1
|
Tsirelis D, Tsekouras A, Stamati P, Liampas I, Zoupa E, Dastamani M, Tsouris Z, Papadimitriou A, Dardiotis E, Siokas V. The impact of genetic factors on the response to migraine therapy. Rev Neurosci 2024; 35:789-812. [PMID: 38856190 DOI: 10.1515/revneuro-2024-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Migraine is a multidimensional disease affecting a large portion of the human population presenting with a variety of symptoms. In the era of personalized medicine, successful migraine treatment presents a challenge, as several studies have shown the impact of a patient's genetic profile on therapy response. However, with the emergence of contemporary treatment options, there is promise for improved outcomes. A literature search was conducted in PubMed and Scopus, in order to obtain studies investigating the impact of genetic factors on migraine therapy outcome. Overall, 23 studies were included in the current review, exhibiting diversity in the treatments used and the genetic variants investigated. Divergent genes were assessed for each category of migraine treatment. Several genetic factors were identified to contribute to the heterogeneous response to treatment. SNPs related to pharmacodynamic receptors, pharmacogenetics and migraine susceptibility loci were the most investigated variants, revealing some interesting significant results. To date, various associations have been recorded correlating the impact of genetic factors on migraine treatment responses. More extensive research needs to take place with the aim of shedding light on the labyrinthine effects of genetic variations on migraine treatment, and, consequently, these findings can promptly affect migraine treatment and improve migraine patients' life quality in the vision of precise medicine.
Collapse
Affiliation(s)
- Daniil Tsirelis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Alexandros Tsekouras
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Elli Zoupa
- Larisa Day Care Center of People with Alzheimer's Disease, Association for Regional Development and Mental Health (EPAPSY), 15124 Marousi, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | | | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
2
|
Wang W, Zhu C, Martelletti P. Understanding Headaches Attributed to Cranial and/or Cervical Vascular Disorders: Insights and Challenges for Neurologists. Pain Ther 2024:10.1007/s40122-024-00668-5. [PMID: 39397219 DOI: 10.1007/s40122-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
In recent decades, cranial and cervical vascular disorders have become major global health concerns, significantly impacting patients, families, and societies. Headache is a prevalent symptom of these vascular diseases and can often be the initial, primary, or sole manifestation. The intricate relationship between headaches and cranial/cervical vascular disorders poses a diagnostic and therapeutic challenge, with the underlying mechanisms remaining largely elusive. Understanding this association is crucial for the early diagnosis, prevention, and intervention of such conditions. This review aims to provide a comprehensive overview of the clinical features and potential pathogenesis of headaches attributed to cranial and cervical vascular disorders and provide a reference for disease management and a basis for potential pathological mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | | |
Collapse
|
3
|
Bruner WS, Grant SFA. Translation of genome-wide association study: from genomic signals to biological insights. Front Genet 2024; 15:1375481. [PMID: 39421299 PMCID: PMC11484060 DOI: 10.3389/fgene.2024.1375481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Since the turn of the 21st century, genome-wide association study (GWAS) have successfully identified genetic signals associated with a myriad of common complex traits and diseases. As we transition from establishing robust genetic associations with diverse phenotypes, the central challenge is now focused on characterizing the underlying functional mechanisms driving these signals. Previous GWAS efforts have revealed multiple variants, each conferring relatively subtle susceptibility, collectively contributing to the pathogenesis of various common diseases. Such variants can further exhibit associations with multiple other traits and differ across ancestries, plus disentangling causal variants from non-causal due to linkage disequilibrium complexities can lead to challenges in drawing direct biological conclusions. Combined with cellular context considerations, such challenges can reduce the capacity to definitively elucidate the biological significance of GWAS signals, limiting the potential to define mechanistic insights. This review will detail current and anticipated approaches for functional interpretation of GWAS signals, both in terms of characterizing the underlying causal variants and the corresponding effector genes.
Collapse
Affiliation(s)
- Winter S. Bruner
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Struan F. A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
4
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. J Neuroinflammation 2024; 21:245. [PMID: 39342323 PMCID: PMC11439205 DOI: 10.1186/s12974-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease. Microglia activation is accompanied by the formation and chronic expression of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft-expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased reactive oxygen species and the dilated endoplasmic reticulum. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/-APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in Alzheimer's disease associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Seunghwan Choi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Won-Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
5
|
Li R, Han J, Shao G, Liu C, Li S, Wang M, Yang D. Causality between multiple autoimmune disorders and migraine and its subtypes: a two-sample Mendelian randomization study. Front Neurol 2024; 15:1420201. [PMID: 39087012 PMCID: PMC11288874 DOI: 10.3389/fneur.2024.1420201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Several studies have reported associations between various autoimmune diseases and migraine. Using Mendelian randomization (MR), this study aimed to evaluate the interplay between autoimmune diseases and migraine. Methods Here, instrumental variables, exposure factors, and outcome factors for 10 common autoimmune diseases and migraine and its subtypes were screened. This screening utilized comprehensive statistics from Europe's largest genome-wide association study and performed reverse MR analysis on positive results. The causality between autoimmune diseases and migraine was comprehensively assessed using multiple analytical methods. Additionally, sensitivity analyses, such as the horizontal diversity heterogeneity and leave-one-out method, were performed. Results Random-effects inverse variance weighting analysis revealed a causal correlation between autoimmune hyperthyroidism and migraine (p = 0.0002), and this association was consistent across both migraine with aura (MA; p = 0.006) and migraine without aura (MO; p = 0.017). In addition, there was a positive causal association between systemic lupus erythematosus (SLE) and MA (p = 0.001) and between hypothyroidism and MO (p = 0.038). There is insufficient evidence to substantiate a causal link between outcomes and other autoimmune-related disorders, and reverse MR results did not reveal a causal relationship between migraines and these autoimmune disorders. The validity of the results was demonstrated by a sensitivity analysis; horizontal pleiotropy and heterogeneity were not observed. Discussion This study observed a positive genetic association between autoimmune hyperthyroidism and migraines. In addition, SLE positively affects MA, and hypothyroidism contributes to the incidence of MO. These results have great significance for future research and prevention of migraine.
Collapse
Affiliation(s)
- Rui Li
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Han
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoliang Shao
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changyue Liu
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Li
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengmeng Wang
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dianhui Yang
- Acupuncture and Tuina College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Früh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen LY, Fernandez-Fernandez D, Rem PD, Ulrich D, Schwenk J, Chen Z, Le Monnier E, Fritzius T, Innocenti SM, Besseyrias V, Trovò L, Stawarski M, Argilli E, Sherr EH, van Bon B, Kamsteeg EJ, Iascone M, Pilotta A, Cutrì MR, Azamian MS, Hernández-García A, Lalani SR, Rosenfeld JA, Zhao X, Vogel TP, Ona H, Scott DA, Scheiffele P, Strømgaard K, Tafti M, Gassmann M, Fakler B, Shigemoto R, Bettler B. Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadk5462. [PMID: 38985877 PMCID: PMC11235169 DOI: 10.1126/sciadv.adk5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.
Collapse
Affiliation(s)
- Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sami Boudkkazi
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Li-Yuan Chen
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Diego Fernandez-Fernandez
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal D. Rem
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Schwenk
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Maria Iascone
- Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Herda Ona
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Scheiffele
- Biocenter, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
8
|
Haque MM, Kuppusamy P, Melemedjian OK. Disruption of mitochondrial pyruvate oxidation in dorsal root ganglia drives persistent nociceptive sensitization and causes pervasive transcriptomic alterations. Pain 2024; 165:1531-1549. [PMID: 38285538 PMCID: PMC11189764 DOI: 10.1097/j.pain.0000000000003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/31/2024]
Abstract
ABSTRACT Metabolism is inextricably linked to every aspect of cellular function. In addition to energy production and biosynthesis, metabolism plays a crucial role in regulating signal transduction and gene expression. Altered metabolic states have been shown to maintain aberrant signaling and transcription, contributing to diseases like cancer, cardiovascular disease, and neurodegeneration. Metabolic gene polymorphisms and defects are also associated with chronic pain conditions, as are increased levels of nerve growth factor (NGF). However, the mechanisms by which NGF may modulate sensory neuron metabolism remain unclear. This study demonstrated that intraplantar NGF injection reprograms sensory neuron metabolism. Nerve growth factor suppressed mitochondrial pyruvate oxidation and enhanced lactate extrusion, requiring 24 hours to increase lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 (PDHK1) expression. Inhibiting these metabolic enzymes reversed NGF-mediated effects. Remarkably, directly disrupting mitochondrial pyruvate oxidation induced severe, persistent allodynia, implicating this metabolic dysfunction in chronic pain. Nanopore long-read sequencing of poly(A) mRNA uncovered extensive transcriptomic changes upon metabolic disruption, including altered gene expression, splicing, and poly(A) tail lengths. By linking metabolic disturbance of dorsal root ganglia to transcriptome reprogramming, this study enhances our understanding of the mechanisms underlying persistent nociceptive sensitization. These findings imply that impaired mitochondrial pyruvate oxidation may drive chronic pain, possibly by impacting transcriptomic regulation. Exploring these metabolite-driven mechanisms further might reveal novel therapeutic targets for intractable pain.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Panjamurthy Kuppusamy
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
9
|
Hautakangas H, Palotie A, Pirinen M. Fine-mapping a genome-wide meta-analysis of 98,374 migraine cases identifies 181 sets of candidate causal variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307608. [PMID: 39371129 PMCID: PMC11451805 DOI: 10.1101/2024.05.20.24307608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Migraine is a highly prevalent neurovascular disorder for which genome-wide association studies (GWAS) have identified over one hundred risk loci, yet the causal variants and genes remain mostly unknown. Here, we meta-analyzed three migraine GWAS including 98,374 cases and 869,160 controls and identified 122 independent risk loci of which 35 were new. Fine-mapping of a meta-analysis is challenging because some variants may be missing from some participating studies and accurate linkage disequilibrium (LD) information of the variants is often not available. Here, using the exact in-sample LD, we first investigated which statistics could reliably capture the quality of fine-mapping when only reference LD was available. We observed that the posterior expected number of causal variants best distinguished between the high- and low-quality results. Next, we performed fine-mapping for 102 autosomal risk regions using FINEMAP. We produced high-quality fine-mapping for 93 regions and defined 181 distinct credible sets. Among the high-quality credible sets were 7 variants with very high posterior inclusion probability (PIP > 0.9) and 2 missense variants with PIP > 0.5 (rs6330 in NGF and rs1133400 in INPP5A). For 35 association signals, we managed to narrow down the set of potential risk variants to at most 5 variants.
Collapse
Affiliation(s)
- Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | | | | | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Lin B, Paterson AD, Sun L. Better together against genetic heterogeneity: A sex-combined joint main and interaction analysis of 290 quantitative traits in the UK Biobank. PLoS Genet 2024; 20:e1011221. [PMID: 38656964 PMCID: PMC11073786 DOI: 10.1371/journal.pgen.1011221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Genetic effects can be sex-specific, particularly for traits such as testosterone, a sex hormone. While sex-stratified analysis provides easily interpretable sex-specific effect size estimates, the presence of sex-differences in SNP effect implies a SNP×sex interaction. This suggests the usage of the often overlooked joint test, testing for an SNP's main and SNP×sex interaction effects simultaneously. Notably, even without individual-level data, the joint test statistic can be derived from sex-stratified summary statistics through an omnibus meta-analysis. Utilizing the available sex-stratified summary statistics of the UK Biobank, we performed such omnibus meta-analyses for 290 quantitative traits. Results revealed that this approach is robust to genetic effect heterogeneity and can outperform the traditional sex-stratified or sex-combined main effect-only tests. Therefore, we advocate using the omnibus meta-analysis that captures both the main and interaction effects. Subsequent sex-stratified analysis should be conducted for sex-specific effect size estimation and interpretation.
Collapse
Affiliation(s)
- Boxi Lin
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D. Paterson
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580751. [PMID: 38586011 PMCID: PMC10996524 DOI: 10.1101/2024.02.16.580751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease (AD). Microglia activation is accompanied by the formation and chronic maintenance of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased ROS and the dilated ER. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/- APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in AD associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Xie W, Li R, Tang W, Ma Z, Miao S, Li C, Yang C, Li B, Wang T, Gong Z, Zhou Y, Yu S. Proteomics profiling reveals mitochondrial damage in the thalamus in a mouse model of chronic migraine. J Headache Pain 2023; 24:122. [PMID: 37667199 PMCID: PMC10478405 DOI: 10.1186/s10194-023-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Migraine, a complex brain disorder, is regarded as a possible clinical manifestation of brain energy dysfunction. The trigeminovascular system is considered the basis for the pathogenesis of migraine, hence we depicted the proteomics profiling of key regions in this system, then focusing on protein alterations related to mitochondrial function. The aim of this study is to illustrate the role of mitochondria in migraine. METHODS A mouse model of chronic migraine (CM) was established by repeated nitroglycerin (NTG) stimulation and evaluated by von-Frey filaments, a hot plate and a light-dark box. Differentially expressed proteins (DEPs) in some subcortical brain regions of the trigeminovascular system were screened through liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyse the specificity of key signaling pathways in different brain regions. And then mitochondrial function, structure and dynamics were determined by qPCR, ELISA, and transmission electron microscope (TEM). Finally, the effect of mitochondrial intervention-Urolithin A (UA) on CM was investigated. RESULTS Repeated NTG injection triggered photophobia, periorbital and hind paw allodynia in mice. The proteomics profiling of CM model showed that 529, 109, 163, 152 and 419 DEPs were identified in the thalamus, hypothalamus, periaqueductal grey (PAG), trigeminal ganglion (TG) and trigeminocervical complex (TCC), respectively. The most significant changes in the brain region-specific pathways pointed to thalamic mitochondrial impairment. NTG induced mitochondrial structural disruption, dysfunction and homeostatic dysregulation, which could be partially attenuated by UA intervention. CONCLUSION Our findings highlight the involvement of mitochondrial damage in the thalamus in central sensitization of CM, which provides evidence of possible metabolic mechanisms in migraine pathophysiology.
Collapse
Affiliation(s)
- Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ruibing Li
- Department of Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhenjie Ma
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yue Zhou
- College of Life Science, Northwest University, Xi'an, Shanxi, China.
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Gosalia H, Karsan N, Goadsby PJ. Genetic Mechanisms of Migraine: Insights from Monogenic Migraine Mutations. Int J Mol Sci 2023; 24:12697. [PMID: 37628876 PMCID: PMC10454024 DOI: 10.3390/ijms241612697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a disabling neurological disorder burdening patients globally. Through the increasing development of preclinical and clinical experimental migraine models, advancing appreciation of the extended clinical phenotype, and functional neuroimaging studies, we can further our understanding of the neurobiological basis of this highly disabling condition. Despite increasing understanding of the molecular and chemical architecture of migraine mechanisms, many areas require further investigation. Research over the last three decades has suggested that migraine has a strong genetic basis, based on the positive family history in most patients, and this has steered exploration into possibly implicated genes. In recent times, human genome-wide association studies and rodent genetic migraine models have facilitated our understanding, but most migraine seems polygenic, with the monogenic migraine mutations being considerably rarer, so further large-scale studies are required to elucidate fully the genetic underpinnings of migraine and the translation of these to clinical practice. The monogenic migraine mutations cause severe aura phenotypes, amongst other symptoms, and offer valuable insights into the biology of aura and the relationship between migraine and other conditions, such as vascular disease and sleep disorders. This review will provide an outlook of what is known about some monogenic migraine mutations, including familial hemiplegic migraine, familial advanced sleep-phase syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
Collapse
Affiliation(s)
- Helin Gosalia
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
| | - Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
| | - Peter J. Goadsby
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Meyers TJ, Yin J, Herrera VA, Pressman AR, Hoffmann TJ, Schaefer C, Avins AL, Choquet H. Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine. HGG ADVANCES 2023; 4:100211. [PMID: 37415806 PMCID: PMC10319829 DOI: 10.1016/j.xhgg.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 130 genetic susceptibility loci for migraine; however, how most of these loci impact migraine development is unknown. To identify novel genes associated with migraine and interpret the transcriptional products of those genes, we conducted a transcriptome-wide association study (TWAS). We performed tissue-specific and multi-tissue TWAS analyses to assess associations between imputed gene expression from 53 tissues and migraine susceptibility using FUSION software. Meta-analyzed GWAS summary statistics from 26,052 migraine cases and 487,214 controls, all of European ancestry and from two cohorts (the Kaiser Permanente GERA and the UK Biobank), were used. We evaluated the associations for genes after conditioning on variant-level effects from GWAS, and we tested for colocalization of GWAS migraine-associated loci and expression quantitative trait loci (eQTLs). Across tissue-specific and multi-tissue analyses, we identified 53 genes for which genetically predicted gene expression was associated with migraine after correcting for multiple testing. Of these 53 genes, 10 (ATF5, CNTNAP1, KTN1-AS1, NEIL1, NEK4, NNT, PNKP, RUFY2, TUBG2, and VAT1) did not overlap known migraine-associated loci identified from GWAS. Tissue-specific analysis identified 45 gene-tissue pairs and cardiovascular tissues represented the highest proportion of the Bonferroni-significant gene-tissue pairs (n = 22 [49%]), followed by brain tissues (n = 6 [13%]), and gastrointestinal tissues (n = 4 [9%]). Colocalization analyses provided evidence of shared genetic variants underlying eQTL and GWAS signals in 18 of the gene-tissue pairs (40%). Our TWAS reports novel genes for migraine and highlights the important contribution of brain, cardiovascular, and gastrointestinal tissues in migraine susceptibility.
Collapse
Affiliation(s)
- Travis J. Meyers
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Victor A. Herrera
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Alice R. Pressman
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Sutter Health, San Francisco, CA 94107, USA
| | - Thomas J. Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Andrew L. Avins
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| |
Collapse
|
17
|
Jordan A, Glauser DA. Distinct clusters of human pain gene orthologs in Caenorhabditis elegans regulate thermo-nociceptive sensitivity and plasticity. Genetics 2023; 224:iyad047. [PMID: 36947448 PMCID: PMC10158838 DOI: 10.1093/genetics/iyad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The detection and avoidance of harmful stimuli are essential animal capabilities. The molecular and cellular mechanisms controlling nociception and its plasticity are conserved, genetically controlled processes of broad biomedical interest given their relevance to understand and treat pain conditions that represent a major health burden. Recent genome-wide association studies (GWAS) have identified a rich set of polymorphisms related to different pain conditions and pointed to many human pain gene candidates, whose connection to the pain pathways is however often poorly understood. Here, we used a computer-assisted Caenorhabditis elegans thermal avoidance analysis pipeline to screen for behavioral defects in a set of 109 mutants for genes orthologous to human pain-related genes. We measured heat-evoked reversal thermosensitivity profiles, as well as spontaneous reversal rate, and compared naïve animals with adapted animals submitted to a series of repeated noxious heat stimuli, which in wild type causes a progressive habituation. Mutations affecting 28 genes displayed defects in at least one of the considered parameters and could be clustered based on specific phenotypic footprints, such as high-sensitivity mutants, nonadapting mutants, or mutants combining multiple defects. Collectively, our data reveal the functional architecture of a network of conserved pain-related genes in C. elegans and offer novel entry points for the characterization of poorly understood human pain genes in this genetic model.
Collapse
Affiliation(s)
- Aurore Jordan
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
18
|
Wood A, Antonopoulos A, Chuaiphichai S, Kyriakou T, Diaz R, Al Hussaini A, Marsh AM, Sian M, Meisuria M, McCann G, Rashbrook VS, Drydale E, Draycott S, Polkinghorne MD, Akoumianakis I, Antoniades C, Watkins H, Channon KM, Adlam D, Douglas G. PHACTR1 modulates vascular compliance but not endothelial function: a translational study. Cardiovasc Res 2023; 119:599-610. [PMID: 35653516 PMCID: PMC10064844 DOI: 10.1093/cvr/cvac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The non-coding locus at 6p24 located in Intron 3 of PHACTR1 has consistently been implicated as a risk allele in myocardial infarction and multiple other vascular diseases. Recent murine studies have identified a role for Phactr1 in the development of atherosclerosis. However, the role of PHACTR1 in vascular tone and in vivo vascular remodelling has yet to be established. The aim of this study was to investigate the role of PHACTR1 in vascular function. METHODS AND RESULTS Prospectively recruited coronary artery disease (CAD) patients undergoing bypass surgery and retrospectively recruited spontaneous coronary artery dissection (SCAD) patients and matched healthy volunteers were genotyped at the PHACTR1 rs9349379 locus. We observed a significant association between the PHACTR1 loci and changes in distensibility in both the ascending aorta (AA = 0.0053 ± 0.0004, AG = 0.0041 ± 0.003, GG = 0.0034 ± 0.0009, P < 0.05, n = 58, 54, and 7, respectively) and carotid artery (AA = 12.83 ± 0.51, AG = 11.14 ± 0.38, GG = 11.69 ± 0.66, P < 0.05, n = 70, 65, and 18, respectively). This association was not observed in the descending aorta or in SCAD patients. In contrast, the PHACTR1 locus was not associated with changes in endothelial cell function with no association between the rs9349379 locus and in vivo or ex vivo vascular function observed in CAD patients. This finding was confirmed in our murine model where the loss of Phactr1 on the pro-atherosclerosis ApoE-/- background did not alter ex vivo vascular function. CONCLUSION In conclusion, we have shown a role for PHACTR1 in arterial compliance across multiple vascular beds. Our study suggests that PHACTR1 has a key structural role within the vasculature.
Collapse
Affiliation(s)
- Alice Wood
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alexios Antonopoulos
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Surawee Chuaiphichai
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Theodosios Kyriakou
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Rebeca Diaz
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Abtehale Al Hussaini
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anna-Marie Marsh
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Manjit Sian
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Mitul Meisuria
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry McCann
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria S Rashbrook
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Edward Drydale
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sally Draycott
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Murray David Polkinghorne
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ioannis Akoumianakis
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Charalambos Antoniades
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Hugh Watkins
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Keith M Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
19
|
Sumalde AAM, Scholes MA, Kalmanson OA, Terhune EA, Frejo L, Wethey CI, Roman-Naranjo P, Carry PM, Gubbels SP, Lopez-Escamez JA, Hadley-Miller N, Santos-Cortez RLP. Rare Coding Variants in Patients with Non-Syndromic Vestibular Dysfunction. Genes (Basel) 2023; 14:831. [PMID: 37107589 PMCID: PMC10137884 DOI: 10.3390/genes14040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Vertigo due to vestibular dysfunction is rare in children. The elucidation of its etiology will improve clinical management and the quality of life of patients. Genes for vestibular dysfunction were previously identified in patients with both hearing loss and vertigo. This study aimed to identify rare, coding variants in children with peripheral vertigo but no hearing loss, and in patients with potentially overlapping phenotypes, namely, Meniere's disease or idiopathic scoliosis. Rare variants were selected from the exome sequence data of 5 American children with vertigo, 226 Spanish patients with Meniere's disease, and 38 European-American probands with scoliosis. In children with vertigo, 17 variants were found in 15 genes involved in migraine, musculoskeletal phenotypes, and vestibular development. Three genes, OTOP1, HMX3, and LAMA2, have knockout mouse models for vestibular dysfunction. Moreover, HMX3 and LAMA2 were expressed in human vestibular tissues. Rare variants within ECM1, OTOP1, and OTOP2 were each identified in three adult patients with Meniere's disease. Additionally, an OTOP1 variant was identified in 11 adolescents with lateral semicircular canal asymmetry, 10 of whom have scoliosis. We hypothesize that peripheral vestibular dysfunction in children may be due to multiple rare variants within genes that are involved in the inner ear structure, migraine, and musculoskeletal disease.
Collapse
Affiliation(s)
- Angelo Augusto M. Sumalde
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Otolaryngology-Head and Neck Surgery, University of the Philippines Manila College of Medicine, Philippine General Hospital, Manila 1000, Philippines
| | - Melissa A. Scholes
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatric Otolaryngology, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Olivia A. Kalmanson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth A. Terhune
- Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lidia Frejo
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO-Centre for Genomics and Oncological Research-Pfizer-University of Granada-Junta de Andalucia, PTS, 18016 Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Cambria I. Wethey
- Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pablo Roman-Naranjo
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO-Centre for Genomics and Oncological Research-Pfizer-University of Granada-Junta de Andalucia, PTS, 18016 Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Patrick M. Carry
- Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Musculoskeletal Research Center, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Samuel P. Gubbels
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jose A. Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, GENYO-Centre for Genomics and Oncological Research-Pfizer-University of Granada-Junta de Andalucia, PTS, 18016 Granada, Spain
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Meniere’s Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Nancy Hadley-Miller
- Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Musculoskeletal Research Center, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Regie Lyn P. Santos-Cortez
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Center for Children’s Surgery, Children’s Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Ashina S, Melo-Carrillo A, Toluwanimi A, Bolo N, Szabo E, Borsook D, Burstein R. Galcanezumab effects on incidence of headache after occurrence of triggers, premonitory symptoms, and aura in responders, non-responders, super-responders, and super non-responders. J Headache Pain 2023; 24:26. [PMID: 36927366 PMCID: PMC10018924 DOI: 10.1186/s10194-023-01560-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The goal of this observational, open-label, cohort study was to determine whether prophylactic migraine treatment with galcanezumab, a peripherally acting drug, alters the incidence of premonitory symptoms, and/or occurrence of headache after exposure to triggers or aura episodes in treatment-responders (≥ 50% reduction in monthly migraine days [MMD]), super-responders (≥ 70%), non-responders (< 50%) and super non-responders (< 30%). METHODS Participants were administered electronic daily headache diaries to document migraine days and associated symptoms one month before and during the three months of treatment. Questionnaires were used to identify conscious prodromal and trigger events that were followed by headache prior to vs. after 3 months of treatment. RESULTS After 3 months of galcanezumab treatment, (a) the incidence of premonitory symptoms that were followed by headache decreased by 48% in the 27 responders vs. 28% in the 19 non-responders, and by 50% in the 11 super-responders vs. 12% in the 8 super non-responders; (b) the incidence of visual and sensory aura that were followed by headache was reduced in responders, non-responders, and super-responders, but not in super non-responders; (c) the number of triggers followed by headache decreased by 38% in responders vs. 13% in non-responders, and by 31% in super-responders vs. 4% in super non-responders; and (d) some premonitory symptoms (e.g., cognitive impairment, irritability, fatigue) and triggers (e.g., stress, sleeping too little, bright light, aura) were followed by headache only in super non-responders. CONCLUSIONS Mechanistically, these findings suggest that even a mild decrease in migraine frequency is sufficient to partially reverse the excitability and responsivity of neurons involved in the generation of certain triggers and potentially premonitory symptoms of migraine. TRIAL REGISTRATION ClinicalTrials.gov: NCT04271202. Registration date: February 10, 2020.
Collapse
Affiliation(s)
- Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Anesthesia, Harvard Medical School, Boston, MA, USA.,Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Ajayi Toluwanimi
- Clinical Research Center, Beth Israel Deaconess Medical Boston, Boston, MA, USA
| | - Nicolas Bolo
- Departments of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edina Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA. .,Department of Anesthesia, Harvard Medical School, Boston, MA, USA. .,Center for Life Science, Room 649, 3 Blackfan Circle, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Grangeon L, Lange KS, Waliszewska-Prosół M, Onan D, Marschollek K, Wiels W, Mikulenka P, Farham F, Gollion C, Ducros A. Genetics of migraine: where are we now? J Headache Pain 2023; 24:12. [PMID: 36800925 PMCID: PMC9940421 DOI: 10.1186/s10194-023-01547-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes code for proteins expressed in neurons, glial cells, or vessels, all of which increase susceptibility to cortical spreading depression. The study of monogenic migraines has shown that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified numerous susceptibility variants that each result in only a small increase in overall migraine risk. The more than 180 known variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also highlighted the importance of shared genetic factors between migraine and its major co-morbidities, including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes.
Collapse
Affiliation(s)
- Lou Grangeon
- grid.41724.340000 0001 2296 5231Neurology Department, CHU de Rouen, Rouen, France
| | - Kristin Sophie Lange
- grid.6363.00000 0001 2218 4662Neurology Department, Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin, Berlin, Germany
| | - Marta Waliszewska-Prosół
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Dilara Onan
- grid.14442.370000 0001 2342 7339Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Karol Marschollek
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Wietse Wiels
- grid.8767.e0000 0001 2290 8069Department of Neurology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petr Mikulenka
- grid.412819.70000 0004 0611 1895Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Fatemeh Farham
- grid.411705.60000 0001 0166 0922Headache Department, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cédric Gollion
- grid.411175.70000 0001 1457 2980Neurology Department, CHU de Toulouse, Toulouse, France
| | - Anne Ducros
- Neurology Department, CHU de Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France.
| | | |
Collapse
|
22
|
Tasnim S, Nyholt DR. Migraine and thyroid dysfunction: Co-occurrence, shared genes and biological mechanisms. Eur J Neurol 2023; 30:1815-1827. [PMID: 36807966 DOI: 10.1111/ene.15753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE Migraine and thyroid dysfunction, particularly hypothyroidism, are common medical conditions and are known to have high heritability. Thyroid function measures, thyroid stimulating hormone (TSH) and free thyroxine (fT4), are also known to be genetically influenced. Although observational epidemiological studies report an increased co-occurrence of migraine and thyroid dysfunction, a clear and combined interpretation of the findings is currently lacking. A narrative review is provided of the epidemiological and genetic association evidence linking migraine, hypothyroidism, hyperthyroidism and thyroid hormones TSH and fT4. METHODS An extensive literature search was conducted in the PubMed database for epidemiological, candidate gene and genome-wide association studies using the terms migraine, headache, thyroid hormones, TSH, fT4, thyroid function, hypothyroidism and hyperthyroidism. RESULTS Epidemiological studies suggest a bidirectional relationship between migraine and thyroid dysfunction. However, the nature of the relationship remains unclear, with some studies suggesting migraine increases the risk for thyroid dysfunction whilst other studies suggest the reverse. Early candidate gene studies have provided nominal evidence for MTHFR and APOE, whilst more recently genome-wide association studies have provided robust evidence for THADA and ITPK1 being associated with both migraine and thyroid dysfunction. CONCLUSIONS These genetic associations improve our understanding of the genetic relationship between migraine and thyroid dysfunction, provide an opportunity to develop biomarkers to identify migraine patients most likely to benefit from thyroid hormone therapy, and indicate that further cross-trait genetic studies have excellent potential to provide biological insight into their relationship and inform clinical interventions.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Novel Therapeutic Targets for Migraine. Biomedicines 2023; 11:biomedicines11020569. [PMID: 36831105 PMCID: PMC9952984 DOI: 10.3390/biomedicines11020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Migraine, a primary headache disorder involving a dysfunctional trigeminal vascular system, remains a major debilitating neurological condition impacting many patients' quality of life. Despite the success of multiple new migraine therapies, not all patients achieve significant clinical benefits. The success of CGRP pathway-targeted therapy highlights the importance of translating the mechanistic understanding toward effective therapy. Ongoing research has identified multiple potential mechanisms in migraine signaling and nociception. In this narrative review, we discuss several potential emerging therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, δ-opioid receptor (DOR), potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). A better understanding of these mechanisms facilitates the discovery of novel therapeutic targets and provides more treatment options for improved clinical care.
Collapse
|
24
|
Meng W, Reel PS, Nangia C, Rajendrakumar AL, Hebert HL, Guo Q, Adams MJ, Zheng H, Lu ZH, Ray D, Colvin LA, Palmer CNA, McIntosh AM, Smith BH. A Meta-Analysis of the Genome-Wide Association Studies on Two Genetically Correlated Phenotypes Suggests Four New Risk Loci for Headaches. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:64-76. [PMID: 36939796 PMCID: PMC9883337 DOI: 10.1007/s43657-022-00078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of different types of headache are not well understood while it has been suggested that self-reported headache and self-reported migraine were genetically correlated. In this study, we performed a meta-analysis of genome-wide association studies (GWAS) on the self-reported headache phenotype from the UK Biobank and the self-reported migraine phenotype from the 23andMe using the Unified Score-based Association Test (metaUSAT) software for genetically correlated phenotypes (N = 397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and four loci were newly suggested. The LDL receptor related protein 1 (LRP1)-Signal Transducer and Activator of Transcription 6 (STAT6)-S hort chain D ehydrogenase/R eductase family 9C member 7 (SDR9C7) region in chromosome 12 was the most significantly associated locus with a leading p value of 1.24 × 10-62 of rs11172113. The One Cut homeobox 2 (ONECUT2) gene locus in chromosome 18 was the strongest signal among the four new loci with a p value of 1.29 × 10-9 of rs673939. Our study demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-analysed together in theory and in practice to boost study power to identify more variants for headaches. This study has paved way for a large GWAS meta-analysis involving cohorts of different while genetically correlated headache phenotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00078-7.
Collapse
Affiliation(s)
- Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100 China
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Parminder S. Reel
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Charvi Nangia
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Aravind Lathika Rajendrakumar
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Harry L. Hebert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Qian Guo
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100 China
| | - Mark J. Adams
- Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH10 5HF UK
| | - Hua Zheng
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zen Haut Lu
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | | | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Lesley A. Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Andrew M. McIntosh
- Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH10 5HF UK
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| |
Collapse
|
25
|
Tasnim S, Wilson SG, Walsh JP, Nyholt DR. Shared genetics and causal relationships between migraine and thyroid function traits. Cephalalgia 2023; 43:3331024221139253. [PMID: 36739509 DOI: 10.1177/03331024221139253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiological studies have reported a comorbid relationship between migraine and thyroid dysfunction. METHODS We investigated the genetic relationship between migraine and thyroid function traits using genome-wide association study (GWAS) data. RESULTS We found a significant genetic correlation (rg) with migraine for hypothyroidism (rg = 0.0608), secondary hypothyroidism (rg = 0.195), free thyroxine (fT4) (rg = 0.0772), and hyperthyroidism (rg = -0.1046), but not thyroid stimulating hormone (TSH). Pairwise GWAS analysis revealed two shared loci with TSH and 11 shared loci with fT4. Cross-trait GWAS meta-analysis of migraine identified novel genome-wide significant loci: 17 with hypothyroidism, one with hyperthyroidism, five with secondary hypothyroidism, eight with TSH, and 15 with fT4. Of the genes at these loci, six (RERE, TGFB2, APLF, SLC9B1, SGTB, BTBD16; migraine + hypothyroidism), three (GADD45A, PFDN1, RSPH6A; migraine + TSH), and three (SSBP3, BRD3, TEF; migraine + fT4) were significant in our gene-based analysis (pFisher's combined P-value < 2.04 × 10-6). In addition, causal analyses suggested a negative causal relationship between migraine and hyperthyroidism (p = 8.90 × 10-3) and a positive causal relationship between migraine and secondary hypothyroidism (p = 1.30 × 10-3). CONCLUSION These findings provide strong evidence for genetic correlation and suggest complex causal relationships between migraine and thyroid traits.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
- Medical School, University of Western Australia, Nedlands, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
26
|
Papasavva M, Vikelis M, Siokas V, Katsarou MS, Dermitzakis EV, Raptis A, Kalliantasi A, Dardiotis E, Drakoulis N. Variability in oxidative stress-related genes ( SOD2, CAT, GPX1, GSTP1, NOS3, NFE2L2, and UCP2) and susceptibility to migraine clinical phenotypes and features. Front Neurol 2023; 13:1054333. [PMID: 36698892 PMCID: PMC9868718 DOI: 10.3389/fneur.2022.1054333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Migraine is a complex disorder with genetic and environmental inputs. Cumulative evidence implicates oxidative stress (OS) in migraine pathophysiology while genetic variability may influence an individuals' oxidative/antioxidant capacity. Aim of the current study was to investigate the impact of eight common OS-related genetic variants [rs4880 (SOD2), rs1001179 (CAT), rs1050450 (GPX1), rs1695 (GSTP1), rs1138272 (GSTP1), rs1799983 (NOS3), rs6721961 (NFE2L2), rs660339 (UCP2)] in migraine susceptibility and clinical features in a South-eastern European Caucasian population. Methods Genomic DNA samples from 221 unrelated migraineurs and 265 headache-free controls were genotyped for the selected genetic variants using real-time PCR (melting curve analysis). Results Although allelic and genotypic frequency distribution analysis did not support an association between migraine susceptibility and the examined variants in the overall population, subgroup analysis indicated significant correlation between NOS3 rs1799983 and migraine susceptibility in males. Furthermore, significant associations of CAT rs1001179 and GPX1 rs1050450 with disease age-at-onset and migraine attack duration, respectively, were revealed. Lastly, variability in the CAT, GSTP1 and UCP2 genes were associated with sleep/weather changes, alcohol consumption and physical exercise, respectively, as migraine triggers. Discussion Hence, the current findings possibly indicate an association of OS-related genetic variants with migraine susceptibility and clinical features, further supporting the involvement of OS and genetic susceptibility in migraine.
Collapse
Affiliation(s)
- Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece,*Correspondence: Maria Papasavva ✉
| | | | - Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Larissa, Greece,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Athanasios Raptis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Kalliantasi
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Larissa, Greece,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece,Nikolaos Drakoulis ✉
| |
Collapse
|
27
|
Ahn HW, Worman ZF, Lechsinska A, Payer LM, Wang T, Malik N, Li W, Burns KH, Nath A, Levin HL. Retrotransposon insertions associated with risk of neurologic and psychiatric diseases. EMBO Rep 2023; 24:e55197. [PMID: 36367221 PMCID: PMC9827563 DOI: 10.15252/embr.202255197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Hyo Won Ahn
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Zelia F Worman
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
- Present address:
Seven BridgesCharlestownMAUSA
| | - Arianna Lechsinska
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Lindsay M Payer
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tongguang Wang
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Nasir Malik
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Wenxue Li
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Kathleen H Burns
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Avindra Nath
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Henry L Levin
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
28
|
Sanchez Del Rio M, Cutrer FM. Pathophysiology of migraine aura. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:71-83. [PMID: 38043972 DOI: 10.1016/b978-0-12-823356-6.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine aura occurs in about a third of patients with migraine and consists of a group of transient focal neurological symptoms that appear from 5 to 60min and then resolve prior to or in the early phase of a migraine headache attack. Migraine auras may consist of visual, language, unilateral sensory, or motor symptoms. There has been considerable debate as to the origins of the migrainous aura. Investigations during physiologically induced visual auras suggest that the phenomenon of cortical spreading depression or its human equivalent underpins the migraine aura. Single gene defects have been linked to relatively rare forms of the motor subtypes of aura known as familial hemiplegic migraine (FHM). These include CACNA1A (FHM1), ATP1A2 (FHM2), and SCN1A (FHM3). In the familial hemiplegic forms of migraine, the more typical forms of aura are almost always also present. Despite ample epidemiological evidence of increased heritability of migraine with aura compared to migraine without aura, identification of the specific variants driving susceptibility to the more common forms of aura has been problematic thus far. In the first genome-wide association study (GWAS) that focused migraine with aura, a single SNP rs835740 reached genome-wide significance. Unfortunately, the SNP did show statistical significance in a later meta-analysis which included GWAS data from subsequent studies. Here, we review the clinical features, pathophysiological theories, and currently available potential evidence for the genetic basis of migraine aura.
Collapse
|
29
|
de Boer I, Harder AVE, Ferrari MD, van den Maagdenberg AMJM, Terwindt GM. Genetics of migraine: Delineation of contemporary understanding of the genetic underpinning of migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:85-103. [PMID: 38043973 DOI: 10.1016/b978-0-12-823356-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine is a disabling episodic brain disorder with an increased familial relative risk, an increased concordance in monozygotic twins, and an estimated heritability of approximately 50%. Various genetic approaches have been applied to identify genetic factors conferring migraine risk. Initially, candidate gene associations studies (CGAS) have been performed that test DNA variants in genes prioritized based on presumed a priori knowledge of migraine pathophysiology. More recently, genome-wide association studies (GWAS) are applied that test genetic variants, single-nucleotide polymorphisms (SNPs), in a hypothesis-free manner. To date, GWAS have identified ~40 genetic loci associated with migraine. New GWAS data, which are expected to come out soon, will reveal over 100 loci. Also, large-scale GWAS, which have appeared for many traits over the last decade, have enabled studying the overlap in genetic architecture between migraine and its comorbid disorders. Importantly, other genetic factors that cannot be identified by a GWAS approach also confer risk for migraine. First steps have been taken to determine the contribution of these mechanisms by investigating mitochondrial DNA and epigenetic mechanisms. In addition to typical epigenetic mechanisms, that is, DNA methylation and histone modifications, also RNA-based mechanisms regulating gene silencing and activation have recently gotten attention. Regardless, until now, most relevant genetic discoveries related to migraine still come from investigating monogenetic syndromes with migraine as a prominent part of the phenotype. Experimental studies on these syndromes have expanded our knowledge on the mechanisms underlying migraine pathophysiology. It can be envisaged that when all (epi)genetic and phenotypic data on the common and rare forms of migraine will be integrated, this will help to unravel the biological mechanisms for migraine, which will likely guide decision-making in clinical practice in the future.
Collapse
Affiliation(s)
- Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aster V E Harder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Genetic Overlap Analysis Identifies a Shared Etiology between Migraine and Headache with Type 2 Diabetes. Genes (Basel) 2022; 13:genes13101845. [PMID: 36292730 PMCID: PMC9601333 DOI: 10.3390/genes13101845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine and headache frequently co-occur with type 2 diabetes (T2D), suggesting a shared aetiology between the two conditions. We used genome-wide association study (GWAS) data to investigate the genetic overlap and causal relationship between migraine and headache with T2D. Using linkage disequilibrium score regression (LDSC), we found a significant genetic correlation between migraine and T2D (rg = 0.06, p = 1.37 × 10−5) and between headache and T2D (rg = 0.07, p = 3.0 × 10−4). Using pairwise GWAS (GWAS-PW) analysis, we identified 11 pleiotropic regions between migraine and T2D and 5 pleiotropic regions between headache and T2D. Cross-trait SNP meta-analysis identified 23 novel SNP loci (Pmeta < 5 × 10−8) associated with migraine and T2D, and three novel SNP loci associated with headache and T2D. Cross-trait gene-based overlap analysis identified 33 genes significantly associated (Pgene-based < 3.85 × 10−6) with migraine and T2D, and 11 genes associated with headache and T2D, with 7 genes (EHMT2, SLC44A4, PLEKHA1, CFDP1, TMEM170A, CHST6, and BCAR1) common between them. There was also a significant overlap of genes nominally associated (Pgene-based < 0.05) with both migraine and T2D (Pbinomial-test = 2.83 × 10−46) and headache and T2D (Pbinomial-test = 4.08 × 10−29). Mendelian randomisation (MR) analyses did not provide consistent evidence for a causal relationship between migraine and T2D. However, we found headache was causally associated (inverse-variance weighted, ORIVW = 0.90, Pivw = 7 × 10−3) with T2D. Our findings robustly confirm the comorbidity of migraine and headache with T2D, with shared genetically controlled biological mechanisms contributing to their co-occurrence, and evidence for a causal relationship between headache and T2D.
Collapse
|
31
|
Sudat SEK, Jacobson AS, Avins AL, Lipton RB, Pressman AR. A population-health approach to characterizing migraine by comorbidity: Results from the Mindfulness and Migraine Cohort Study. Cephalalgia 2022; 42:1255-1264. [PMID: 35642092 PMCID: PMC9872270 DOI: 10.1177/03331024221104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The heterogeneity of migraine has been reported extensively, with identified subgroups usually based on symptoms. Grouping individuals with migraine and similar comorbidity profiles has been suggested, however such segmentation methods have not been tested using real-world clinical data. OBJECTIVE To gain insights into natural groupings of patients with migraine using latent class analysis based on electronic health record-determined comorbidities. METHODS Retrospective electronic health record data analysis of primary-care patients at Sutter Health, a large open healthcare system in Northern California, USA. We identified migraine patients over a five-year time period (2015-2019) and extracted 29 comorbidities. We then applied latent class analysis to identify comorbidity-based natural subgroups. RESULTS We identified 95,563 patients with migraine and found seven latent classes, summarized by their predominant comorbidities and population share: fewest comorbidities (61.8%), psychiatric (18.3%), some comorbidities (10.0%), most comorbidities - no cardiovascular (3.6%), vascular (3.1%), autoimmune/joint/pain (2.2%), and most comorbidities (1.0%). We found minimal demographic differences across classes. CONCLUSION Our study found groupings of migraine patients based on comorbidity that have the potential to be used to guide targeted treatment strategies and the development of new therapies.
Collapse
Affiliation(s)
- Sylvia EK Sudat
- Sutter Health Center for Health Systems Research, Walnut Creek, CA, USA
| | - Alice S Jacobson
- Sutter Health Center for Health Systems Research, Walnut Creek, CA, USA
| | - Andrew L Avins
- Kaiser Permanente Division of Research, Oakland, CA, USA,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA USA,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Richard B Lipton
- Albert Einstein College of Medicine and the Montefiore Headache Center, Bronx, NY, USA
| | - Alice R Pressman
- Sutter Health Center for Health Systems Research, Walnut Creek, CA, USA,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA USA,PRECISIONheor, Boston, MA, USA
| |
Collapse
|
32
|
Abstract
It is well established that migraine is a multifactorial disorder. A deep understanding of migraine should be based upon both the underlying traits and the current states affected by different physiological, psychological, and environmental factors. At this point, there is no framework fully meeting these criteria. Here, we describe a broader view of the migraine disorder defined as a dysfunctional brain state and trait interaction. In this model, we consider events that may enhance or diminish migraine responsivity based on an individual's trait and state. This could provide an expanded view for considering how migraine attacks are sometimes precipitated by "triggers" and sometimes not, how these factors only lead to migraine attacks in migraine patients, or how individuals with an increased risk for migraine do not show any symptoms at all. Summarizing recent studies and evidence that support the concept of migraine as a brain state-trait interaction can also contribute to improving patient care by highlighting the importance of precision medicine and applying measures that are able to capture how different traits and states work together to determine migraine.
Collapse
|
33
|
Keser Z, Chiang CC, Benson JC, Pezzini A, Lanzino G. Cervical Artery Dissections: Etiopathogenesis and Management. Vasc Health Risk Manag 2022; 18:685-700. [PMID: 36082197 PMCID: PMC9447449 DOI: 10.2147/vhrm.s362844] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Cervical Artery Dissection (CeAD) is a frequent stroke etiology for patients younger than 50 years old. The most common immediate complications related to CeAD are headache and neck pain (65-95%), TIA/ischemic stroke (>50%), and partial Horner's syndrome (25%). The prevailing hypothesis regarding the pathogenesis of sCeAD is that the underlying constitutional vessel wall weakness of patients with sCeAD is genetically determined and that environmental factors could act as triggers. The stroke prevention treatment of CeAD remains controversial, involving anticoagulation or antiplatelet therapy and potentially emergent stenting and/or thrombectomy or angioplasty for selected cases of carotid artery dissection with occlusion. The treatment of headache associated with CeAD depends on the headache phenotype and comorbidities. Radiographically, more than 75% of CeAD cases present with occlusion or non-occlusive stenosis. Many patients demonstrate partial and complete healing, more commonly in the carotid arteries. One-fifth of the patients develop dissecting pseudoaneurysm, but this is a benign clinical entity with an extremely low rupture and stroke recurrence risk. Good recovery is achieved in many CeAD cases, and mortality remains low. Family history of CeAD, connective tissue disorders like Ehlers-Danlos syndrome type IV, and fibromuscular dysplasia are risk factors for recurrent CeAD, which can occur in 3-9% of the cases. This review serves as a comprehensive, updated overview of CeAD, emphasizing etiopathogenesis and management.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - John C Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Alessandro Pezzini
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | | |
Collapse
|
34
|
Downes DJ, Hughes JR. Natural and Experimental Rewiring of Gene Regulatory Regions. Annu Rev Genomics Hum Genet 2022; 23:73-97. [PMID: 35472292 DOI: 10.1146/annurev-genom-112921-010715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The successful development and ongoing functioning of complex organisms depend on the faithful execution of the genetic code. A critical step in this process is the correct spatial and temporal expression of genes. The highly orchestrated transcription of genes is controlled primarily by cis-regulatory elements: promoters, enhancers, and insulators. The medical importance of this key biological process can be seen by the frequency with which mutations and inherited variants that alter cis-regulatory elements lead to monogenic and complex diseases and cancer. Here, we provide an overview of the methods available to characterize and perturb gene regulatory circuits. We then highlight mechanisms through which regulatory rewiring contributes to disease, and conclude with a perspective on how our understanding of gene regulation can be used to improve human health.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
35
|
Francis CM, Futschik ME, Huang J, Bai W, Sargurupremraj M, Teumer A, Breteler MMB, Petretto E, Ho ASR, Amouyel P, Engelter ST, Bülow R, Völker U, Völzke H, Dörr M, Imtiaz MA, Aziz NA, Lohner V, Ware JS, Debette S, Elliott P, Dehghan A, Matthews PM. Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities. Nat Commun 2022; 13:4505. [PMID: 35922433 PMCID: PMC9349177 DOI: 10.1038/s41467-022-32219-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Aortic dimensions and distensibility are key risk factors for aortic aneurysms and dissections, as well as for other cardiovascular and cerebrovascular diseases. We present genome-wide associations of ascending and descending aortic distensibility and area derived from cardiac magnetic resonance imaging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We identify 102 loci (including 27 novel associations) tagging genes related to cardiovascular development, extracellular matrix production, smooth muscle cell contraction and heritable aortic diseases. Functional analyses highlight four signalling pathways associated with aortic distensibility (TGF-β, IGF, VEGF and PDGF). We identify distinct sex-specific associations with aortic traits. We develop co-expression networks associated with aortic traits and apply phenome-wide Mendelian randomization (MR-PheWAS), generating evidence for a causal role for aortic distensibility in development of aortic aneurysms. Multivariable MR suggests a causal relationship between aortic distensibility and cerebral white matter hyperintensities, mechanistically linking aortic traits and brain small vessel disease.
Collapse
Affiliation(s)
- Catherine M Francis
- National Heart and Lung Institute, Imperial College London, Programme in Cardiovascular Genetics and Genomics, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Matthias E Futschik
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, W12 0NN, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Wenjia Bai
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Enrico Petretto
- Programme in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- Institute of Big Data and Artificial Intelligence, China Pharmaceutical University (CPU), 211198, Nanjing, China
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amanda S R Ho
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Philippe Amouyel
- LabEx DISTALZ-U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille, France
- Inserm, U1167, Lille, France
- Centre Hospitalier Universitaire Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Stefan T Engelter
- Department of Neurology and Stroke Center, University Hospital and University of Basel, Petersgraben 4, CH - 4031, Basel, Switzerland
- Department of Clinical Neurology and Neurorehabilitation, University Department of Geriatric Medicine FELIX PLATTER, University of Basel, Basel, Switzerland
| | - Robin Bülow
- Department of Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Valerie Lohner
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, Programme in Cardiovascular Genetics and Genomics, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, W12 0NN, UK
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux University Hospital - CHU Bordeaux, 33000, Bordeaux, France
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Health Data Research (HDR) UK London at Imperial College London, London, UK
- Britsh Heart Foundation Centre of Research Excellence at Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, London, UK.
| |
Collapse
|
36
|
Frid P, Xu H, Mitchell BD, Drake M, Wasselius J, Gaynor B, Ryan K, Giese AK, Schirmer M, Donahue KL, Irie R, Bouts MJRJ, McIntosh EC, Mocking SJT, Dalca AV, Giralt-Steinhauer E, Holmegaard L, Jood K, Roquer J, Cole JW, McArdle PF, Broderick JP, Jimenez-Conde J, Jern C, Kissela BM, Kleindorfer DO, Lemmens R, Meschia JF, Rosand J, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Thijs V, Woo D, Worrall BB, Kittner SJ, Petersson J, Golland P, Wu O, Rost NS, Lindgren A. Migraine-Associated Common Genetic Variants Confer Greater Risk of Posterior vs. Anterior Circulation Ischemic Stroke☆. J Stroke Cerebrovasc Dis 2022; 31:106546. [PMID: 35576861 PMCID: PMC10601407 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To examine potential genetic relationships between migraine and the two distinct phenotypes posterior circulation ischemic stroke (PCiS) and anterior circulation ischemic stroke (ACiS), we generated migraine polygenic risk scores (PRSs) and compared these between PCiS and ACiS, and separately vs. non-stroke control subjects. METHODS Acute ischemic stroke cases were classified as PCiS or ACiS based on lesion location on diffusion-weighted MRI. Exclusion criteria were lesions in both vascular territories or uncertain territory; supratentorial PCiS with ipsilateral fetal posterior cerebral artery; and cases with atrial fibrillation. We generated migraine PRS for three migraine phenotypes (any migraine; migraine without aura; migraine with aura) using publicly available GWAS data and compared mean PRSs separately for PCiS and ACiS vs. non-stroke control subjects, and between each stroke phenotype. RESULTS Our primary analyses included 464 PCiS and 1079 ACiS patients with genetic European ancestry. Compared to non-stroke control subjects (n=15396), PRSs of any migraine were associated with increased risk of PCiS (p=0.01-0.03) and decreased risk of ACiS (p=0.010-0.039). Migraine without aura PRSs were significantly associated with PCiS (p=0.008-0.028), but not with ACiS. When comparing PCiS vs. ACiS directly, migraine PRSs were higher in PCiS vs. ACiS for any migraine (p=0.001-0.010) and migraine without aura (p=0.032-0.048). Migraine with aura PRS did not show a differential association in our analyses. CONCLUSIONS Our results suggest a stronger genetic overlap between unspecified migraine and migraine without aura with PCiS compared to ACiS. Possible shared mechanisms include dysregulation of cerebral vessel endothelial function.
Collapse
Affiliation(s)
- P Frid
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden; Section of Neurology, Skåne University Hospital, Malmö, Sweden.
| | - H Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - B D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| | - M Drake
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden; Department of Radiology, Neuroradiology, Skåne University Hospital, Lund, Sweden
| | - J Wasselius
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden; Department of Radiology, Neuroradiology, Skåne University Hospital, Lund, Sweden
| | - B Gaynor
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - A K Giese
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Schirmer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - K L Donahue
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Irie
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - M J R J Bouts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - E C McIntosh
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - S J T Mocking
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - A V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA
| | - E Giralt-Steinhauer
- Department of Neurology, Neurovascular Research Group (NEUVAS), IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autonoma de Barcelona, Spain
| | - L Holmegaard
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - K Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - J Roquer
- Department of Neurology, Neurovascular Research Group (NEUVAS), IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autonoma de Barcelona, Spain
| | - J W Cole
- Department of Neurology, University of Maryland School of Medicine and Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - P F McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J P Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Jimenez-Conde
- Department of Neurology, Neurovascular Research Group (NEUVAS), IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autonoma de Barcelona, Spain
| | - C Jern
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - B M Kissela
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - D O Kleindorfer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R Lemmens
- Department of Neurosciences, Experimental Neurology, VIB Center for Brain & Disease Research, Department of Neurology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - J F Meschia
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - J Rosand
- Henry and Allison McCance Center for Brain Health Massachusetts General Hospital, Boston, USA
| | - T Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, The Evelyn F. McKnight Brain Institute, FL, USA
| | - R L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, The Evelyn F. McKnight Brain Institute, FL, USA
| | - R Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University Graz, Austria
| | - P Sharma
- Institute of Cardiovascular Research, Royal Holloway University of London (ICR2UL), Egham, United Kingdom
| | - A Slowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - V Thijs
- Stroke Division, Florey Institute of Neuroscience and Mental Health, and Department of Neurology, Austin Health, Heidelberg, Australia
| | - D Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - B B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - S J Kittner
- Department of Neurology, University of Maryland School of Medicine and Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - J Petersson
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | - P Golland
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA
| | - O Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - N S Rost
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden; Section of Neurology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
37
|
Detection of repeat expansions in large next generation DNA and RNA sequencing data without alignment. Sci Rep 2022; 12:13124. [PMID: 35907931 PMCID: PMC9338934 DOI: 10.1038/s41598-022-17267-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Bioinformatic methods for detecting short tandem repeat expansions in short-read sequencing have identified new repeat expansions in humans, but require alignment information to identify repetitive motif enrichment at genomic locations. We present superSTR, an ultrafast method that does not require alignment. superSTR is used to process whole-genome and whole-exome sequencing data, and perform the first STR analysis of the UK Biobank, efficiently screening and identifying known and potential disease-associated STRs in the exomes of 49,953 biobank participants. We demonstrate the first bioinformatic screening of RNA sequencing data to detect repeat expansions in humans and mouse models of ataxia and dystrophy.
Collapse
|
38
|
Frederiksen SD. Prioritizing Suggestive Candidate Genes in Migraine: An Opinion. Front Neurol 2022; 13:910366. [PMID: 35785356 PMCID: PMC9240222 DOI: 10.3389/fneur.2022.910366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
|
39
|
Schrötter S, Yuskaitis CJ, MacArthur MR, Mitchell SJ, Hosios AM, Osipovich M, Torrence ME, Mitchell JR, Hoxhaj G, Sahin M, Manning BD. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep 2022; 39:110824. [PMID: 35584673 PMCID: PMC9175135 DOI: 10.1016/j.celrep.2022.110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
The tuberous sclerosis complex (TSC) 1 and 2 proteins associate with TBC1D7 to form the TSC complex, which is an essential suppressor of mTOR complex 1 (mTORC1), a ubiquitous driver of cell and tissue growth. Loss-of-function mutations in TSC1 or TSC2, but not TBC1D7, give rise to TSC, a pleiotropic disorder with aberrant activation of mTORC1 in various tissues. Here, we characterize mice with genetic deletion of Tbc1d7, which are viable with normal growth and development. Consistent with partial loss of function of the TSC complex, Tbc1d7 knockout (KO) mice display variable increases in tissue mTORC1 signaling with increased muscle fiber size but with strength and motor defects. Their most pronounced phenotype is brain overgrowth due to thickening of the cerebral cortex, with enhanced neuron-intrinsic mTORC1 signaling and growth. Thus, TBC1D7 is required for full TSC complex function in tissues, and the brain is particularly sensitive to its growth-suppressing activities.
Collapse
Affiliation(s)
- Sandra Schrötter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher J Yuskaitis
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sarah J Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron M Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maria Osipovich
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret E Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gerta Hoxhaj
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Gupta RM. Causal Gene Confusion: The Complicated EDN1/PHACTR1 Locus for Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2022; 42:610-612. [PMID: 35387481 PMCID: PMC9050840 DOI: 10.1161/atvbaha.122.317539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rajat M Gupta
- Divisions of Genetics and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA. Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Glucose-Related Traits and Risk of Migraine—A Potential Mechanism and Treatment Consideration. Genes (Basel) 2022; 13:genes13050730. [PMID: 35627115 PMCID: PMC9141901 DOI: 10.3390/genes13050730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Migraine and glucose-related (glycaemic) traits (fasting glucose, fasting insulin, and type 2 diabetes) are common and complex comorbid disorders that cause major economic and social burdens on patients and their families. Studies on the relationship between migraine and glucose-related traits have yielded inconsistent results. The purpose of this review is to synthesise and discuss the information from the available literature on the relationship between fasting glucose, fasting insulin, and type 2 diabetes (T2D) with migraine. Publications on migraine and fasting glucose, migraine and fasting insulin, and migraine and T2D were identified from a PubMed and Google Scholar database search and reviewed for this article. Multiple publications have suggested that the comorbidity of migraine and glucose-related traits may have a similar complex pathogenic mechanism, including impaired glucose homeostasis, insulin resistance, reduced cerebrovascular reactivity, abnormal brain metabolism, shared genetic factors, neurotransmitters, and sex hormones. Furthermore, several studies have found a bi-directional link between migraine with insulin resistance and T2D. There is strong evidence for a biological association between migraine headache and glucose-related traits, and burgeoning evidence for shared genetic influences. Therefore, genetic research into these comorbid traits has the potential to identify new biomarkers and therapeutic targets and provide biological insight into their relationships. We encourage healthcare professionals to consider the co-occurrence of migraine with glucose-related traits in the evaluation and treatment of their patients.
Collapse
|
42
|
Jiang YJ, Fann CSJ, Fuh JL, Chung MY, Huang HY, Chu KC, Wang YF, Hsu CL, Kao LS, Chen SP, Wang SJ. Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J Headache Pain 2022; 23:39. [PMID: 35350973 PMCID: PMC8966278 DOI: 10.1186/s10194-022-01409-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Restless legs syndrome is a highly prevalent comorbidity of migraine; however, its genetic contributions remain unclear. Objectives To identify the genetic variants of restless legs syndrome in migraineurs and to investigate their potential pathogenic roles. Methods We conducted a two-stage genome-wide association study (GWAS) to identify susceptible genes for restless legs syndrome in 1,647 patients with migraine, including 264 with and 1,383 without restless legs syndrome, and also validated the association of lead variants in normal controls unaffected with restless legs syndrome (n = 1,053). We used morpholino translational knockdown (morphants), CRISPR/dCas9 transcriptional knockdown, transient CRISPR/Cas9 knockout (crispants) and gene rescue in one-cell stage embryos of zebrafish to study the function of the identified genes. Results We identified two novel susceptibility loci rs6021854 (in VSTM2L) and rs79823654 (in CCDC141) to be associated with restless legs syndrome in migraineurs, which remained significant when compared to normal controls. Two different morpholinos targeting vstm2l and ccdc141 in zebrafish demonstrated behavioural and cytochemical phenotypes relevant to restless legs syndrome, including hyperkinetic movements of pectoral fins and decreased number in dopaminergic amacrine cells. These phenotypes could be partially reversed with gene rescue, suggesting the specificity of translational knockdown. Transcriptional CRISPR/dCas9 knockdown and transient CRISPR/Cas9 knockout of vstm2l and ccdc141 replicated the findings observed in translationally knocked-down morphants. Conclusions Our GWAS and functional analysis suggest VSTM2L and CCDC141 are highly relevant to the pathogenesis of restless legs syndrome in migraineurs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01409-9.
Collapse
Affiliation(s)
- Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hui-Ying Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
43
|
Siokas V, Liampas I, Aloizou AM, Papasavva M, Bakirtzis C, Lavdas E, Liakos P, Drakoulis N, Bogdanos DP, Dardiotis E. Deciphering the Role of the rs2651899, rs10166942, and rs11172113 Polymorphisms in Migraine: A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040491. [PMID: 35454329 PMCID: PMC9031971 DOI: 10.3390/medicina58040491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
Abstract
The genetic basis of migraine is rather complex. The rs2651899 in the PR/SET domain 16 (PRDM16) gene, the rs10166942 near the transient receptor potential cation channel subfamily M member 8 (TRPM8) gene, and the rs11172113 in the LDL receptor-related protein 1 (LRP1) gene, have been associated with migraine in a genome-wide association study (GWAS). However, data from subsequent studies examining the role of these variants and their relationship with migraine remain inconclusive. The aim of the present study was to meta-analyze the published data assessing the role of these polymorphisms in migraine, migraine with aura (MA), and migraine without aura (MO). We performed a search in the PubMed, Scopus, Web of Science, and Public Health Genomics and Precision Health Knowledge Base (v7.7) databases. In total, eight, six, and six studies were included in the quantitative analysis, for the rs2651899, rs10166942, and rs11172113, respectively. Cochran’s Q and I2 tests were used to calculate the heterogeneity. The random effects (RE) model was applied when high heterogeneity was observed; otherwise, the fixed effects (FE) model was applied. The odds ratios (ORs) and the respective 95% confidence intervals (CIs) were calculated to estimate the effect of each variant on migraine. Funnel plots were created to graphically assess publication bias. A significant association was revealed for the CC genotype of the rs2651899, with the overall migraine group (RE model OR: 1.32; 95% CI: 1.02−1.73; p-value = 0.04) and the MA subgroup (FE model OR: 1.40; 95% CI: 1.12−1.74; p-value = 0.003). The rs10166942 CT genotype was associated with increased migraine risk (FE model OR: 1.36; 95% CI: 1.18−1.57; p-value < 0.0001) and increased MO risk (FE model OR: 1.41; 95% CI: 1.17−1.69; p-value = 0.0003). No association was detected for the rs11172113. The rs2651899 and the rs10166942 have an effect on migraine. Larger studies are needed to dissect the role of these variants in migraine.
Collapse
Affiliation(s)
- Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
| | - Ioannis Liampas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
| | - Athina-Maria Aloizou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
| | - Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.P.); (N.D.)
| | - Christos Bakirtzis
- B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleftherios Lavdas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece;
- Department of Medical Imaging, Animus Kyanoys Larisas Hospital, 41222 Larissa, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (M.P.); (N.D.)
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500 Larissa, Greece;
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece; (V.S.); (I.L.); (A.-M.A.)
- Correspondence: ; Tel.: +30-241-350-1137
| |
Collapse
|
44
|
Clinical Evidence of Cannabinoids in Migraine: A Narrative Review. J Clin Med 2022; 11:jcm11061479. [PMID: 35329806 PMCID: PMC8949974 DOI: 10.3390/jcm11061479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system (ECS) influences many biological functions, and hence, its pharmacological modulation may be useful for several disorders, such as migraine. Preclinical studies have demonstrated that the ECS is involved in the modulation of trigeminal excitability. Additionally, clinical data have suggested that an endocannabinoid deficiency is associated with migraine. Given these data, phytocannabinoids, as well as synthetic cannabinoids, have been tried as migraine treatments. In this narrative review, the current clinical evidence of potential ECS involvement in migraine pathogenesis is summarized. Furthermore, studies exploring the clinical effects of phytocannabinoids and synthetic cannabinoids on migraine patients are reviewed.
Collapse
|
45
|
Amiri P, Kazeminasab S, Nejadghaderi SA, Mohammadinasab R, Pourfathi H, Araj-Khodaei M, Sullman MJM, Kolahi AA, Safiri S. Migraine: A Review on Its History, Global Epidemiology, Risk Factors, and Comorbidities. Front Neurol 2022; 12:800605. [PMID: 35281991 PMCID: PMC8904749 DOI: 10.3389/fneur.2021.800605] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Migraine affects more than one billion individuals each year across the world, and is one of the most common neurologic disorders, with a high prevalence and morbidity, especially among young adults and females. Migraine is associated with a wide range of comorbidities, which range from stress and sleep disturbances to suicide. The complex and largely unclear mechanisms of migraine development have resulted in the proposal of various social and biological risk factors, such as hormonal imbalances, genetic and epigenetic influences, as well as cardiovascular, neurological, and autoimmune diseases. This review presents a comprehensive review of the most up-to-date literature on the epidemiology, and risk factors, as well as highlighting the gaps in our knowledge.
Collapse
Affiliation(s)
- Parastoo Amiri
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Deputy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Kazeminasab
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Deputy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjat Pourfathi
- Department of Anesthesiology and Pain Management, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ali-Asghar Kolahi
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Saeid Safiri
| |
Collapse
|
46
|
Hautakangas H, Winsvold BS, Ruotsalainen SE, Bjornsdottir G, Harder AVE, Kogelman LJA, Thomas LF, Noordam R, Benner C, Gormley P, Artto V, Banasik K, Bjornsdottir A, Boomsma DI, Brumpton BM, Burgdorf KS, Buring JE, Chalmer MA, de Boer I, Dichgans M, Erikstrup C, Färkkilä M, Garbrielsen ME, Ghanbari M, Hagen K, Häppölä P, Hottenga JJ, Hrafnsdottir MG, Hveem K, Johnsen MB, Kähönen M, Kristoffersen ES, Kurth T, Lehtimäki T, Lighart L, Magnusson SH, Malik R, Pedersen OB, Pelzer N, Penninx BWJH, Ran C, Ridker PM, Rosendaal FR, Sigurdardottir GR, Skogholt AH, Sveinsson OA, Thorgeirsson TE, Ullum H, Vijfhuizen LS, Widén E, van Dijk KW, Aromaa A, Belin AC, Freilinger T, Ikram MA, Järvelin MR, Raitakari OT, Terwindt GM, Kallela M, Wessman M, Olesen J, Chasman DI, Nyholt DR, Stefánsson H, Stefansson K, van den Maagdenberg AMJM, Hansen TF, Ripatti S, Zwart JA, Palotie A, Pirinen M. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat Genet 2022; 54:152-160. [PMID: 35115687 PMCID: PMC8837554 DOI: 10.1038/s41588-021-00990-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Migraine affects over a billion individuals worldwide but its genetic underpinning remains largely unknown. Here, we performed a genome-wide association study of 102,084 migraine cases and 771,257 controls and identified 123 loci, of which 86 are previously unknown. These loci provide an opportunity to evaluate shared and distinct genetic components in the two main migraine subtypes: migraine with aura and migraine without aura. Stratification of the risk loci using 29,679 cases with subtype information indicated three risk variants that seem specific for migraine with aura (in HMOX2, CACNA1A and MPPED2), two that seem specific for migraine without aura (near SPINK2 and near FECH) and nine that increase susceptibility for migraine regardless of subtype. The new risk loci include genes encoding recent migraine-specific drug targets, namely calcitonin gene-related peptide (CALCA/CALCB) and serotonin 1F receptor (HTR1F). Overall, genomic annotations among migraine-associated variants were enriched in both vascular and central nervous system tissue/cell types, supporting unequivocally that neurovascular mechanisms underlie migraine pathophysiology.
Collapse
Affiliation(s)
- Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Bendik S Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Aster V E Harder
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisette J A Kogelman
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laurent F Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Ville Artto
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Karina Banasik
- Novo Nordic Foundation Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | | | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mona Ameri Chalmer
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Markus Färkkilä
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Maiken Elvestad Garbrielsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Knut Hagen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinical Research Unit Central Norway, St. Olavs University Hospital, Trondheim, Norway
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marianne Bakke Johnsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Espen S Kristoffersen
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Tobias Kurth
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lannie Lighart
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anne Heidi Skogholt
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lisanne S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arpo Aromaa
- National Public Health Institute (Finnish Institute for Health and Welfare - THL), Helsinki, Finland
| | | | - Tobias Freilinger
- Klinikum Passau, Department of Neurology, Passau, Germany
- Centre of Neurology, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mikko Kallela
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Maija Wessman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dale R Nyholt
- School of Biomedical Sciences and Centre for Genomics and Personalised Health, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
- Novo Nordic Foundation Center for Protein Research, Copenhagen University, Copenhagen, Denmark
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- Department of Public Health, University of Helsinki, Helsinki, Finland.
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
47
|
OUP accepted manuscript. Brain 2022; 145:3214-3224. [DOI: 10.1093/brain/awac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
|
48
|
Veerabathiran R, Kalarani I, Mohammed V. Genetics of menstrual migraine and their association with female hormonal factors. Ann Indian Acad Neurol 2022; 25:383-388. [PMID: 35936591 PMCID: PMC9350771 DOI: 10.4103/aian.aian_1116_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Perimenopause is linked to increased migraine (Mg), especially menstrual Mg (MMg), influenced by hormonal changes. Compared to nonmenstrual attacks, menstrual attacks are more disabling and less responsive to treatment. Women with perimenstrual estrogen withdrawal have been linked to Mg during menstruation, whereas Mg during perimenopause has been linked to unpredictable fluctuations in estrogen levels. It has been widely established that female sex hormones play a role in Mg, but how it occurs remains unclear. This narrative review was identified using Medline and PubMed searches between 1946 and 2021. Search terms included “headache,” “migraine,” “menstrual migraine,” “menstruation,” “menopause,” “perimenopause,” “estrogen,” and “progesterone.” This article focuses on the candidate genes and female hormones that play a role in MMg. More study is necessary to understand better the environmental components that play a critical role in disease development. Currently, there is insufficient clinical evidence to support the function of menstrual Mg. The specific research facts examined MMg unique candidate genes and female hormonal factors that support their association and found MMg etiologic processes for generating an early diagnostic marker.
Collapse
|
49
|
Tsai MC, Tsai CL, Liang CS, Lin YK, Lin GY, Tsai CK, Yeh PK, Liu Y, Hung KS, Yang FC. Identification of genetic risk loci for depression and migraine comorbidity in Han Chinese residing in Taiwan. Front Psychiatry 2022; 13:1067503. [PMID: 36704746 PMCID: PMC9871634 DOI: 10.3389/fpsyt.2022.1067503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The genetic association between depression and migraine has not been well investigated in Asian populations. Furthermore, the genetic basis of depression and comorbid migraine subtypes remains nebulous. Hence, in the current study we investigate the susceptibility loci associated with depression and migraine comorbidity in the Han Chinese population in Taiwan. METHODS We perform a genome-wide association study involving 966 migraine patients, with or without comorbid depression. Genotyping is performed using participant genomic DNA. Association analyses are performed for the entire migraine cohort (subgroups: episodic migraine, chronic migraine, and migraine with or without aura). RESULTS Results show that the single nucleotide polymorphism variants of the CDH4 intron region (rs78063755), NTRK3-AS1 downstream region (rs57729223), and between LINC01918 and GPR45 (rs2679891) are suggestively associated with depression. Twenty additional susceptibility loci occur within the subgroups. A multivariate association study demonstrated that a variant in the intron region of CDH4 rs78063755 was associated with Beck Depression Inventory and Migraine Disability Assessment scores. DISCUSSION The findings of this study identify several genetic loci suggestively associated with depression among migraine patients in the Han Chinese population. Moreover, a potential genetic basis has been characterized for depression and migraine comorbidity, thus providing genetic candidates for further investigation.
Collapse
Affiliation(s)
- Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan.,Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan.,Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
50
|
Renovascular hypertension in pediatric patients: update on diagnosis and management. Pediatr Nephrol 2021; 36:3853-3868. [PMID: 33851262 DOI: 10.1007/s00467-021-05063-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023]
Abstract
Renovascular hypertension (RVH) is defined as an elevated blood pressure caused by kidney hypoperfusion, generally as a result of anatomic stenosis of the renal artery with consequent activation of the Renin Angiotensin-Aldosterone System. The main causes include genetic and inflammatory disorders, extrinsic compression, and idiopathic alterations. RVH is often asymptomatic and should be suspected in any child with refractory hypertension, especially if other suggestive findings are present, including those with severe hypertension, abdominal bruit, and abrupt fall of glomerular filtration rate after administration of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers. There is a consensus that digital subtraction angiography is the gold standard method for the diagnosis of RVH. Nevertheless, the role of non-invasive imaging studies such as Doppler ultrasound, magnetic resonance angiography, or computed tomographic angiography remains controversial, especially due to limited pediatric evidence. The therapeutic approach should be individualized, and management options include non-surgical pharmacological therapy and revascularization with percutaneous transluminal renal angioplasty (PTRA) or surgery. The prognosis is related to the procedure performed, and PTRA has a higher restenosis rate compared to surgery, although a decreased risk of complications. This review summarizes the causes, physiopathology, diagnosis, treatment, and prognosis of RVH in pediatric patients. Further studies are required to define the best approach for RVH in children.
Collapse
|