1
|
Zhu L, Zhang S, Sha Q. Meta-analysis of set-based multiple phenotype association test based on GWAS summary statistics from different cohorts. Front Genet 2024; 15:1359591. [PMID: 39301532 PMCID: PMC11410627 DOI: 10.3389/fgene.2024.1359591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Genome-wide association studies (GWAS) have emerged as popular tools for identifying genetic variants that are associated with complex diseases. Standard analysis of a GWAS involves assessing the association between each variant and a disease. However, this approach suffers from limited reproducibility and difficulties in detecting multi-variant and pleiotropic effects. Although joint analysis of multiple phenotypes for GWAS can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits, most of the multiple phenotype association tests are designed for a single variant, resulting in much lower power, especially when their effect sizes are small and only their cumulative effect is associated with multiple phenotypes. To overcome these limitations, set-based multiple phenotype association tests have been developed to enhance statistical power and facilitate the identification and interpretation of pleiotropic regions. In this research, we propose a new method, named Meta-TOW-S, which conducts joint association tests between multiple phenotypes and a set of variants (such as variants in a gene) utilizing GWAS summary statistics from different cohorts. Our approach applies the set-based method that Tests for the effect of an Optimal Weighted combination of variants in a gene (TOW) and accounts for sample size differences across GWAS cohorts by employing the Cauchy combination method. Meta-TOW-S combines the advantages of set-based tests and multi-phenotype association tests, exhibiting computational efficiency and enabling analysis across multiple phenotypes while accommodating overlapping samples from different GWAS cohorts. To assess the performance of Meta-TOW-S, we develop a phenotype simulator package that encompasses a comprehensive simulation scheme capable of modeling multiple phenotypes and multiple variants, including noise structures and diverse correlation patterns among phenotypes. Simulation studies validate that Meta-TOW-S maintains a desirable Type I error rate. Further simulation under different scenarios shows that Meta-TOW-S can improve power compared with other existing meta-analysis methods. When applied to four psychiatric disorders summary data, Meta-TOW-S detects a greater number of significant genes.
Collapse
Affiliation(s)
- Lirong Zhu
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
2
|
Wang L, Khunsriraksakul C, Markus H, Chen D, Zhang F, Chen F, Zhan X, Carrel L, Liu DJ, Jiang B. Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes. Nat Commun 2024; 15:4260. [PMID: 38769300 PMCID: PMC11519974 DOI: 10.1038/s41467-024-48143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Transcriptome-wide association study (TWAS) is a popular approach to dissect the functional consequence of disease associated non-coding variants. Most existing TWAS use bulk tissues and may not have the resolution to reveal cell-type specific target genes. Single-cell expression quantitative trait loci (sc-eQTL) datasets are emerging. The largest bulk- and sc-eQTL datasets are most conveniently available as summary statistics, but have not been broadly utilized in TWAS. Here, we present a new method EXPRESSO (EXpression PREdiction with Summary Statistics Only), to analyze sc-eQTL summary statistics, which also integrates 3D genomic data and epigenomic annotation to prioritize causal variants. EXPRESSO substantially improves existing methods. We apply EXPRESSO to analyze multi-ancestry GWAS datasets for 14 autoimmune diseases. EXPRESSO uniquely identifies 958 novel gene x trait associations, which is 26% more than the second-best method. Among them, 492 are unique to cell type level analysis and missed by TWAS using whole blood. We also develop a cell type aware drug repurposing pipeline, which leverages EXPRESSO results to identify drug compounds that can reverse disease gene expressions in relevant cell types. Our results point to multiple drugs with therapeutic potentials, including metformin for type 1 diabetes, and vitamin K for ulcerative colitis.
Collapse
Affiliation(s)
- Lida Wang
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Chachrit Khunsriraksakul
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Institute for Personalized Medicine; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Havell Markus
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Institute for Personalized Medicine; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dieyi Chen
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fan Zhang
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fang Chen
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xiaowei Zhan
- Department of Statistical Science, Southern Methodist University, Dallas, TX, US
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, US
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| | - Dajiang J Liu
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
- Bioinformatics and Genomics PhD Program; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
- Department of Statistical Science, Southern Methodist University, Dallas, TX, US.
| | - Bibo Jiang
- Department of Public Health Sciences; Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
3
|
Visonà G, Bouzigon E, Demenais F, Schweikert G. Network propagation for GWAS analysis: a practical guide to leveraging molecular networks for disease gene discovery. Brief Bioinform 2024; 25:bbae014. [PMID: 38340090 PMCID: PMC10858647 DOI: 10.1093/bib/bbae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
MOTIVATION Genome-wide association studies (GWAS) have enabled large-scale analysis of the role of genetic variants in human disease. Despite impressive methodological advances, subsequent clinical interpretation and application remains challenging when GWAS suffer from a lack of statistical power. In recent years, however, the use of information diffusion algorithms with molecular networks has led to fruitful insights on disease genes. RESULTS We present an overview of the design choices and pitfalls that prove crucial in the application of network propagation methods to GWAS summary statistics. We highlight general trends from the literature, and present benchmark experiments to expand on these insights selecting as case study three diseases and five molecular networks. We verify that the use of gene-level scores based on GWAS P-values offers advantages over the selection of a set of 'seed' disease genes not weighted by the associated P-values if the GWAS summary statistics are of sufficient quality. Beyond that, the size and the density of the networks prove to be important factors for consideration. Finally, we explore several ensemble methods and show that combining multiple networks may improve the network propagation approach.
Collapse
Affiliation(s)
- Giovanni Visonà
- Empirical Inference, Max-Planck Institute for Intelligent Systems, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
4
|
Li H, Mazumder R, Lin X. Accurate and efficient estimation of local heritability using summary statistics and the linkage disequilibrium matrix. Nat Commun 2023; 14:7954. [PMID: 38040712 PMCID: PMC10692177 DOI: 10.1038/s41467-023-43565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Existing SNP-heritability estimators that leverage summary statistics from genome-wide association studies (GWAS) are much less efficient (i.e., have larger standard errors) than the restricted maximum likelihood (REML) estimators which require access to individual-level data. We introduce a new method for local heritability estimation-Heritability Estimation with high Efficiency using LD and association Summary Statistics (HEELS)-that significantly improves the statistical efficiency of summary-statistics-based heritability estimator and attains comparable statistical efficiency as REML (with a relative statistical efficiency >92%). Moreover, we propose representing the empirical LD matrix as the sum of a low-rank matrix and a banded matrix. We show that this way of modeling the LD can not only reduce the storage and memory cost, but also improve the computational efficiency of heritability estimation. We demonstrate the statistical efficiency of HEELS and the advantages of our proposed LD approximation strategies both in simulations and through empirical analyses of the UK Biobank data.
Collapse
Affiliation(s)
- Hui Li
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Rahul Mazumder
- Massachusetts Institute of Technology, Operations Research and Statistics group, Cambridge, MA, USA
| | - Xihong Lin
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, USA.
- Harvard University, Department of Statistics, Cambridge, MA, USA.
| |
Collapse
|
5
|
Mahmood K, Thomas M, Qu C, Hsu L, Buchanan DD, Peters U. Elucidating the Risk of Colorectal Cancer for Variants in Hereditary Colorectal Cancer Genes. Gastroenterology 2023; 165:1070-1076.e3. [PMID: 37453563 PMCID: PMC10866455 DOI: 10.1053/j.gastro.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Biostatistics, University of Washington, Seattle, Washington.
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
6
|
Jiang Z, Zhang H, Ahearn TU, Garcia-Closas M, Chatterjee N, Zhu H, Zhan X, Zhao N. The sequence kernel association test for multicategorical outcomes. Genet Epidemiol 2023; 47:432-449. [PMID: 37078108 DOI: 10.1002/gepi.22527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
Disease heterogeneity is ubiquitous in biomedical and clinical studies. In genetic studies, researchers are increasingly interested in understanding the distinct genetic underpinning of subtypes of diseases. However, existing set-based analysis methods for genome-wide association studies are either inadequate or inefficient to handle such multicategorical outcomes. In this paper, we proposed a novel set-based association analysis method, sequence kernel association test (SKAT)-MC, the sequence kernel association test for multicategorical outcomes (nominal or ordinal), which jointly evaluates the relationship between a set of variants (common and rare) and disease subtypes. Through comprehensive simulation studies, we showed that SKAT-MC effectively preserves the nominal type I error rate while substantially increases the statistical power compared to existing methods under various scenarios. We applied SKAT-MC to the Polish breast cancer study (PBCS), and identified gene FGFR2 was significantly associated with estrogen receptor (ER)+ and ER- breast cancer subtypes. We also investigated educational attainment using UK Biobank data (N = 127 , 127 $N=127,127$ ) with SKAT-MC, and identified 21 significant genes in the genome. Consequently, SKAT-MC is a powerful and efficient analysis tool for genetic association studies with multicategorical outcomes. A freely distributed R package SKAT-MC can be accessed at https://github.com/Zhiwen-Owen-Jiang/SKATMC.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiang Zhan
- Department of Biostatistics, Peking University, Beijing, China
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Wang N, Yu B, Jun G, Qi Q, Durazo-Arvizu RA, Lindstrom S, Morrison AC, Kaplan RC, Boerwinkle E, Chen H. StocSum: stochastic summary statistics for whole genome sequencing studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535886. [PMID: 37066281 PMCID: PMC10104122 DOI: 10.1101/2023.04.06.535886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Genomic summary statistics, usually defined as single-variant test results from genome-wide association studies, have been widely used to advance the genetics field in a wide range of applications. Applications that involve multiple genetic variants also require their correlations or linkage disequilibrium (LD) information, often obtained from an external reference panel. In practice, it is usually difficult to find suitable external reference panels that represent the LD structure for underrepresented and admixed populations, or rare genetic variants from whole genome sequencing (WGS) studies, limiting the scope of applications for genomic summary statistics. Here we introduce StocSum, a novel reference-panel-free statistical framework for generating, managing, and analyzing stochastic summary statistics using random vectors. We develop various downstream applications using StocSum including single-variant tests, conditional association tests, gene-environment interaction tests, variant set tests, as well as meta-analysis and LD score regression tools. We demonstrate the accuracy and computational efficiency of StocSum using two cohorts from the Trans-Omics for Precision Medicine Program. StocSum will facilitate sharing and utilization of genomic summary statistics from WGS studies, especially for underrepresented and admixed populations.
Collapse
Affiliation(s)
- Nannan Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ramon A. Durazo-Arvizu
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Lindstrom
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert C. Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
8
|
Li H, Mazumder R, Lin X. Accurate and Efficient Estimation of Local Heritability using Summary Statistics and LD Matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527759. [PMID: 36798290 PMCID: PMC9934676 DOI: 10.1101/2023.02.08.527759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Existing SNP-heritability estimation methods that leverage GWAS summary statistics produce estimators that are less efficient than the restricted maximum likelihood (REML) estimator using individual-level data under linear mixed models (LMMs). Increasing the precision of a heritability estimator is particularly important for regional analyses, as local genetic variances tend to be small. We introduce a new estimator for local heritability, "HEELS", which attains comparable statistical efficiency as REML (\emph{i.e.} relative efficiency greater than 92%) but only requires summary-level statistics -- Z-scores from the marginal association tests plus the empirical LD matrix. HEELS significantly improves the statistical efficiency of the existing summary-statistics-based heritability estimators-- for instance, HEELS produces heritability estimates that are more than 3-fold and 7-times less variable than GRE and LDSC, respectively. Moreover, we introduce a unified framework to evaluate and compare the performance of different LD approximation strategies. We propose representing the empirical LD as the sum of a low-rank matrix and a banded matrix. This approximation not only reduces the storage and memory cost of using the LD matrix, but also improves the computational efficiency of the HEELS estimation. We demonstrate the statistical efficiency of HEELS and the advantages of our proposed LD approximation strategies both in simulations and through empirical analyses of the UK Biobank data.
Collapse
|
9
|
Stephenson M, Lannoy S, Edwards AC. Shared genetic liability for alcohol consumption, alcohol problems, and suicide attempt: Evaluating the role of impulsivity. Transl Psychiatry 2023; 13:87. [PMID: 36899000 PMCID: PMC10006209 DOI: 10.1038/s41398-023-02389-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Heavy drinking and diagnosis with alcohol use disorder (AUD) are consistently associated with risk for suicide attempt (SA). Though the shared genetic architecture among alcohol consumption and problems (ACP) and SA remains largely uncharacterized, impulsivity has been proposed as a heritable, intermediate phenotype for both alcohol problems and suicidal behavior. The present study investigated the extent to which shared liability for ACP and SA is genetically related to five dimensions of impulsivity. Analyses incorporated summary statistics from genome-wide association studies of alcohol consumption (N = 160,824), problems (N = 160,824), and dependence (N = 46,568), alcoholic drinks per week (N = 537,349), suicide attempt (N = 513,497), impulsivity (N = 22,861), and extraversion (N = 63,030). We used genomic structural equation modeling (Genomic SEM) to, first, estimate a common factor model with alcohol consumption, problems, and dependence, drinks per week, and SA included as indicators. Next, we evaluated the correlations between this common genetic factor and five factors representing genetic liability to negative urgency, positive urgency, lack of premeditation, sensation-seeking, and lack of perseverance. Common genetic liability to ACP and SA was significantly correlated with all five impulsive personality traits examined (rs = 0.24-0.53, ps < 0.002), and the largest correlation was with lack of premeditation, though supplementary analyses suggested that these findings were potentially more strongly influenced by ACP than SA. These analyses have potential implications for screening and prevention: Impulsivity can be comprehensively assessed in childhood, whereas heavy drinking and suicide attempt are quite rare prior to adolescence. Our findings provide preliminary evidence that features of impulsivity may serve as early indicators of genetic risk for alcohol problems and suicidality.
Collapse
Affiliation(s)
- Mallory Stephenson
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Séverine Lannoy
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexis C Edwards
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Defo J, Awany D, Ramesar R. From SNP to pathway-based GWAS meta-analysis: do current meta-analysis approaches resolve power and replication in genetic association studies? Brief Bioinform 2023; 24:6972298. [PMID: 36611240 DOI: 10.1093/bib/bbac600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies (GWAS) have benefited greatly from enhanced high-throughput technology in recent decades. GWAS meta-analysis has become increasingly popular to highlight the genetic architecture of complex traits, informing about the replicability and variability of effect estimations across human ancestries. A wealth of GWAS meta-analysis methodologies have been developed depending on the input data and the outcome information of interest. We present a survey of current approaches from SNP to pathway-based meta-analysis by acknowledging the range of resources and methodologies in the field, and we provide a comprehensive review of different categories of Genome-Wide Meta-analysis methods employed. These methods highlight different levels at which GWAS meta-analysis may be done, including Single Nucleotide Polymorphisms, Genes and Pathways, for which we describe their framework outline. We also discuss the strengths and pitfalls of each approach and make suggestions regarding each of them.
Collapse
Affiliation(s)
- Joel Defo
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 7925, Observatory, South Africa.,South African Medical Research Council Genomic and Personalized Medicine Research Unit
| | - Denis Awany
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, 7925, South Africa
| | - Raj Ramesar
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 7925, Observatory, South Africa.,South African Medical Research Council Genomic and Personalized Medicine Research Unit
| |
Collapse
|
11
|
Li X, Quick C, Zhou H, Gaynor SM, Liu Y, Chen H, Selvaraj MS, Sun R, Dey R, Arnett DK, Bielak LF, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Brody JA, Cade BE, Correa A, Cupples LA, Curran JE, de Vries PS, Duggirala R, Freedman BI, Göring HHH, Guo X, Haessler J, Kalyani RR, Kooperberg C, Kral BG, Lange LA, Manichaikul A, Martin LW, McGarvey ST, Mitchell BD, Montasser ME, Morrison AC, Naseri T, O'Connell JR, Palmer ND, Peyser PA, Psaty BM, Raffield LM, Redline S, Reiner AP, Reupena MS, Rice KM, Rich SS, Sitlani CM, Smith JA, Taylor KD, Vasan RS, Willer CJ, Wilson JG, Yanek LR, Zhao W, Rotter JI, Natarajan P, Peloso GM, Li Z, Lin X. Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies. Nat Genet 2023; 55:154-164. [PMID: 36564505 PMCID: PMC10084891 DOI: 10.1038/s41588-022-01225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.
Collapse
Affiliation(s)
- Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaowu Liu
- School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Margaret Sunitha Selvaraj
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rounak Dey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Harald H H Göring
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lisa W Martin
- Division of Cardiology, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Stephen T McGarvey
- Department of Epidemiology, International Health Institute, Department of Anthropology, Brown University, Providence, RI, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Departments of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Kanoni S, Graham SE, Wang Y, Surakka I, Ramdas S, Zhu X, Clarke SL, Bhatti KF, Vedantam S, Winkler TW, Locke AE, Marouli E, Zajac GJM, Wu KHH, Ntalla I, Hui Q, Klarin D, Hilliard AT, Wang Z, Xue C, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Hwang MY, Han S, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Havulinna AS, Veturi Y, Pacheco JA, Rosenthal EA, Lingren T, Feng Q, Kullo IJ, Narita A, Takayama J, Martin HC, Hunt KA, Trivedi B, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Rasheed A, Hindy G, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Choudhury A, Sengupta D, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao JH, Matsuda F, Jang HM, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Wood AR, Ji Y, Gao Z, Haworth S, Yousri NA, Mitchell RE, Chai JF, Aadahl M, Bjerregaard AA, Yao J, Manichaikul A, Hwu CM, Hung YJ, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Mauro P, Matteo F, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Ruotsalainen SE, Daw EW, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Vazquez-Moreno M, Feitosa MF, Wojczynski MK, Wang Z, Preuss MH, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Tsao NL, Verma A, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Demirkan A, Leonard HL, Marten J, Frank M, Schmidt B, Smyth LJ, Cañadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kähönen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Nongmaithem SS, Bayyana S, Stringham HM, Irvin MR, Oldmeadow C, Kim HN, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Prasad G, Lorés-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Chen S, Liu F, Yang J, Kentistou KA, Banas B, Nardone GG, Meidtner K, Bielak LF, Smith JA, Hebbar P, Farmaki AE, Hofer E, Lin M, Concas MP, Vaccargiu S, van der Most PJ, Pitkänen N, Cade BE, van der Laan SW, Chitrala KN, Weiss S, Bentley AR, Doumatey AP, Adeyemo AA, Lee JY, Petersen ERB, Nielsen AA, Choi HS, Nethander M, Freitag-Wolf S, Southam L, Rayner NW, Wang CA, Lin SY, Wang JS, Couture C, Lyytikäinen LP, Nikus K, Cuellar-Partida G, Vestergaard H, Hidalgo B, Giannakopoulou O, Cai Q, Obura MO, van Setten J, Li X, Liang J, Tang H, Terzikhan N, Shin JH, Jackson RD, Reiner AP, Martin LW, Chen Z, Li L, Kawaguchi T, Thiery J, Bis JC, Launer LJ, Li H, Nalls MA, Raitakari OT, Ichihara S, Wild SH, Nelson CP, Campbell H, Jäger S, Nabika T, Al-Mulla F, Niinikoski H, Braund PS, Kolcic I, Kovacs P, Giardoglou T, Katsuya T, de Kleijn D, de Borst GJ, Kim EK, Adams HHH, Ikram MA, Zhu X, Asselbergs FW, Kraaijeveld AO, Beulens JWJ, Shu XO, Rallidis LS, Pedersen O, Hansen T, Mitchell P, Hewitt AW, Kähönen M, Pérusse L, Bouchard C, Tönjes A, Chen YDI, Pennell CE, Mori TA, Lieb W, Franke A, Ohlsson C, Mellström D, Cho YS, Lee H, Yuan JM, Koh WP, Rhee SY, Woo JT, Heid IM, Stark KJ, Zimmermann ME, Völzke H, Homuth G, Evans MK, Zonderman AB, Polasek O, Pasterkamp G, Hoefer IE, Redline S, Pahkala K, Oldehinkel AJ, Snieder H, Biino G, Schmidt R, Schmidt H, Bandinelli S, Dedoussis G, Thanaraj TA, Kardia SLR, Peyser PA, Kato N, Schulze MB, Girotto G, Böger CA, Jung B, Joshi PK, Bennett DA, De Jager PL, Lu X, Mamakou V, Brown M, Caulfield MJ, Munroe PB, Guo X, Ciullo M, Jonas JB, Samani NJ, Kaprio J, Pajukanta P, Tusié-Luna T, Aguilar-Salinas CA, Adair LS, Bechayda SA, de Silva HJ, Wickremasinghe AR, Krauss RM, Wu JY, Zheng W, Hollander AI, Bharadwaj D, Correa A, Wilson JG, Lind L, Heng CK, Nelson AE, Golightly YM, Wilson JF, Penninx B, Kim HL, Attia J, Scott RJ, Rao DC, Arnett DK, Hunt SC, Walker M, Koistinen HA, Chandak GR, Mercader JM, Costanzo MC, Jang D, Burtt NP, Villalpando CG, Orozco L, Fornage M, Tai ES, van Dam RM, Lehtimäki T, Chaturvedi N, Yokota M, Liu J, Reilly DF, McKnight AJ, Kee F, Jöckel KH, McCarthy MI, Palmer CNA, Vitart V, Hayward C, Simonsick E, van Duijn CM, Jin ZB, Qu J, Hishigaki H, Lin X, März W, Gudnason V, Tardif JC, Lettre G, Hart LM', Elders PJM, Damrauer SM, Kumari M, Kivimaki M, van der Harst P, Spector TD, Loos RJF, Province MA, Parra EJ, Cruz M, Psaty BM, Brandslund I, Pramstaller PP, Rotimi CN, Christensen K, Ripatti S, Widén E, Hakonarson H, Grant SFA, Kiemeney LALM, de Graaf J, Loeffler M, Kronenberg F, Gu D, Erdmann J, Schunkert H, Franks PW, Linneberg A, Jukema JW, Khera AV, Männikkö M, Jarvelin MR, Kutalik Z, Francesco C, Mook-Kanamori DO, van Dijk KW, Watkins H, Strachan DP, Grarup N, Sever P, Poulter N, Chuang LM, Rotter JI, Dantoft TM, Karpe F, Neville MJ, Timpson NJ, Cheng CY, Wong TY, Khor CC, Li H, Sabanayagam C, Peters A, Gieger C, Hattersley AT, Pedersen NL, Magnusson PKE, Boomsma DI, Willemsen AHM, Cupples LA, van Meurs JBJ, Ghanbari M, Gordon-Larsen P, Huang W, Kim YJ, Tabara Y, Wareham NJ, Langenberg C, Zeggini E, Kuusisto J, Laakso M, Ingelsson E, Abecasis G, Chambers JC, Kooner JS, de Vries PS, Morrison AC, Hazelhurst S, Ramsay M, North KE, Daviglus M, Kraft P, Martin NG, Whitfield JB, Abbas S, Saleheen D, Walters RG, Holmes MV, Black C, Smith BH, Baras A, Justice AE, Buring JE, Ridker PM, Chasman DI, Kooperberg C, Tamiya G, Yamamoto M, van Heel DA, Trembath RC, Wei WQ, Jarvik GP, Namjou B, Hayes MG, Ritchie MD, Jousilahti P, Salomaa V, Hveem K, Åsvold BO, Kubo M, Kamatani Y, Okada Y, Murakami Y, Kim BJ, Thorsteinsdottir U, Stefansson K, Zhang J, Chen YE, Ho YL, Lynch JA, Rader DJ, Tsao PS, Chang KM, Cho K, O'Donnell CJ, Gaziano JM, Wilson PWF, Frayling TM, Hirschhorn JN, Kathiresan S, Mohlke KL, Sun YV, Morris AP, Boehnke M, Brown CD, Natarajan P, Deloukas P, Willer CJ, Assimes TL, Peloso GM. Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis. Genome Biol 2022; 23:268. [PMID: 36575460 PMCID: PMC9793579 DOI: 10.1186/s13059-022-02837-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
Collapse
Affiliation(s)
- Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiang Zhu
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Shoa L Clarke
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Konain Fatima Bhatti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sailaja Vedantam
- Boston Children's Hospital, EndocrinologyBoston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- McDonnell Genome Institute and Department of Medicine, Washington University, St. Louis, MO, 63108, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Greg J M Zajac
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kuan-Han H Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Derek Klarin
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Chao Xue
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Anna Helgadottir
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Sæmundargötu 2, Reykjavik, 102, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali - National University Hospital of Iceland, Hringbraut, Reykjavik, 101, Iceland
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Sakaue
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Yogasudha Veturi
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer Allen Pacheco
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Todd Lingren
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Jun Takayama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | | | - Karen A Hunt
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bhavi Trivedi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey Haessler
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 9810, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jason E Miller
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Usher Institute, The University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Ketian Yu
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ellen M Schmidt
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anita Pandit
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xianyong Yin
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jing-Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Achilleas Pitsillides
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Yingji Ji
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Zishan Gao
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Haworth
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Mette Aadahl
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne A Bjerregaard
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, Postbox 90048~700, Sanhsia Dist, New Taipei City, 237101, Taiwan
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Julia Ramirez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Aragon Institute of Engineering Research, University of Zaragoza and Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales Y Nanomedicina, Spain
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pala Mauro
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Floris Matteo
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Rome, Italy
- Dipartimento Di Scienze Biomediche, Università Degli Studi Di Sassari, Sardinia, Italy
| | - Aaron F McDaid
- University Center for Primary Care and Public Health, University of Lausanne, Rte de Berne 113, 1010, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Dept of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck and Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Department of Periodontology and Synoptic Dentistry, Berlin, Germany
| | - Lingyao Zeng
- Deutsches Herzzentrum München, Klinik Für Herz- Und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung (DZHK) E.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Alaitz Poveda
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Azra Kurbasic
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Berlin, Germany
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | | | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - EWarwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan S Mitchell
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy
| | - Henry Christensen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, USA
| | - Miguel Vazquez-Moreno
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Paraskevi Christofidou
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan W Benjamins
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorgen Engmann
- Institute of Cardiovascular Sciences, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roderick C Slieker
- Amsterdam UMC, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Ken Sin Lo
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, PQ, H1T1C8, Canada
| | - Nuno R Zilhao
- Icelandic Heart Association, 201, Kopavogur, Iceland
| | - Phuong Le
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim GmbH, 68163, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Shaofeng Huo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daisuke D Ikeda
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Hiroyuki Iha
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ayşe Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, Surrey, UK
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute On Aging, NIH, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Mirjam Frank
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Laura J Smyth
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - Marisa Cañadas-Garre
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alicia Huerta-Chagoya
- CONACYT, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departamento de Medicina Genómica Y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | | | - Valeriya Lyssenko
- Lund University Diabetes Center, Lund University, Malmö, Sweden
- Center for Diabetes Research, University of Bergen, Bergen, Norway
| | | | - Swati Bayyana
- Genomic Research On Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Heather M Stringham
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marguerite R Irvin
- Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
| | - Paul R H J Timmers
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Duke-NUS Medical School, Health Services and Systems Research, Singapore, 169857, Singapore
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Laura Lorés-Motta
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Philips Van Leydenlaan 15, Nijmegen, 6525 EX, the Netherlands
| | - Marc Pauper
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Philips Van Leydenlaan 15, Nijmegen, 6525 EX, the Netherlands
| | - Jirong Long
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, 94609, USA
| | - Fumihiko Takeuchi
- National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Lane, Chong Wen Men, Beijing, 100005, China
| | - Wen B Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Xiang, Beijing, 100730, Dong Cheng District, China
| | - Teresa Nutile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Yun Ju Sung
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Bernhard Banas
- Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Clinical Epidemiology, Institute of Health Informatics, University College London, London, UK
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Maoxuan Lin
- Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Simona Vaccargiu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Sassari, Italy
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Brian E Cade
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIH, Baltimore, MD, 20892-9205, USA
- Department of Engineering Technology, University of Houston-Sugarland, Houston, TX, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Amy R Bentley
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Ayo P Doumatey
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Adebowale A Adeyemo
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Jong Young Lee
- , Oneomics. Co. Ltd. 2F, Soonchunhyang Mirai Medical Center 173, Buheuyng-Ro, Bucheon-Si Gyeonggi-Do, 14585, Korea
| | - Eva R B Petersen
- Department of Clinical Biochemistry and Immunology, Hospital of Southern Jutland, Kresten Philipsens Vej 15, 6200, Aabenraa, Denmark
| | - Aneta A Nielsen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Kolding, Denmark
| | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Gangwon-Do, Korea
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Lorraine Southam
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nigel W Rayner
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, 33521, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Gabriel Cuellar-Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Kent St, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Bertha Hidalgo
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Morgan O Obura
- Amsterdam UMC, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the Netherlands
| | - Jessica van Setten
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine Stanford, Palo Alto, CA, 94305, USA
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Gangwon-Do, Korea
| | - Rebecca D Jackson
- Division of Endocrinology, Ohio State University, Columbus, OH, 43210, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Lisa Warsinger Martin
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joachim Thiery
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
- Institute for Laboratory Medicine, University Hospital Leipzig, Paul-List-Strasse 13/15, 04103, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIH, Baltimore, MD, 20892-9205, USA
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Sarah H Wild
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, 6938501, Japan
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Physiology, University of Turku, Turku, Finland
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ivana Kolcic
- University of Split School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Peter Kovacs
- University of Leipzig Medical Center, Liebigstr. 18, 04103, Medical Department III - Endocrinology, Nephrology, RheumatologyLeipzig, Germany
| | - Tota Giardoglou
- Department of Nutrition-Dietetics, Harokopio University, Eleftheriou Venizelou, 17676, Athens, Greece
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Dominique de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Saevit Eye Hospital, SeoulIlsan, 03722, Korea
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Folkert W Asselbergs
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Adriaan O Kraaijeveld
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, 3584CG, Utrecht, the Netherlands
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Mitchell
- Center for Vision Research, Department of Ophthalmology and The Westmead Institute, University of Sydney, Hawkesbury Rd, Sydney, NSW, 2145, Australia
| | - Alex W Hewitt
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Liverpool St, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, 33521, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Louis Pérusse
- Department of Kinesiology, Université Laval, Québec, Canada
- Centre Nutrition, Santé Et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Québec, Canada
| | - Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Anke Tönjes
- University of Leipzig Medical Center, Liebigstr. 18, 04103, Medical Department III - Endocrinology, Nephrology, RheumatologyLeipzig, Germany
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Trevor A Mori
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Gangwon-Do, Korea
| | - Hyejin Lee
- Department of Internal Medicine, EwhaWomans University School of Medicine, Seoul, Korea
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, 117609, Singapore
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute On Aging Intramural Research Program, NIH Biomedical Research Center, NIH 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute On Aging Intramural Research Program, NIH Biomedical Research Center, NIH 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Ozren Polasek
- University of Split School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
- Algebra University College, Ilica 242, Zagreb, Croatia
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Imo E Hoefer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Susan Redline
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Physical Activity and Health, Paavo Nurmi Centre, Sports and Exercise Medicine Unit, University of Turku, Turku, Finland
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giorgia Girotto
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada Di Fiume 447, 34149, Trieste, Italy
| | - Carsten A Böger
- Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology, , Traunstein Hospital, Diabetology, RheumatologyTraunstein, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Bettina Jung
- Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology, , Traunstein Hospital, Diabetology, RheumatologyTraunstein, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Center for Translational and Systems Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Vasiliki Mamakou
- Medical School, National and Kapodistrian University Athens, 75 M. Assias Street, 115 27, Athens, Greece
- Dromokaiteio Psychiatric Hospital, 124 61, Athens, Greece
| | - Morris Brown
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Marina Ciullo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Jost B Jonas
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Lane, Chong Wen Men, Beijing, 100005, China
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Kutzerufer 1, 68167, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Privatpraxis Prof Jonas Und Dr Panda-Jonas, Heidelberg, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular Y Medicina Genómica, Instituto de Investigaciones Biomédicas UNAM/ Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología Y Metabolismo, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, 14080, Mexico, Mexico
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Sonny Augustin Bechayda
- USC-Office of Population Studies Foundation, University of San Carlos, 6000, Cebu City, Philippines
- Department of Anthropology, Sociology, and History, University of San Carlos, 6000, Cebu City, Philippines
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, 11010, Sri Lanka
| | - Ananda R Wickremasinghe
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, 11010, Sri Lanka
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Anneke Iden Hollander
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Philips Van Leydenlaan 15, Nijmegen, 6525 EX, the Netherlands
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore and Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Brenda Penninx
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - John Attia
- Hunter Medical Research Institute, Newcastle, Australia
- Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, Newcastle, Australia
- Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, USA
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, USA
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132, USA
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Haartmaninkatu 4, P.O.Box 340, 00029, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Giriraj R Chandak
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- JSS Academy of Higher Education and Research, Mysuru, India
| | - Josep M Mercader
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Maria C Costanzo
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dongkeun Jang
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noël P Burtt
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lorena Orozco
- Laboratorio de Inmunogenómica Y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - EShyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | | | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Dermot F Reilly
- Genetics, Merck Sharp & Dohme Corp., Kenilworth, NJ, 07033, USA
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - Frank Kee
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Colin N A Palmer
- Population Health and Genomics, University of Dundee, Ninwells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Eleanor Simonsick
- Intramural Research Program, National Institute On Aging, 3001 S. Hanover St., Baltimore, MD, 21225, USA
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, 100730, China
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Haretsugu Hishigaki
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim and Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, PQ, H1T1C8, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, PQ, H1T1C8, Canada
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, 1081HV, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam Cardiovascular Sciences, Amsterdam, 1081HV, the Netherlands
| | - Petra J M Elders
- Department of General Practice, Amsterdam UMC, Amsterdam, 1081HV, the Netherlands
- Amsterdam Public Health Research Institute, Health Behaviours and Chronic Diseases, Amsterdam, 1081HV, the Netherlands
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy
| | - Charles N Rotimi
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Kaare Christensen
- Danish Aging Research Center, University of Southern Denmark, Odense C, Denmark
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Jacqueline de Graaf
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Berlin, Germany
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Center Lübeck, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik Für Herz- Und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung (DZHK) E.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Oulu, Finland
| | - Zoltan Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Rte de Berne 113, 1010, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Cucca Francesco
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari, Italy
- University of Sassari, Sassari, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, W12 7RH, UK
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Fredrik Karpe
- OCDEM, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Matt J Neville
- OCDEM, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hengtong Li
- Data Science, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung (DZHK) E.V., Partner Site Munich Heart Alliance, Munich, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Andrew T Hattersley
- Medical School, University of Exeter, University of Exeter, Exeter, EX2 5DW, UK
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
| | - Allegonda H M Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
| | - LAdrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin, Berlin, Germany
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts Der Isar, TUM School of Medicine, Munich, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Goncalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- School of Public Health, Imperial College London, London, W12 7RH, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Shahid Abbas
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
- Faisalabad Institute of Cardiology, Faislabad, Pakistan
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Corri Black
- Aberdeen Centre for Health Data Science,1:042 Polwarth Building School of Medicine, Medical Science and Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Aris Baras
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health, Danville, PA, 17822, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 9810, USA
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Washington, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - M Geoffrey Hayes
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, 7600, Levanger, Norway
- Department of Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, 7600, Levanger, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
- Faculty of Medicine, University of Iceland, Sæmundargötu 2, Reykjavik, 102, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - YEugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuk-Lam Ho
- VA Boston Healthcare System, Boston, MA, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Philip S Tsao
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - John M Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Joel N Hirschhorn
- Boston Children's Hospital, EndocrinologyBoston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Themistocles L Assimes
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA.
| |
Collapse
|
13
|
Brumpton BM, Graham S, Surakka I, Skogholt AH, Løset M, Fritsche LG, Wolford B, Zhou W, Nielsen JB, Holmen OL, Gabrielsen ME, Thomas L, Bhatta L, Rasheed H, Zhang H, Kang HM, Hornsby W, Moksnes MR, Coward E, Melbye M, Giskeødegård GF, Fenstad J, Krokstad S, Næss M, Langhammer A, Boehnke M, Abecasis GR, Åsvold BO, Hveem K, Willer CJ. The HUNT study: A population-based cohort for genetic research. CELL GENOMICS 2022; 2:100193. [PMID: 36777998 PMCID: PMC9903730 DOI: 10.1016/j.xgen.2022.100193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
The Trøndelag Health Study (HUNT) is a population-based cohort of ∼229,000 individuals recruited in four waves beginning in 1984 in Trøndelag County, Norway. Approximately 88,000 of these individuals have available genetic data from array genotyping. HUNT participants were recruited during four community-based recruitment waves and provided information on health-related behaviors, self-reported diagnoses, family history of disease, and underwent physical examinations. Linkage via the Norwegian personal identification number integrates digitized health care information from doctor visits and national health registries including death, cancer and prescription registries. Genome-wide association studies of HUNT participants have provided insights into the mechanism of cardiovascular, metabolic, osteoporotic, and liver-related diseases, among others. Unique features of this cohort that facilitate research include nearly 40 years of longitudinal follow-up in a motivated and well-educated population, family data, comprehensive phenotyping, and broad availability of DNA, RNA, urine, fecal, plasma, and serum samples.
Collapse
Affiliation(s)
- Ben M. Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Sarah Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars G. Fritsche
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Wolford
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonas Bille Nielsen
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
| | - Oddgeir L. Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
| | - Maiken E. Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
| | - Laurent Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- BioCore—Bioinformatics Core Facility, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Humaira Rasheed
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - He Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Whitney Hornsby
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Riise Moksnes
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Mads Melbye
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
| | - Jørn Fenstad
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
| | - Steinar Krokstad
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marit Næss
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
| | - Cristen J. Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Kelly TN, Sun X, He KY, Brown MR, Taliun SAG, Hellwege JN, Irvin MR, Mi X, Brody JA, Franceschini N, Guo X, Hwang SJ, de Vries PS, Gao Y, Moscati A, Nadkarni GN, Yanek LR, Elfassy T, Smith JA, Chung RH, Beitelshees AL, Patki A, Aslibekyan S, Blobner BM, Peralta JM, Assimes TL, Palmas WR, Liu C, Bress AP, Huang Z, Becker LC, Hwa CM, O'Connell JR, Carlson JC, Warren HR, Das S, Giri A, Martin LW, Craig Johnson W, Fox ER, Bottinger EP, Razavi AC, Vaidya D, Chuang LM, Chang YPC, Naseri T, Jain D, Kang HM, Hung AM, Srinivasasainagendra V, Snively BM, Gu D, Montasser ME, Reupena MS, Heavner BD, LeFaive J, Hixson JE, Rice KM, Wang FF, Nielsen JB, Huang J, Khan AT, Zhou W, Nierenberg JL, Laurie CC, Armstrong ND, Shi M, Pan Y, Stilp AM, Emery L, Wong Q, Hawley NL, Minster RL, Curran JE, Munroe PB, Weeks DE, North KE, Tracy RP, Kenny EE, Shimbo D, Chakravarti A, Rich SS, Reiner AP, Blangero J, Redline S, Mitchell BD, Rao DC, Ida Chen YD, Kardia SLR, Kaplan RC, Mathias RA, He J, Psaty BM, Fornage M, Loos RJF, Correa A, Boerwinkle E, Rotter JI, Kooperberg C, Edwards TL, Abecasis GR, Zhu X, Levy D, Arnett DK, Morrison AC. Insights From a Large-Scale Whole-Genome Sequencing Study of Systolic Blood Pressure, Diastolic Blood Pressure, and Hypertension. Hypertension 2022; 79:1656-1667. [PMID: 35652341 PMCID: PMC9593435 DOI: 10.1161/hypertensionaha.122.19324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The availability of whole-genome sequencing data in large studies has enabled the assessment of coding and noncoding variants across the allele frequency spectrum for their associations with blood pressure. METHODS We conducted a multiancestry whole-genome sequencing analysis of blood pressure among 51 456 Trans-Omics for Precision Medicine and Centers for Common Disease Genomics program participants (stage-1). Stage-2 analyses leveraged array data from UK Biobank (N=383 145), Million Veteran Program (N=318 891), and Reasons for Geographic and Racial Differences in Stroke (N=10 643) participants, along with whole-exome sequencing data from UK Biobank (N=199 631) participants. RESULTS Two blood pressure signals achieved genome-wide significance in meta-analyses of stage-1 and stage-2 single variant findings (P<5×10-8). Among them, a rare intergenic variant at novel locus, LOC100506274, was associated with lower systolic blood pressure in stage-1 (beta [SE]=-32.6 [6.0]; P=4.99×10-8) but not stage-2 analysis (P=0.11). Furthermore, a novel common variant at the known INSR locus was suggestively associated with diastolic blood pressure in stage-1 (beta [SE]=-0.36 [0.07]; P=4.18×10-7) and attained genome-wide significance in stage-2 (beta [SE]=-0.29 [0.03]; P=7.28×10-23). Nineteen additional signals suggestively associated with blood pressure in meta-analysis of single and aggregate rare variant findings (P<1×10-6 and P<1×10-4, respectively). DISCUSSION We report one promising but unconfirmed rare variant for blood pressure and, more importantly, contribute insights for future blood pressure sequencing studies. Our findings suggest promise of aggregate analyses to complement single variant analysis strategies and the need for larger, diverse samples, and family studies to enable robust rare variant identification.
Collapse
Affiliation(s)
- Tanika N Kelly
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
- Translational Sciences Institute (T.N.K., J.H.), Tulane University, New Orleans, LA
| | - Xiao Sun
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Karen Y He
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH (K.Y.H., X.Z.)
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Sarah A Gagliano Taliun
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Jacklyn N Hellwege
- Division of Genetic Medicine, Department of Medicine (J.N.H.), Vanderbilt University Medical Center, Nashville, TN
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
| | - Marguerite R Irvin
- Department of Epidemiology (M.R.I., S.A., N.D.A.), University of Alabama at Birmingham' AL
| | - Xuenan Mi
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.E.N.), University of Washington, Seattle' WA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill (N.F.)
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Shih-Jen Hwang
- National Heart, Lung and Blood Institute, Population Sciences Branch, National Institutes of Health, Framingham, MA (S.-J.H.)
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Yan Gao
- Department of Physiology and Biophysics (Y.G., E.E.K., R.J.F.L.), University of Mississippi Medical Center, Jackson' MS
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N.N.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N.N.), The Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine (G.N.N.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine (L.R.Y., D.V.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tali Elfassy
- Division of Epidemiology, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami' FL (T.E.)
| | - Jennifer A Smith
- Department of Epidemiology (J.A.S., S.L.R.K.), University of Michigan, Ann Arbor' MI
| | - Ren-Hua Chung
- Institute of Population Sciences, National Health Research Institutes, Taiwan (R.-H.C.)
| | - Amber L Beitelshees
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | - Amit Patki
- Department of Biostatistics (A.P., V.S.), University of Alabama at Birmingham' AL
| | - Stella Aslibekyan
- Department of Epidemiology (M.R.I., S.A., N.D.A.), University of Alabama at Birmingham' AL
| | - Brandon M Blobner
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services (B.M.P.), University of Washington, Seattle' WA
- Department of Human Genetics (B.M.B., R.L.M., D.E.W.), University of Pittsburgh, PA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville' TX (J.M.P., J.E.C., J.B.)
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford' CA (T.L.A.)
- Division of Cardiology Medicine, Palo Alto VA HealthCare System, Palo Alto' CA (T.L.A.)
| | - Walter R Palmas
- Division of General Medicine, Department of Medicine, Columbia University, New York, NY (W.R.P.)
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston' MA (C.L.)
| | - Adam P Bress
- Division of Health System Innovation and Research, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City' UT (A.P.B.)
| | - Zhijie Huang
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine (L.C.B.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chii-Min Hwa
- Taichung Veterans General Hospital, Taichung, Taiwan (C.-M.H.)
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | - Jenna C Carlson
- Department of Biostatistics, Graduate School of Public Health (J.C.C.), University of Pittsburgh, PA
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
| | - Sayantan Das
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Ayush Giri
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN (A.G.)
| | - Lisa W Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC (L.W.M.)
| | - W Craig Johnson
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Ervin R Fox
- Division of Cardiology, Department of Medicine (E.R.F.), University of Mississippi Medical Center, Jackson' MS
| | - Erwin P Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai (E.P.B.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander C Razavi
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine (L.R.Y., D.V.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei' Taiwan (L.-M.C.)
| | - Yen-Pei C Chang
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia' Samoa (T.N.)
| | - Deepti Jain
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Hyun Min Kang
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine (A.M.H.), Vanderbilt University Medical Center, Nashville, TN
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
| | | | - Beverly M Snively
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC (B.M.S.)
| | - Dongfeng Gu
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G., J.H.)
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
| | | | - Benjamin D Heavner
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Jonathon LeFaive
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - James E Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Kenneth M Rice
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Fei Fei Wang
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Jonas B Nielsen
- Department of Internal Medicine: Cardiology (J.B.N.), University of Michigan, Ann Arbor' MI
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark (J.B.N.)
| | - Jianfeng Huang
- Translational Sciences Institute (T.N.K., J.H.), Tulane University, New Orleans, LA
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.G., J.H.)
| | - Alyna T Khan
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics (W.Z.), University of Michigan, Ann Arbor' MI
| | - Jovia L Nierenberg
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Cathy C Laurie
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Nicole D Armstrong
- Department of Epidemiology (M.R.I., S.A., N.D.A.), University of Alabama at Birmingham' AL
| | - Mengyao Shi
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Yang Pan
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Adrienne M Stilp
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Leslie Emery
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Quenna Wong
- Department of Biostatistics, School of Public Health (W.C.J., D.J., B.D.H., K.M.R., F.F.E., A.T.K., C.C.L., A.M.S., L.E., Q.W.), University of Washington, Seattle' WA
| | - Nicola L Hawley
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT (N.L.H.)
| | - Ryan L Minster
- Department of Human Genetics (B.M.B., R.L.M., D.E.W.), University of Pittsburgh, PA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville' TX (J.M.P., J.E.C., J.B.)
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom
| | - Daniel E Weeks
- Department of Human Genetics (B.M.B., R.L.M., D.E.W.), University of Pittsburgh, PA
- Department of Biostatistics (D.E.W.), University of Pittsburgh, PA
| | - Kari E North
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.E.N.), University of Washington, Seattle' WA
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington' VT (R.P.T.)
| | - Eimear E Kenny
- Department of Physiology and Biophysics (Y.G., E.E.K., R.J.F.L.), University of Mississippi Medical Center, Jackson' MS
- Department of Genetics and Genomics (E.E.K.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daichi Shimbo
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (D.S.)
| | - Aravinda Chakravarti
- Department of Medicine (A.C.), University of Mississippi Medical Center, Jackson' MS
| | - Stephen S Rich
- Center for Public Health, University of Virginia, Charlottesville' VA (S.S.R.)
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R., C.K.)
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville' TX (J.M.P., J.E.C., J.B.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA (S.R.)
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore' MD (A.L.B., J.R.O., Y.-P.C.C., M.E.M., B.D.M.)
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore' MD (B.D.M.)
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (D.C.R.)
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Sharon L R Kardia
- Department of Epidemiology (J.A.S., S.L.R.K.), University of Michigan, Ann Arbor' MI
| | - Robert C Kaplan
- Division of Social Medicine, Albert Einstein College of Medicine, Bronx, NY (R.C.K.)
| | - Rasika A Mathias
- Division of Allergy & Clinical Immunology, Department of Medicine (R.A.M.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jiang He
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
| | - Bruce M Psaty
- Department of Epidemiology (T.N.K., X.S., X.M., Z.H., A.C.R., J.L.N., M.S., Y.P., J.H.), Tulane University, New Orleans, LA
- Kaiser Permanente Washington Health Research Institute, Seattle' WA (B.M.P.)
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine (M.F.), The University of Texas Health Science Center at Houston' Houston' TX
- Human Genetics Center (M.F.), The University of Texas Health Science Center at Houston' Houston' TX
| | - Ruth J F Loos
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
- The Mindich Child Health and Development Institute (R.J.F.L.), The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Correa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY (A.C.)
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX (E.B.)
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (A.P.R., C.K.)
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine (T.L.E.), Vanderbilt University Medical Center, Nashville, TN
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville' TN (J.N.H., A.G., A.M.H., T.L.E.)
| | - Gonçalo R Abecasis
- Department of Biostatistics (S.A.G.T., S.D., H.M.K., J.L., G.R.A.), University of Michigan, Ann Arbor' MI
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH (K.Y.H., X.Z.)
| | - Daniel Levy
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance' CA (X.G., Y.-D.I.C., J.I.R., D.L.)
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY (D.K.A.)
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health (M.R.B., P.D.d.V., J.E.H., E.B., A.C.M.), The University of Texas Health Science Center at Houston' Houston' TX
| |
Collapse
|
15
|
Dumont M, Weber-Lassalle N, Joly-Beauparlant C, Ernst C, Droit A, Feng BJ, Dubois S, Collin-Deschesnes AC, Soucy P, Vallée M, Fournier F, Lemaçon A, Adank MA, Allen J, Altmüller J, Arnold N, Ausems MGEM, Berutti R, Bolla MK, Bull S, Carvalho S, Cornelissen S, Dufault MR, Dunning AM, Engel C, Gehrig A, Geurts-Giele WRR, Gieger C, Green J, Hackmann K, Helmy M, Hentschel J, Hogervorst FBL, Hollestelle A, Hooning MJ, Horváth J, Ikram MA, Kaulfuß S, Keeman R, Kuang D, Luccarini C, Maier W, Martens JWM, Niederacher D, Nürnberg P, Ott CE, Peters A, Pharoah PDP, Ramirez A, Ramser J, Riedel-Heller S, Schmidt G, Shah M, Scherer M, Stäbler A, Strom TM, Sutter C, Thiele H, van Asperen CJ, van der Kolk L, van der Luijt RB, Volk AE, Wagner M, Waisfisz Q, Wang Q, Wang-Gohrke S, Weber BHF, Devilee P, Tavtigian S, Bader GD, Meindl A, Goldgar DE, Andrulis IL, Schmutzler RK, Easton DF, Schmidt MK, Hahnen E, Simard J. Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. Cancers (Basel) 2022; 14:cancers14143363. [PMID: 35884425 PMCID: PMC9317824 DOI: 10.3390/cancers14143363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.
Collapse
Affiliation(s)
- Martine Dumont
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Nana Weber-Lassalle
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Charles Joly-Beauparlant
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Arnaud Droit
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Bing-Jian Feng
- Department of Dermatology, University of Utah, Salt Lake City, UT 84103, USA; (B.-J.F.); (D.E.G.)
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Stéphane Dubois
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Annie-Claude Collin-Deschesnes
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Penny Soucy
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Maxime Vallée
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Frédéric Fournier
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Audrey Lemaçon
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
| | - Muriel A. Adank
- Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (M.A.A.); (F.B.L.H.); (L.v.d.K.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (J.A.); (H.T.)
| | - Norbert Arnold
- Institute of Clinical Molecular Biology, Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, 24105 Kiel, Germany;
| | - Margreet G. E. M. Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Riccardo Berutti
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; (R.B.); (T.M.S.)
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Shelley Bull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (S.C.); (R.K.); (M.K.S.)
| | - Michael R. Dufault
- Precision Medicine and Computational Biology, Sanofi Genzyme, Cambridge, MA 02142, USA;
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Andrea Gehrig
- Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University of Würzburg, 97074 Würzburg, Germany;
| | | | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (C.G.); (A.P.)
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
| | - Jessica Green
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Mohamed Helmy
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Julia Hentschel
- Institute of Human Genetics, University Leipzig, 04103 Leipzig, Germany;
| | - Frans B. L. Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (M.A.A.); (F.B.L.H.); (L.v.d.K.)
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands; (A.H.); (M.J.H.); (J.W.M.M.)
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands; (A.H.); (M.J.H.); (J.W.M.M.)
| | - Judit Horváth
- Institute of Human Genetics, University of Münster, 48149 Münster, Germany;
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, 3015 Rotterdam, The Netherlands;
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (S.C.); (R.K.); (M.K.S.)
| | - Da Kuang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Wolfgang Maier
- German Center for Neurodegenerative Diseases (DZNE), Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, 53127 Bonn, Germany;
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 Rotterdam, The Netherlands; (A.H.); (M.J.H.); (J.W.M.M.)
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (C.G.); (A.P.)
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Alfredo Ramirez
- Division for Neurogenetics and Molecular Psychiatry, Medical Faculty, University of Cologne, 50937 Cologne, Germany;
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (J.R.); (A.M.)
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Gunnar Schmidt
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany;
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Antje Stäbler
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
| | - Tim M. Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; (R.B.); (T.M.S.)
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (J.A.); (H.T.)
| | - Christi J. van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, The Netherlands; (C.J.v.A.); (R.B.v.d.L.)
| | - Lizet van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (M.A.A.); (F.B.L.H.); (L.v.d.K.)
| | - Rob B. van der Luijt
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, The Netherlands; (C.J.v.A.); (R.B.v.d.L.)
- Department of Medical Genetics, University Medical Center, 3584 Utrecht, The Netherlands
| | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany;
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
| | - Shan Wang-Gohrke
- Department of Gynaecology and Obstetrics, University of Ulm, 89081 Ulm, Germany;
| | - Bernhard H. F. Weber
- Institute of Human Genetics, Regensburg University, 93053 Regensburg, Germany;
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Peter Devilee
- Department of Pathology, Department of Human Genetics, Leiden University Medical Center, 2333 Leiden, The Netherlands;
| | - Sean Tavtigian
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Gary D. Bader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Princess Margaret Research Institute, University Health Network, Toronto, ON M5G 0A3, Canada
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany; (J.R.); (A.M.)
| | - David E. Goldgar
- Department of Dermatology, University of Utah, Salt Lake City, UT 84103, USA; (B.-J.F.); (D.E.G.)
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (S.B.); (J.G.); (G.D.B.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (J.A.); (M.K.B.); (S.C.); (P.D.P.P.); (Q.W.); (D.F.E.)
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; (A.M.D.); (C.L.); (M.S.)
| | - Marjanka K. Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands; (S.C.); (R.K.); (M.K.S.)
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 Amsterdam, The Netherlands
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (N.W.-L.); (C.E.); (R.K.S.); (E.H.)
| | - Jacques Simard
- Genomics Center, CHU de Québec-Université Laval Research Center, 2705 Laurier Boulevard, Quebec City, QC GIV 4G2, Canada; (M.D.); (C.J.-B.); (A.D.); (S.D.); (A.-C.C.-D.); (P.S.); (M.V.); (F.F.); (A.L.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +418-654-2264
| |
Collapse
|
16
|
Bomba L, Walter K, Guo Q, Surendran P, Kundu K, Nongmaithem S, Karim MA, Stewart ID, Langenberg C, Danesh J, Di Angelantonio E, Roberts DJ, Ouwehand WH, Dunham I, Butterworth AS, Soranzo N. Whole-exome sequencing identifies rare genetic variants associated with human plasma metabolites. Am J Hum Genet 2022; 109:1038-1054. [PMID: 35568032 PMCID: PMC9247822 DOI: 10.1016/j.ajhg.2022.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.
Collapse
Affiliation(s)
- Lorenzo Bomba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Qi Guo
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kousik Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Suraj Nongmaithem
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Mohd Anisul Karim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK; Computational Medicine, Berlin Institute of Health at Charité - Utniversitätsmedizin Berlin, Berlin 10117, Germany
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK; Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - David J Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; NHS Blood and Transplant-Oxford Centre, Level 2, John Radcliffe Hospital, Oxford OX3 9BQ, UK; Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK
| | - Willem H Ouwehand
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Ian Dunham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
| | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
17
|
Burch KS, Hou K, Ding Y, Wang Y, Gazal S, Shi H, Pasaniuc B. Partitioning gene-level contributions to complex-trait heritability by allele frequency identifies disease-relevant genes. Am J Hum Genet 2022; 109:692-709. [PMID: 35271803 PMCID: PMC9069080 DOI: 10.1016/j.ajhg.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Recent works have shown that SNP heritability-which is dominated by low-effect common variants-may not be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene ("gene-level heritability"). We partition gene-level heritability by minor allele frequency (MAF) to find genes whose gene-level heritability is explained exclusively by "low-frequency/rare" variants (0.5% ≤ MAF < 1%). Applying our method to ∼16K protein-coding genes and 25 quantitative traits in the UK Biobank (N = 290K "White British"), we find that, on average across traits, ∼2.5% of nonzero-heritability genes have a rare-variant component and only ∼0.8% (327 gene-trait pairs) have heritability exclusively from rare variants. Of these 327 gene-trait pairs, 114 (35%) were not detected by existing gene-level association testing methods. The additional genes we identify are significantly enriched for known disease genes, and we find several examples of genes that have been previously implicated in phenotypically related Mendelian disorders. Notably, the rare-variant component of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common variants to overall gene-level polygenicity. While nonzero gene-level heritability does not imply causality, if interpreted in the correct context, gene-level heritability can reveal useful insights into complex-trait genetic architecture.
Collapse
Affiliation(s)
- Kathryn S Burch
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Ding
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yifei Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; OMNI Bioinformatics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Metz S, Krarup NT, Bryrup T, Støy J, Andersson EA, Christoffersen C, Neville MJ, Christiansen MR, Jonsson AE, Witte DR, Kampmann U, Nielsen LB, Jørgensen NR, Karpe F, Grarup N, Pedersen O, Kilpeläinen TO, Hansen T. The Arg82Cys polymorphism of the protein nepmucin implies a role in HDL metabolism. J Endocr Soc 2022; 6:bvac034. [PMID: 35382499 PMCID: PMC8974852 DOI: 10.1210/jendso/bvac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Context Blood lipid levels are linked to the risk of cardiovascular disease and regulated by genetic factors. A low-frequency polymorphism Arg82Cys (rs72836561) in the membrane protein nepmucin, encoded by CD300LG, is associated with lower fasting concentration of high-density lipoprotein cholesterol (HDLc) and higher fasting triglycerides. However, whether the variant is linked to postprandial lipids and glycemic status remains elusive. Objective Here, we augment the genetic effect of Arg82Cys on fasting plasma concentrations of HDL subclasses, postprandial lipemia after a standardized high-fat meal, and glycemic status to further untangle its role in HDL metabolism. Methods We elucidated fasting associations with HDL subclasses in a population-based cohort study (Oxford BioBank, OBB), including 4522 healthy men and women. We investigated fasting and postprandial consequences on HDL metabolism in recall-by-genotype (RbG) studies (fasting: 20 carrier/20 noncarrier; postprandial: 7 carrier/17 noncarrier), and shed light on the synergistic interaction with glycemic status. Results A lower fasting plasma concentration of cholesterol in large HDL particles was found in healthy male carriers of the Cys82 polymorphism compared to noncarriers, both in the OBB (P = .004) and RbG studies (P = .005). In addition, the Cys82 polymorphism was associated with low fasting plasma concentrations of ApoA1 (P = .008) in the OBB cohort. On the contrary, we did not find differences in postprandial lipemia or 2-hour plasma glucose levels. Conclusion Taken together, our results indicate an association between the Arg82Cys variant and a lower concentration of HDL particles and HDLc, especially in larger HDL subclasses, suggesting a link between nepmucin and HDLc metabolism or maturation.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj T Krarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Aalborg University Hospital, Department of Cardiology, Aalborg, Denmark
| | - Thomas Bryrup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Støy
- Aarhus University Hospital, Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ehm A Andersson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Malene R Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, Denmark
| | - Ulla Kampmann
- Aarhus University Hospital, Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology & Metabolism, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Ji Y, Chen R, Wang Q, Wei Q, Tao R, Li B. Leveraging Gene-Level Prediction as Informative Covariate in Hypothesis Weighting Improves Power for Rare Variant Association Studies. Genes (Basel) 2022; 13:381. [PMID: 35205424 PMCID: PMC8872452 DOI: 10.3390/genes13020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gene-based rare variant association studies (RVASs) have low power due to the infrequency of rare variants and the large multiple testing burden. To correct for multiple testing, traditional false discovery rate (FDR) procedures which depend solely on P-values are often used. Recently, Independent Hypothesis Weighting (IHW) was developed to improve the detection power while maintaining FDR control by leveraging prior information for each hypothesis. Here, we present a framework to increase power of gene-based RVASs by incorporating prior information using IHW. We first build supervised machine learning models to assign each gene a prediction score that measures its disease risk, using the input of multiple biological features, fed with high-confidence risk genes and local background genes selected near GWAS significant loci as the training set. Then we use the prediction scores as covariates to prioritize RVAS results via IHW. We demonstrate the effectiveness of this framework through applications to RVASs in schizophrenia and autism spectrum disorder. We found sizeable improvements in the number of significant associations compared to traditional FDR approaches, and independent evidence supporting the relevance of the genes identified by our framework but not traditional FDR, demonstrating the potential of our framework to improve power of gene-based RVASs.
Collapse
Affiliation(s)
- Ying Ji
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Y.J.); (R.C.); (Q.W.); (Q.W.)
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Rui Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Y.J.); (R.C.); (Q.W.); (Q.W.)
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Quan Wang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Y.J.); (R.C.); (Q.W.); (Q.W.)
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Qiang Wei
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Y.J.); (R.C.); (Q.W.); (Q.W.)
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Ran Tao
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Y.J.); (R.C.); (Q.W.); (Q.W.)
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (Y.J.); (R.C.); (Q.W.); (Q.W.)
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
20
|
Hindy G, Dornbos P, Chaffin MD, Liu DJ, Wang M, Selvaraj MS, Zhang D, Park J, Aguilar-Salinas CA, Antonacci-Fulton L, Ardissino D, Arnett DK, Aslibekyan S, Atzmon G, Ballantyne CM, Barajas-Olmos F, Barzilai N, Becker LC, Bielak LF, Bis JC, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Bown MJ, Brody JA, Broome JG, Burtt NP, Cade BE, Centeno-Cruz F, Chan E, Chang YC, Chen YDI, Cheng CY, Choi WJ, Chowdhury R, Contreras-Cubas C, Córdova EJ, Correa A, Cupples LA, Curran JE, Danesh J, de Vries PS, DeFronzo RA, Doddapaneni H, Duggirala R, Dutcher SK, Ellinor PT, Emery LS, Florez JC, Fornage M, Freedman BI, Fuster V, Garay-Sevilla ME, García-Ortiz H, Germer S, Gibbs RA, Gieger C, Glaser B, Gonzalez C, Gonzalez-Villalpando ME, Graff M, Graham SE, Grarup N, Groop LC, Guo X, Gupta N, Han S, Hanis CL, Hansen T, He J, Heard-Costa NL, Hung YJ, Hwang MY, Irvin MR, Islas-Andrade S, Jarvik GP, Kang HM, Kardia SLR, Kelly T, Kenny EE, Khan AT, Kim BJ, Kim RW, Kim YJ, Koistinen HA, Kooperberg C, Kuusisto J, Kwak SH, Laakso M, Lange LA, Lee J, Lee J, Lee S, Lehman DM, Lemaitre RN, Linneberg A, Liu J, Loos RJF, Lubitz SA, Lyssenko V, Ma RCW, Martin LW, Martínez-Hernández A, Mathias RA, McGarvey ST, McPherson R, Meigs JB, Meitinger T, Melander O, Mendoza-Caamal E, Metcalf GA, Mi X, Mohlke KL, Montasser ME, Moon JY, Moreno-Macías H, Morrison AC, Muzny DM, Nelson SC, Nilsson PM, O'Connell JR, Orho-Melander M, Orozco L, Palmer CNA, Palmer ND, Park CJ, Park KS, Pedersen O, Peralta JM, Peyser PA, Post WS, Preuss M, Psaty BM, Qi Q, Rao DC, Redline S, Reiner AP, Revilla-Monsalve C, Rich SS, Samani N, Schunkert H, Schurmann C, Seo D, Seo JS, Sim X, Sladek R, Small KS, So WY, Stilp AM, Tai ES, Tam CHT, Taylor KD, Teo YY, Thameem F, Tomlinson B, Tsai MY, Tuomi T, Tuomilehto J, Tusié-Luna T, Udler MS, van Dam RM, Vasan RS, Viaud Martinez KA, Wang FF, Wang X, Watkins H, Weeks DE, Wilson JG, Witte DR, Wong TY, Yanek LR, Kathiresan S, Rader DJ, Rotter JI, Boehnke M, McCarthy MI, Willer CJ, Natarajan P, Flannick JA, Khera AV, Peloso GM. Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes. Am J Hum Genet 2022; 109:81-96. [PMID: 34932938 PMCID: PMC8764201 DOI: 10.1016/j.ajhg.2021.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
Collapse
Affiliation(s)
- George Hindy
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Peter Dornbos
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Chaffin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Margaret Sunitha Selvaraj
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Lucinda Antonacci-Fulton
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Diego Ardissino
- ASTC: Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy; Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Universitˆ, degli Studi di Parma, Parma, Italy
| | - Donna K Arnett
- Dean's Office, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gil Atzmon
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; University of Haifa, Faculty of Natural Science, Haifa, Israel
| | - Christie M Ballantyne
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX 77030, USA; Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erwin Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Bown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Noël P Burtt
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Edmund Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ching-Yu Cheng
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Won Jung Choi
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Non-Communicable Disease Research, Bangladesh
| | | | | | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; NHLBI Framingham Heart Study, Framingham, MA 01702, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 770030, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Valentin Fuster
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Guanajuanto, Mexico
| | | | | | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clicerio Gonzalez
- Unidad de Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Pœblica, Cuernavaca, Morelos, Mexico
| | | | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah E Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif C Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Finnish Institute for Molecular Genetics, University of Helsinki, Helsinki, Finland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA; Tulane University Translational Science Institute, New Orleans, LA 70112, USA
| | - Nancy L Heard-Costa
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, UAB, Birmingham, AL 35294, USA
| | - Sergio Islas-Andrade
- Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga," Secretaría de Salud, Mexico City, Mexico
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Eimear E Kenny
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Ryan W Kim
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98103, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiwon Lee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Seonwook Lee
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ruth J F Loos
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; University of Bergen, Bergen, Norway
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lisa Warsinger Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI 02912, USA
| | - Ruth McPherson
- Ruddy Canadian Cardiovascuar Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; General Medicine Division, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Meitinger
- Deutsches Forschungszentrum fŸr Herz-Kreislauferkrankungen, Partner Site Munich Heart Alliance, Munich, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Department of Emergency and Internal Medicine, SkŒne University Hospital, Malmö, Sweden
| | | | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - May E Montasser
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jeffrey R O'Connell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | | | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cheol Joo Park
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Michael Preuss
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA; Department of Health Services, University of Washington, Seattle, WA 98101, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische UniversitŠt München, Deutsches Zentrum fŸr Herz-Kreislauf-Forschung, München, Germany
| | - Claudia Schurmann
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany; Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daekwan Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Jeong-Sun Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rob Sladek
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Life Sciences Institute, National University of Singapore, Singapore
| | - Farook Thameem
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Safat, Kuwait
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tiinamaija Tuomi
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramachandran S Vasan
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Departments of Medicine & Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA 02118, USA
| | | | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xuzhi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Hugh Watkins
- Cardiovascular Medicine, Radcliffe Department of Medicine and the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel E Weeks
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Tien-Yin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Verve Therapeutics, Cambridge, MA 02139, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason A Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Venkataraman GR, DeBoever C, Tanigawa Y, Aguirre M, Ioannidis AG, Mostafavi H, Spencer CCA, Poterba T, Bustamante CD, Daly MJ, Pirinen M, Rivas MA. Bayesian model comparison for rare-variant association studies. Am J Hum Genet 2021; 108:2354-2367. [PMID: 34822764 PMCID: PMC8715195 DOI: 10.1016/j.ajhg.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.
Collapse
Affiliation(s)
| | - Christopher DeBoever
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Matthew Aguirre
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Timothy Poterba
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland; Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland.
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Graham SE, Clarke SL, Wu KHH, Kanoni S, Zajac GJM, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW, Locke AE, Marouli E, Hwang MY, Han S, Narita A, Choudhury A, Bentley AR, Ekoru K, Verma A, Trivedi B, Martin HC, Hunt KA, Hui Q, Klarin D, Zhu X, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Ruotsalainen SE, Havulinna AS, Veturi Y, Feng Q, Rosenthal EA, Lingren T, Pacheco JA, Pendergrass SA, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Hindy G, Rasheed A, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao JH, Matsuda F, Jang HM, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Willemsen G, Wood AR, Ji Y, Gao Z, Haworth S, Mitchell RE, Chai JF, Aadahl M, Yao J, Manichaikul A, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Sidore C, Fiorillo E, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Thuesen BH, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Daw EW, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Feitosa MF, Wojczynski MK, Preuss M, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Kember RL, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Leonard HL, Marten J, Schmidt B, Arendt M, Smyth LJ, Cañadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kähönen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Ahmed M, Jackson AU, Yousri NA, Irvin MR, Oldmeadow C, Kim HN, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Chai X, Prasad G, Lorés-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Hung YJ, Chen S, Liu F, Yang J, Kentistou KA, Gorski M, Brumat M, Meidtner K, Bielak LF, Smith JA, Hebbar P, Farmaki AE, Hofer E, Lin M, Xue C, Zhang J, Concas MP, Vaccargiu S, van der Most PJ, Pitkänen N, Cade BE, Lee J, van der Laan SW, Chitrala KN, Weiss S, Zimmermann ME, Lee JY, Choi HS, Nethander M, Freitag-Wolf S, Southam L, Rayner NW, Wang CA, Lin SY, Wang JS, Couture C, Lyytikäinen LP, Nikus K, Cuellar-Partida G, Vestergaard H, Hildalgo B, Giannakopoulou O, Cai Q, Obura MO, van Setten J, Li X, Schwander K, Terzikhan N, Shin JH, Jackson RD, Reiner AP, Martin LW, Chen Z, Li L, Highland HM, Young KL, Kawaguchi T, Thiery J, Bis JC, Nadkarni GN, Launer LJ, Li H, Nalls MA, Raitakari OT, Ichihara S, Wild SH, Nelson CP, Campbell H, Jäger S, Nabika T, Al-Mulla F, Niinikoski H, Braund PS, Kolcic I, Kovacs P, Giardoglou T, Katsuya T, Bhatti KF, de Kleijn D, de Borst GJ, Kim EK, Adams HHH, Ikram MA, Zhu X, Asselbergs FW, Kraaijeveld AO, Beulens JWJ, Shu XO, Rallidis LS, Pedersen O, Hansen T, Mitchell P, Hewitt AW, Kähönen M, Pérusse L, Bouchard C, Tönjes A, Chen YDI, Pennell CE, Mori TA, Lieb W, Franke A, Ohlsson C, Mellström D, Cho YS, Lee H, Yuan JM, Koh WP, Rhee SY, Woo JT, Heid IM, Stark KJ, Völzke H, Homuth G, Evans MK, Zonderman AB, Polasek O, Pasterkamp G, Hoefer IE, Redline S, Pahkala K, Oldehinkel AJ, Snieder H, Biino G, Schmidt R, Schmidt H, Chen YE, Bandinelli S, Dedoussis G, Thanaraj TA, Kardia SLR, Kato N, Schulze MB, Girotto G, Jung B, Böger CA, Joshi PK, Bennett DA, De Jager PL, Lu X, Mamakou V, Brown M, Caulfield MJ, Munroe PB, Guo X, Ciullo M, Jonas JB, Samani NJ, Kaprio J, Pajukanta P, Adair LS, Bechayda SA, de Silva HJ, Wickremasinghe AR, Krauss RM, Wu JY, Zheng W, den Hollander AI, Bharadwaj D, Correa A, Wilson JG, Lind L, Heng CK, Nelson AE, Golightly YM, Wilson JF, Penninx B, Kim HL, Attia J, Scott RJ, Rao DC, Arnett DK, Hunt SC, Walker M, Koistinen HA, Chandak GR, Yajnik CS, Mercader JM, Tusié-Luna T, Aguilar-Salinas CA, Villalpando CG, Orozco L, Fornage M, Tai ES, van Dam RM, Lehtimäki T, Chaturvedi N, Yokota M, Liu J, Reilly DF, McKnight AJ, Kee F, Jöckel KH, McCarthy MI, Palmer CNA, Vitart V, Hayward C, Simonsick E, van Duijn CM, Lu F, Qu J, Hishigaki H, Lin X, März W, Parra EJ, Cruz M, Gudnason V, Tardif JC, Lettre G, 't Hart LM, Elders PJM, Damrauer SM, Kumari M, Kivimaki M, van der Harst P, Spector TD, Loos RJF, Province MA, Psaty BM, Brandslund I, Pramstaller PP, Christensen K, Ripatti S, Widén E, Hakonarson H, Grant SFA, Kiemeney LALM, de Graaf J, Loeffler M, Kronenberg F, Gu D, Erdmann J, Schunkert H, Franks PW, Linneberg A, Jukema JW, Khera AV, Männikkö M, Jarvelin MR, Kutalik Z, Cucca F, Mook-Kanamori DO, van Dijk KW, Watkins H, Strachan DP, Grarup N, Sever P, Poulter N, Rotter JI, Dantoft TM, Karpe F, Neville MJ, Timpson NJ, Cheng CY, Wong TY, Khor CC, Sabanayagam C, Peters A, Gieger C, Hattersley AT, Pedersen NL, Magnusson PKE, Boomsma DI, de Geus EJC, Cupples LA, van Meurs JBJ, Ghanbari M, Gordon-Larsen P, Huang W, Kim YJ, Tabara Y, Wareham NJ, Langenberg C, Zeggini E, Kuusisto J, Laakso M, Ingelsson E, Abecasis G, Chambers JC, Kooner JS, de Vries PS, Morrison AC, North KE, Daviglus M, Kraft P, Martin NG, Whitfield JB, Abbas S, Saleheen D, Walters RG, Holmes MV, Black C, Smith BH, Justice AE, Baras A, Buring JE, Ridker PM, Chasman DI, Kooperberg C, Wei WQ, Jarvik GP, Namjou B, Hayes MG, Ritchie MD, Jousilahti P, Salomaa V, Hveem K, Åsvold BO, Kubo M, Kamatani Y, Okada Y, Murakami Y, Thorsteinsdottir U, Stefansson K, Ho YL, Lynch JA, Rader DJ, Tsao PS, Chang KM, Cho K, O'Donnell CJ, Gaziano JM, Wilson P, Rotimi CN, Hazelhurst S, Ramsay M, Trembath RC, van Heel DA, Tamiya G, Yamamoto M, Kim BJ, Mohlke KL, Frayling TM, Hirschhorn JN, Kathiresan S, Boehnke M, Natarajan P, Peloso GM, Brown CD, Morris AP, Assimes TL, Deloukas P, Sun YV, Willer CJ. The power of genetic diversity in genome-wide association studies of lipids. Nature 2021; 600:675-679. [PMID: 34887591 PMCID: PMC8730582 DOI: 10.1038/s41586-021-04064-3] [Citation(s) in RCA: 397] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/27/2021] [Indexed: 01/14/2023]
Abstract
Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.
Collapse
Affiliation(s)
- Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Shoa L Clarke
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kuan-Han H Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Greg J M Zajac
- Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sailaja Vedantam
- Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- McDonnell Genome Institute and Department of Medicine, Washington University, St Louis, MO, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mi Yeong Hwang
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Sohee Han
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Ekoru
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhavi Trivedi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Karen A Hunt
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Derek Klarin
- Malcolm Randall VA Medical Center, Gainesville, FL, USA
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-National University Hospital of Iceland, Reykjavik, Iceland
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Sakaue
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Yogasudha Veturi
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Todd Lingren
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Jeffrey Haessler
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Miller
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Ketian Yu
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ellen M Schmidt
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anita Pandit
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xianyong Yin
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jing-Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge Strangeways Research Laboratory, Cambridge, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hye-Mi Jang
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Kyungheon Yoon
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Achilleas Pitsillides
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Yingji Ji
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Zishan Gao
- Department of Clinical Acupuncture and Moxibustion, Nanjing University of Chinese Medicine, Nanjing, China
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Haworth
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mette Aadahl
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julia Ramirez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Sabater-Lleal
- Group of Genomics of Complex Diseases, Research Institute of Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Raymond Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo Sidore
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari,, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Lanusei, Italy
| | - Aaron F McDaid
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Betina H Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck, Germany
- Charité-University Medicine Berlin, Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Periodontology and Synoptic Dentistry, Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Berlin, Germany
| | - Lingyao Zeng
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Innsbruck, Austria
| | - Lukas Forer
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Innsbruck, Austria
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | | | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan S Mitchell
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Henry Christensen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | | | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan W Benjamins
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jorgen Engmann
- Institute of Cardiovascular Sciences, University College London, London, UK
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick C Slieker
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Phuong Le
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaofeng Huo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daisuke D Ikeda
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Hiroyuki Iha
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, China
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Börge Schmidt
- Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Marina Arendt
- Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany
- Department of Computer Science, University of Applied Sciences and Arts Dortmund, Dortmund, Germany
| | - Laura J Smyth
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | | | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alicia Huerta-Chagoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de Mexico, Mexico, Mexico
| | - Juan Carlos Fernandez-Lopez
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico, Mexico
| | - Valeriya Lyssenko
- Center for Diabetes Research, University of Bergen, Bergen, Norway
- Lund University Diabetes Center, Lund University, Malmo, Sweden
| | - Meraj Ahmed
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Marguerite R Irvin
- Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Paul R H J Timmers
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Aurora, CO, USA
| | - Xiaoran Chai
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, India
| | - Laura Lorés-Motta
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marc Pauper
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jirong Long
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, Oakland, CA,, USA
| | | | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA,, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen B Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Teresa Nutile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Population Science and Experimental Medicine, University College London, London, UK
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Maoxuan Lin
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chao Xue
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Simona Vaccargiu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Sassari, Italy
| | - Peter J van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Brian E Cade
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jiwon Lee
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, NIA, Baltimore, MD, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | | | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nigel W Rayner
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, UK
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gabriel Cuellar-Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Ronne, Denmark
| | - Bertha Hildalgo
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan O Obura
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jessica van Setten
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | | | | | - Lisa Warsinger Martin
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joachim Thiery
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Laboratory Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sarah H Wild
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Physiology, University of Turku, Turku, Finland
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Tota Giardoglou
- Department of Nutrition-Dietetics, Harokopio University, Eleftheriou Venizelou, Athens, Greece
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Konain Fatima Bhatti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dominique de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Folkert W Asselbergs
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan O Kraaijeveld
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Mitchell
- Center for Vision Research, Department of Ophthalmology and The Westmead Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Louis Pérusse
- Department of Kinesiology, Université Laval, Quebec, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | | | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Trevor A Mori
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Imo E Hoefer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susan Redline
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Y Eugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology, Diabetology, Rheumatology, Traunstein Hospital, Traunstein, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Vasiliki Mamakou
- Medical School, National and Kapodistrian University Athens, Athens, Greece
- Dromokaiteio Psychiatric Hospital, Athens, Greece
| | - Morris Brown
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marina Ciullo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sonny Augustin Bechayda
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | | | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anneke I den Hollander
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Korea
| | - John Attia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY, USA
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Heikki A Koistinen
- Department of Population Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | - Josep M Mercader
- Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico, Mexico
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Bimédicas UNAM/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Dirección de Nutrición and Unidad de Estudios de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | | | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico, Mexico
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Frank Kee
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Mark I McCarthy
- Genentech, South San Francisco, CA, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Colin N A Palmer
- Population Health and Genomics, University of Dundee, Ninwells Hospital and Medical School, Dundee, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Eleanor Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | - Fan Lu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Haretsugu Hishigaki
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Vilmundur Gudnason
- Icelandic Heart Association, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medecine, Université de Montréal, Quebec, Quebec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Leen M 't Hart
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Petra J M Elders
- Amsterdam UMC, Department of General Practice and Elderly Care, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Essex, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Kaare Christensen
- Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Jacqueline de Graaf
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Florian Kronenberg
- German Chronic Kidney Disease Study, Innsbruck, Austria
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner site Hamburg/Lübeck/Kiel, and University Heart Center Lübeck, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner site Munich Heart Alliance, Munich, Germany
| | | | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Amit V Khera
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program of Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Oulu, Finland
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari, Italy
- University of Sassari, Sassari, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Fredrik Karpe
- OCDEM, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Matt J Neville
- OCDEM, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance Partner Site, Munich, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dorret I Boomsma
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, VU Medical Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Young Jin Kim
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, UK
- TUM School of Medicine, Technical University of Munich (TUM) and Klinikum Rechts der Isar, Munich, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Goncalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shahid Abbas
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Faisalabad Institute of Cardiology, Faislabad, Pakistan
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Corri Black
- Aberdeen Centre for Health Data Science, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Anne E Justice
- Biomedical and Translational Informatics, Geisinger Health, Danville, PA, USA
| | - Aris Baras
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yuk-Lam Ho
- VA Boston Healthcare System, Boston, MA, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - John M Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Peter Wilson
- Atlanta VA Medical Center, Atlanta, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Bong-Jo Kim
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Joel N Hirschhorn
- Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Sekar Kathiresan
- Program of Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
He Z, Liu L, Wang C, Le Guen Y, Lee J, Gogarten S, Lu F, Montgomery S, Tang H, Silverman EK, Cho MH, Greicius M, Ionita-Laza I. Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nat Commun 2021; 12:3152. [PMID: 34035245 PMCID: PMC8149672 DOI: 10.1038/s41467-021-22889-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/26/2021] [Indexed: 02/04/2023] Open
Abstract
The analysis of whole-genome sequencing studies is challenging due to the large number of rare variants in noncoding regions and the lack of natural units for testing. We propose a statistical method to detect and localize rare and common risk variants in whole-genome sequencing studies based on a recently developed knockoff framework. It can (1) prioritize causal variants over associations due to linkage disequilibrium thereby improving interpretability; (2) help distinguish the signal due to rare variants from shadow effects of significant common variants nearby; (3) integrate multiple knockoffs for improved power, stability, and reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to achieve the benefits proposed here. In applications to whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) and COPDGene samples from NHLBI Trans-Omics for Precision Medicine (TOPMed) Program we show that our method compared with conventional association tests can lead to substantially more discoveries.
Collapse
Affiliation(s)
- Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Linxi Liu
- Department of Statistics, Columbia University, New York, NY, USA
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Justin Lee
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Fred Lu
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Stephen Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hua Tang
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
24
|
Koh H, Tuddenham S, Sears CL, Zhao N. Meta-analysis methods for multiple related markers: Applications to microbiome studies with the results on multiple α-diversity indices. Stat Med 2021; 40:2859-2876. [PMID: 33768631 DOI: 10.1002/sim.8940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022]
Abstract
Meta-analysis is a practical and powerful analytic tool that enables a unified statistical inference across the results from multiple studies. Notably, researchers often report the results on multiple related markers in each study (eg, various α-diversity indices in microbiome studies). However, univariate meta-analyses are limited to combining the results on a single common marker at a time, whereas existing multivariate meta-analyses are limited to the situations where marker-by-marker correlations are given in each study. Thus, here we introduce two meta-analysis methods, multi-marker meta-analysis (mMeta) and adaptive multi-marker meta-analysis (aMeta), to combine multiple studies throughout multiple related markers with no priori results on marker-by-marker correlations. mMeta is a statistical estimator for a pooled estimate and its SE across all the studies and markers, whereas aMeta is a statistical test based on the test statistic of the minimum P-value among marker-specific meta-analyses. mMeta conducts both effect estimation and hypothesis testing based on a weighted average of marker-specific pooled estimates while estimating marker-by-marker correlations non-parametrically via permutations, yet its power is only moderate. In contrast, aMeta closely approaches the highest power among marker-specific meta-analyses, yet it is limited to hypothesis testing. While their applications can be broader, we illustrate the use of mMeta and aMeta to combine microbiome studies throughout multiple α-diversity indices. We evaluate mMeta and aMeta in silico and apply them to real microbiome studies on the disparity in α-diversity by the status of human immunodeficiency virus (HIV) infection. The R package for mMeta and aMeta is freely available at https://github.com/hk1785/mMeta.
Collapse
Affiliation(s)
- Hyunwook Koh
- Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, South Korea
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Zhou W, Liu G, Hung RJ, Haycock PC, Aldrich MC, Andrew AS, Arnold SM, Bickeböller H, Bojesen SE, Brennan P, Brunnström H, Melander O, Caporaso NE, Landi MT, Chen C, Goodman GE, Christiani DC, Cox A, Field JK, Johansson M, Kiemeney LA, Lam S, Lazarus P, Marchand LL, Rennert G, Risch A, Schabath MB, Shete SS, Tardón A, Zienolddiny S, Shen H, Amos CI. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. Int J Cancer 2021; 148:1077-1086. [PMID: 32914876 PMCID: PMC7845289 DOI: 10.1002/ijc.33292] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06, P = 2.70 × 10-4 ). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR = 1.28, 95% CI = 1.06-1.55, PMVMR = .011), and an inverse effect on lung adenocarcinoma (ORMVMR = 0.86, 95% CI = 0.77-0.96, PMVMR = .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR = 1.19, 95% CI = 1.01-1.40, PUVMR = .036), but this effect disappeared after adjustment of smoking (ORMVMR = 1.02, 95% CI = 0.90-1.16, PMVMR = .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Melinda C. Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angeline S. Andrew
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Paul Brennan
- Genetic Epidemology Group, International Agency for Research on Cancer, Lyon, France
| | | | | | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Gary E. Goodman
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Angela Cox
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Liverpool, UK
| | | | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Carmel Medical Center and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and Clalit National Cancer Control Center, Haifa, Israel
| | - Angela Risch
- Department of Biosciences, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, University of Salzburg, Salzburg, Austria
- Division of Cancer Epigenomics, DKFZ – German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sanjay S. Shete
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adonina Tardón
- Faculty of Medicine, University of Oviedo and ISPA and CIBERESP, Oviedo, Spain
| | | | - Hongbing Shen
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
26
|
Irvin MR, Aggarwal P, Claas SA, de las Fuentes L, Do AN, Gu CC, Matter A, Olson BS, Patki A, Schwander K, Smith JD, Srinivasasainagendra V, Tiwari HK, Turner AJ, Nickerson DA, Rao DC, Broeckel U, Arnett DK. Whole-Exome Sequencing and hiPSC Cardiomyocyte Models Identify MYRIP, TRAPPC11, and SLC27A6 of Potential Importance to Left Ventricular Hypertrophy in an African Ancestry Population. Front Genet 2021; 12:588452. [PMID: 33679876 PMCID: PMC7933688 DOI: 10.3389/fgene.2021.588452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Indices of left ventricular (LV) structure and geometry represent useful intermediate phenotypes related to LV hypertrophy (LVH), a predictor of cardiovascular (CV) disease (CVD) outcomes. Methods and Results: We conducted an exome-wide association study of LV mass (LVM) adjusted to height2.7, LV internal diastolic dimension (LVIDD), and relative wall thickness (RWT) among 1,364 participants of African ancestry (AAs) in the Hypertension Genetic Epidemiology Network (HyperGEN). Both single-variant and gene-based sequence kernel association tests were performed to examine whether common and rare coding variants contribute to variation in echocardiographic traits in AAs. We then used a data-driven procedure to prioritize and select genes for functional validation using a human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) model. Three genes [myosin VIIA and Rab interacting protein (MYRIP), trafficking protein particle complex 11 (TRAPPC11), and solute carrier family 27 member 6 (SLC27A6)] were prioritized based on statistical significance, variant functional annotations, gene expression in the hiPSC-CM model, and prior biological evidence and were subsequently knocked down in the hiPSC-CM model. Expression profiling of hypertrophic gene markers in the knockdowns suggested a decrease in hypertrophic expression profiles. MYRIP knockdowns showed a significant decrease in atrial natriuretic factor (NPPA) and brain natriuretic peptide (NPPB) expression. Knockdowns of the heart long chain fatty acid (FA) transporter SLC27A6 resulted in downregulated caveolin 3 (CAV3) expression, which has been linked to hypertrophic phenotypes in animal models. Finally, TRAPPC11 knockdown was linked to deficient calcium handling. Conclusions: The three genes are biologically plausible candidates that provide new insight to hypertrophic pathways.
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praful Aggarwal
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Steven A. Claas
- College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine and Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Anh N. Do
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - C. Charles Gu
- Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Andrea Matter
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin S. Olson
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Karen Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy J. Turner
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Ulrich Broeckel
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
27
|
Magalhaes J, Tresse E, Ejlerskov P, Hu E, Liu Y, Marin A, Montalant A, Satriano L, Rundsten CF, Carlsen EMM, Rydbirk R, Sharifi-Zarchi A, Andersen JB, Aznar S, Brudek T, Khodosevich K, Prinz M, Perrier JFM, Sharma M, Gasser T, Issazadeh-Navikas S. PIAS2-mediated blockade of IFN-β signaling: a basis for sporadic Parkinson disease dementia. Mol Psychiatry 2021; 26:6083-6099. [PMID: 34234281 PMCID: PMC8758491 DOI: 10.1038/s41380-021-01207-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNβ or IFNAR1, the receptor for IFNα/β, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNβ-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNβ-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNβ-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb-/- mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.
Collapse
Affiliation(s)
- Joana Magalhaes
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Tresse
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erling Hu
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Marin
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Montalant
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XNeuronal Signaling Lab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Letizia Satriano
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Friis Rundsten
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Eva Maria Meier Carlsen
- grid.5254.60000 0001 0674 042XNeuronal Signaling Lab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Rydbirk
- grid.512917.9Research Laboratory for Stereology and Neuroscience, Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Ali Sharifi-Zarchi
- grid.419336.a0000 0004 0612 4397Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jesper Bøje Andersen
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Susana Aznar
- grid.512917.9Research Laboratory for Stereology and Neuroscience, Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Tomasz Brudek
- grid.512917.9Research Laboratory for Stereology and Neuroscience, Center for Translational Research, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Konstantin Khodosevich
- grid.5254.60000 0001 0674 042XBiotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Marco Prinz
- grid.5963.9Institute of Neuropathology, Signalling Research Centres BIOSS and CIBSS, Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-François Marie Perrier
- grid.5254.60000 0001 0674 042XNeuronal Signaling Lab, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manu Sharma
- grid.10392.390000 0001 2190 1447Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- grid.10392.390000 0001 2190 1447Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
28
|
Yaghootkar H, Zhang Y, Spracklen CN, Karaderi T, Huang LO, Bradfield J, Schurmann C, Fine RS, Preuss MH, Kutalik Z, Wittemans LBL, Lu Y, Metz S, Willems SM, Li-Gao R, Grarup N, Wang S, Molnos S, Sandoval-Zárate AA, Nalls MA, Lange LA, Haesser J, Guo X, Lyytikäinen LP, Feitosa MF, Sitlani CM, Venturini C, Mahajan A, Kacprowski T, Wang CA, Chasman DI, Amin N, Broer L, Robertson N, Young KL, Allison M, Auer PL, Blüher M, Borja JB, Bork-Jensen J, Carrasquilla GD, Christofidou P, Demirkan A, Doege CA, Garcia ME, Graff M, Guo K, Hakonarson H, Hong J, Ida Chen YD, Jackson R, Jakupović H, Jousilahti P, Justice AE, Kähönen M, Kizer JR, Kriebel J, LeDuc CA, Li J, Lind L, Luan J, Mackey DA, Mangino M, Männistö S, Martin Carli JF, Medina-Gomez C, Mook-Kanamori DO, Morris AP, de Mutsert R, Nauck M, Prokic I, Pennell CE, Pradhan AD, Psaty BM, Raitakari OT, Scott RA, Skaaby T, Strauch K, Taylor KD, Teumer A, Uitterlinden AG, Wu Y, Yao J, Walker M, North KE, Kovacs P, Ikram MA, van Duijn CM, Ridker PM, Lye S, Homuth G, Ingelsson E, Spector TD, McKnight B, Province MA, Lehtimäki T, Adair LS, Rotter JI, Reiner AP, Wilson JG, Harris TB, Ripatti S, Grallert H, Meigs JB, Salomaa V, Hansen T, Willems van Dijk K, Wareham NJ, Grant SFA, Langenberg C, Frayling TM, Lindgren CM, Mohlke KL, Leibel RL, Loos RJF, Kilpeläinen TO. Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity. Diabetes 2020; 69:2806-2818. [PMID: 32917775 PMCID: PMC7679778 DOI: 10.2337/db20-0070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
Collapse
Affiliation(s)
- Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, U.K.
- Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- DTU Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lam Opal Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Bradfield
- Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Quantinuum Research LLC, San Diego, CA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rebecca S Fine
- Department of Genetics, Harvard Medical School, Boston, MA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoltan Kutalik
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, U.K
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laura B L Wittemans
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, and Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sophie Molnos
- German Center for Diabetes Research, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg, Germany
| | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
- Data Tecnica International, Glen Echo, MD
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Denver, CO
| | - Jeffrey Haesser
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Cristina Venturini
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, U.K
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Carol A Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Neil Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA
| | - Paul L Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Judith B Borja
- Office of Population Studies Foundation, Inc., Cebu City, Philippines
- Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Germán D Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ayse Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Claudia A Doege
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Center for Genome Sciences, Chapel Hill, NC
| | - Kaiying Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Rebecca Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH
| | - Hermina Jakupović
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anne E Justice
- Center for Biomedical and Translational Informatics, Geisinger, Danville, PA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, University of California San Francisco, San Francisco, CA
- Departments of Medicine and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Jennifer Kriebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg, Germany
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Jin Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, West Australia, Australia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, U.K
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, U.K
| | - Satu Männistö
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jayne F Martin Carli
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Biostatistics, University of Liverpool, Liverpool, U.K
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, U.K
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ivana Prokic
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Craig E Pennell
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Arund D Pradhan
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, Turku University Hospital, Turku, Finland
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, Insitute of Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig Maximilian University Munich, München, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Alexander Teumer
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), Newcastle University, Newcastle upon Tyne, U.K
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Stephen Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, U.K
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Linda S Adair
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Samuli Ripatti
- Broad Institute of MIT and Harvard, Cambridge, MA
- Institute for Molecular Medicine Finland, Helsinki, Finland
- Public Health, University of Helsinki, Helsinki, Finland
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg, Germany
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Struan F A Grant
- Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Spatial and Functional Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Broad Institute of MIT and Harvard, Cambridge, MA
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
29
|
Quick C, Wen X, Abecasis G, Boehnke M, Kang HM. Integrating comprehensive functional annotations to boost power and accuracy in gene-based association analysis. PLoS Genet 2020; 16:e1009060. [PMID: 33320851 PMCID: PMC7737906 DOI: 10.1371/journal.pgen.1009060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Abstract
Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.
Collapse
Affiliation(s)
- Corbin Quick
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xiaoquan Wen
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gonçalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Weng LC, Hall AW, Choi SH, Jurgens SJ, Haessler J, Bihlmeyer NA, Grarup N, Lin H, Teumer A, Li-Gao R, Yao J, Guo X, Brody JA, Müller-Nurasyid M, Schramm K, Verweij N, van den Berg ME, van Setten J, Isaacs A, Ramírez J, Warren HR, Padmanabhan S, Kors JA, de Boer RA, van der Meer P, Sinner MF, Waldenberger M, Psaty BM, Taylor KD, Völker U, Kanters JK, Li M, Alonso A, Perez MV, Vaartjes I, Bots ML, Huang PL, Heckbert SR, Lin HJ, Kornej J, Munroe PB, van Duijn CM, Asselbergs FW, Stricker BH, van der Harst P, Kääb S, Peters A, Sotoodehnia N, Rotter JI, Mook-Kanamori DO, Dörr M, Felix SB, Linneberg A, Hansen T, Arking DE, Kooperberg C, Benjamin EJ, Lunetta KL, Ellinor PT, Lubitz SA. Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:387-395. [PMID: 32822252 PMCID: PMC7578098 DOI: 10.1161/circgen.119.002874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. METHODS Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. RESULTS We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. CONCLUSIONS Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF.
Collapse
Affiliation(s)
- Lu-Chen Weng
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Amelia Weber Hall
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Sean J. Jurgens
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Jeffrey Haessler
- Fred Hutchinson Cancer Rsrch Ctr, Division of Public Health Sciences, Seattle WA
| | - Nathan A. Bihlmeyer
- McKusick-Nathans Dept of Genetic Medicine, Johns Hopkins Univ School of Med, Baltimore, MD
| | - Niels Grarup
- Novo Nordisk Foundation Ctr for Basic Metabolic Rsrch, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Honghuang Lin
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
- Section of Computational Biomedicine, Dept of Med, Boston Univ School of Med, Boston, MA
| | - Alexander Teumer
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Inst for Community Med, Univ Medicine Greifswald, Greifswald, Germany
| | - Ruifang Li-Gao
- Dept of Clinical Epidemiology, Leiden Univ Medical Ctr, the Netherlands
| | - Jie Yao
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
| | - Xiuqing Guo
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Dept of Pediatrics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Jennifer A. Brody
- Cardiovascular Health Rsrch Unit, Dept of Med, Dept of Epidemiology, Univ of Washington
| | - Martina Müller-Nurasyid
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- Inst of Genetic Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
| | - Katharina Schramm
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- Inst of Genetic Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
| | - Niek Verweij
- Genomics plc, Oxford, UK
- Dept of Cardiology, Univ of Groningen & Univ Medical Ctr, Groningen
| | - Marten E. van den Berg
- Dept of Epidemiology, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
| | - Jessica van Setten
- Dept of Cardiology, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Univ, Maastricht, the Netherlands
- Dept of Physiology, Maastricht Univ, Maastricht, the Netherlands
| | - Julia Ramírez
- Nat Inst for Health Rsrch, Barts Cardiovascular Biomedical Rsrch Ctr, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
- William Harvey Rsrch Inst, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
| | - Helen R. Warren
- Nat Inst for Health Rsrch, Barts Cardiovascular Biomedical Rsrch Ctr, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
- William Harvey Rsrch Inst, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
| | - Sandosh Padmanabhan
- Inst of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, Univ of Glasgow, Glasgow, UK
| | - Jan A. Kors
- Dept of Med Informatics, Erasmus Univ Medical Ctr, Rotterdam, the Netherlands
| | | | | | - Moritz F. Sinner
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Melanie Waldenberger
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
- Inst of Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
- Rsrch unit of Molecular Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
| | - Bruce M. Psaty
- Cardiovascular Health Rsrch Unit, Depts of Med, Epidemiology & Health Services, Dept of Epidemiology, Univ of Washington
- Kaiser Permanente Washington Health Rsrch Inst, Seattle, WA
| | - Kent D. Taylor
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Dept of Pediatrics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Uwe Völker
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Interfaculty Inst for Genetics & Functional Genomics, Univ Medicine Greifswald, Greifswald, Germany
| | - Jørgen K. Kanters
- Lab of Experimental Cardiology, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Man Li
- Division of Nephrology & Hypertensions, Dept of Internal Med, Univ of Utah School of Med, Salt Lake City, UT
| | - Alvaro Alonso
- Dept of Epidemiology, Rollins School of Public Health, Emory Univ, Atlanta, GA
| | | | - Ilonca Vaartjes
- Julius Ctr for Health Sciences & Primary Care, Univ Medical Ctr Utrecht, Utrecht Univ, the Netherlands
| | - Michiel L. Bots
- Julius Ctr for Health Sciences & Primary Care, Univ Medical Ctr Utrecht, Utrecht Univ, the Netherlands
| | | | - Susan R. Heckbert
- Cardiovascular Health Rsrch Unit, Dept of Epidemiology, Univ of Washington
| | - Henry J. Lin
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Dept of Pediatrics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Jelena Kornej
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
| | - Patricia B. Munroe
- Nat Inst for Health Rsrch, Barts Cardiovascular Biomedical Rsrch Ctr, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
- William Harvey Rsrch Inst, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
| | - Cornelia M. van Duijn
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, the Netherlands
- Nuffield Dept of Population Health, Medical Sciences Division, St. Cross College, Oxford Univ, Oxford
| | - Folkert W. Asselbergs
- Dept of Cardiology, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
- Health Data Rsrch UK & Inst of Health Informatics, Faculty of Population Health Sciences, Univ College London, London, UK
- Inst of Cardiovascular Science, Faculty of Population Health Sciences, Univ College London, London, UK
| | - Bruno H. Stricker
- Dept of Internal Medicine, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
- Dept of Med Informatics, Erasmus MC, Medical Ctr Rotterdam, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
- Inspectorate of Health Care
| | - Pim van der Harst
- Dept of Cardiology, Univ of Groningen & Univ Medical Ctr, Groningen
- Durrer Ctr for Cardiogenetic Rsrch, ICIN-Netherlands Heart Inst, Utrecht, the Netherlands
- Dept of Genetics, Univ of Groningen & Univ Medical Ctr, Groningen
| | - Stefan Kääb
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Annette Peters
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
- Inst of Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
- German Ctr for Diabetes Rsrch, Neuherberg, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Rsrch Unit, Dept of Med, Dept of Epidemiology, Univ of Washington
| | - Jerome I. Rotter
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Depts of Pediatrics & Human Genetics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Dennis O. Mook-Kanamori
- Dept of Clinical Epidemiology, Leiden Univ Medical Ctr, the Netherlands
- Dept of Public Health & Primary Care, Leiden Univ Medical Ctr, the Netherlands
| | - Marcus Dörr
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Dept of Internal Med B, Univ Medicine Greifswald, Greifswald, Germany
| | - Stephan B. Felix
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Dept of Internal Med B, Univ Medicine Greifswald, Greifswald, Germany
| | - Allan Linneberg
- Ctr for Clinical Rsrch & Prevention, Bispebjerg & Frederiksberg Hospital, Copenhagen, Denamrk
- Dept of Clinical Med, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Ctr for Basic Metabolic Rsrch, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Dan E. Arking
- McKusick-Nathans Dept of Genetic Medicine, Johns Hopkins Univ School of Med, Baltimore, MD
| | - Charles Kooperberg
- Fred Hutchinson Cancer Rsrch Ctr, Division of Public Health Sciences, Seattle WA
| | - Emelia J. Benjamin
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
- Dept of Epidemiology, Boston Univ School of Public Health, Boston, MA
- Dept of Med, Boston Univ School of Med, Boston, MA
| | - Kathryn L. Lunetta
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
- Dept of Biostatistics, Boston Univ School of Public Health, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
- Cardiac Arrhythmia Service, MGH, Boston
| | - Steven A. Lubitz
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
- Cardiac Arrhythmia Service, MGH, Boston
| |
Collapse
|
31
|
Tang ZZ, Sliwoski GR, Chen G, Jin B, Bush WS, Li B, Capra JA. PSCAN: Spatial scan tests guided by protein structures improve complex disease gene discovery and signal variant detection. Genome Biol 2020; 21:217. [PMID: 32847609 PMCID: PMC7448521 DOI: 10.1186/s13059-020-02121-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Germline disease-causing variants are generally more spatially clustered in protein 3-dimensional structures than benign variants. Motivated by this tendency, we develop a fast and powerful protein-structure-based scan (PSCAN) approach for evaluating gene-level associations with complex disease and detecting signal variants. We validate PSCAN's performance on synthetic data and two real data sets for lipid traits and Alzheimer's disease. Our results demonstrate that PSCAN performs competitively with existing gene-level tests while increasing power and identifying more specific signal variant sets. Furthermore, PSCAN enables generation of hypotheses about the molecular basis for the associations in the context of protein structures and functional domains.
Collapse
Affiliation(s)
- Zheng-Zheng Tang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53715 WI USA
- Wisconsin Institute for Discovery, Madison, 53715 WI USA
| | - Gregory R. Sliwoski
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, 37232 TN USA
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53715 WI USA
| | - Bowen Jin
- Department for Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106 OH USA
| | - William S. Bush
- Department for Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106 OH USA
- Institute for Computational Biology, Case Western Reserve University, Cleveland, 44106 OH USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, 37232 TN USA
| | - John A. Capra
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, 37232 TN USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, 37232 TN USA
- Departments of Biological Sciences and Computer Science, Vanderbilt University, Nashville, 37232 TN USA
- Center for Structural Biology, Vanderbilt University, Nashville, 37232 TN USA
| |
Collapse
|
32
|
Svishcheva GR, Belonogova NM, Zorkoltseva IV, Kirichenko AV, Axenovich TI. Gene-based association tests using GWAS summary statistics. Bioinformatics 2020; 35:3701-3708. [PMID: 30860568 DOI: 10.1093/bioinformatics/btz172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION A huge number of genome-wide association studies (GWAS) summary statistics freely available in databases provide a new material for gene-based association analysis aimed at identifying rare genetic variants. Only a few of the many popular gene-based methods developed for individual genotype and phenotype data are adapted for the practical use of the GWAS summary statistics as input. RESULTS We analytically prove and numerically illustrate that all popular powerful methods developed for gene-based association analysis of individual phenotype and genotype data can be modified to utilize GWAS summary statistics. We have modified and implemented all of the popular methods, including burden and kernel machine-based tests, multiple and functional linear regression, principal components analysis and others, in the R package sumFREGAT. Using real summary statistics for coronary artery disease, we show that the new package is able to detect genes not found by the existing packages. AVAILABILITY AND IMPLEMENTATION The R package sumFREGAT is freely and publicly available at: https://CRAN.R-project.org/package=sumFREGAT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gulnara R Svishcheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Vavilov Institute of General Genetics, the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda M Belonogova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina V Zorkoltseva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoly V Kirichenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatiana I Axenovich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.,Department of Biotechnology, L.K. Ernst Federal Center for Animal Husbandry, Dubrovitsy, Russia
| |
Collapse
|
33
|
Zhou W, Zhao Z, Nielsen JB, Fritsche LG, LeFaive J, Gagliano Taliun SA, Bi W, Gabrielsen ME, Daly MJ, Neale BM, Hveem K, Abecasis GR, Willer CJ, Lee S. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat Genet 2020; 52:634-639. [PMID: 32424355 PMCID: PMC7871731 DOI: 10.1038/s41588-020-0621-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
With very large sample sizes, biobanks provide an exciting opportunity to identify genetic components of complex traits. To analyze rare variants, region-based multiple-variant aggregate tests are commonly used to increase power for association tests. However, because of the substantial computational cost, existing region-based tests cannot analyze hundreds of thousands of samples while accounting for confounders such as population stratification and sample relatedness. Here we propose a scalable generalized mixed-model region-based association test, SAIGE-GENE, that is applicable to exome-wide and genome-wide region-based analysis for hundreds of thousands of samples and can account for unbalanced case-control ratios for binary traits. Through extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large-sample data (N > 400,000) with type I error rates well controlled.
Collapse
Affiliation(s)
- Wei Zhou
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Zhangchen Zhao
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jonas B Nielsen
- Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lars G Fritsche
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jonathon LeFaive
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sarah A Gagliano Taliun
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wenjian Bi
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | - Goncalo R Abecasis
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristen J Willer
- Division of Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Seunggeun Lee
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Jiang Y, Chen S, Wang X, Liu M, Iacono WG, Hewitt JK, Hokanson JE, Krauter K, Laakso M, Li KW, Lutz SM, McGue M, Pandit A, Zajac GJ, Boehnke M, Abecasis GR, Vrieze SI, Jiang B, Zhan X, Liu DJ. Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data. Genes (Basel) 2020; 11:genes11050586. [PMID: 32466134 PMCID: PMC7288273 DOI: 10.3390/genes11050586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, ~10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of ~18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
| | - Sai Chen
- Illumina Inc., 5200 Illuminay Way, San Diego, CA 92122, USA;
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA; (M.L.); (M.M.); (S.I.V.)
| | - William G. Iacono
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA;
| | - John K. Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Aurora, CO 80045, USA; (J.K.H.); (K.K.)
| | - John E. Hokanson
- Department of Epidemiology, School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Kenneth Krauter
- Institute for Behavioral Genetics, University of Colorado Boulder, Aurora, CO 80045, USA; (J.K.H.); (K.K.)
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Kevin W. Li
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Sharon M. Lutz
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Matthew McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA; (M.L.); (M.M.); (S.I.V.)
| | - Anita Pandit
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Gregory J.M. Zajac
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Michael Boehnke
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Goncalo R. Abecasis
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; (K.W.L.); (A.P.); (G.J.M.Z.); (M.B.); (G.R.A.)
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN 55454, USA; (M.L.); (M.M.); (S.I.V.)
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
- Correspondence: (B.J.); (X.Z.)
| | - Xiaowei Zhan
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (B.J.); (X.Z.)
| | - Dajiang J. Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; (Y.J.); (X.W.); (D.J.L.)
| |
Collapse
|
35
|
Yang T, Kim J, Wu C, Ma Y, Wei P, Pan W. An adaptive test for meta-analysis of rare variant association studies. Genet Epidemiol 2020; 44:104-116. [PMID: 31830326 PMCID: PMC6980317 DOI: 10.1002/gepi.22273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
Single genome-wide studies may be underpowered to detect trait-associated rare variants with moderate or weak effect sizes. As a viable alternative, meta-analysis is widely used to increase power by combining different studies. The power of meta-analysis critically depends on the underlying association patterns and heterogeneity levels, which are unknown and vary from locus to locus. However, existing methods mainly focus on one or only a few combinations of the association pattern and heterogeneity level, thus may lose power in many situations. To address this issue, we propose a general and unified framework by combining a class of tests including and beyond some existing ones, leading to high power across a wide range of scenarios. We demonstrate that the proposed test is more powerful than some existing methods in simulation studies, then show their performance with the NHLBI Exome-Sequencing Project (ESP) data. One gene (B4GALNT2) was found by our proposed test, but not by others, to be statistically significantly associated with plasma triglyceride. The signal was driven by African-ancestry subjects but it was previously reported to be associated with coronary artery disease among European-ancestry subjects. We implemented our method in an R package aSPUmeta, publicly available at https://github.com/ytzhong/metaRV and will be on CRAN soon.
Collapse
Affiliation(s)
- Tianzhong Yang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Junghi Kim
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Yiding Ma
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Liang J, Cade BE, He KY, Wang H, Lee J, Sofer T, Williams S, Li R, Chen H, Gottlieb DJ, Evans DS, Guo X, Gharib SA, Hale L, Hillman DR, Lutsey PL, Mukherjee S, Ochs-Balcom HM, Palmer LJ, Rhodes J, Purcell S, Patel SR, Saxena R, Stone KL, Tang W, Tranah GJ, Boerwinkle E, Lin X, Liu Y, Psaty BM, Vasan RS, Cho MH, Manichaikul A, Silverman EK, Barr RG, Rich SS, Rotter JI, Wilson JG, Redline S, Zhu X. Sequencing Analysis at 8p23 Identifies Multiple Rare Variants in DLC1 Associated with Sleep-Related Oxyhemoglobin Saturation Level. Am J Hum Genet 2019; 105:1057-1068. [PMID: 31668705 PMCID: PMC6849112 DOI: 10.1016/j.ajhg.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Average arterial oxyhemoglobin saturation during sleep (AvSpO2S) is a clinically relevant measure of physiological stress associated with sleep-disordered breathing, and this measure predicts incident cardiovascular disease and mortality. Using high-depth whole-genome sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project and focusing on genes with linkage evidence on chromosome 8p23,1,2 we observed that six coding and 51 noncoding variants in a gene that encodes the GTPase-activating protein (DLC1) are significantly associated with AvSpO2S and replicated in independent subjects. The combined DLC1 association evidence of discovery and replication cohorts reaches genome-wide significance in European Americans (p = 7.9 × 10-7). A risk score for these variants, built on an independent dataset, explains 0.97% of the AvSpO2S variation and contributes to the linkage evidence. The 51 noncoding variants are enriched in regulatory features in a human lung fibroblast cell line and contribute to DLC1 expression variation. Mendelian randomization analysis using these variants indicates a significant causal effect of DLC1 expression in fibroblasts on AvSpO2S. Multiple sources of information, including genetic variants, gene expression, and methylation, consistently suggest that DLC1 is a gene associated with AvSpO2S.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Karen Y He
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Williams
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruitong Li
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; VA Boston Healthcare System, Boston, MA 02132, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA; Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Sina A Gharib
- Department of Medicine, Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, University of Washington, Seattle, WA 98195, USA
| | - Lauren Hale
- Family, Population, and Preventive Medicine, Program in Public Health, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - David R Hillman
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia 6009, Australia
| | - Pamela L Lutsey
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Adelaide, South Australia 5042, Australia; Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Lyle J Palmer
- School of Public Health, University of Adelaide, South Australia 5000, Australia
| | - Jessica Rhodes
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA(19)Center for Genomic Medicine and Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shaun Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Sanjay R Patel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA(19)Center for Genomic Medicine and Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anesthesia, Pain and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA 98101, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01702, USA; Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Section Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, Biostatistics Section, University of Virginia, Charlottesville, VA 22908, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA; Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
37
|
Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen AS, Goldstein DB. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat Rev Genet 2019; 20:747-759. [PMID: 31605095 DOI: 10.1038/s41576-019-0177-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The first phase of genome-wide association studies (GWAS) assessed the role of common variation in human disease. Advances optimizing and economizing high-throughput sequencing have enabled a second phase of association studies that assess the contribution of rare variation to complex disease in all protein-coding genes. Unlike the early microarray-based studies, sequencing-based studies catalogue the full range of genetic variation, including the evolutionarily youngest forms. Although the experience with common variants helped establish relevant standards for genome-wide studies, the analysis of rare variation introduces several challenges that require novel analysis approaches.
Collapse
Affiliation(s)
- Gundula Povysil
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Lutz SM, Thwing A, Fingerlin T. eQTL mapping of rare variant associations using RNA-seq data: An evaluation of approaches. PLoS One 2019; 14:e0223273. [PMID: 31581212 PMCID: PMC6776318 DOI: 10.1371/journal.pone.0223273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Expression quantitative trait loci (eQTL) provide insight on transcription regulation and illuminate the molecular basis of phenotypic outcomes. High-throughput RNA sequencing (RNA-seq) is becoming a popular technique to measure gene expression abundance. Traditional eQTL mapping methods for microarray expression data often assume the expression data follow a normal distribution. As a result, for RNA-seq data, total read count measurements can be normalized by normal quantile transformation in order to fit the data using a linear regression. Other approaches model the total read counts using a negative binomial regression. While these methods work well for common variants (minor allele frequencies > 5% or 1%), an extension of existing methodology is needed to accommodate a collection of rare variants in RNA-seq data. Here, we examine 2 approaches that are direct applications of existing methodology and apply these approaches to RNAseq studies: 1) collapsing the rare variants in the region and using either negative binomial regression or Poisson regression and 2) using the normalized read counts with the Sequence Kernel Association Test (SKAT), the burden test for SKAT (SKAT-Burden), or an optimal combination of these two tests (SKAT-O). We evaluated these approaches via simulation studies under numerous scenarios and applied these approaches to the 1,000 Genomes Project.
Collapse
Affiliation(s)
- Sharon Marie Lutz
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- * E-mail:
| | - Annie Thwing
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States of America
| | - Tasha Fingerlin
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States of America
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States of America
| |
Collapse
|
39
|
Khetarpal SA, Babb PL, Zhao W, Hancock-Cerutti WF, Brown CD, Rader DJ, Voight BF. Multiplexed Targeted Resequencing Identifies Coding and Regulatory Variation Underlying Phenotypic Extremes of High-Density Lipoprotein Cholesterol in Humans. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002070. [PMID: 29987113 DOI: 10.1161/circgen.117.002070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genome-wide association studies have uncovered common variants at many loci influencing human complex traits, such as high-density lipoprotein cholesterol (HDL-C). However, the contribution of the identified genes is difficult to ascertain from current efforts interrogating common variants with small effects. Thus, there is a pressing need for scalable, cost-effective strategies for uncovering causal variants, many of which may be rare and noncoding. METHODS Here, we used a molecular inversion probe target capture approach to resequence both coding and regulatory regions at 7 HDL-C-associated loci in 797 individuals with extremely high HDL-C versus 735 low-to-normal HDL-C controls. Our targets included protein-coding regions of GALNT2, APOA5, APOC3, SCARB1, CCDC92, ZNF664, CETP, and LIPG (>9 kb) and proximate noncoding regulatory features (>42 kb). RESULTS Exome-wide genotyping in 1114 of the 1532 participants yielded a >90% genotyping concordance rate with molecular inversion probe-identified variants in ≈90% of participants. This approach rediscovered nearly all established genome-wide association studies associations in GALNT2, CETP, and LIPG loci with significant and concordant associations with HDL-C from our phenotypic extremes design at 0.1% of the sample size of lipid genome-wide association studies. In addition, we identified a novel, rare, CETP noncoding variant enriched in the extreme high HDL-C group (P<0.01, score test). CONCLUSIONS Our targeted resequencing of individuals at the HDL-C phenotypic extremes offers a novel, efficient, and cost-effective approach for identifying rare coding and noncoding variation differences in extreme phenotypes and supports the rationale for applying this methodology to uncover rare variation-particularly noncoding variation-underlying myriad complex traits.
Collapse
Affiliation(s)
- Sumeet A Khetarpal
- Department of Genetics (S.A.K., P.L.B., W.Z., W.F.H.-C., C.D.B., D.J.R.).,Department of Medicine (S.A.K., W.Z., W.F.H.-C., D.J.R.)
| | - Paul L Babb
- Department of Genetics (S.A.K., P.L.B., W.Z., W.F.H.-C., C.D.B., D.J.R.).,Department of Systems Pharmacology and Translational Therapeutics (P.L.B., B.F.V.)
| | - Wei Zhao
- Department of Genetics (S.A.K., P.L.B., W.Z., W.F.H.-C., C.D.B., D.J.R.).,Department of Medicine (S.A.K., W.Z., W.F.H.-C., D.J.R.).,Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Albert Einstein College of Medicine, Bronx, NY (W.Z.)
| | - William F Hancock-Cerutti
- Department of Genetics (S.A.K., P.L.B., W.Z., W.F.H.-C., C.D.B., D.J.R.).,Department of Medicine (S.A.K., W.Z., W.F.H.-C., D.J.R.)
| | - Christopher D Brown
- Department of Genetics (S.A.K., P.L.B., W.Z., W.F.H.-C., C.D.B., D.J.R.).,Department of Medicine (S.A.K., W.Z., W.F.H.-C., D.J.R.)
| | - Daniel J Rader
- Department of Genetics (S.A.K., P.L.B., W.Z., W.F.H.-C., C.D.B., D.J.R.) .,Institute for Translational Medicine and Therapeutics (D.J.R., B.F.V.)
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics (P.L.B., B.F.V.) .,Institute for Translational Medicine and Therapeutics (D.J.R., B.F.V.)
| |
Collapse
|
40
|
Almoguera B, McGinnis E, Abrams D, Vazquez L, Cederquist A, Sleiman PM, Dlugos D, Hakonarson H, Cagan A, Connolly J, Gainer VS, Garifallou J, Kaminski C, Lee YC, Mafra F, Mentch F, Pellegrino R, Qiu H, Snyder J, Tian L, Wang F, Manolio TA, Manzi S, Holm IA, Karlson EW. Drug-resistant epilepsy classified by a phenotyping algorithm associates with NTRK2. Acta Neurol Scand 2019; 140:169-176. [PMID: 31070779 DOI: 10.1111/ane.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Up to 40% of patients with epilepsy become drug resistant (DRE). Genetic factors are likely to play a role. While efforts have focused on the transporter and target hypotheses, neither of them fully explains the pan-pharmacoresistance seen in DRE. MATERIALS AND METHODS In this study, we developed and used a phenotyping algorithm for the identification of DRE, responders, and epilepsy-free controls that were sequenced using a gene panel developed by the Pharmacogenomics Research Network (PGRN), which includes 82 genes involved in drug response. We tested the transporter hypothesis of DRE, the association between drug resistance and variants in the ATP-binding cassette family of genes previously associated with DRE, and also investigated potential new genetic factors. RESULTS In the analysis of DRE vs controls, NTRK2 was significantly associated with DRE (rs76950094; P = 1.19 × 10-7 and gene-based P-value = 1.67 × 10-4 ). NTRK2 encodes TrkB, which is involved in the development and maturation of the central nervous system, and increased activation of TrkB signaling is suggested to promote epilepsy. CONCLUSION Although the role of NTRK2 in DRE needs to be elucidated, these results support alternative mechanisms underlying DRE, complementary to the existing hypotheses, that should be evaluated.
Collapse
Affiliation(s)
- Berta Almoguera
- Center for Applied Genomics Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Emily McGinnis
- Department of Neurology Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Debra Abrams
- Center for Applied Genomics Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Lyam Vazquez
- Center for Applied Genomics Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Anna Cederquist
- Center for Applied Genomics Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Patrick M. Sleiman
- Center for Applied Genomics Children's Hospital of Philadelphia Philadelphia Pennsylvania
- Department of Pediatrics, The Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dennis Dlugos
- Department of Neurology Children's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Hakon Hakonarson
- Center for Applied Genomics Children's Hospital of Philadelphia Philadelphia Pennsylvania
- Department of Pediatrics, The Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Spracklen CN, Karaderi T, Yaghootkar H, Schurmann C, Fine RS, Kutalik Z, Preuss MH, Lu Y, Wittemans LBL, Adair LS, Allison M, Amin N, Auer PL, Bartz TM, Blüher M, Boehnke M, Borja JB, Bork-Jensen J, Broer L, Chasman DI, Chen YDI, Chirstofidou P, Demirkan A, van Duijn CM, Feitosa MF, Garcia ME, Graff M, Grallert H, Grarup N, Guo X, Haesser J, Hansen T, Harris TB, Highland HM, Hong J, Ikram MA, Ingelsson E, Jackson R, Jousilahti P, Kähönen M, Kizer JR, Kovacs P, Kriebel J, Laakso M, Lange LA, Lehtimäki T, Li J, Li-Gao R, Lind L, Luan J, Lyytikäinen LP, MacGregor S, Mackey DA, Mahajan A, Mangino M, Männistö S, McCarthy MI, McKnight B, Medina-Gomez C, Meigs JB, Molnos S, Mook-Kanamori D, Morris AP, de Mutsert R, Nalls MA, Nedeljkovic I, North KE, Pennell CE, Pradhan AD, Province MA, Raitakari OT, Raulerson CK, Reiner AP, Ridker PM, Ripatti S, Roberston N, Rotter JI, Salomaa V, Sandoval-Zárate AA, Sitlani CM, Spector TD, Strauch K, Stumvoll M, Taylor KD, Thuesen B, Tönjes A, Uitterlinden AG, Venturini C, Walker M, Wang CA, Wang S, Wareham NJ, Willems SM, Willems van Dijk K, Wilson JG, Wu Y, Yao J, Young KL, Langenberg C, Frayling TM, Kilpeläinen TO, Lindgren CM, Loos RJF, Mohlke KL. Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology. Am J Hum Genet 2019; 105:15-28. [PMID: 31178129 DOI: 10.1016/j.ajhg.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tugce Karaderi
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; DTU Health Technology, Technical University of Denmark, Lyngby 2800, Denmark
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK; Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca S Fine
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zoltan Kutalik
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK; University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37203-1738, USA; Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura B L Wittemans
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Linda S Adair
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego, CA 92093, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Paul L Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Biostatistics, University of Washington, Seattle, WA 98101, USA
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 4103, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judith B Borja
- Office of Population Studies Foundation, Inc, Cebu City, Philippines; Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Paraskevi Chirstofidou
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melissa E Garcia
- National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, Chapel Hill, NC 27599, USA
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg 85764, Germany; German Center for Diabetes Research, München-Neuherberg 85765, Germany
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jeffrey Haesser
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 2118, USA
| | - M Arfan Ikram
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Palo Alto, CA 94304, USA; Stanford Cardiovascular Institute, Stanford University of Medicine, Palo Alto, CA 94304, USA; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 75185, Sweden; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH 43210, USA
| | - Pekka Jousilahti
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33522, Finland; Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33522, Finland
| | - Jorge R Kizer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 4103, Germany
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg 85764, Germany; German Center for Diabetes Research, München-Neuherberg 85765, Germany
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University of Hospital, Kuopio 70029 KYS, Finland
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Denver, CO 80045, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33522, Finland
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33522, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33521, Finland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - David A Mackey
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Anubha Mahajan
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK; NIHR Biomedical Research Centre, Guy's and St Thomas' Foundation Trust, London SE1 9RT, UK
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Mark I McCarthy
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7FZ, UK
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA 98101, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Program in Population and Medical Genetics, Broad Institute, Cambridge, MA 02114, USA
| | - Sophie Molnos
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg 85764, Germany; German Center for Diabetes Research, München-Neuherberg 85765, Germany
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2334 ZA, the Netherlands
| | - Andrew P Morris
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK
| | - Renee de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Data Tecnica International, Glen Echo, MD 20812, USA
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015CN, the Netherlands
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Aruna D Pradhan
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Chelsea K Raulerson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Samuli Ripatti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Public Health, University of Helsinki, Helsinki 00014, Finland; Institute for Molecular Medicine Finland, Helsinki 00014, Finland
| | - Neil Roberston
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki 00271, Finland
| | | | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany; Chair of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 4103, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Betina Thuesen
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen 2400, Denmark
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 4103, Germany
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam 3000 CA, the Netherlands
| | - Cristina Venturini
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, UK
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 2118, USA
| | | | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden 2333 ZA, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia M Lindgren
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7FZ, UK; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Wang L, Lee S, Qiao D, Cho MH, Silverman EK, Lange C, Won S. metaFARVAT: An Efficient Tool for Meta-Analysis of Family-Based, Case-Control, and Population-Based Rare Variant Association Studies. Front Genet 2019; 10:572. [PMID: 31275357 PMCID: PMC6593391 DOI: 10.3389/fgene.2019.00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Family-based designs have been shown to be powerful in detecting the significant rare variants associated with human diseases. However, very few significant results have been found owing to relatively small sample sizes and the fact that statistical analyses often suffer from high false-negative error rates. These limitations can be avoided by combining results from multiple studies via meta-analysis. However, statistical methods for meta-analysis with rare variants are limited for family-based samples. In this report, we propose a tool for the meta-analysis of family-based rare variant associations, metaFARVAT. metaFARVAT is based on a quasi-likelihood score for each variant. These scores are combined to generate burden test, variable-threshold test, sequence kernel association test (SKAT), and optimal SKAT statistics. The proposed method tests homogeneous and heterogeneous effects of variants among different studies and can be applied to both quantitative and dichotomous phenotypes. Simulation results demonstrated the robustness and efficiency of the proposed method in different scenarios. By applying metaFARVAT to data from a family-based study and a case-control study, we identified a few promising candidate genes, including DLEC1, which is associated with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Longfei Wang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Christoph Lange
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sungho Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea.,Department of Public Health Sciences, Seoul National University, Seoul, South Korea.,Institute of Health and Environment, Seoul National University, Seoul, South Korea
| |
Collapse
|
43
|
Brazel DM, Jiang Y, Hughey JM, Turcot V, Zhan X, Gong J, Batini C, Weissenkampen JD, Liu M, Barnes DR, Bertelsen S, Chou YL, Erzurumluoglu AM, Faul JD, Haessler J, Hammerschlag AR, Hsu C, Kapoor M, Lai D, Le N, de Leeuw CA, Loukola A, Mangino M, Melbourne CA, Pistis G, Qaiser B, Rohde R, Shao Y, Stringham H, Wetherill L, Zhao W, Agrawal A, Bierut L, Chen C, Eaton CB, Goate A, Haiman C, Heath A, Iacono WG, Martin NG, Polderman TJ, Reiner A, Rice J, Schlessinger D, Scholte HS, Smith JA, Tardif JC, Tindle HA, van der Leij AR, Boehnke M, Chang-Claude J, Cucca F, David SP, Foroud T, Howson JMM, Kardia SLR, Kooperberg C, Laakso M, Lettre G, Madden P, McGue M, North K, Posthuma D, Spector T, Stram D, Tobin MD, Weir DR, Kaprio J, Abecasis GR, Liu DJ, Vrieze S. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biol Psychiatry 2019; 85:946-955. [PMID: 30679032 PMCID: PMC6534468 DOI: 10.1016/j.biopsych.2018.11.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.
Collapse
Affiliation(s)
- David M Brazel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jordan M Hughey
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Valérie Turcot
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Xiaowei Zhan
- Department of Clinical Science, Center for Genetics of Host Defense, University of Texas Southwestern, Dallas, Texas
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chiara Batini
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - J Dylan Weissenkampen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - MengZhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel R Barnes
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yi-Ling Chou
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Jeff Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anke R Hammerschlag
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Chris Hsu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nhung Le
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Anu Loukola
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom; National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, United Kingdom
| | - Carl A Melbourne
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Beenish Qaiser
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yaming Shao
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heather Stringham
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, Head and Neck Surgery Center, University of Washington, Seattle, Washington; Department of Otolaryngology, Head and Neck Surgery Center, University of Washington, Seattle, Washington
| | - Charles B Eaton
- Department of Family Medicine, Brown University, Providence, Rhode Island
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | | | - Tinca J Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, Head and Neck Surgery Center, University of Washington, Seattle, Washington
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri
| | - David Schlessinger
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Andries R van der Leij
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael Boehnke
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Sean P David
- Department of Medicine, Stanford University, Stanford, California
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joanna M M Howson
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markku Laakso
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Guillaume Lettre
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Montreal, Quebec, Canada
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Clinical Genetics, VU University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Daniel Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Gonçalo R Abecasis
- Regeneron Pharmaceuticals, Tarrytown, New York; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
44
|
Regional fat depot masses are influenced by protein-coding gene variants. PLoS One 2019; 14:e0217644. [PMID: 31145760 PMCID: PMC6542527 DOI: 10.1371/journal.pone.0217644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Waist-to-hip ratio (WHR) is a prominent cardiometabolic risk factor that increases cardio-metabolic disease risk independently of BMI and for which multiple genetic loci have been identified. However, WHR is a relatively crude proxy for fat distribution and it does not capture all variation in fat distribution. We here present a study of the role of coding genetic variants on fat mass in 6 distinct regions of the body, based on dual-energy X-ray absorptiometry imaging on more than 17k participants. We find that the missense variant CCDC92S70C, previously associated with WHR, is associated specifically increased leg fat mass and reduced visceral but not subcutaneous central fat. The minor allele-carrying transcript of CCDC92 is constitutively more highly expressed in adipose tissue samples. In addition, we identify two coding variants in SPATA20 and UQCC1 that are associated with arm fat mass. SPATA20K422R is a low-frequency variant with a large effect on arm fat only, and UQCC1R51Q is a common variant reaching significance for arm but showing similar trends in other subcutaneous fat depots. Our findings support the notion that different fat compartments are regulated by distinct genetic factors.
Collapse
|
45
|
Weissenkampen JD, Jiang Y, Eckert S, Jiang B, Li B, Liu DJ. Methods for the Analysis and Interpretation for Rare Variants Associated with Complex Traits. CURRENT PROTOCOLS IN HUMAN GENETICS 2019; 101:e83. [PMID: 30849219 PMCID: PMC6455968 DOI: 10.1002/cphg.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the advent of Next Generation Sequencing (NGS) technologies, whole genome and whole exome DNA sequencing has become affordable for routine genetic studies. Coupled with improved genotyping arrays and genotype imputation methodologies, it is increasingly feasible to obtain rare genetic variant information in large datasets. Such datasets allow researchers to gain a more complete understanding of the genetic architecture of complex traits caused by rare variants. State-of-the-art statistical methods for the statistical genetics analysis of sequence-based association, including efficient algorithms for association analysis in biobank-scale datasets, gene-association tests, meta-analysis, fine mapping methods that integrate functional genomic dataset, and phenome-wide association studies (PheWAS), are reviewed here. These methods are expected to be highly useful for next generation statistical genetics analysis in the era of precision medicine. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| | - Scott Eckert
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Dajiang J. Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| |
Collapse
|
46
|
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, Hayward C, Heid IM, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Hung YJ, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jarvik GP, Jia Y, Jørgensen T, Jousilahti P, Justesen JM, Kahali B, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Kitajima H, Komulainen P, Kooner JS, Kovacs P, Krämer BK, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange LA, Langenberg C, Larson EB, Lee NR, Lee WJ, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Luan J, Lyytikäinen LP, MacGregor S, Mägi R, Männistö S, Marenne G, Marten J, Masca NGD, McCarthy MI, Meidtner K, Mihailov E, Moilanen L, Moitry M, Mook-Kanamori DO, Morgan A, Morris AP, Müller-Nurasyid M, Munroe PB, Narisu N, Nelson CP, Neville M, Ntalla I, O'Connell JR, Owen KR, Pedersen O, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Ewing A, Polasek O, Raitakari OT, Rasheed A, Raulerson CK, Rauramaa R, Reilly DF, Reiner AP, Ridker PM, Rivas MA, Robertson NR, Robino A, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe M, Sim X, Slater AJ, Small KS, Smith BH, Smith JA, Southam L, Spector TD, Speliotes EK, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swart KMA, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Torres M, Tsafantakis E, Tuomilehto J, Uitterlinden AG, Uusitupa M, van Duijn CM, Vanhala M, Varma R, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Wood AR, Wu Y, Yaghootkar H, Yao J, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zheng H, Zhou W, Zillikens MC, Rivadeneira F, Borecki IB, Pospisilik JA, Deloukas P, Frayling TM, Lettre G, Mohlke KL, Rotter JI, Kutalik Z, Hirschhorn JN, Cupples LA, Loos RJF, North KE, Lindgren CM. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet 2019; 51:452-469. [PMID: 30778226 PMCID: PMC6560635 DOI: 10.1038/s41588-018-0334-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valérie Turcot
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tõnu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sailaja Vedantam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tamuno Alfred
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy L Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Suthesh Sivapalaratnam
- Massachusetts General Hospital, Boston, MA, USA
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| | - Matthew Allison
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
- U1167-RID-AGE, Universite de Lille - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Zorayr Arzumanyan
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidemiologie et Sante des Populations (CESP), Villejuif, France
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amber A Burt
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - David S Crosslin
- Department of Biomedical Infomatics and Medical Education, University of Washington, Seattle, WA, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul I W de Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon de Denus
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Fotios Drenos
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Shuang Feng
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean Ferrieres
- Toulouse University School of Medicine, Toulouse, France
| | - Jose C Florez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ilaria Gandin
- Ilaria Gandin, Research Unit, AREA Science Park, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Oddgeir L Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Kees Hovingh
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Yao Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Torben Jørgensen
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | | | - Johanne M Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bratati Kahali
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health Research, Queens University Belfast, Belfast, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jaspal S Kooner
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Bernhard K Krämer
- University Medical Centre Mannheim, 5th Medical Department, University of Heidelberg, Mannheim, Germany
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Verge Genomics, San Fransico, CA, USA
| | - Leslie A Lange
- Division of Biomedical and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eric B Larson
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nanette R Lee
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Li-An Lin
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Karina Meidtner
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | | | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Morgan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universitat, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey R O'Connell
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Craig E Pennell
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM) and Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - James A Perry
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ailith Ewing
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Danish Saleheen
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Marcelo Segura-Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC, USA
- OmicSoft a QIAGEN Company, Cary, NC, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth K Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Betina H Thuesen
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - Anke Tönjes
- Center for Pediatric Research, Department for Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Mina Torres
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Dasman Diabetes Institute, Dasman, Kuwait
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Mauno Vanhala
- Central Finland Central Hospital, Jyvaskyla, Finland
- University of Eastern Finland, Kuopio, Finland
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas F Vogt
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, UK
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Feijie Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carol A Wang
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Jennifer Wessel
- Departments of Epidemiology & Medicine, Diabetes Translational Research Center, Fairbanks School of Public Health & School of Medicine, Indiana University, Indiana, IN, USA
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Laura M Yerges-Armstrong
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- GlaxoSmithKline, King of Prussia, PA, USA
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- University of Glasgow, Glasgow, UK
| | | | - Xiaowei Zhan
- Department of Clinical Sciences, Quantitative Biomedical Research Center, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihua Zhang
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Carola Zillikens
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guillaume Lettre
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - L Adrienne Cupples
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Chen H, Huffman JE, Brody JA, Wang C, Lee S, Li Z, Gogarten SM, Sofer T, Bielak LF, Bis JC, Blangero J, Bowler RP, Cade BE, Cho MH, Correa A, Curran JE, de Vries PS, Glahn DC, Guo X, Johnson AD, Kardia S, Kooperberg C, Lewis JP, Liu X, Mathias RA, Mitchell BD, O’Connell JR, Peyser PA, Post WS, Reiner AP, Rich SS, Rotter JI, Silverman EK, Smith JA, Vasan RS, Wilson JG, Yanek LR, Redline S, Smith NL, Boerwinkle E, Borecki IB, Cupples LA, Laurie CC, Morrison AC, Rice KM, Lin X, Rice KM, Lin X. Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies. Am J Hum Genet 2019; 104:260-274. [PMID: 30639324 DOI: 10.1016/j.ajhg.2018.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Statistics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
48
|
Zhang H, Wheeler W, Song L, Yu K. Proper joint analysis of summary association statistics requires the adjustment of heterogeneity in SNP coverage pattern. Brief Bioinform 2018; 19:1337-1343. [PMID: 28981575 DOI: 10.1093/bib/bbx072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 11/12/2022] Open
Abstract
As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately.
Collapse
Affiliation(s)
- Han Zhang
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA
| | | | - Lei Song
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., USA
| | - Kai Yu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA
| |
Collapse
|
49
|
Chien LC, Chiu YF. General retrospective mega-analysis framework for rare variant association tests. Genet Epidemiol 2018; 42:621-635. [PMID: 30188589 DOI: 10.1002/gepi.22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 11/09/2022]
Abstract
Here, we describe a retrospective mega-analysis framework for gene- or region-based multimarker rare variant association tests. Our proposed mega-analysis association tests allow investigators to combine longitudinal and cross-sectional family- and/or population-based studies. This framework can be applied to a continuous, categorical, or survival trait. In addition to autosomal variants, the tests can be applied to conduct mega-analyses on X-chromosome variants. Tests were built on study-specific region- or gene-level quasiscore statistics and, therefore, do not require estimates of effects of individual rare variants. We used the generalized estimating equation approach to account for complex multiple correlation structures between family members, repeated measurements, and genetic markers. While accounting for multilevel correlations and heterogeneity across studies, the test statistics were computationally efficient and feasible for large-scale sequencing studies. The retrospective aspect of association tests helps alleviate bias due to phenotype-related sampling and type I errors due to misspecification of phenotypic distribution. We evaluated our developed mega-analysis methods through comprehensive simulations with varying sample sizes, covariates, population stratification structures, and study designs across multiple studies. To illustrate application of the proposed framework, we conducted a mega-association analysis combining a longitudinal family study and a cross-sectional case-control study from Genetic Analysis Workshop 19.
Collapse
Affiliation(s)
- Li-Chu Chien
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yen-Feng Chiu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC
| |
Collapse
|
50
|
Jiang Y, Chen S, McGuire D, Chen F, Liu M, Iacono WG, Hewitt JK, Hokanson JE, Krauter K, Laakso M, Li KW, Lutz SM, McGue M, Pandit A, Zajac GJM, Boehnke M, Abecasis GR, Vrieze SI, Zhan X, Jiang B, Liu DJ. Proper conditional analysis in the presence of missing data: Application to large scale meta-analysis of tobacco use phenotypes. PLoS Genet 2018; 14:e1007452. [PMID: 30016313 PMCID: PMC6063450 DOI: 10.1371/journal.pgen.1007452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 07/27/2018] [Accepted: 05/25/2018] [Indexed: 11/19/2022] Open
Abstract
Meta-analysis of genetic association studies increases sample size and the power for mapping complex traits. Existing methods are mostly developed for datasets without missing values, i.e. the summary association statistics are measured for all variants in contributing studies. In practice, genotype imputation is not always effective. This may be the case when targeted genotyping/sequencing assays are used or when the un-typed genetic variant is rare. Therefore, contributed summary statistics often contain missing values. Existing methods for imputing missing summary association statistics and using imputed values in meta-analysis, approximate conditional analysis, or simple strategies such as complete case analysis all have theoretical limitations. Applying these approaches can bias genetic effect estimates and lead to seriously inflated type-I or type-II errors in conditional analysis, which is a critical tool for identifying independently associated variants. To address this challenge and complement imputation methods, we developed a method to combine summary statistics across participating studies and consistently estimate joint effects, even when the contributed summary statistics contain large amounts of missing values. Based on this estimator, we proposed a score statistic called PCBS (partial correlation based score statistic) for conditional analysis of single-variant and gene-level associations. Through extensive analysis of simulated and real data, we showed that the new method produces well-calibrated type-I errors and is substantially more powerful than existing approaches. We applied the proposed approach to one of the largest meta-analyses to date for the cigarettes-per-day phenotype. Using the new method, we identified multiple novel independently associated variants at known loci for tobacco use, which were otherwise missed by alternative methods. Together, the phenotypic variance explained by these variants was 1.1%, improving that of previously reported associations by 71%. These findings illustrate the extent of locus allelic heterogeneity and can help pinpoint causal variants. It is of great interest to estimate the joint effects of multiple variants from large scale meta-analyses, in order to fine-map causal variants and understand the genetic architecture for complex traits. The summary association statistics from participating studies in a meta-analysis often contain missing values at some variant sites, as the imputation methods may not work well and the variants with low imputation quality will be filtered out. Missingness is especially likely when the underlying genetic variant is rare or the participating studies use targeted genotyping array that is not suitable for imputation. Existing methods for conditional meta-analysis do not properly handle missing data, and can incorrectly estimate correlations between score statistics. As a result, they can produce highly inflated type-I errors for conditional analysis, which will result in overestimated phenotypic variance explained and incorrect identification of causal variants. We systematically evaluated this bias and proposed a novel partial correlation based score statistic. The new statistic has valid type-I errors for conditional analysis and much higher power than the existing methods, even when the contributed summary statistics contain a large fraction of missing values. We expect this method to be highly useful in the sequencing age for complex trait genetics.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sai Chen
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel McGuire
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John K. Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kenneth Krauter
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kevin W. Li
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharon M. Lutz
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anita Pandit
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory J. M. Zajac
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Boehnke
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Goncalo R. Abecasis
- Center of Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaowei Zhan
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (DJL); (BJ)
| | - Dajiang J. Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (DJL); (BJ)
| |
Collapse
|