Mexico. Pathogens 2022; 11:1284. [PMID: 36365034 PMCID: PMC9692817 DOI: 10.3390/pathogens11111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.
Collapse
Affiliation(s)
- Roberto Navarro-Lopez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Ninnet Gomez-Romero
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agriculture Research Service, USDA, Orient, NY 11944, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
| |
Collapse
|
24
|
Layton DS, Butler J, Stewart C, Stevens V, Payne J, Rootes C, Deffrasnes C, Walker S, Shan S, Gough TJ, Cowled C, Bruce K, Wang J, Kedzierska K, Wong FYK, Bean AGD, Bingham J, Williams DT. H7N9 bearing a mutation in the nucleoprotein leads to increased pathology in chickens. Front Immunol 2022; 13:974210. [PMID: 36275684 PMCID: PMC9583263 DOI: 10.3389/fimmu.2022.974210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
The zoonotic H7N9 avian influenza (AI) virus first emerged in 2013 as a low pathogenic (LPAI) strain, and has repeatedly caused human infection resulting in severe respiratory illness and a mortality of ~39% (>600 deaths) across five epidemic waves. This virus has circulated in poultry with little to no discernible clinical signs, making detection and control difficult. Contrary to published data, our group has observed a subset of specific pathogen free chickens infected with the H7N9 virus succumb to disease, showing clinical signs consistent with highly pathogenic AI (HPAI). Viral genome sequencing revealed two key mutations had occurred following infection in the haemagglutinin (HA 226 L>Q) and nucleoprotein (NP 373 A>T) proteins. We further investigated the impact of the NP mutation and demonstrated that only chickens bearing a single nucleotide polymorphism (SNP) in their IFITM1 gene were susceptible to the H7N9 virus. Susceptible chickens demonstrated a distinct loss of CD8+ T cells from the periphery as well as a dysregulation of IFNγ that was not observed for resistant chickens, suggesting a role for the NP mutation in altered T cell activation. Alternatively, it is possible that this mutation led to altered polymerase activity, as the mutation occurs in the NP 360-373 loop which has been previously show to be important in RNA binding. These data have broad ramifications for our understanding of the pathobiology of AI in chickens and humans and provide an excellent model for investigating the role of antiviral genes in a natural host species.
Collapse
Affiliation(s)
- Daniel S. Layton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
- *Correspondence: Daniel S. Layton, ; David T. Williams,
| | - Jeffrey Butler
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vicky Stevens
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Jean Payne
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christina Rootes
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Celine Deffrasnes
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Som Walker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Songhua Shan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville, VIC, Australia
| | - Tamara J. Gough
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Kerri Bruce
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Jianning Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville, VIC, Australia
| | - Frank Y. K. Wong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Andrew G. D. Bean
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - David T. Williams
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
- *Correspondence: Daniel S. Layton, ; David T. Williams,
| |
Collapse
|
25
|
Specific Monoclonal Antibodies Targeting Unique HA Epitopes Block H7N9 Influenza A Viral Replication. J Virol 2022; 96:e0123822. [PMID: 36037479 PMCID: PMC9517735 DOI: 10.1128/jvi.01238-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H7N9 subtype influenza A viruses pose a serious threat to public health, and there is still a lack of vaccines or drugs for humans against H7N9 influenza viruses. In this study, we screened two monoclonal antibodies (MAbs), 4H1E8 and 7H9A6, that specifically recognize the hemagglutinin (HA) protein of H7N9 influenza virus and display highly neutralizing activity against H7N9 virus. The epitopes recognized by two MAbs are nearly all conserved within all known H7 subtypes. Characteristic identification showed that two MAbs have high avidity for the HA protein but no hemagglutinin inhibition activity or antibody-dependent cellular cytotoxicity. Mechanistically, the 4H1E8 and 7H9A6 antibodies inhibit the pH-dependent conformational change of HA and block the HA-mediated membrane fusion. More importantly, 4H1E8 and 7H9A6 exhibit promising prophylactic and therapeutic effects against lethal challenge with H7N9 virus. Moreover, 4H1E8- and 7H9A6-treated mice displayed inhibition of pulmonary viral replication and reduced lung lesions after viral challenge. Together, these findings indicate that antibodies 4H1E8 and 7H9A6 recognize unique epitopes in the HA protein and possess the neutralizing activity and protective efficacy against the H7N9 influenza A viruses. IMPORTANCE In 2013, H7N9 influenza viruses appeared in China and other countries resulting in more than 1,500 individual infections or death. There are still limited studies on vaccines or drugs for humans against H7N9 influenza viruses. Alternative approaches against H7N9 virus infection need to be developed. Here, we identified two monoclonal antibodies (4H1E8 and 7H9A6) that possess neutralizing activity by blocking the pH-dependent HA-mediated membrane fusion. Additionally, the two monoclonal antibodies protect mice against the H7N9 virus challenge prophylactically or therapeutically. Therefore, our study demonstrates that 4H1E8 and 7H9A6 could be used for the prevention and treatment of the H7N9 influenza virus, and the conserved epitopes we identified may contribute to the development of a broad H7N9 vaccine and provide insights into unique antiviral approaches.
Collapse
|
26
|
Shi Z, Wei L, Wang P, Wang S, Liu Z, Jiang Y, Wang J. Spatio-temporal spread and evolution of influenza A (H7N9) viruses. Front Microbiol 2022; 13:1002522. [PMID: 36187942 PMCID: PMC9520483 DOI: 10.3389/fmicb.2022.1002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The influenza A (H7N9) virus has been seriously concerned for its potential to cause an influenza pandemic. To understand the spread and evolution process of the virus, a spatial and temporal Bayesian evolutionary analysis was conducted on 2,052 H7N9 viruses isolated during 2013 and 2018. It revealed that the H7N9 virus was probably emerged in a border area of Anhui Province in August 2012, approximately 6 months earlier than the first human case reported. Two major epicenters had been developed in the Yangtze River Delta and Peral River Delta regions by the end of 2013, and from where the viruses have also spread to other regions at an average speed of 6.57 km/d. At least 24 genotypes showing have been developed and each of them showed a distinct spatio-temporal distribution pattern. Furthermore, A random forest algorithm-based model has been developed to predict the occurrence risk of H7N9 virus. The model has a high overall forecasting precision (> 97%) and the monthly H7N9 occurrence risk for each county of China was predicted. These findings provide new insights for a comprehensive understanding of the origin, evolution, and occurrence risk of H7N9 virus. Moreover, our study also lays a theoretical basis for conducting risk-based surveillance and prevention of the disease.
Collapse
|
27
|
Cui J, Cui P, Shi J, Fan W, Xing X, Gu W, Zhang Y, Zhang Y, Zeng X, Jiang Y, Chen P, Yang H, Chen Y, Liu J, Liu L, Tian G, Lu Y, Chen H, Li C, Deng G. Continued evolution of H6 avian influenza viruses isolated from farms in China between 2014 and 2018. Transbound Emerg Dis 2022; 69:2156-2172. [PMID: 34192815 DOI: 10.1111/tbed.14212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in the world. Our previous studies have demonstrated that H6 AIVs isolated from live poultry markets pose a potential threat to human health. In recent years, increasing number of H6 AIVs has been constantly isolated from poultry farms. In order to understand the biological characteristics of H6 AIVs in the context of farms, here, we analyzed the phylogenetic relationships, antigenicity, replication in mice and receptor binding properties of H6 AIVs isolated from farms in China between 2014 and 2018. Phylogenetic analysis showed that 19 different genotypes were formed among 20 representative H6 viruses. Notably, the internal genes of these H6 viruses exhibited complicated relationships with different subtypes of AIVs worldwide, indicating that these viruses are the products of complex and frequent reassortment events. Antigenic analysis revealed that 13 viruses tested were divided into three antigenic groups. 10 viruses examined could all replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that some of the H6 AIVs bound to both α-2, 3-linked glycans (avian-type receptor) and α-2, 6-linked glycans (human-type receptor), thereby posing a potential threat to human health. Together, these findings revealed the prevalence, complicated genetic evolution, diverse antigenicity, and dual receptor binding specificity of H6 AIVs in the settings of poultry farms, which emphasize the importance to continuously monitor the evolution and biological properties of H6 AIVs in nature.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Weifeng Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yixin Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| |
Collapse
|
28
|
AG1478 Elicits a Novel Anti-Influenza Function via an EGFR-Independent, GBF1-Dependent Pathway. Int J Mol Sci 2022; 23:ijms23105557. [PMID: 35628375 PMCID: PMC9145774 DOI: 10.3390/ijms23105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Current options for preventing or treating influenza are still limited, and new treatments for influenza viral infection are urgently needed. In the present study, we serendipitously found that a small-molecule inhibitor (AG1478), previously used for epidermal growth factor receptor (EGFR) inhibition, demonstrated a potent activity against influenza both in vitro and in vivo. Surprisingly, the antiviral effect of AG1478 was not mediated by its EGFR inhibitory activity, as influenza virus was insensitive to EGFR blockade by other EGFR inhibitors or by siRNA knockdown of EGFR. Its antiviral activity was also interferon independent as demonstrated by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout approach. Instead, AG1478 was found to target the Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1)–ADP-ribosylation factor 1 (ARF1) system by reversibly inhibiting GBF1 activity and disrupting its Golgi-cytoplasmic trafficking. Compared to known GBF1 inhibitors, AG1478 demonstrated lower cellular toxicity and better preservation of Golgi structure. Furthermore, GBF1 was found to interact with a specific set of viral proteins including M1, NP, and PA. Additionally, the alternation of GBF1 distribution induced by AG1478 treatment disrupted these interactions. Because targeting host factors, instead of the viral component, imposes a higher barrier for developing resistance, GBF1 modulation may be an effective approach to treat influenza infection.
Collapse
|
29
|
Houy C, Ming M, Ettorre L, Jin R, Thangavadivel N, Chen T, Su J, Gajewska B. Epitope Profiling of Diphtheria Toxoid Provides Enhanced Monitoring for Consistency Testing during Manufacturing Process Changes. Vaccines (Basel) 2022; 10:vaccines10050775. [PMID: 35632531 PMCID: PMC9147534 DOI: 10.3390/vaccines10050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the vaccine industry, multiple physicochemical, immunological, in vitro and in vivo analytical methods are applied throughout the manufacturing process to characterize and monitor the quality of vaccines. Presented here is the Single Epitope Antigenicity Test (SEAT), an innovative, quantitative epitope profiling method which provides an extended immunochemical analysis for diphtheria toxoid (DTxd) to be used for consistency testing during manufacturing process changes. The method uses BioLayer Interferometry (BLI) and a panel of monoclonal antibodies (mAbs) to independently assess nine individual antigenic sites of DTxd. The panel includes mAbs which are functional, bind distinct sites on DTxd and are able to distinguish intact DTxd from that which has been exposed to heat treatment. The SEAT method was qualified for precision, accuracy, and linearity, and was used to define a preliminary comparability range for DTxd made using the current manufacturing process. DTxd lots manufactured using alternate processes were assessed in the context of this range to determine the impact on DTxd antigenicity. Epitope profiling by SEAT provides quantitative information on the integrity of multiple important antigenic regions of DTxd, and therefore represents a valuable tool in a comprehensive analytical test package which can be used to support manufacturing process changes for vaccines.
Collapse
Affiliation(s)
- Camille Houy
- Correspondence: ; Tel.: +1-476-667-2700 (ext. 7629)
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao C, Guo J, Zeng X, Shi J, Deng G, Zhang Y, Wang Y, Ma Q, Gao X, Cui P, Liu L, Li X, Chen H. Novel H7N7 avian influenza viruses detected in migratory wild birds in eastern China between 2018 and 2020. Microbes Infect 2022; 24:105013. [DOI: 10.1016/j.micinf.2022.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
31
|
Gu J, Yan Y, Zeng Z, Wang W, Gao R, Hu J, Hu S, Wang X, Gu M, Liu X. Characterization of two chicken origin highly pathogenic H7N9 viruses isolated in northern China. Vet Microbiol 2022; 268:109394. [PMID: 35316713 DOI: 10.1016/j.vetmic.2022.109394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/08/2023]
Abstract
Since the national vaccination program was implemented with the H5/H7 bivalent vaccine in poultry in September 2017, the prevalence of H7N9 avian influenza viruses (AIVs) has been controlled effectively in China. However, highly pathogenic H7N9 viruses still exist, causing sporadic outbreaks especially in some regions of northern China. During our routine surveillance in poultry in 2020, we isolated two strains of H7N9 subtype AIV from breeder layer farms in northern China. We found that these two chicken-origin H7N9 isolates were both highly pathogenic (HP) with a four-amino-acid (KRTA) insertion and an I326V mutation (H3 numbering) in the cleavage site of HA to make the motif PEVPKRKRTAR↓GLF. Molecular markers associated with antigenic drift and enhanced pathogenicity in mammals and interspecies transmission were detected in both isolates. Remarkably, both strains gained the F102V and N157D mutations in their HA genes, which have never been reported before. Solid-phase direct binding assay showed that these two isolates both had dual-receptor binding characteristics, while thermal and acid stability assays indicated that they were relatively stable in high-temperature or acidic conditions. In addition, the animal experiments demonstrated that both strains were highly pathogenic to chickens but low pathogenic to mice. These results suggested that the evolution of H7N9 subtype AIV is still continuing, and they pose a potential threat to poultry and public health. Thus, attention should be paid to the importance of continual surveillance of the H7N9 AIVs.
Collapse
Affiliation(s)
- Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenli Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
32
|
Schrottmaier WC, Schmuckenschlager A, Pirabe A, Assinger A. Platelets in Viral Infections - Brave Soldiers or Trojan Horses. Front Immunol 2022; 13:856713. [PMID: 35419008 PMCID: PMC9001014 DOI: 10.3389/fimmu.2022.856713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are often associated with platelet activation and haemostatic complications. In line, low platelet counts represent a hallmark for poor prognosis in many infectious diseases. The underlying cause of platelet dysfunction in viral infections is multifaceted and complex. While some viruses directly interact with platelets and/or megakaryocytes to modulate their function, also immune and inflammatory responses directly and indirectly favour platelet activation. Platelet activation results in increased platelet consumption and degradation, which contributes to thrombocytopenia in these patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed by a state of platelet exhaustion and/or hypo-responsiveness, which together with low platelet counts promotes bleeding events. Thereby infectious diseases not only increase the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical complication. Treatment options in these patients are limited and new therapeutic strategies are urgently needed to prevent adverse outcome. This review summarizes the current literature on platelet-virus interactions and their impact on viral pathologies and discusses potential intervention strategies. As pandemics and concomitant haemostatic dysregulations will remain a recurrent threat, understanding the role of platelets in viral infections represents a timely and pivotal challenge.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
34
|
|
35
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
36
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
37
|
Nakayama M, Itoh Y. Lectin Staining to Detect Human and Avian Influenza Virus Receptors in the Airway of Nonhuman Primates. Methods Mol Biol 2022; 2556:37-43. [PMID: 36175625 DOI: 10.1007/978-1-0716-2635-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hemagglutinin (HA) on the surface of influenza viruses binds to sialic acids, mainly N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid. Neu5Ac and N-glycolylneuraminic acid lie at the terminal end of sugar chains on the cell surface. Human influenza viruses preferentially bind to sialic acids bound to galactose by the alpha2-6 linkage (Neu5Acα2-6Gal), abundant in the human airway. In contrast, avian influenza viruses preferentially bind to Neu5Acα2-3Gal, abundant in the intestine of ducks. Sambucus nigra lectin (SNA) and Maackia amurensis lectin (MAA) bind to Neu5Acα2-6Gal and Neu5Acα2-3Gal, respectively. These two lectins have therefore been applied to detect sialic acids on the airway epithelium of animals.
Collapse
Affiliation(s)
- Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Shiga University of Medical Science, Shiga, Japan.
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
38
|
Chen J, Liu Z, Li K, Li X, Xu L, Zhang M, Wu Y, Liu T, Wang X, Xie S, Xin A, Liao M, Jia W. Emergence of novel avian origin H7N9 viruses after introduction of H7-Re3 and rLN79 vaccine strains to China. Transbound Emerg Dis 2021; 69:213-220. [PMID: 34817918 DOI: 10.1111/tbed.14401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022]
Abstract
In early 2021, roughly 6 months after the H7N9 H7-Re3 and H7N9 rLN79 vaccine strains were introduced into China, we monitored a number of H7N9 subtype avian influenza viruses, which could have escaped vaccine-induced immunity in live poultry markets (LPMs) in Yunnan, Hebei, Shanxi and Guangdong provinces, China. To investigate whether these viruses were a novel H7N9 variant of highly pathogenic avian influenza (HPAI) virus and whether they had the potential for further spread, we characterized the genetic evolution, antigenic divergence and pathogenicity of the viruses in the context of vaccine immunity. The results show further diversification in the HA gene of newly isolated HPAI H7N9 viruses compared with antigenic variants that emerged after the period of 2017-2019. There were clear antigenic differences between current vaccines and these viruses, and SPF broilers under vaccine protection could not resist virus challenges. Our study demonstrates that the current vaccine has insufficient protective capacity against the novel H7N9 variants under experimental conditions. A novel H7N9 immune escape virus has emerged. Faced with potential outbreaks, we should strengthen surveillance and update vaccine strains.
Collapse
Affiliation(s)
- Junhong Chen
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaojie Liu
- Research and development center, Guangdong Huasheng Biotechnology Co., Ltd, Guangzhou, China
| | - Ke Li
- Institute of Poultry Management and Diseases, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiao Li
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Wu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tengfei Liu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinkai Wang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- Experimental Animal Center, South China Agricultural University, Guangzhou, China
| | - Aiguo Xin
- Institute of Poultry Management and Diseases, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
39
|
Lin P, Jin T, Yu X, Liang L, Liu G, Jovic D, Sun Z, Yu Z, Pan J, Fan G. Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Front Genet 2021; 12:754445. [PMID: 34804122 PMCID: PMC8595946 DOI: 10.3389/fgene.2021.754445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
A human co-infected with H1N1 and H7N9 subtypes influenza A virus (IAV) causes a complex infectious disease. The identification of molecular-level variations in composition and dynamics of IAV quasispecies will help to understand the pathogenesis and provide guidance for precision medicine treatment. In this study, using single-molecule real-time sequencing (SMRT) technology, we successfully acquired full-length IAV genomic sequences and quantified their genotypes abundance in serial samples from an 81-year-old male co-infected with H1N1 and H7N9 subtypes IAV. A total of 26 high diversity nucleotide loci was detected, in which the A-G base transversion was the most abundant substitution type (67 and 64%, in H1N1 and H7N9, respectively). Seven significant amino acid variations were detected, such as NA:H275Y and HA: R222K in H1N1 as well as PB2:E627K and NA: K432E in H7N9, which are related to viral drug-resistance or mammalian adaptation. Furtherly, we retrieved 25 H1N1 and 22 H7N9 genomic segment haplotypes from the eight samples based on combining high-diversity nucleotide loci, which provided a more concise overview of viral quasispecies composition and dynamics. Our approach promotes the popularization of viral quasispecies analysis in a complex infectious disease, which will boost the understanding of viral infections, pathogenesis, evolution, and precision medicine.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | | | - Guang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Zhou Sun
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhe Yu
- BGI-Shenzhen, Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
40
|
Gamblin SJ, Vachieri SG, Xiong X, Zhang J, Martin SR, Skehel JJ. Hemagglutinin Structure and Activities. Cold Spring Harb Perspect Med 2021; 11:a038638. [PMID: 32513673 PMCID: PMC8485738 DOI: 10.1101/cshperspect.a038638] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hemagglutinins (HAs) are the receptor-binding and membrane fusion glycoproteins of influenza viruses. They recognize sialic acid-containing, cell-surface glycoconjugates as receptors but have limited affinity for them, and, as a consequence, virus attachment to cells requires their interaction with several virus HAs. Receptor-bound virus is transferred into endosomes where membrane fusion by HAs is activated at pH between 5 and 6.5, depending on the strain of virus. Fusion activity requires extensive rearrangements in HA conformation that include extrusion of a buried "fusion peptide" to connect with the endosomal membrane, form a bridge to the virus membrane, and eventually bring both membranes close together. In this review, we give an overview of the structures of the 16 genetically and antigenically distinct subtypes of influenza A HA in relation to these two functions in virus replication and in relation to recognition of HA by antibodies that neutralize infection.
Collapse
Affiliation(s)
- Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sébastien G Vachieri
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
41
|
Mattox DE, Bailey-Kellogg C. Comprehensive analysis of lectin-glycan interactions reveals determinants of lectin specificity. PLoS Comput Biol 2021; 17:e1009470. [PMID: 34613971 PMCID: PMC8523061 DOI: 10.1371/journal.pcbi.1009470] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Lectin-glycan interactions facilitate inter- and intracellular communication in many processes including protein trafficking, host-pathogen recognition, and tumorigenesis promotion. Specific recognition of glycans by lectins is also the basis for a wide range of applications in areas including glycobiology research, cancer screening, and antiviral therapeutics. To provide a better understanding of the determinants of lectin-glycan interaction specificity and support such applications, this study comprehensively investigates specificity-conferring features of all available lectin-glycan complex structures. Systematic characterization, comparison, and predictive modeling of a set of 221 complementary physicochemical and geometric features representing these interactions highlighted specificity-conferring features with potential mechanistic insight. Univariable comparative analyses with weighted Wilcoxon-Mann-Whitney tests revealed strong statistical associations between binding site features and specificity that are conserved across unrelated lectin binding sites. Multivariable modeling with random forests demonstrated the utility of these features for predicting the identity of bound glycans based on generalized patterns learned from non-homologous lectins. These analyses revealed global determinants of lectin specificity, such as sialic acid glycan recognition in deep, concave binding sites enriched for positively charged residues, in contrast to high mannose glycan recognition in fairly shallow but well-defined pockets enriched for non-polar residues. Focused fine specificity analysis of hemagglutinin interactions with human-like and avian-like glycans uncovered features representing both known and novel mutations related to shifts in influenza tropism from avian to human tissues. As the approach presented here relies on co-crystallized lectin-glycan pairs for studying specificity, it is limited in its inferences by the quantity, quality, and diversity of the structural data available. Regardless, the systematic characterization of lectin binding sites presented here provides a novel approach to studying lectin specificity and is a step towards confidently predicting new lectin-glycan interactions.
Collapse
Affiliation(s)
- Daniel E. Mattox
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
42
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
43
|
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.
Collapse
Affiliation(s)
- Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
44
|
Herfst S, Zhang J, Richard M, McBride R, Lexmond P, Bestebroer TM, Spronken MIJ, de Meulder D, van den Brand JM, Rosu ME, Martin SR, Gamblin SJ, Xiong X, Peng W, Bodewes R, van der Vries E, Osterhaus ADME, Paulson JC, Skehel JJ, Fouchier RAM. Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host Microbe 2021; 28:602-613.e7. [PMID: 33031770 DOI: 10.1016/j.chom.2020.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023]
Abstract
In 2014, an outbreak of avian A/H10N7 influenza virus occurred among seals along North-European coastal waters, significantly impacting seal populations. Here, we examine the cross-species transmission and mammalian adaptation of this influenza A virus, revealing changes in the hemagglutinin surface protein that increase stability and receptor binding. The seal A/H10N7 virus was aerosol or respiratory droplet transmissible between ferrets. Compared with avian H10 hemagglutinin, seal H10 hemagglutinin showed stronger binding to the human-type sialic acid receptor, with preferential binding to α2,6-linked sialic acids on long extended branches. In X-ray structures, changes in the 220-loop of the receptor-binding pocket caused similar interactions with human receptor as seen for pandemic strains. Two substitutions made seal H10 hemagglutinin more stable than avian H10 hemagglutinin and similar to human hemagglutinin. Consequently, identification of avian-origin influenza viruses across mammals appears critical to detect influenza A viruses posing a major threat to humans and other mammals.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mathilde Richard
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Ryan McBride
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Monique I J Spronken
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Judith M van den Brand
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Miruna E Rosu
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Wenjie Peng
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier Bodewes
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Erhard van der Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559, Hannover, Germany
| | - James C Paulson
- Departments of Molecular Medicine, Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC University Medical Center, 3015GE, Rotterdam, the Netherlands.
| |
Collapse
|
45
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
46
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
47
|
Wang D, Zhu W, Yang L, Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038620. [PMID: 31964651 DOI: 10.1101/cshperspect.a038620] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.
Collapse
Affiliation(s)
- Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China
| |
Collapse
|
48
|
Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses. J Virol 2021; 95:JVI.01651-20. [PMID: 33268517 PMCID: PMC8092835 DOI: 10.1128/jvi.01651-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia and parts of Africa where they occasionally infect humans and are therefore considered viruses with zoonotic potential. We previously described H9N2 viruses, including several isolated from human zoonotic cases, showing a preference for human-like receptors. Here we take a mutagenesis approach, making viruses with single or multiple substitutions in H9 haemagglutinin and test binding to avian and human receptor analogues using biolayer interferometry. We determine the genetic basis of preferences for alternative avian receptors and for human-like receptors, describing amino acid motifs at positions 190, 226 and 227 that play a major role in determining receptor specificity, and several other residues such as 159, 188, 193, 196, 198 and 225 that play a smaller role. Furthermore, we show changes at residues 135, 137, 147, 157, 158, 184, 188, and 192 can also modulate virus receptor avidity and that substitutions that increased or decreased the net positive charge around the haemagglutinin receptor-binding site show increases and decreases in avidity, respectively. The motifs we identify as increasing preference for the human-receptor will help guide future H9N2 surveillance efforts and facilitate our understanding of the emergence of influenza viruses with increased zoonotic potential.IMPORTANCE As of 2020, over 60 infections of humans by H9N2 influenza viruses have been recorded in countries where the virus is endemic. Avian-like cellular receptors are the primary target for these viruses. However, given that human infections have been detected on an almost monthly basis since 2015, there may be a capacity for H9N2 viruses to evolve and gain the ability to target human-like cellular receptors. Here we identify molecular signatures that can cause viruses to bind human-like receptors, and we identify the molecular basis for the distinctive preference for sulphated receptors displayed by the majority of recent H9N2 viruses. This work will help guide future surveillance by providing markers that signify the emergence of viruses with enhanced zoonotic potential as well as improving understanding of the basis of influenza virus receptor-binding.
Collapse
|
49
|
Zhang H, Klose AM, Miller BL. Label-Free, Multiplex Glycan Microarray Biosensor for Influenza Virus Detection. Bioconjug Chem 2021; 32:533-540. [PMID: 33559468 DOI: 10.1021/acs.bioconjchem.0c00718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Newly emerging influenza viruses adapted from animal species pose significant pandemic threats to public health. An understanding of hemagglutinin (HA) receptor-binding specificity to host receptors is key to studying the adaptation of influenza viruses in humans. This information may be particularly useful for predicting the emergence of a pandemic outbreak. Therefore, high-throughput sensing technologies able to profile HA receptor binding can facilitate studies of influenza virus evolution and adaptation in humans. As a step toward this goal, we have prepared glycan-based receptor analogue microarrays on the Arrayed Imaging Reflectometry (AIR) platform. These arrays demonstrate label-free, multiplex detection and discrimination between human and avian influenza viruses. Microarrays consisting of glycan probes with 2,6 and 2,3 linkages were prepared. After first confirming their ability to capture lectins (carbohydrate-binding proteins) with known specificities, we observed that the arrays were able to discriminate between and quantify human pandemic influenza A/California/07/2009 (H1N1pdm) and avian A/Netherlands/1/2000 (H13N8) influenza viruses, respectively. As the method may be expanded to large numbers of glycans (>100) and virus subtypes (H1-H18), we anticipate it can be applied to systematically evaluate influenza virus adaptation in humans. In turn, this will facilitate global influenza surveillance and serve as a new tool enabling health organizations, governments, research institutes, and laboratories to react quickly in the face of a pandemic outbreak.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Alanna M Klose
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Benjamin L Miller
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
50
|
Wang G, Liu D, Hu J, Gu M, Wang X, He D, Zhang L, Li J, Zheng X, Zeng Z, Liu H, Hu S, Peng D, Jiao X, Liu X. Mutations during the adaptation of H7N9 avian influenza virus to mice lungs enhance human-like sialic acid binding activity and virulence in mice. Vet Microbiol 2021; 254:109000. [PMID: 33515926 DOI: 10.1016/j.vetmic.2021.109000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023]
Abstract
The first avian H7N9 influenza outbreak in spring of 2013 emerged in an unprecedented transmission from infected poultry to humans in the Yangtze delta area, eastern China, posing a dual challenge to public health and poultry industry. However, the mechanism for how avian H7N9 influenza virus adapts to mammalian hosts has not been clearly understood. Here, to identify adaptive changes that confer enhanced virulence of H7N9 virus in mammals, we generated a mouse-adapted H7N9 variant virus (S8) by serial lung-to-lung passages of the wild-type SDL124 virus in mice and compared their phenotype in vivo and in vitro. Sequence analysis showed that the two viruses differed by 27 amino acids distributed among six genes, containing changes in PB2 (E627K, D701N) and HA (Q226L) genes. The 50% mouse lethal dose (MLD50) of S8 reduced about 500 folds, to be moderately pathogenic to mice when compared to that of low pathogenic wild-type SDL124. Moreover, S8 replicated efficiently in mouse lungs and displayed expanded tissue tropism, and induced a greater degree of pulmonary edema and higher level of inflammatory cell infiltration in bronchoalveolar lavage fluids than SDL124 did. Interestingly, the mouse adapted S8 virus obtained strong affinity for human-like (SAα-2,6 Gal) receptor during the adaptation in mice. Correspondingly, compared with SDL124 virus, S8 virus showed higher replication efficiency in mammalian cells, whereas lower replication ability in avian cells. Taken together, these findings suggest that these mutations synergistically elevate the ability of H7N9 virus to disseminate to multiple organs and subsequently enhance the virulence of H7N9 virus in mammalian hosts.
Collapse
Affiliation(s)
- Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Dongchang He
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China(26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|