1
|
Goodman LD, Moulton MJ, Lin G, Bellen HJ. Does glial lipid dysregulation alter sleep in Alzheimer's and Parkinson's disease? Trends Mol Med 2024; 30:913-923. [PMID: 38755043 PMCID: PMC11466711 DOI: 10.1016/j.molmed.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
In this opinion article, we discuss potential connections between sleep disturbances observed in Alzheimer's disease (AD) and Parkinson's disease (PD) and the dysregulation of lipids in the brain. Research using Drosophila has highlighted the role of glial-mediated lipid metabolism in sleep and diurnal rhythms. Relevant to AD, the formation of lipid droplets in glia, which occurs in response to elevated neuronal reactive oxygen species (ROS), is required for sleep. In disease models, this process is disrupted, arguing a connection to sleep dysregulation. Relevant to PD, the degradation of neuronally synthesized glucosylceramides by glia requires glucocerebrosidase (GBA, a PD-associated risk factor) and this regulates sleep. Loss of GBA in glia causes an accumulation of glucosylceramides and neurodegeneration. Overall, research primarily using Drosophila has highlighted how dysregulation of glial lipid metabolism may underlie sleep disturbances in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Guo X, Pu J, Tang Z, Jia C, Yang F, Liu T, Ding Y. LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal Model Exp Med 2024; 7:696-706. [PMID: 38567757 PMCID: PMC11528380 DOI: 10.1002/ame2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ziqi Tang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, Xie Y, Gu L, Kuang C, Ou W, Xie M, Tu T, Pang J, Zhang D, Guo K, Feng Y, Yin S, Cao Y, Li T, Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab 2024; 36:2054-2068.e14. [PMID: 38906140 DOI: 10.1016/j.cmet.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/11/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - An Huang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuyan Liao
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuke Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024:271678X241260100. [PMID: 38853430 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Xu R, Zhang J, Hu X, Xu P, Huang S, Cui S, Guo Y, Yang H, Chen X, Jiang C. Yi-shen-hua-shi granules modulate immune and inflammatory damage via the ALG3/PPARγ/NF-κB pathway in the treatment of immunoglobulin a nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117204. [PMID: 37757993 DOI: 10.1016/j.jep.2023.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Controversy persists regarding the treatment of immunoglobulin A nephropathy (IgAN), thereby highlighting the demand for safer more effective therapeutic drugs. Although supplementary treatment using Yi-Shen-Hua-Shi (YSHS) granules has distinct advantages with respect to improving renal function in IgAN, a lack of clarity regarding the underlying mechanisms limits their clinical application. AIM OF THE STUDY In this study, we aimed to elucidate the therapeutic mechanisms underlying the efficacy of YSHS granules in the treatment of IgAN. MATERIALS AND METHODS A rat model of IgAN was established based on lipopolysaccharide, carbon tetrachloride, and bovine serum albumin induction. In order to evaluate the effects of YSHS granules, we performed a range of techniques, including immunofluorescence assays, hematoxylin and eosin staining, and flow cytometry, to assess inflammation, immunity, and other relevant factors. Direct data-independent acquisition-mass spectrometry (DIA-MS) analysis and parallel reaction monitoring (PRM) were used for functional characterization and quantitative validation of differentially expressed proteins (DEPs), and Western blot analysis is used to identify downstream proteins associated with DEPs. RESULTS Compared with the model group, the levels of proteinuria, urine red blood cells, serum creatinine, blood urea nitrogen, low-density lipoprotein-cholesterol, triglycerides, and pathological kidney damage were reduced in the YSHS group. A high dose of YSHS granules was found to raise the levels of CD8 T cells and reduce the CD4/CD8 ratio in the peripheral serum. To examine the mechanisms underlying the therapeutic effects YSHS granules, we performed direct DIA-MS analysis to identify proteins that were differentially expressed among the model, YSHS, and control groups. A total of 29 proteins were identified as being commonly expressed in all three groups. Further KEGG and protein-protein interaction (PPI) network analysis revealed that YSHS granules can contribute to the regulation of N-glycosylation-associated proteins, such as ALG3 and STT3A, in rats with IgAN. Detected changes in the expression of ALG3 and STT3A were consistent with the PRM results. We also established that the administration of YSHS granules can contribute to regulation of the ALG3-associated PPAR-γ/NF-κB signaling pathway. CONCLUSIONS Our findings in this study provide evidence to indicate the efficacy of YSHS granules in the treatment of IgAN, the putative underlying mechanisms of which involve the modulation of N-glycosylation, mediated via the PPAR-γ/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjia Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jiajia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Xingge Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Penghao Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiqi Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiyan Cui
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuxin Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Chen Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
6
|
Ju Y, Gu L, Hu M, Zheng M, Zhou X, Li Q, Zhang X. Andrographolide exerts a neuroprotective effect by regulating the LRP1-mediated PPARγ/NF-κB pathway. Eur J Pharmacol 2023; 951:175756. [PMID: 37179044 DOI: 10.1016/j.ejphar.2023.175756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Low-density lipoprotein receptor-associated protein 1 (LRP1) is widely expressed in neurons, microglia and astrocytes. Studies have revealed that the suppression of LRP1 expression in the brain significantly exacerbates Alzheimer's disease (AD)-related neuropathology. Andrographolide (Andro) has been demonstrated to possess neuroprotective properties, although its underlying mechanisms remain largely unknown. This study aims to investigate whether Andro can inhibit neuroinflammation in AD by modulating the LRP1-mediated PPARγ/NF-κB pathway. In Aβ-induced BV-2 cells, Andro was found to increase cell viability and enhance the expression of LRP1, while decreasing the expression of p-NF-κB (p65) and NF-κB(p65), as well as IL-1β, IL-6 and TNF-α levels. In addition, when Aβ was cotreatment with Andro to BV2 cells with either LRP1 or PPARγ knockdown, increased mRNA and protein expression of p-NF-κB(p65) and NF-κB(p65), NF-κB DNA binding activity as well as IL-1β, IL-6 and TNF-α levels were observed. These findings suggested that Andro could attenuate Aβ induced cytotoxicity by reducing neuroinflammation which may be partly attributed to its effects on this LRP1 mediated PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Yue Ju
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Xuebin Zhou
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
7
|
Munshaw S, Redpath AN, Pike BT, Smart N. Thymosin β4 preserves vascular smooth muscle phenotype in atherosclerosis via regulation of low density lipoprotein related protein 1 (LRP1). Int Immunopharmacol 2023; 115:109702. [PMID: 37724952 PMCID: PMC10666903 DOI: 10.1016/j.intimp.2023.109702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Atherosclerosis is a progressive, degenerative vascular disease and a leading cause of morbidity and mortality. In response to endothelial damage, platelet derived growth factor (PDGF)-BB induced phenotypic modulation of medial smooth muscle cells (VSMCs) promotes atherosclerotic lesion formation and destabilisation of the vessel wall. VSMC sensitivity to PDGF-BB is determined by endocytosis of Low density lipoprotein receptor related protein 1 (LRP1)-PDGFR β complexes to balance receptor recycling with lysosomal degradation. Consequently, LRP1 is implicated in various arterial diseases. Having identified Tβ4 as a regulator of LRP1-mediated endocytosis to protect against aortic aneurysm, we sought to determine whether Tβ4 may additionally function to protect against atherosclerosis, by regulating LRP1-mediated growth factor signalling. By single cell transcriptomic analysis, Tmsb4x, encoding Tβ4, strongly correlated with contractile gene expression and was significantly down-regulated in cells that adopted a modulated phenotype in atherosclerosis. We assessed susceptibility to atherosclerosis of global Tβ4 knockout mice using the ApoE-/- hypercholesterolaemia model. Inflammation, elastin integrity, VSMC phenotype and signalling were analysed in the aortic root and descending aorta. Tβ4KO; ApoE-/- mice develop larger atherosclerotic plaques than control mice, with medial layer degeneration characterised by accelerated VSMC phenotypic modulation. Defects in Tβ4KO; ApoE-/- mice phenocopied those in VSMC-specific LRP1 nulls and, moreover, were underpinned by hyperactivated LRP1-PDGFRβ signalling. We identify an atheroprotective role for endogenous Tβ4 in maintaining differentiated VSMC phenotype via LRP1-mediated PDGFRβ signalling.
Collapse
Affiliation(s)
- Sonali Munshaw
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Andia N Redpath
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK; Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Oxford OX3 7TY, UK
| | - Benjamin T Pike
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Nicola Smart
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK; Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Oxford OX3 7TY, UK.
| |
Collapse
|
8
|
Postprandial triglyceride-rich lipoproteins promote the adipogenic differentiation of adipose-derived mesenchymal stem cells via the LRP1/caveolin-1/AKT1 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159236. [PMID: 36179802 DOI: 10.1016/j.bbalip.2022.159236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Diet-induced obesity (OB) is usually accompanied by hypertriglyceridemia, which is characterized by the accumulation of triglyceride (TG)-rich lipoprotein (TRL) particles in the circulation. We previously found that postprandial TRL combined with insulin induced the adipogenic differentiation of 3T3-L1 preadipocytes, which may represent a key mechanism underlying obesity. However, the specific mechanism and signaling pathway involved in this process remain to be fully elucidated. In this study, we found that, in the postprandial state, patients with obesity had significantly higher levels of TG and remnant cholesterol (RC) than normal-weight controls. In vitro, we found that postprandial TRL, together with insulin, promoted the adipogenic differentiation of adipose-derived mesenchymal stem cells (AMSCs), as evidenced by the increased expression of lipogenesis-related genes and their protein products, including low-density lipoprotein related protein 1 (LRP1). Besides, caveolin-1 (Cav-1) expression was also significantly upregulated under this condition. Cav-1 and LRP1 were observed to interact, and then led to the activation of the PI3K/AKT1 signaling pathway. Meanwhile, the inhibition of LRP1 or Cav-1 significantly attenuated the adipogenic differentiation of AMSCs and downregulated AKT1 phosphorylation levels. Moreover, treatment with a selective AKT1 inhibitor significantly suppressed postprandial TRL and insulin-induced adipogenesis in AMSCs. Combined, our results demonstrated that, in association with insulin, postprandial TRL can promote the adipogenic differentiation of AMSCs in a manner that is dependent on the LRP1/Cav-1-mediated activation of the PI3K/AKT1 signaling pathway. Our findings indicated that a postprandial increase in TRL content is a critical factor in the pathogenesis of hypertriglyceridemia and diet-induced obesity.
Collapse
|
9
|
Liu J, Lane S, Lall R, Russo M, Farrell L, Debreli Coskun M, Curtin C, Araujo-Gutierrez R, Scherrer-Crosbie M, Trachtenberg BH, Kim J, Tolosano E, Ghigo A, Gerszten RE, Asnani A. Circulating hemopexin modulates anthracycline cardiac toxicity in patients and in mice. SCIENCE ADVANCES 2022; 8:eadc9245. [PMID: 36563141 PMCID: PMC9788780 DOI: 10.1126/sciadv.adc9245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapies, but their use is limited by cardiac toxicity. We hypothesized that plasma proteomics in women with breast cancer could identify new mechanisms of anthracycline cardiac toxicity. We measured changes in 1317 proteins in anthracycline-treated patients (n = 30) and replicated key findings in a second cohort (n = 31). An increase in the heme-binding protein hemopexin (Hpx) 3 months after anthracycline initiation was associated with cardiac toxicity by echocardiography. To assess the functional role of Hpx, we administered Hpx to wild-type (WT) mice treated with Dox and observed improved cardiac function. Conversely, Hpx-/- mice demonstrated increased Dox cardiac toxicity compared to WT mice. Initial mechanistic studies indicate that Hpx is likely transported to the heart by circulating monocytes/macrophages and that Hpx may mitigate Dox-induced ferroptosis to confer cardioprotection. Together, these observations suggest that Hpx induction represents a compensatory response during Dox treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Lane
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rahul Lall
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Melis Debreli Coskun
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Casie Curtin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Raquel Araujo-Gutierrez
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry H. Trachtenberg
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Liao ZZ, Ran L, Qi XY, Wang YD, Wang YY, Yang J, Liu JH, Xiao XH. Adipose endothelial cells mastering adipose tissues metabolic fate. Adipocyte 2022; 11:108-119. [PMID: 35067158 PMCID: PMC8786343 DOI: 10.1080/21623945.2022.2028372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dynamic communication within adipose tissue depends on highly vascularized structural characteristics to maintain systemic metabolic homoeostasis. Recently, it has been noted that adipose endothelial cells (AdECs) act as essential bridges for biological information transmission between adipose-resident cells. Hence, paracrine regulators that mediate crosstalk between AdECs and adipose stromal cells were summarized. We also highlight the importance of AdECs to maintain adipocytes metabolic homoeostasis by regulating insulin sensitivity, lipid turnover and plasticity. The differential regulation of AdECs in adipose plasticity often depends on vascular density and metabolic states. Although choosing pro-angiogenic or anti-angiogenic therapies for obesity is still a matter of debate in clinical settings, the growing numbers of drugs have been confirmed to play an anti-obesity effect by affecting vascularization. Pharmacologic angiogenesis intervention has great potential as therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Zhe-Zhen Liao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Ran
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao-Yan Qi
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital of University of South China, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
11
|
Sanchez MC, Chiabrando GA. Multitarget Activities of Müller Glial Cells and Low-Density Lipoprotein Receptor-Related Protein 1 in Proliferative Retinopathies. ASN Neuro 2022; 14:17590914221136365. [PMID: 36317314 PMCID: PMC9629547 DOI: 10.1177/17590914221136365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Müller glial cells (MGCs), the main glial component of the retina, play an active role in retinal homeostasis during development and pathological processes. They strongly monitor retinal environment and, in response to retinal imbalance, activate neuroprotective mechanisms mainly characterized by the increase of glial fibrillary acidic protein (GFAP). Under these circumstances, if homeostasis is not reestablished, the retina can be severely injured and GFAP contributes to neuronal degeneration, as they occur in several proliferative retinopathies such as diabetic retinopathy, sickle cell retinopathy and retinopathy of prematurity. In addition, MGCs have an active participation in inflammatory responses releasing proinflammatory mediators and metalloproteinases to the extracellular space and vitreous cavity. MGCs are also involved in the retinal neovascularization and matrix extracellular remodeling during the proliferative stage of retinopathies. Interestingly, low-density lipoprotein receptor-related protein 1 (LRP1) and its ligand α2-macroglobulin (α2M) are highly expressed in MGCs and they have been established to participate in multiple cellular and molecular activities with relevance in retinopathies. However, the exact mechanism of regulation of retinal LRP1 in MGCs is still unclear. Thus, the active participation of MGCs and LRP1 in these diseases, strongly supports the potential interest of them for the design of novel therapeutic approaches. In this review, we discuss the role of LRP1 in the multiple MGCs activities involved in the development and progression of proliferative retinopathies, identifying opportunities in the field that beg further research in this topic area.Summary StatementMGCs and LRP1 are active players in injured retinas, participating in key features such as gliosis and neurotoxicity, neovascularization, inflammation, and glucose control homeostasis during the progression of ischemic diseases, such as proliferative retinopathies.
Collapse
Affiliation(s)
- María C. Sanchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Gustavo A. Chiabrando
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA), G.V. al Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina,María C. Sanchez Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina.
.
Gustavo A. Chiabrando Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui (CIMETSA). Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ – Córdoba, Argentina.
| |
Collapse
|
12
|
Genome-Wide Transcriptional Profiling Reveals PHACTR1 as a Novel Molecular Target of Resveratrol in Endothelial Homeostasis. Nutrients 2022; 14:nu14214518. [DOI: 10.3390/nu14214518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease in which endothelial cells play an important role in maintaining vascular homeostasis. Endotheliitis caused by endothelial dysfunction (ED) is the key cause for the development of cardiovascular and cerebrovascular diseases as well as other vascular system diseases. Resveratrol (RES), a multi-functional polyphenol present in edible plants and fruits, prevents cardiovascular disease by regulating a variety of athero-relevant signaling pathways. By transcriptome profiling of RES-treated human umbilical vein endothelial cells (HUVECs) and in-depth bioinformatic analysis, we observed that differentially expressed genes (DEGs) were enriched in KEGG pathways of fluid shear stress and atherosclerosis, suggesting that the RES may serve as a good template for a shear stress mimetic drug that hold promise in combating atherosclerosis. A heat map and multiple datasets superimposed screening revealed that RES significantly down-regulated phosphatase and actin modulator 1 (PHACTR1), a pivotal coronary artery disease risk gene associated with endothelial inflammation and polyvascular diseases. We further demonstrate that RES down-regulated the gene and protein expression of PHACTR1 and inhibited TNF-α-induced adhesion of THP-1 monocytes to activated endothelial cells via suppressing the expression of PHACTR1. Taken together, our study reveals that PHACTR1 represents a new molecular target for RES to maintain endothelial cell homeostasis and prevent atherosclerotic cardiovascular disease.
Collapse
|
13
|
Karshovska E, Mohibullah R, Zhu M, Zahedi F, Thomas D, Magkrioti C, Geissler C, Megens RTA, Bianchini M, Nazari-Jahantigh M, Ferreirós N, Aidinis V, Schober A. ENPP2 (Endothelial Ectonucleotide Pyrophosphatase/Phosphodiesterase 2) Increases Atherosclerosis in Female and Male Mice. Arterioscler Thromb Vasc Biol 2022; 42:1023-1036. [PMID: 35708027 DOI: 10.1161/atvbaha.122.317682] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.
Collapse
Affiliation(s)
- Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Rokia Mohibullah
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Now with Department of Biomedical Science and Mari Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia (F.Z.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.).,Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany (D.T.)
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Claudia Geissler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.)
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| |
Collapse
|
14
|
Wu R, Guo W, Qiu X, Wang S, Sui C, Lian Q, Wu J, Shan Y, Yang Z, Yang S, Wu T, Wang K, Zhu Y, Wang S, Liu C, Zhang Y, Zheng B, Li Z, Zhang Y, Shen S, Zhao Y, Wang W, Bao J, Hu J, Wu X, Jiang X, Wang H, Gu J, Chen L. Comprehensive analysis of spatial architecture in primary liver cancer. SCIENCE ADVANCES 2021; 7:eabg3750. [PMID: 34919432 PMCID: PMC8683021 DOI: 10.1126/sciadv.abg3750] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Heterogeneity is the major challenge for cancer prevention and therapy. Here, we first constructed high-resolution spatial transcriptomes of primary liver cancers (PLCs) containing 84,823 spots within 21 tissues from seven patients. The progressive comparison of spatial tumor microenvironment (TME) characteristics from nontumor to leading-edge to tumor regions revealed that the tumor capsule potentially affects intratumor spatial cluster continuity, transcriptome diversity, and immune cell infiltration. Locally, we found that the bidirectional ligand-receptor interactions at the 100-μm-wide cluster-cluster boundary contribute to maintaining intratumor architecture and the PROM1+ and CD47+ cancer stem cell niches are related to TME remodeling and tumor metastasis. Last, we proposed a TLS-50 signature to accurately locate tertiary lymphoid structures (TLSs) spatially and unveiled that the distinct composition of TLSs is shaped by their distance to tumor cells. Our study provides previous unknown insights into the diverse tumor ecosystem of PLCs and has potential benefits for cancer intervention.
Collapse
Affiliation(s)
- Rui Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xinyao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shicheng Wang
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chengjun Sui
- Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Qiuyu Lian
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiran Shan
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhao Yang
- Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tong Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanjing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Shan Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changyi Liu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yangqianwen Zhang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Zhixuan Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yani Zhang
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yan Zhao
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenwen Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinxia Bao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Ji Hu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Xuan Wu
- Department of Laboratory Medicine, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072, China
| | - Xiaoqing Jiang
- Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Hongyang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- Institute of Metabolism and Integrative Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 200438, China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China
- Corresponding author. (H.W); (J.G.); (L.C.)
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
- Corresponding author. (H.W); (J.G.); (L.C.)
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- National Center for Liver Cancer, Shanghai 200438, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
- Corresponding author. (H.W); (J.G.); (L.C.)
| |
Collapse
|
15
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 375] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW LDL receptor-related protein 1 (LRP1) is a multifunctional protein with endocytic and signal transduction properties due to its interaction with numerous extracellular ligands and intracellular proteins. This brief review highlights key developments in identifying novel functions of LRP1 in liver, lung, and the central nervous system in disease pathogenesis. RECENT FINDINGS In hepatocytes, LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase-1 and its related protein to maintain intracellular levels of phosphatidylinositol (4,5) bisphosphate and preserve lysosome and mitochondria integrity. In contrast, in smooth muscle cells, macrophages, and endothelial cells, LRP1 interacts with various different extracellular ligands and intracellular proteins in a tissue-dependent and microenvironment-dependent manner to either enhance or suppress inflammation, disease progression or resolution. Similarly, LRP1 expression in astrocytes and oligodendrocyte progenitor cells regulates cell differentiation and maturation in a developmental-dependent manner to modulate neurogenesis, gliogenesis, and white matter repair after injury. SUMMARY LRP1 modulates metabolic disease manifestation, inflammation, and differentiation in a cell-dependent, time-dependent, and tissue-dependent manner. Whether LRP1 expression is protective or pathogenic is dependent on its interaction with specific ligands and intracellular proteins, which in turn is dependent on the cell type and the microenvironment where these cells reside.
Collapse
Affiliation(s)
- Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
17
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
18
|
Mao H, Li L, Fan Q, Angelini A, Saha PK, Coarfa C, Rajapakshe K, Perera D, Cheng J, Wu H, Ballantyne CM, Sun Z, Xie L, Pi X. Endothelium-specific depletion of LRP1 improves glucose homeostasis through inducing osteocalcin. Nat Commun 2021; 12:5296. [PMID: 34489478 PMCID: PMC8421392 DOI: 10.1038/s41467-021-25673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qiying Fan
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dimuthu Perera
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jizhong Cheng
- Department of Medicine, Section of Nephrology, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA.,Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
20
|
Storck SE, Kurtyka M, Pietrzik CU. Brain endothelial LRP1 maintains blood-brain barrier integrity. Fluids Barriers CNS 2021; 18:27. [PMID: 34147102 PMCID: PMC8214794 DOI: 10.1186/s12987-021-00260-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022] Open
Abstract
The entry of blood-borne molecules into the brain is restricted by the blood–brain barrier (BBB). Various physical, transport and immune properties tightly regulate molecule movement between the blood and the brain to maintain brain homeostasis. A recent study utilizing a pan-endothelial, constitutive Tie2-Cre showed that paracellular passage of blood proteins into the brain is governed by endocytic and cell signaling protein low-density lipoprotein receptor–related protein 1 (LRP1). Taking advantage of conditional Slco1c1-CreERT2 specific to CNS endothelial cells and choroid plexus epithelial cells we now supplement previous results and show that brain endothelial Lrp1 ablation results in protease-mediated tight junction degradation, P-glycoprotein (P-gp) reduction and a loss of BBB integrity.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| | - Magdalena Kurtyka
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
21
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
23
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
24
|
Chacón-Quintero MV, Pineda-López LG, Villegas-Lanau CA, Posada-Duque R, Cardona-Gómez GP. Beta-Secretase 1 Underlies Reactive Astrocytes and Endothelial Disruption in Neurodegeneration. Front Cell Neurosci 2021; 15:656832. [PMID: 34025357 PMCID: PMC8136516 DOI: 10.3389/fncel.2021.656832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Dysfunction in the neurovascular unit (NVU) is a key component in the progressive deterioration of Alzheimer's disease (AD) and is critical in vascular dementia. Recent studies have shown that inflammation plays early and perhaps causal roles in the pathogenesis of AD related to NVU damage, possibly in part by overactivating the aspartic acid protease activity of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), which until now has almost solely been studied in the context of the β-amyloid cascade. In this study, we analyzed the relationship of BACE1 with astrocytes and blood vessels in human brains with sporadic and familial dementia [Autosomal dominant cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), sporadic Alzheimer's disease (SAD), and familial Alzheimer's disease (FAD)] and how BACE1 inhibition affects astrocytes and endothelial cells under conditions of glutamate toxicity. Our results show increased BACE1, PHF (Paired helical filaments)-tau and GFAP (Glial Fibrillary Acid Protein) immunoreactivity (IR) in the CA1 hippocampal regions of FAD and SAD brains. Furthermore, BACE1 immunoprecipitated with GFAP in tissue samples from all study cases, but their immunofluorescence close to (10 μm3) or overlapping blood vessels was only increased in FAD and SAD brains, and PHF-tau was present around the vessels mainly in FAD brains. Interestingly, the increased BACE1 levels were associated with reactive astrocytes, characterized by morphological changes and upregulation of GFAP under pathological and stressful conditions, and endothelial disruption by glutamate excitotoxicity, and these effects were reversed by BACE1 inhibition; further, BACE1-inhibited astrocytes protected endothelial cell integrity by preserving zonula occludens-1 (ZO-1) distribution and decreasing the expression of inflammatory markers. Taken together, these findings suggest that BACE1 dysregulation in astrocytes may have a role in the alterations in NVU integrity implicated in neurodegeneration.
Collapse
Affiliation(s)
- María Victoria Chacón-Quintero
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Cellular and Molecular Neurobiology Area, Medellin, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Lina Gisela Pineda-López
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Cellular and Molecular Neurobiology Area, Medellin, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | | | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Cellular and Molecular Neurobiology Area, Medellin, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Cellular and Molecular Neurobiology Area, Medellin, Colombia
| |
Collapse
|
25
|
Mao H, Li L, Fan Q, Angelini A, Saha PK, Wu H, Ballantyne CM, Hartig SM, Xie L, Pi X. Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance. Nat Commun 2021; 12:1927. [PMID: 33772019 PMCID: PMC7997910 DOI: 10.1038/s41467-021-22130-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) adapts endothelial cells to inflammatory stress in diverse organ microenvironments. Here, we demonstrate that BMPER is a driver of insulin sensitivity. Both global and endothelial cell-specific inducible knockout of BMPER cause hyperinsulinemia, glucose intolerance and insulin resistance without increasing inflammation in metabolic tissues in mice. BMPER can directly activate insulin signaling, which requires its internalization and interaction with Niemann-Pick C1 (NPC1), an integral membrane protein that transports intracellular cholesterol. These results suggest that the endocrine function of the vascular endothelium maintains glucose homeostasis. Of potential translational significance, the delivery of BMPER recombinant protein or its overexpression alleviates insulin resistance and hyperglycemia in high-fat diet-fed mice and Leprdb/db (db/db) diabetic mice. We conclude that BMPER exhibits therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qiying Fan
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Nikolakopoulou AM, Wang Y, Ma Q, Sagare AP, Montagne A, Huuskonen MT, Rege SV, Kisler K, Dai Z, Körbelin J, Herz J, Zhao Z, Zlokovic BV. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med 2021; 218:211750. [PMID: 33533918 PMCID: PMC7863706 DOI: 10.1084/jem.20202207] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 (LRP1) is an endocytic and cell signaling transmembrane protein. Endothelial LRP1 clears proteinaceous toxins at the blood–brain barrier (BBB), regulates angiogenesis, and is increasingly reduced in Alzheimer’s disease associated with BBB breakdown and neurodegeneration. Whether loss of endothelial LRP1 plays a direct causative role in BBB breakdown and neurodegenerative changes remains elusive. Here, we show that LRP1 inactivation from the mouse endothelium results in progressive BBB breakdown, followed by neuron loss and cognitive deficits, which is reversible by endothelial-specific LRP1 gene therapy. LRP1 endothelial knockout led to a self-autonomous activation of the cyclophilin A–matrix metalloproteinase-9 pathway in the endothelium, causing loss of tight junctions underlying structural BBB impairment. Cyclophilin A inhibition in mice with endothelial-specific LRP1 knockout restored BBB integrity and reversed and prevented neuronal loss and behavioral deficits. Thus, endothelial LRP1 protects against neurodegeneration by inhibiting cyclophilin A, which has implications for the pathophysiology and treatment of neurodegeneration linked to vascular dysfunction.
Collapse
Affiliation(s)
- Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Qingyi Ma
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Axel Montagne
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Mikko T Huuskonen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Sanket V Rege
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhonghua Dai
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Jakob Körbelin
- Hubertus Wald Cancer Center, Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Herz
- Departments of Neuroscience, Molecular Genetics, and Neurology, University of Texas Southwestern Medical Center, Dallas, TX.,Center for Neuroscience, University of Freiburg, Freiburg, Germany
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
27
|
Wu X, Lin X, Li Q, Wang Z, Zhang N, Tian M, Wang X, Deng H, Tan H. Identification of novel SNPs associated with coronary artery disease and birth weight using a pleiotropic cFDR method. Aging (Albany NY) 2020; 13:3618-3644. [PMID: 33411684 PMCID: PMC7906162 DOI: 10.18632/aging.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022]
Abstract
Objectives: Clinical and epidemiological findings indicate an association between coronary artery disease (CAD) and low birth weight (BW). However, the mechanisms underlying this relationship are largely unknown. Here, we aimed to identify novel single-nucleotide polymorphisms (SNPs) associated with CAD, BW, and their shared pleiotropic loci, and to detect the potential causal relationship between CAD and BW. Methods: We first applied a genetic pleiotropic conditional false discovery rate (cFDR) method to two independent genome-wide association studies (GWAS) summary statistics of CAD and BW to estimate the pleiotropic enrichment between them. Then, bi-directional Mendelian randomization (MR) analyses were performed to clarify the causal association between these two traits. Results: By incorporating related traits into a conditional analysis framework, we observed the significant pleiotropic enrichment between CAD and BW. By applying the cFDR level of 0.05, 109 variants were detected for CAD, 203 for BW, and 26 pleiotropic variants for both traits. We identified 11 CAD- and/or BW-associated SNPs that showed more than three of the metabolic quantitative trait loci (metaQTL), protein QTL (pQTL), methylation QTL (meQTL), or expression QTL (eQTL) effects. The pleiotropic SNP rs10774625, located at ATXN2, showed metaQTL, pQTL, meQTL, and eQTL effects simultaneously. Using the bi-directional MR approach, we found a negative association from BW to CAD (odds ratio [OR] = 0.68, 95% confidence interval [CI]: 0.59 to 0.80, p = 1.57× 10-6). Conclusion: We identified several pleiotropic loci between CAD and BW by leveraging GWAS results of related phenotypes and identified a potential causal relationship from BW to CAD. Our findings provide novel insights into the shared biological mechanisms and overlapping genetic heritability between CAD and BW.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi Li
- Xiangxi Center for Disease Prevention and Control, Jishou 416000, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Na Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mengyuan Tian
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiaolei Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Hongwen Deng
- School of Basic Medical Science, Central South University, Changsha 410013, China.,Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
28
|
Karthikeyan A, Pathak SK, Kumar A, Sai Kumar BAA, Bashir A, Singh A, Sahoo NR, Mishra BP. Selection and validation of differentially expressed metabolic and immune genes in weaned Ghurrah versus crossbred piglets. Trop Anim Health Prod 2020; 53:14. [PMID: 33211188 DOI: 10.1007/s11250-020-02440-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 10/22/2022]
Abstract
In the present investigation, differentially expressed genes (DEGs) were studied using RNA sequencing (RNA-seq) technique in porcine peripheral blood mononuclear cells (PBMC) of weaned Ghurrah and crossbred piglets at 3-month age. Transcriptomic analysis was done using three different packages, namely, EBSeq, DESeq2, and edgeR, to identify the DEGs between Ghurrah and crossbred piglets. Total 7717 DEGs were commonly identified by all three packages, out of which 4151 genes found to be up-regulated, and 3566 genes were down-regulated. Functional annotation of these DEGs indicated metabolism as the most commonly enriched category followed by the immune response. Genes related to metabolism and growth were up-regulated in crossbred piglets as compared with Ghurrah piglets, whereas immunity-related genes were up-regulated in Ghurrah piglets elucidating the disease resistance nature of this indigenous breed over crossbred counterparts. Further, eight DEGs, namely, LRP-1, ADCY4, ERRFI1, LDHD, ARG1, OASL, MGARP, and S100A8, were validated by qRT-PCR in a separate set of biological samples and found to be in concordance with RNA-seq results. Finding in the present study provides insight into genes and their molecular mechanisms governing difference in growth performance between Ghurrah and crossbred pigs.
Collapse
Affiliation(s)
- A Karthikeyan
- Animal Genetics, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India
| | | | - Amit Kumar
- Animal Genetics, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India.
| | - B A A Sai Kumar
- Physiology and climatology, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India
| | - Aamir Bashir
- Physiology and climatology, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India
| | - Akansha Singh
- Animal Genetics, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India
| | - N R Sahoo
- Animal Genetics, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India
| | - B P Mishra
- Animal Biotechnology, ICAR-IVRI, Izatnagar, Uttar Pradesh, 243122, India
| |
Collapse
|
29
|
Hasan SS, Fischer A. The Endothelium: An Active Regulator of Lipid and Glucose Homeostasis. Trends Cell Biol 2020; 31:37-49. [PMID: 33129632 DOI: 10.1016/j.tcb.2020.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The vascular endothelium serves as a dynamic barrier that separates blood from interstitia. Endothelial cells (ECs) respond rapidly to changes in the circulation and actively regulate vessel tone, permeability, and platelet functions. ECs also secrete angiocrine factors that dictate the function of adjacent parenchymal cells in an organ-specific manner. Endothelial dysfunction is considered as a hallmark of metabolic diseases. However, there is emerging evidence that ECs modulate the transfer of nutrients and hormones to parenchymal cells in response to alterations in metabolic profile. As such, a causal role for ECs in systemic metabolic dysregulation can be envisaged. This review summarizes recent progress in the understanding of regulated fatty acid, glucose, and insulin transport across the endothelium and discusses its pathophysiological implications.
Collapse
Affiliation(s)
- Sana S Hasan
- Division of Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Fischer
- Division of Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, 69120 Heidelberg, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
30
|
Shang N, Bhullar KS, Wu J. Ovotransferrin Exhibits Osteogenic Activity Partially via Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Activation in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9427-9435. [PMID: 32786820 DOI: 10.1021/acs.jafc.0c04064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ovotransferrin, a major protein in egg white, induces osteoblast proliferation and survival in vitro. However, it is unclear which receptor(s) drive the beneficial activities of this bioactive glycoprotein. We examined the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the actions of ovotransferrin on osteoblasts. Here, we showed that LRP1 in part regulates osteogenic action of ovotransferrin. Mouse osteoblasts, MC3T3-E1, with LRP1 deletion displayed diminished osteogenic activity. Our findings indicate that the bone-stimulatory impact of ovotransferrin on RUNX2, COL1A2, and Ca2+ signaling is LRP1-dependent. This shows that LRP1 not only acts as a scavenger receptor but also participates in ovotransferrin-mediated gene transcription. However, some of the key bone formatting factors such as ALP synthesis and serine residue phosphorylation of Akt by ovotransferrin remained independent of LRP1. Overall, this study shows that LRP1-ovotransferrin interaction might underline in part the ability of ovotransferrin to promote bone formation.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
31
|
Bornachea O, Benitez-Amaro A, Vea A, Nasarre L, de Gonzalo-Calvo D, Escola-Gil JC, Cedo L, Iborra A, Martínez-Martínez L, Juarez C, Camara JA, Espinet C, Borrell-Pages M, Badimon L, Castell J, Llorente-Cortés V. Immunization with the Gly 1127-Cys 1140 amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies. Theranostics 2020; 10:3263-3280. [PMID: 32194867 PMCID: PMC7053206 DOI: 10.7150/thno.37305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023] Open
Abstract
Background: The LRP1 (CR9) domain and, in particular, the sequence Gly1127-Cys1140 (P3) plays a critical role in the binding and internalization of aggregated LDL (agLDL). We aimed to evaluate whether immunization with P3 reduces high-fat diet (HFD)-induced atherosclerosis. Methods: Female New Zealand White (NZW) rabbits were immunized with a primary injection and four reminder doses (R1-R4) of IrP (irrelevant peptide) or P3 conjugated to the carrier. IrP and P3-immunized rabbits were randomly divided into a normal diet group and a HFD-fed group. Anti-P3 antibody levels were determined by ELISA. Lipoprotein profile, circulating and tissue lipids, and vascular pro-inflammatory mediators were determined using standardized methods while atherosclerosis was determined by confocal microscopy studies and non-invasive imaging (PET/CT and Doppler ultrasonography). Studies treating human macrophages (hMΦ) and coronary vascular smooth muscle cells (hcVSMC) with rabbit serums were performed to ascertain the potential impact of anti-P3 Abs on the functionality of these crucial cells. Results: P3 immunization specifically induced the production of anti-P3 antibodies (Abs) and did not alter the lipoprotein profile. HFD strongly induced cholesteryl ester (CE) accumulation in the aorta of both the control and IrP groups, and their serum dose-dependently raised the intracellular CE of hMΦ and hcVSMC, promoting TNFR1 and phospho-NF-kB (p65) overexpression. These HFD pro-inflammatory effects were dramatically decreased in the aorta of P3-immunized rabbits and in hMΦ and hcVSMC exposed to the P3 rabbit serums. Microscopy studies revealed that P3 immunization reduced the percentage of lipids, macrophages, and SMCs in the arterial intima, as well as the atherosclerotic extent and lesion area in the aorta. PET/CT and Doppler ultrasonography studies showed that the average standardized uptake value (SUVmean) of the aorta and the arterial resistance index (ARI) of the carotids were more upregulated by HFD in the control and IrP groups than the P3 group. Conclusions: P3 immunization counteracts HFD-induced fatty streak formation in rabbits. The specific blockade of the LRP1 (CR9) domain with Anti-P3 Abs dramatically reduces HFD-induced intracellular CE loading and harmful coupling to pro-inflammatory signaling in the vasculature.
Collapse
Affiliation(s)
- Olga Bornachea
- Institute of Biomedical Research of Barcelona (IIBB). Spanish National Research Council (CSIC), Barcelona, Spain
- Lipids and Cardiovascular Pathology. Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - Aleyda Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB). Spanish National Research Council (CSIC), Barcelona, Spain
- Lipids and Cardiovascular Pathology. Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - Angela Vea
- Institute of Biomedical Research of Barcelona (IIBB). Spanish National Research Council (CSIC), Barcelona, Spain
| | - Laura Nasarre
- Institute of Biomedical Research of Barcelona (IIBB). Spanish National Research Council (CSIC), Barcelona, Spain
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB). Spanish National Research Council (CSIC), Barcelona, Spain
- Lipids and Cardiovascular Pathology. Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
- CIBER enfermedades cardiovasculares (CIBERcv)
| | - Juan Carlos Escola-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. CIBER de Diabetes y enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona. Spain
| | - Lidia Cedo
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. CIBER de Diabetes y enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona. Spain
| | - Antoni Iborra
- SCAC, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Laura Martínez-Martínez
- Department of Immunology, Institut de Recerca and Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Candido Juarez
- Department of Immunology, Institut de Recerca and Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Juan Antonio Camara
- Preclinical Imaging Platform. Vall dHebron Institute of Research. Barcelona, Spain
| | - Carina Espinet
- Department of Nuclear Medicine, Institut de Diagnòstic per la Imatge (IDI), Hospital General Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Borrell-Pages
- CIBER enfermedades cardiovasculares (CIBERcv)
- Cardiovascular Program ICCC, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lina Badimon
- CIBER enfermedades cardiovasculares (CIBERcv)
- Cardiovascular Program ICCC, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Joan Castell
- Department of Nuclear Medicine, Institut de Diagnòstic per la Imatge (IDI), Hospital General Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB). Spanish National Research Council (CSIC), Barcelona, Spain
- Lipids and Cardiovascular Pathology. Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
- CIBER enfermedades cardiovasculares (CIBERcv)
| |
Collapse
|
32
|
Luo H, Li QQ, Wu N, Shen YG, Liao WT, Yang Y, Dong E, Zhang GM, Liu BR, Yue XZ, Tang XQ, Yang HS. Chronological in vivo imaging reveals endothelial inflammation prior to neutrophils accumulation and lipid deposition in HCD-fed zebrafish. Atherosclerosis 2019; 290:125-135. [DOI: 10.1016/j.atherosclerosis.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
|
33
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
34
|
Vučinić N, Stankov K, Đan M, Barjaktarović I, Stokić E, Strajnić LJ, Obreht D, Đan I. Possible synergistic effect of apoE and LRP1 genotypes on metabolic syndrome development in Serbian patients. Mol Biol Rep 2019; 46:6345-6351. [PMID: 31538302 DOI: 10.1007/s11033-019-05076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
The modern way of life contributes to the higher frequency of a complex state medically called metabolic syndrome (MetS), which is an inevitable consequence of several most common diseases of modern civilization. Patients with MetS have three times higher risk of experiencing a heart attack or a stroke and twice higher possibility to die from them. Serbia holds the infamous third place in Europe in mortality from heart disease, just behind Russia and Ukraine. The study explores the correlation of every combination of genotypes of apoE (apolipoprotein E) and LRP1 (low density receptor- related protein 1) genes with presence of MetS, and the connection with each anthropometric and biochemical parameter in both tested groups. Study demonstrates the impact of genotype combinations on the emergence and development of the MetS in Serbia. 63 patients and 30 controls were included in the study, aged from 19 to 65. Each person genotype was determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) profile. Odds ratio (OR) values showed that the presence of apoE e3e4/LRP1 CC genotype combination of genotypes in patients multiplies the chance (7.6 times) for the occurrence of the MetS in comparison to the presence of other genotype combinations. Determining the genetic basis of MetS is one of the necessary steps in the prevention of disease, saving the cost of treatment, and in the design of targeted therapies.
Collapse
Affiliation(s)
- N Vučinić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - K Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Healthcare Management, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - M Đan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - I Barjaktarović
- Department of General Education Subjects, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Laboratory Medicine, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - E Stokić
- Department of Internal Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Department of Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - L J Strajnić
- Department of Dentistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Dentistry Clinic of Vojvodina, Novi Sad, Serbia
| | - D Obreht
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| | - I Đan
- Department of Oncology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Department of Radiotherapy, Institute of Oncology, Sremska Kamenica, Serbia
| |
Collapse
|
35
|
Younis RM, Taylor RM, Beardsley PM, McClay JL. The ANKS1B gene and its associated phenotypes: focus on CNS drug response. Pharmacogenomics 2019; 20:669-684. [PMID: 31250731 PMCID: PMC6912848 DOI: 10.2217/pgs-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The ANKS1B gene was a top finding in genome-wide association studies (GWAS) of antipsychotic drug response. Subsequent GWAS findings for ANKS1B include cognitive ability, educational attainment, body mass index, response to corticosteroids and drug dependence. We review current human association evidence for ANKS1B, in addition to functional studies that include two published mouse knockouts. The several GWAS findings in humans indicate that phenotypically relevant variation is segregating at the ANKS1B locus. ANKS1B shows strong plausibility for involvement in CNS drug response because it encodes a postsynaptic effector protein that mediates long-term changes to neuronal biology. Forthcoming data from large biobanks should further delineate the role of ANKS1B in CNS drug response.
Collapse
Affiliation(s)
- Rabha M Younis
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Rachel M Taylor
- Center for Military Psychiatry & Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MA 20910, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Center for Biomarker Research & Personalized Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|
36
|
Calvier L, Boucher P, Herz J, Hansmann G. LRP1 Deficiency in Vascular SMC Leads to Pulmonary Arterial Hypertension That Is Reversed by PPARγ Activation. Circ Res 2019; 124:1778-1785. [PMID: 31023188 DOI: 10.1161/circresaha.119.315088] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Arterial remodeling-a hallmark of many cardiovascular pathologies including pulmonary arterial hypertension (PAH)-is regulated by TGFβ1 (transforming growth factor-β1)-TGFβ receptors and the antagonistic, vasoprotective BMPR2 (bone morphogenetic protein receptor 2)-PPARγ (peroxisome proliferator-activated receptor-γ) axis. However, it is unclear which factors drive detrimental TGFβ1 pathways in the hypertensive pulmonary vasculature. OBJECTIVE We hypothesized that LRP1 (low-density lipoprotein receptor-related protein 1) expression is decreased in PAH, leading to enhancement (disinhibition) of TGFβ1 signals and that the PPARγ agonist pioglitazone can restore vascular homeostasis and prevent PAH resulting from LRP1 deletion in vascular smooth muscle cells (SMCs). METHODS AND RESULTS Targeted deletion of LRP1 in vascular SMC (smLRP1-/-) in mice disinhibited TGFβ1-CTGF (connective tissue growth factor) signaling, leading to spontaneous PAH and distal pulmonary arterial muscularization as assessed by closed-chest cardiac catheterization and anti-αSMA staining. Pioglitazone inhibited the canonical TGFβ1-CTGF axis in human pulmonary artery SMC and smLRP1-/- main pulmonary artery (CTGF and NOX4) and reversed PAH in smLRP1-/- mice. TGFβ1 boosted pSmad3 in PASMC from smLRP1-/- mice versus controls. Pioglitazone-activated PPARγ binds to Smad3 in human pulmonary artery SMC (coimmunoprecipitation), thereby blocking its phosphorylation and overriding LRP1 deficiency. Finally, mRNA and protein expression of LRP1 was decreased in pulmonary plexiform lesions of patients with end-stage idiopathic PAH (laser capture microdissection, qPCR, and immunohistochemistry). Downregulation of LRP1 protein was also demonstrated in explanted PASMC from patients with PAH and accompanied by enhanced TGFβ1-pSmad3-CTGF signaling and increased TGFβ1-induced PASMC proliferation that was prevented by pioglitazone. CONCLUSIONS Here, we identify LRP1 as an integrator of TGFβ1-mediated mechanisms that regulate vascular remodeling in mice and clinical PAH and PPARγ as a therapeutic target that controls canonical TGFβ1 pathways. Hence, pharmacologic PPARγ activation represents a promising new therapy for patients with PAH who lack the vasoprotective LRP1 in vascular SMC.
Collapse
Affiliation(s)
- Laurent Calvier
- From the Department of Pediatric Cardiology and Critical Care (L.C., G.H.), Hannover Medical School, Germany.,Pulmonary Vascular Research Center (L.C., G.H.), Hannover Medical School, Germany.,Department of Molecular Genetics (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas.,Center for Translational Neurodegeneration Research (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas
| | - Philippe Boucher
- UMR CNRS 7021, University of Strasbourg, Illkirch Cedex, France (P.B.)
| | - Joachim Herz
- Department of Molecular Genetics (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas.,Center for Translational Neurodegeneration Research (L.C., J.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Neuroscience (J.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Neurology and Neurotherapeutics (J.H.), University of Texas Southwestern Medical Center, Dallas.,Department of Neuroanatomy, Center for Neuroscience, Albert-Ludwigs-University, Freiburg, Germany (J.H.)
| | - Georg Hansmann
- From the Department of Pediatric Cardiology and Critical Care (L.C., G.H.), Hannover Medical School, Germany.,Pulmonary Vascular Research Center (L.C., G.H.), Hannover Medical School, Germany
| |
Collapse
|
37
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
38
|
Castellano-Castillo D, Moreno-Indias I, Sanchez-Alcoholado L, Ramos-Molina B, Alcaide-Torres J, Morcillo S, Ocaña-Wilhelmi L, Tinahones F, Queipo-Ortuño MI, Cardona F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J Clin Med 2019; 8:jcm8010087. [PMID: 30642114 PMCID: PMC6352101 DOI: 10.3390/jcm8010087] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) has been postulated to increase the risk for type 2 diabetes, cardiovascular disease and cancer. Adipose tissue (AT) plays an important role in metabolic homeostasis, and AT dysfunction has an active role in metabolic diseases. MetS is closely related to lifestyle and environmental factors. Epigenetics has emerged as an interesting landscape to evaluate the possible interconnection between AT and metabolic disease, since it can be modulated by environmental factors and metabolic status. The aim of this study was to determine whether MetS has an impact on the global DNA methylation pattern and the DNA methylation of several genes related to adipogenesis (PPARG, PPARA), lipid metabolism (RXRA, SREBF2, SREBF1, SCD, LPL, LXRb), and inflammation (LRP1 C3, LEP and TNF) in visceral adipose tissue. LPL and TNF DNA methylation values were significantly different in the control-case comparisons, with higher and lower methylation respectively in the MetS group. Negative correlations were found between global DNA methylation (measured by LINE-1 methylation levels) and the metabolic deterioration and glucose levels. There were associations among variables of MetS, BMI, and HOMA-IR with DNA methylation at several CpG positions for the studied genes. In particular, there was a strong positive association between serum triglyceride levels (TG) with PPARA and LPL methylation levels. TNF methylation was negatively associated with the metabolic worsening and could be an important factor in preventing MetS occurrence according to logistic regression analysis. Therefore, global DNA methylation and methylation at specific genes related to adipogenesis, lipid metabolism and inflammation are related to the etiology of MetS and might explain in part some of the features associated to metabolic disorders.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Lidia Sanchez-Alcoholado
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Bruno Ramos-Molina
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Juan Alcaide-Torres
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - Luis Ocaña-Wilhelmi
- Unidad de Cirugía Metabólica, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain.
| | - Francisco Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
- Unidad de Gestión Clínica de Oncología Médica del Hospital Virgen de la Victoria, 29010 Málaga, Spain.
| | - Fernando Cardona
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERobn, 28029 Madrid, Spain.
| |
Collapse
|
39
|
Oldoni F, van Capelleveen JC, Dalila N, Wolters JC, Heeren J, Sinke RJ, Hui DY, Dallinga-Thie GM, Frikke-Schmidt R, Hovingh KG, van de Sluis B, Tybjærg-Hansen A, Kuivenhoven JA. Naturally Occurring Variants in LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Affect HDL (High-Density Lipoprotein) Metabolism Through ABCA1 (ATP-Binding Cassette A1) and SR-B1 (Scavenger Receptor Class B Type 1) in Humans. Arterioscler Thromb Vasc Biol 2018; 38:1440-1453. [PMID: 29853565 PMCID: PMC6023722 DOI: 10.1161/atvbaha.117.310309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Studies into the role of LRP1 (low-density lipoprotein receptor–related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in LRP1 (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare LRP1 variants identified in subjects with extremely low HDL-C levels. Approach and Results— In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in LRP1: p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. Conclusions— This study provides the first evidence that rare variants in LRP1 are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1.
Collapse
Affiliation(s)
- Federico Oldoni
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| | | | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet (N.D., R.F.-S., A.T.-H.)
| | - Justina C Wolters
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany (J.H.)
| | - Richard J Sinke
- Department of Genetics, University Medical Centre Groningen, The Netherlands (R.J.S.)
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH (D.Y.H.)
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine (J.C.v.C., G.M.D.-T., K.G.H.).,Department Experimental Vascular Medicine (G.M.D.-T.), Academic Medical Center, Amsterdam, The Netherlands
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet (N.D., R.F.-S., A.T.-H.)
| | - Kees G Hovingh
- Department of Vascular Medicine (J.C.v.C., G.M.D.-T., K.G.H.)
| | - Bart van de Sluis
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet (N.D., R.F.-S., A.T.-H.).,Copenhagen City Heart Study, Frederiksberg Hospital (A.T.-H.), Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Albert Kuivenhoven
- From the Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.C.W., B.v.d.S., J.A.K.)
| |
Collapse
|
40
|
Ye R, Gordillo R, Shao M, Onodera T, Chen Z, Chen S, Lin X, SoRelle JA, Li X, Tang M, Keller MP, Kuliawat R, Attie AD, Gupta RK, Holland WL, Beutler B, Herz J, Scherer PE. Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. J Clin Invest 2018; 128:1178-1189. [PMID: 29457786 DOI: 10.1172/jci97702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The compensatory proliferation of insulin-producing β cells is critical to maintaining glucose homeostasis at the early stage of type 2 diabetes. Failure of β cells to proliferate results in hyperglycemia and insulin dependence in patients. To understand the effect of the interplay between β cell compensation and lipid metabolism upon obesity and peripheral insulin resistance, we eliminated LDL receptor-related protein 1 (LRP1), a pleiotropic mediator of cholesterol, insulin, energy metabolism, and other cellular processes, in β cells. Upon high-fat diet exposure, LRP1 ablation significantly impaired insulin secretion and proliferation of β cells. The diminished insulin signaling was partly contributed to by the hypersensitivity to glucose-induced, Ca2+-dependent activation of Erk and the mTORC1 effector p85 S6K1. Surprisingly, in LRP1-deficient islets, lipotoxic sphingolipids were mitigated by improved lipid metabolism, mediated at least in part by the master transcriptional regulator PPARγ2. Acute overexpression of PPARγ2 in β cells impaired insulin signaling and insulin secretion. Elimination of Apbb2, a functional regulator of LRP1 cytoplasmic domain, also impaired β cell function in a similar fashion. In summary, our results uncover the double-edged effects of intracellular lipid metabolism on β cell function and viability in obesity and type 2 diabetes and highlight LRP1 as an essential regulator of these processes.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA.,Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Zhe Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA.,Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Xiaoli Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Regina Kuliawat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, and Center for Translational Neurodegeneration Research, UTSW Medical Center, Dallas, Texas, USA.,Center for Neuroscience, Department of Neuroanatomy, Albert Ludwig University, Freiburg, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Lin JP, Mironova YA, Shrager P, Giger RJ. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. eLife 2017; 6:30498. [PMID: 29251594 PMCID: PMC5752207 DOI: 10.7554/elife.30498] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of Lrp1−/− OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Yevgeniya A Mironova
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
42
|
Xian X, Ding Y, Dieckmann M, Zhou L, Plattner F, Liu M, Parks JS, Hammer RE, Boucher P, Tsai S, Herz J. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. eLife 2017; 6:e29292. [PMID: 29144234 PMCID: PMC5690284 DOI: 10.7554/elife.29292] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses.
Collapse
Affiliation(s)
- Xunde Xian
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Yinyuan Ding
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
- Key Laboratory of Medical Electrophysiology, Ministry of Education of ChinaInstitute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Marco Dieckmann
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Li Zhou
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Florian Plattner
- Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallasUnited States
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Mingxia Liu
- Section on Molecular Medicine, Department of Internal MedicineWake Forest School of MedicineWinston-SalemNorth Carolina
| | - John S Parks
- Section on Molecular Medicine, Department of Internal MedicineWake Forest School of MedicineWinston-SalemNorth Carolina
| | - Robert E Hammer
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasUnited States
| | | | - Shirling Tsai
- Department of SurgeryUT Southwestern Medical CenterDallasUnited States
- Dallas VA Medical CenterDallasUnited States
| | - Joachim Herz
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of NeuroscienceUT SouthwesternDallasUnited States
- Department of Neurology and NeurotherapeuticsUT SouthwesternDallasUnited States
| |
Collapse
|
43
|
Rondón-Ortiz AN, Lino Cardenas CL, Martínez-Málaga J, Gonzales-Urday AL, Gugnani KS, Böhlke M, Maher TJ, Pino-Figueroa AJ. High Concentrations of Rosiglitazone Reduce mRNA and Protein Levels of LRP1 in HepG2 Cells. Front Pharmacol 2017; 8:772. [PMID: 29201005 PMCID: PMC5696635 DOI: 10.3389/fphar.2017.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor involved in the uptake of a variety of molecules, such as apoE, α2-macroglobulin, and the amyloid β peptide (Aβ), for either transcellular transport, protein trafficking or lysosomal degradation. The LRP1 gene can be transcribed upon activation of peroxisome proliferator receptor activated-γ (PPARγ) by the potent PPARγ agonist, rosiglitazone (RGZ). In previous studies, RGZ was shown to upregulate LRP1 levels in concentrations between 0.1 and 5 μM in HepG2 cells. In this study, we sought to replicate previous studies and to investigate the molecular mechanism by which high concentrations of RGZ reduce LRP1 levels in HepG2 cells. Our data confirmed that transcriptional activation of LRP1 occurred in response to RGZ at 3 and 10 μM, in agreement with the study reported by Moon et al. (2012a). On the other hand, we found that high concentrations of RGZ decreased both mRNA and protein levels of LRP1. Mechanistically, transcriptional dysregulation of LRP1 was affected by the downregulation of PPARγ in a time- and concentration-dependent manner. However, downregulation of PPARγ was responsible for only 40% of the LRP1 reduction and thereby the remaining loss of LRP1 (60%) was found to be through degradation in the lysosomal system. In conclusion, our findings demonstrate the mechanisms by which high concentrations of RGZ caused LRP1 levels to be reduced in HepG2 cells. Taken together, this data will be helpful to better explain the pharmacological modulation of this pivotal membrane receptor by PPARγ agonists.
Collapse
Affiliation(s)
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States.,Scientific Consulting Group, BioMolecular-LC E.I.R.L, Arequipa, Peru
| | - Jimena Martínez-Málaga
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States.,Department of Pharmaceutical, Biochemical and Biotechnological Sciences, Catholic University of Santa Maria, Arequipa, Peru
| | - Ana L Gonzales-Urday
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States.,Department of Pharmaceutical, Biochemical and Biotechnological Sciences, Catholic University of Santa Maria, Arequipa, Peru
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States
| | - Timothy J Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, United States
| | | |
Collapse
|
44
|
Lockyer P, Mao H, Fan Q, Li L, Yu-Lee LY, Eissa NT, Patterson C, Xie L, Pi X. LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arterioscler Thromb Vasc Biol 2017; 37:1524-1535. [PMID: 28596374 DOI: 10.1161/atvbaha.117.309521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1β-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.
Collapse
Affiliation(s)
- Pamela Lockyer
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Hua Mao
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Qiying Fan
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Luge Li
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Li-Yuan Yu-Lee
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - N Tony Eissa
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Cam Patterson
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Liang Xie
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.)
| | - Xinchun Pi
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.); Department of Medicine, Section of Athero & Lipo, Cardiovascular Research Institute (H.M., Q.F., L.L., L.X., X.P.), Departments of Molecular and Cellular Biology and Medicine, Section of Immunology Allergy and Rheumatology, Integrative Molecular and Biomedical Sciences (L.Y.Y.L.), and Departments of Medicine and Pathology and Immunology (N.T.E.), Baylor College of Medicine, Houston, TX; and New York-Presbyterian Hospital, New York (C.P.).
| |
Collapse
|