1
|
Johnson SD, Pilli N, Yu J, Knight LA, Kane MA, Byrareddy SN. Dual role for microbial short-chain fatty acids in modifying SIV disease trajectory following anti-α4β7 antibody administration. Ann Med 2024; 56:2315224. [PMID: 38353210 PMCID: PMC10868432 DOI: 10.1080/07853890.2024.2315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4β7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4β7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS To determine whether the microbiome contributes to gut homeostasis after anti-α4β7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS Our results suggest that anti-α4β7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS Taken together, these data demonstrate the therapeutic advantages of anti-α4β7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4β7 antibody may depend on microbiome composition and SCFA generation.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pathology and Microbiology, University of NE Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Deng J, Shu H, Wang L, Zou X. Modeling virus-stimulated proliferation of CD4 + T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics. Math Biosci 2024; 377:109302. [PMID: 39276975 DOI: 10.1016/j.mbs.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Human immunodeficiency virus (HIV) can persist in infected individuals despite prolonged antiretroviral therapy and it may spread through two modes: virus-to-cell and cell-to-cell transmissions. Understanding viral infection dynamics is pivotal for elucidating HIV pathogenesis. In this study, we incorporate the loss term of virions, and both virus-to-cell and cell-to-cell infection modes into a within-host HIV model, which also takes into consideration the proliferation of healthy target cells stimulated by free viruses. By constructing suitable Lyapunov function and applying geometric methods, we establish global stability results of the infection free equilibrium and the infection persistent equilibrium, respectively. Our findings highlight the crucial role of the basic reproduction number in the threshold dynamics. Moreover, we use the loss rate of virions as the bifurcation parameter to investigate stability switches of the positive equilibrium, local Hopf bifurcation, and its global continuation. Numerical simulations validate our theoretical results, revealing rich viral dynamics including backward bifurcation, saddle-node bifurcation, and bistability phenomenon in the sense that the infection free equilibrium and a limit cycle are both locally asymptotically stable. These insights contribute to a deeper understanding of HIV dynamics and inform the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Deng
- School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongying Shu
- School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Lin Wang
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Xingfu Zou
- Department of Mathematics, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
3
|
Ladinsky MS, Zhu L, Ullah I, Uchil PD, Kumar P, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 virions trapped by fusion inhibitors to host cells in infected tissues. J Virol 2024:e0143224. [PMID: 39475277 DOI: 10.1128/jvi.01432-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide. Although budding virions can be readily imaged by electron tomography (ET) of HIV-1-infected tissues and cultured cells, virions that are fusing (attached to host cells via pre-hairpin intermediates) are not normally visualized, perhaps because the process of membrane fusion is too fast to capture by ET. To image virions during fusion, we used fusion inhibitors to prevent downstream conformational changes in Env that lead to membrane fusion, thereby trapping HIV-1 virions linked to target cells by pre-hairpin intermediates. ET of HIV-1 pseudovirions bound to CD4+/CCR5+ TZM-bl cells revealed presumptive pre-hairpin intermediates as 2-4 narrow spokes linking a virion to the cell surface. To extend these results to a more physiological setting, we used ET to image tissues and organs derived from humanized bone marrow/liver/thymus mice infected with HIV-1 and then treated with CPT31, a high-affinity D-peptide fusion inhibitor linked to cholesterol. Trapped HIV-1 virions were found in all tissues studied (small intestine, mesenteric lymph nodes, spleen, and bone marrow), and spokes representing pre-hairpin intermediates linking trapped virions to cell surfaces were similar in structure and number to those seen in the previous pseudovirus and cultured cell ET study.IMPORTANCETrapped and untrapped HIV-1 virions, both mature and immature, were distinguished by localizing spokes via 3D tomographic reconstructions of HIV-1 infected and fusion-inhibitor-treated tissues of humanized mice. The findings of trapped HIV-1 virions in all tissues examined demonstrate a wide distribution of the CPT31 inhibitor, a desirable property for a potential therapeutic. In addition, the presence of virions trapped by spokes, particularly in vascular endothelial cells, demonstrates that the fusion inhibitors can be used as markers for potential HIV-1-target cells within tissues, facilitating the mapping of HIV-1 target cells within the complex cellular milieu of infected tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
4
|
Morrocchi E, Pascucci GR, Cotugno N, Pighi C, Dominguez-Rodriguez S, Petrara MR, Tagarro A, Kuhn L, Cotton MF, Otwombe K, Lain MG, Vaz P, Barnabas SL, Spyer MJ, Lopez E, Fernández-Luis S, Nhampossa T, Maiga AI, Dolo O, De Rossi A, Rojo P, Giaquinto C, Lichterfeld M, Violari A, Smit T, Behuhuma O, Klein N, De Armas L, Pahwa S, Rossi P, Palma P. Early inflammation as a footprint of increased mortality risk in infants living with HIV from three African countries. Sci Rep 2024; 14:25792. [PMID: 39468166 PMCID: PMC11519903 DOI: 10.1038/s41598-024-74066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
In this work our aim was to identify early biomarkers in plasma samples associated with mortality in children with perinatal HIV treated early in life, to potentially inform early intervention targeting this vulnerable group. 20/215 children (9.3%) with perinatal HIV, enrolled within 3 months of age died prematurely within the first year of the study, despite early ART initiation. Using a propensity score, we selected 40 alive study participants having similar clinical and virological records compared to the deceased group. 13 HIV unexposed (HU) healthy children were additionally used as controls. Baseline plasma samples were analyzed using a targeted proteomic approach, and to assess pathogen-associated and damage-associated molecular patterns (PAMPs, DAMPs) levels. Data from deceased participants were compared to both control groups, with multivariate logistic regression models used to evaluate the association between mortality and plasma proteins. We developed a machine learning model to predict mortality risk, finding that IL-6 and CXCL11 not only were higher in deceased children than Matched-children with HIV (p < 0.001 and p = 0.0034) but also predictive of mortality (accuracy of 77%); levels of PAMPs were higher in deceased children (p = 0.0016). Thus, measuring early inflammatory biomarkers, particularly IL-6, could help mortality risk prediction and potentially guide targeted interventions.
Collapse
Affiliation(s)
- Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Giuseppe R Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Dominguez-Rodriguez
- Instituto de Investigación Sanitaria Hospital 12 Octubre, Madrid, Spain
- Pediatrics Research Group, Universidad Europea de Madrid, Madrid, Spain
| | | | - Alfredo Tagarro
- Instituto de Investigación Sanitaria Hospital 12 Octubre, Madrid, Spain
- Pediatrics Department, Hospital Universitario Infanta Sofía, Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), San Sebastián de los Reyes, Madrid, Spain
- Pediatrics Research Group, Universidad Europea de Madrid, Madrid, Spain
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark F Cotton
- Family Centre for Research With Ubuntu, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kennedy Otwombe
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria G Lain
- Fundação Ariel Glaser contra o SIDA Pediátrico, Maputo, Mozambique
| | - Paula Vaz
- Fundação Ariel Glaser contra o SIDA Pediátrico, Maputo, Mozambique
| | - Shaun L Barnabas
- Family Centre for Research With Ubuntu, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Moira J Spyer
- University College London, Great Ormond Street Institute for Child Health, Infection, Immunity and Inflammation, London, UK
| | - Elisa Lopez
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sheila Fernández-Luis
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Almoustapha I Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Oumar Dolo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anita De Rossi
- Section of Oncology and Immunology, DiSCOG, University of Padova, Padova, Italy
- Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Pablo Rojo
- Universidad Computense de Madrid, Istituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Carlo Giaquinto
- Department for Women's and Children's Health, University of Padova, Via Giustiniani, 3 - 35128, Padua, Italy
- Penta - Child Health Research, Corso Stati Uniti, 4 - 35127, Padua, Italy
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Avy Violari
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Theresa Smit
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Osee Behuhuma
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Nigel Klein
- Africa Health Research Institute (AHRI), Durban, South Africa
- Great Ormond Street Institute for Child Health (GOS ICH), University College London (UCL), London, UK
| | - Lesley De Armas
- Department of Microbiology and Immunology, Miami Center for AIDS Research, Miller School of Medicine, University of Miami, Miami, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, Miami Center for AIDS Research, Miller School of Medicine, University of Miami, Miami, USA
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
5
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Brooks K, Nelson CE, Aguilar C, Hoang TN, Ortiz AM, Langner CA, Yee DS, Flynn JK, Vrba S, Laidlaw E, Vannella KM, Grazioli A, Saharia KK, Purcell M, Singireddy S, Wu J, Stankiewicz J, Chertow DS, Sereti I, Paiardini M, Hickman HD, Via LE, Barber DL, Brenchley JM. SARS-CoV-2 infection perturbs the gastrointestinal tract and induces modest microbial translocation across the intestinal barrier. J Virol 2024; 98:e0128824. [PMID: 39264207 PMCID: PMC11495055 DOI: 10.1128/jvi.01288-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.
Collapse
Affiliation(s)
- Kelsie Brooks
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine E. Nelson
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy N. Hoang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra M. Ortiz
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte A. Langner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra S. Yee
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob K. Flynn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophia Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M. Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Alison Grazioli
- Department of Medicine and Program in Trauma, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kapil K. Saharia
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madeleine Purcell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shreya Singireddy
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Wu
- Department of Radiology and Imagining Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Stankiewicz
- Department of Pulmonary and Critical Care Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel S. Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E. Via
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Tuberculosis Imaging Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Ebrahimi R, Masouri MM, Salehi Amniyeh Khozani AA, Ramadhan Hussein D, Nejadghaderi SA. Safety and efficacy of fecal microbiota transplantation for viral diseases: A systematic review of clinical trials. PLoS One 2024; 19:e0311731. [PMID: 39432486 PMCID: PMC11493255 DOI: 10.1371/journal.pone.0311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Gut microbiota play important roles in several diseases like viral infections. In this systematic review, our objective was to assess the efficacy and safety of fecal microbiota transplantation (FMT) in treating various viral diseases. METHODS We conducted searches on databases including PubMed, Web of Science, Scopus, and Google Scholar until November 2023. Clinical trials reported outcomes related to safety of FMT or its efficacy in patients with viral diseases were included. We excluded other types of studies that enrolled healthy individuals or patients with other disorders and did not use FMT. The assessment of bias risk was conducted using the National Institutes of Health (NIH) study quality evaluation tool. RESULTS Eight studies with total 196 participants were included. Viral diseases were human immunodeficiency virus (HIV), hepatitis B, COVID-19 and Clostridioides difficile coinfection, and cytomegalovirus colitis. In hepatitis B cases, HBeAg clearance was significant in those received FMT (p<0.01), while it was not significant in another one (p = 0.19). A clinical response was noted in 37.5% of patients with cytomegalovirus colitis, with an equal percentage achieving clinical remission post-FMT. There was a significant reduction in Clostridioides difficile relapse rate in FMT group than controls in coinfection of Clostridioides difficile and COVID-19 (2.17% vs. 42.5%, p<0.05). In patients with HIV, partial engraftment of the donor microbiome and increases in alpha diversity were observed after FMT. No severe adverse events were reported. Most studies had fair or good qualities. CONCLUSIONS Our findings revealed FMT as a promising, safe treatment for some viral diseases. It improved viral clearance, clinical outcomes, and inflammation. However, the varying responses and small sample sizes call for more trials on FMT in viral diseases.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Kabakibo TS, Arnold E, Padhan K, Lemieux A, Ortega-Delgado GG, Routy JP, Shoukry N, Dubé M, Kaufmann DE. Artificial antigen-presenting cell system reveals CD28's role in modulating T cell functions during human immunodeficiency virus infection. iScience 2024; 27:110947. [PMID: 39381752 PMCID: PMC11460474 DOI: 10.1016/j.isci.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
T cell immune dysfunction is a prominent feature of chronic HIV infection. To evaluate non-specific dysfunction, a method involving both generic activation and T cell receptor (TCR) stimulation is necessary. We created a tunable artificial antigen-presenting cell (aAPC) system. This system consists of lipid bilayers on cytometry-compatible silica microbeads (5 μm). When only anti-CD3 is incorporated, T cell activation is limited. Introducing anti-CD28 agonists significantly elevates the cytokine expression and upregulation of activation-induced markers. CD28 co-stimulation modulates the response profile, preferentially promoting IL-2 expression relative to other cytokines. aAPCs-stimulated CD4+ and CD8+ T cells from untreated HIV-infected individuals exhibit altered effector functions and diminished CD28 dependence. These functions are skewed toward TNFα, IFNγ and CD107a, with reduced IL-2. Antiretroviral therapy partially normalizes this distorted profile in CD4+ T cells, but not in CD8+ T cells. Our findings show T cell intrinsic biases that may contribute to persistent systemic T cell dysfunction associated with HIV pathogenesis.
Collapse
Affiliation(s)
- Tayma Shaaban Kabakibo
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Edwige Arnold
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Kartika Padhan
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Audrée Lemieux
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Naglaa Shoukry
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
10
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
11
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
12
|
Ceriani C, Beisner B, Crane M, Cohen J, Moore IN, Kulpa DA, Hahn BH, Silvestri G. SIV infection in sooty mangabeys does not impact survival but changes the relative frequency of the main cause of death. mBio 2024; 15:e0163924. [PMID: 39258922 PMCID: PMC11481876 DOI: 10.1128/mbio.01639-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Sooty mangabeys (SMs) are natural hosts of simian immunodeficiency virus (SIV) and do not progress to AIDS despite high viral replication. The main factors involved in the benign nature of this infection are (i) low level of immune activation, (ii) relative preservation of specific CD4+ T-cell subsets from direct virus infection, and (iii) absence of microbial translocation from the gut to the systemic circulation. To determine the impact of SIV infection on underlying cause of death, we retrospectively analyzed data from 307 SMs (219 SIV infected and 88 uninfected) housed at the Emory Primate Center that have died between 1986 and 2022. Interestingly, we found that SIV-infected SMs live ~4 years longer than SIV-uninfected SMs, although this result is hard to interpret due to differences in how animals were housed and assigned to specific experimental studies. While the causes of death were not different between SIV-infected and uninfected SMs that died before age 15 (i.e., adult), we found significant differences in the relative frequency of specific causes of death in the elderly population (≥15 years old). Specifically, we observed that SIV-infected SMs were more likely to die from infections but less likely to die from cardiovascular disease (and diabetes in female animals) as compared to uninfected SMs. While confirming the non-pathogenic nature of SIV infection in SMs, these data reveal, for the first time, a qualitative impact of SIV infection on the host physiology that induces a significant change in the mortality pattern in these natural SIV hosts. IMPORTANCE In this study, we demonstrate, for the first time, that the natural, non-pathogenic SIV infection of the African monkey SM has a clinical impact which is revealed in terms of main causes of mortality, which are significantly different in the infected animals as compared to the uninfected ones. Indeed, SIV-infected SMs are at higher risk of dying of infectious diseases but appear to be somewhat protected from cardiovascular causes of death. The identification of a specific pattern of mortality associated with the infection suggests that the host-pathogen interaction between SIV and the SM immune system, while non-pathogenic in nature, has a detectable impact on the overall health status of the animals.
Collapse
Affiliation(s)
- Cristina Ceriani
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Brianne Beisner
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Maria Crane
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Joyce Cohen
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ian N. Moore
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Sharma M, Nag M, Del Prete GQ. Minimally Modified HIV-1 Infection of Macaques: Development, Utility, and Limitations of Current Models. Viruses 2024; 16:1618. [PMID: 39459950 PMCID: PMC11512399 DOI: 10.3390/v16101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Nonhuman primate (NHP) studies that utilize simian immunodeficiency virus (SIV) to model human immunodeficiency virus (HIV-1) infection have proven to be powerful, highly informative research tools. However, there are substantial differences between SIV and HIV-1. Accordingly, there are numerous research questions for which SIV-based models are not well suited, including studies of certain aspects of basic HIV-1 biology, and pre-clinical evaluations of many proposed HIV-1 treatment, prevention, and vaccination strategies. To overcome these limitations of NHP models of HIV-1 infection, several groups have pursued the derivation of a minimally modified HIV-1 (mmHIV-1) capable of establishing pathogenic infection in macaques that authentically recapitulates key features of HIV-1 in humans. These efforts have focused on three complementary objectives: (1) engineering HIV-1 to circumvent species-specific cellular restriction factors that otherwise potently inhibit HIV-1 in macaques, (2) introduction of a C chemokine receptor type 5 (CCR5)-tropic envelope, ideally that can efficiently engage macaque CD4, and (3) correction of gene expression defects inadvertently introduced during viral genome manipulations. While some progress has been made toward development of mmHIV-1 variants for use in each of the three macaque species (pigtail, cynomolgus, and rhesus), model development progress has been most promising in pigtail macaques (PTMs), which do not express an HIV-1-restricting tripartite motif-containing protein 5 α (TRIM5α). In our work, we have derived a CCR5-tropic mmHIV-1 clone designated stHIV-A19 that comprises 94% HIV-1 genome sequence and replicates to high acute-phase titers in PTMs. In animals treated with a cell-depleting CD8α antibody at the time of infection, stHIV-A19 maintains chronically elevated plasma viral loads with progressive CD4+ T-cell loss and the development of acquired immune-deficiency syndrome (AIDS)-defining clinical endpoints. However, in the absence of CD8α+ cell depletion, no mmHIV-1 model has yet displayed high levels of chronic viremia or AIDS-like pathogenesis. Here, we review mmHIV-1 development approaches, the phenotypes, features, limitations, and potential utility of currently available mmHIV-1s, and propose future directions to further advance these models.
Collapse
Affiliation(s)
| | | | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (M.S.); (M.N.)
| |
Collapse
|
14
|
Takahashi N, Eltalkhawy YM, Nasu K, Abdelnaser RA, Monde K, Habash SA, Nasser H, Hiyoshi M, Ishimoto T, Suzu S. IL-10 induces activated phenotypes of monocytes observed in virally-suppressed HIV-1-infected individuals. Biochem Biophys Res Commun 2024; 729:150342. [PMID: 38981402 DOI: 10.1016/j.bbrc.2024.150342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Despite viral suppression by effective combined antiretroviral therapy, HIV-1-infected individuals have an increased risk of non-AIDS-related overall morbidity, which is due to the persistent chronic inflammation exemplified by the activation of monocytes, such as increased CD16high subset, and elevated plasma level of soluble CD163 (sCD163) and soluble CD14 (sCD14). Here, we show that IL-10, which has been recognized as anti-inflammatory, induces these activated phenotypes of monocytes in vitro. IL-10 increased CD16high monocytes, which was due to the upregulation of CD16 mRNA expression and completely canceled by an inhibitor of Stat3. Moreover, IL-10 increased the production of sCD163 and sCD14 by monocytes, which was consistent with the upregulation of cell surface expression of CD163 and CD14, and mRNA expression of CD163. However, unlike the IL-10-indeuced upregulation of CD16, that of CD14 was minimally affected by the Stat3 inhibitor. Furthermore, the IL-10-induced upregulation of CD163 protein and mRNA was partially inhibited by the Stat3 inhibitor, but completely canceled by an inhibitor of AMPK, an upstream kinase of Stat3 and PI3K/Akt/mTORC1 pathways. In this study, we also found that HIV-1 pathogenic protein Nef, which is known to persist in plasma of virally-suppressed individuals, induced IL-10 production in monocyte-derived macrophages. Our results may suggest that IL-10, which is inducible by Nef-activated macrophages, is one of drivers for activated phenotypes of monocytes in virally-suppressed individuals, and that IL-10 induces the increased CD16high monocytes and elevated level of sCD163 and sCD14 through the activation of different signaling pathways.
Collapse
MESH Headings
- Humans
- Interleukin-10/metabolism
- Monocytes/metabolism
- Monocytes/immunology
- HIV Infections/immunology
- HIV Infections/virology
- HIV Infections/metabolism
- HIV Infections/blood
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- HIV-1
- Receptors, IgG/metabolism
- Lipopolysaccharide Receptors/metabolism
- STAT3 Transcription Factor/metabolism
- Phenotype
- Up-Regulation
- Cells, Cultured
Collapse
Affiliation(s)
- Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kanako Nasu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Randa A Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sara A Habash
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masateru Hiyoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Bayón-Gil Á, Hernández I, Dalmau J, Nieto JC, Urrea V, Garrido-Sanz L, Caratú G, García-Guerrero MC, Gálvez C, Salgado M, Erkizia I, Laguía F, Resa-Infante P, Massanella M, Tonda R, Morata J, Hong KY, Koshy J, Goldman AR, Giron L, Abdel-Mohsen M, Heyn H, Martinez-Picado J, Puertas MC. Host genetic and immune factors drive evasion of HIV-1 pathogenesis in viremic non-progressors. MED 2024:S2666-6340(24)00374-X. [PMID: 39413785 DOI: 10.1016/j.medj.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Viremic non-progressors (VNPs) represent an exceptional and uncommon subset of people with HIV-1, characterized by the remarkable preservation of normal CD4+ T cell counts despite uncontrolled viral replication-a trait reminiscent of natural hosts of simian immunodeficiency virus. The mechanisms orchestrating evasion from HIV-1 pathogenesis in human VNPs remain elusive, primarily due to the absence of integrative studies. METHODS We implemented a novel single-cell and multiomics approach to comprehensively characterize viral, genomic, transcriptomic, and metabolomic factors driving this exceedingly rare disease phenotype in 16 VNPs and 29 HIV+ progressors. FINDINGS Genetic predisposition to the VNP phenotype was evidenced by a higher prevalence of CCR5Δ32 heterozygosity, which was associated with lower levels of CCR5 expression and a lower frequency of infected cells in peripheral circulation. We also observed reduced levels of plasma markers of intestinal disruption and attenuated interferon responses in VNPs. These factors potentially drive the other phenotypic traits of immune preservation in this population, including the unaltered tryptophan metabolic profile, reduced activation of cytotoxic lymphocytes, and reduced bystander CD4+ T cell apoptosis. CONCLUSIONS In summary, our comprehensive analysis identified intricate factors collectively associated with the unique immunovirological equilibrium in VNPs, shedding light on potential avenues for therapeutic exploration in managing HIV pathogenesis. FUNDING The work was supported by funding from the Spanish Ministry of Science and Innovation and the National Institutes of Health (NIH).
Collapse
Affiliation(s)
| | - Inmaculada Hernández
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | - Juan C Nieto
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | | | - Ginevra Caratú
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | | | - María Salgado
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Patricia Resa-Infante
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain
| | - Marta Massanella
- IrsiCaixa, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Tonda
- CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Jordi Morata
- CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | - Jane Koshy
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Holger Heyn
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Flynn JK, Ortiz AM, Vujkovic-Cvijin I, Welles HC, Simpson J, Castello Casta FM, Yee DS, Rahmberg AR, Brooks KL, De Leon M, Knodel S, Birse K, Noel-Romas L, Deewan A, Belkaid Y, Burgener A, Brenchley JM. Translocating bacteria in SIV infection are not stochastic and preferentially express cytosine methyltransferases. Mucosal Immunol 2024; 17:1089-1101. [PMID: 39089468 PMCID: PMC11471372 DOI: 10.1016/j.mucimm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Microbial translocation is a significant contributor to chronic inflammation in people living with HIV (PLWH) and is associated with increased mortality and morbidity in individuals treated for long periods with antiretrovirals. The use of therapeutics to treat microbial translocation has yielded mixed effects, in part, because the species and mechanisms contributing to translocation in HIV remain incompletely characterized. To characterize translocating bacteria, we cultured translocators from chronically SIV-infected rhesus macaques. Proteomic profiling of these bacteria identified cytosine-specific methyltransferases as a common feature and therefore, a potential driver of translocation. Treatment of translocating bacteria with the cytosine methyltransferase inhibitor decitabine significantly impaired growth for several species in vitro. In rhesus macaques, oral treatment with decitabine led to some transient decreases in translocator taxa in the gut microbiome. These data provide mechanistic insight into bacterial translocation in lentiviral infection and explore a novel therapeutic intervention that may improve the prognosis of PLWH.
Collapse
Affiliation(s)
- Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Hugh C Welles
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | | | - Debra S Yee
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kelsie L Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Marlon De Leon
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Samantha Knodel
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Laura Noel-Romas
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Anshu Deewan
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA; Metaorganism Unit, Immunology Department, Institut Pasteur, 75724 Paris, France
| | - Adam Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB, Canada; Department of Medicine Solna, Karolinksa Institutet, Stockholm, Sweden
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Wang Q, Shan L. Role of the CARD8 inflammasome in HIV pathogenesis. CELL INSIGHT 2024; 3:100193. [PMID: 39183739 PMCID: PMC11342869 DOI: 10.1016/j.cellin.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Human immunodeficiency virus (HIV) continues to be a significant global health challenge despite decades of research and advances in treatment. Substantial gaps in our understanding of the mechanisms of HIV pathogenesis and the host immune responses still exist. The interaction between HIV and these immune responses is pivotal in the disease progression to acquired immunodeficiency syndrome (AIDS). Recently, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome has emerged as a crucial factor in orchestrating innate immune responses to HIV infection and exerting a substantial impact on viral pathogenesis. CARD8 restricts viral replication by detecting the activity of HIV protease. Conversely, it also contributes to the depletion of CD4+ T cells, a key feature of disease progression towards AIDS. The purpose of this review is to summarize the role of the CARD8 inflammasome in HIV pathogenesis, delving into its mechanisms of action and potential implications for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Qiankun Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
18
|
Brochu HN, Smith E, Jeong S, Carlson M, Hansen SG, Tisoncik-Go J, Law L, Picker LJ, Gale M, Peng X. Pre-challenge gut microbial signature predicts RhCMV/SIV vaccine efficacy in rhesus macaques. Microbiol Spectr 2024:e0128524. [PMID: 39345211 DOI: 10.1128/spectrum.01285-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Rhesus cytomegalovirus expressing simian immunodeficiency virus (RhCMV/SIV) vaccines protect ~59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is unknown. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here, we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post-challenge and were profiled using 16S rRNA based microbiome analysis. We identified ~2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, by using newly developed compositional data analysis techniques, we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.IMPORTANCEThe human immunodeficiency virus (HIV) has infected millions of people worldwide. Unfortunately, still there is no vaccine that can prevent or treat HIV infection. A promising pre-clinical HIV vaccine based on rhesus cytomegalovirus (RhCMV) expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) provides sustained, durable protection against SIV challenge in ~59% of vaccinated rhesus macaques. There is an urgent need to understand the cause of this protection vs non-protection outcome. In this study, we profiled the gut microbiomes of 45 RhCMV/SIV vaccinated rhesus macaques and identified gut microbial signatures that were predictive of RhCMV/SIV vaccination groups and vaccine protection outcomes. These vaccine protection-associated microbial features were significantly correlated with early vaccine-induced host immune signatures in whole blood from the same animals. These findings show that the gut microbiome may be involved in RhCMV/SIV vaccine-induced protection, warranting further research into the impact of the gut microbiome in human vaccine trials.
Collapse
Affiliation(s)
- Hayden N Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Sangmi Jeong
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle Carlson
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Robinson-Papp J, Mehta M, Mueller BR, Neupane N, Zhao Z, Cedillo G, Coyle K, Campbell M, George MC, Benn EKT, Lee G, Semler J. Gastrointestinal Dysmotility, Autonomic Function and Small Intestinal Bacterial Overgrowth Among People with Well-Controlled HIV. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24314370. [PMID: 39399020 PMCID: PMC11469347 DOI: 10.1101/2024.09.25.24314370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Introduction Gastrointestinal dysfunction, including microbiome changes and increased translocation across a compromised gastrointestinal barrier plays a role in the chronic inflammation experienced by people with HIV (PWH). It is unknown whether autonomic neuropathy (AN) may contribute to these mechanisms by altering gastrointestinal motility. Methods This is a cross-sectional study of 100 PWH and 89 controls. All participants underwent assessment of gastrointestinal transit times using a wireless motility capsule (WMC). All PWH and a subset of controls also underwent: a standardized battery of autonomic function tests summarized as the Modified Composite Autonomic Severity Score (MCASS) and its adrenergic, cardiovagal and sudomotor sub-scores, breath testing for small intestinal bacterial overgrowth (SIBO), and the Patient Assessment of Upper Gastrointestinal Disorders Symptoms (PAGI-SYM) and Composite Autonomic Symptom Score 31 (COMPASS-31) questionnaires. Results PWH displayed shorter gastric emptying times (GET) and longer small bowel and colonic transit times (SBTT, CTT) compared to controls. Among PWH, GET was associated with PAGI-SYM score. The MCASS and its sudomotor sub-score (reflecting peripheral sympathetic function) were associated with SBTT but not GET or CTT. PWH with prolonged SBTT (>6h) were more likely to have SIBO. Conclusion Gastrointestinal motility is altered in PWH. This study provides preliminary evidence that changes in autonomic function may influence SBTT in PWH and that prolonged SBTT may contribute to the development of SIBO. Future studies are needed to more fully elucidate the pathophysiologic links between HIV-associated AN, altered gastrointestinal motility, the gastrointestinal microbiome, chronic inflammation, and resulting morbidity and mortality among PWH.
Collapse
Affiliation(s)
- Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Mitali Mehta
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Bridget R. Mueller
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Niyati Neupane
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Zhan Zhao
- Icahn School of Medicine at Mount Sinai, Department of Population Health Science and Policy; New York City, NY, USA
| | - Gabriela Cedillo
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Kaitlyn Coyle
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Maya Campbell
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Mary Catherine George
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | - Emma KT Benn
- Icahn School of Medicine at Mount Sinai, Department of Population Health Science and Policy; New York City, NY, USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, Department of Neurology; New York City, NY, USA
| | | |
Collapse
|
20
|
Giron LB, Pasternak AO, Abdel-Mohsen M. Soluble markers of viral rebound and post-treatment HIV control. Curr Opin HIV AIDS 2024:01222929-990000000-00114. [PMID: 39392413 DOI: 10.1097/coh.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW We focus on the different classes of biological molecules measurable in easily accessible bodily fluids that have the potential to serve as biomarkers for the HIV post-treatment controller (PTC) phenotype and/or the timing of viral rebound after stopping antiretroviral therapy (ART). RECENT FINDINGS Various viral components and host factors measurable in body fluids can play crucial roles in understanding and predicting the PTC phenotype. We review recent findings linking viral components, the quantitative and qualitative features of antibodies (including autologous HIV-specific antibodies), markers of inflammation and tissue damage, other host proteins (including hormones such as sex hormones), as well as metabolites, extracellular vesicles, and cell-free DNA to HIV control post-ART interruption. Several of these molecules can or have the potential to predict the time and probability of viral rebound after stopping ART and are biologically active molecules that can directly or indirectly (by modulating immune pressures) impact the size and activity of HIV reservoirs during and post-ART interruption. SUMMARY A comprehensive model combining multiple markers is needed to predict the PTC phenotype. This model can be leveraged to predict and understand the PTC phenotype, which can guide novel curative interventions to replicate this phenotype in post-treatment non-controllers.
Collapse
Affiliation(s)
| | - Alexander O Pasternak
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam, Netherlands
| | | |
Collapse
|
21
|
Yin L, Venturi GM, Barfield R, Fischer BM, Kim-Chang JJ, Chan C, De Paris K, Goodenow MM, Sleasman JW. Maternal immunity shapes biomarkers of germinal center development in HIV-exposed uninfected infants. Front Immunol 2024; 15:1443886. [PMID: 39328414 PMCID: PMC11424517 DOI: 10.3389/fimmu.2024.1443886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction HIV-exposed uninfected (HEU) infants exhibit elevated pro-inflammatory biomarkers that persist after birth. However, comprehensive assessments of bioprofiles associated with immune regulation and development in pregnant women with HIV (PWH) and HEU infants has not been performed. Maternal immunity in PWH may be imprinted on their HEU newborns, altering immune bioprofiles during early immune development. Methods Cryopreserved paired plasma samples from 46 HEU infants and their mothers enrolled in PACTG 316, a clinical trial to prevent perinatal HIV-1 transmission were analyzed. PWH received antiretrovirals (ARV) and had either fully suppressed or unsuppressed viral replication. Maternal blood samples obtained during labor and infant samples at birth and 6 months were measured for 21 biomarkers associated with germinal centers (GC), macrophage activation, T-cell activation, interferon gamma (IFN-γ)-inducible chemokines, and immune regulatory cytokines using Mesoscale assays. Pregnant women without HIV (PWOH) and their HIV unexposed uninfected (HUU) newborns and non-pregnant women without HIV (NPWOH) served as reference groups. Linear regression analysis fitted for comparison among groups and adjusted for covariant(s) along with principal component analysis performed to assess differences among groups. Results Compared with NPWOH, PWOH displayed higher levels of GC, macrophage, and regulatory biomarkers. PWH compared to PWOH displayed elevated GC, T cell activation, and IFN-γ-inducible chemokines biomarkers at delivery. Similar to their mothers, HEU infants had elevated GC, macrophage, and IFN-γ-inducible chemokines, as well as elevated anti-inflammatory cytokines, IL-10 and IL-1RA. Across all mother/newborn dyads, multiple biomarkers positively correlated, providing further evidence that maternal inflammation imprints on newborn bioprofiles. By 6 months, many HEU biomarkers normalized to levels similar to HUU infants, but some GC and inflammatory biomarkers remained perturbed. Bioprofiles in PWH and HEU infants were similar regardless of the extent of maternal viral suppression by ARV. Conclusions GC immune pathways are perturbed in HEU newborns, but immune regulatory responses down regulate inflammation during early infancy, indicating a transient inflammatory effect. However, several GC biomarkers that may alter immune development remain perturbed.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Guglielmo M. Venturi
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Bernard M. Fischer
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Julie J. Kim-Chang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute of Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maureen M. Goodenow
- Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - John W. Sleasman
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
22
|
Ferrer P, López L, Pérez J, Cabello N, Núñez MJ, Sagastagoitia I, Cotarelo M, de Isla LP, Estrada V. Subclinical atherosclerosis burden in carotid and femoral territories in HIV subjects: relationships with HIV and non-HIV related factors. BMC Infect Dis 2024; 24:932. [PMID: 39251924 PMCID: PMC11382418 DOI: 10.1186/s12879-024-09850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Cardiovascular disease is a major cause of morbidity in an aging HIV population. However, risk estimation with the most frequent equations usually classifies HIV patients as having a low or moderate risk. Several studies have described a very high prevalence of subclinical atherosclerosis in a middle-aged, non-HIV population. There is insufficient body of knowledge to understand if this is the case in people living with HIV (PLWH). We aim to calculate the proportion of patients with subclinical atherosclerosis in a single site cohort of HIV-infected subjects. METHODS We have analyzed chronically HIV infected adults (≥ 18 years) who were on active follow-up in an HIV unit specialized in the care of cardiovascular health. The most recent clinical visit and vascular ultrasonography were used to assess the objectives of our research. Our primary objective was to describe the proportion of participants with subclinical atherosclerosis (focal protrusion into the lumen > 0.5 mm or > 50% of the surrounding IMT or a diffuse thickness > 1.5 mm) in a single site cohort of PLWH. Carotid and iliofemoral territories were evaluated. As a secondary objective we have run a multivariate analysis to determine which HIV and non-HIV factors might be related with the presence of atherosclerotic plaques. Findings We included a total of 463 participants between November 2017 to October 2019. Subjects were predominantly male (84.2%) with a mean age of 48.8 years (SD 10.7). Hypercholesterolemia (36%) was the most prevalent comorbidity followed by Hypertension (18%) and Hypertriglyceridemia (16%). Mean duration of HIV infection is 12.3 years. Overall, participants had been receiving cART for a median of 9.5 years. Subclinical atherosclerosis was found in 197 subjects (42.5%; CI 95% [38.0-47.2]). The disease was found more frequently in the femoral arteries (37.8%) than in the carotid vascular bed (18.6%). Despite some HIV factors correlated with the presence of plaques in a univariate analysis (e.g., time with HIV-1 RNA > 50 copies/mL or time from HIV diagnosis), the only two explanatory factors that remained associated with the presence of atherosclerotic plaques in the multivariate analysis were smoking (OR 5.47, 95% CI 3.36 - 8.90) and age (OR 1.13, 95%CI 1.10 - 1.16). Interpretation We have found a very high prevalence of subclinical atherosclerosis among our cohort of PLWH. Despite having analyzed several HIV factors, age and smoking have been found to be the only factors associated with the development of atherosclerotic plaques.
Collapse
Affiliation(s)
| | - Laura López
- Internal Medicine Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - Juncal Pérez
- Internal Medicine Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - Noemi Cabello
- Internal Medicine Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - María José Núñez
- Internal Medicine Unit, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | | | - Vicente Estrada
- Internal Medicine Unit, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
23
|
Zhao J, Zhou X, Qiu Y, Jia R. Characterization of the gut butyrate-producing bacteria and lipid metabolism in African green monkey as a natural host of simian immunodeficiency virus infection. AIDS 2024; 38:1617-1626. [PMID: 38819818 DOI: 10.1097/qad.0000000000003944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Natural hosts of simian immunodeficiency virus (SIV), such as the African green monkey (AGM), possess the ability to avoid acquired immune deficiency syndrome (AIDS) despite lifelong infection. The underlying mechanisms are not completely understood. This study aimed to characterize the gut microbiome and metabolite profiles of different nonhuman primates (NHPs) to provide potential insight into AIDS resistance. DESIGN AND METHODS Fresh feces from Cynomolgus macaques (CMs), and Rhesus macaques (RMs), SIV- AGMs (AGM_N), and SIV+ AGMs (AGM_P) were collected and used for metagenomic sequencing and metabonomic analysis. RESULTS Compared with CMs and RMs, significant decreases in the abundances of Streptococcus , Alistipes , Treponema , Bacteroides , and Methanobrevibacter ( P < 0.01), and significant increases in the abundances of Clostridium , Eubacterium , Blautia , Roseburia , Faecalibacterium , and Dialister ( P < 0.01) were detected in AGM_N. Compared with AGM_N, a trend toward increased abundances of Streptococcus and Roseburia were found in AGM_P. The levels of metabolites involved in lipid metabolism and butanoate metabolism significantly differed among AGM_P, AGM_N and CM ( P < 0.05). CONCLUSIONS Our data, for the first time, demonstrated distinguishing features in the abundances of butyrate-producing bacteria and lipid metabolism capacities between different NHP hosts of SIV infection. These findings may correlate with the different characteristics observed among these hosts in the maintenance of intestinal epithelial barrier integrity, regulation of inflammation, and provide insights into AIDS resistance in AGMs.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Infectious Disease and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University
| | - Xiaojun Zhou
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences
| | - Rui Jia
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| |
Collapse
|
24
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
25
|
Sadki M, Allali K. Stochastic two-strain epidemic model with saturated incidence rates driven by Lévy noise. Math Biosci 2024; 375:109262. [PMID: 39038697 DOI: 10.1016/j.mbs.2024.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
In this paper, we introduce a stochastic two-strain epidemic model driven by Lévy noise describing the interaction between four compartments; susceptible, infected individuals by the first strain, infected ones by the second strain and the recovered individuals. The forces of infection, for both strains, are represented by saturated incidence rates. Our study begins with the investigation of unique global solution of the suggested mathematical model. Then, it moves to the determination of sufficient conditions of extinction and persistence in mean of the two-strain disease. In order to illustrate the theoretical findings, we give some numerical simulations.
Collapse
Affiliation(s)
- Marya Sadki
- Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, University of Hassan II of Casablanca, PO Box 146, Mohammedia, Morocco.
| | - Karam Allali
- Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, University of Hassan II of Casablanca, PO Box 146, Mohammedia, Morocco
| |
Collapse
|
26
|
Paternò Raddusa MS, Marino A, Celesia BM, Spampinato S, Giarratana C, Venanzi Rullo E, Cacopardo B, Nunnari G. Atherosclerosis and Cardiovascular Complications in People Living with HIV: A Focused Review. Infect Dis Rep 2024; 16:846-863. [PMID: 39311207 PMCID: PMC11417834 DOI: 10.3390/idr16050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
The intersection of Human Immunodeficiency Virus (HIV) infection and cardiovascular disease (CVD) represents a significant area of concern; advancements in antiretroviral therapy (ART) have notably extended the life expectancy of people living with HIV (PLWH), concurrently elevating the prevalence of chronic conditions such as CVD. This paper explores the multifaceted relationship between HIV infection, ART, and cardiovascular health, focusing on the mechanisms by which HIV and ART contribute to increased cardiovascular risk, including the promotion of endothelial dysfunction, inflammation, immune activation, and metabolic disturbances. We highlight the critical roles of HIV-associated proteins-Tat, Nef, and gp120-in accelerating atherosclerosis through direct and indirect pathways that exacerbate endothelial damage and inflammation. Additionally, we address the persistent challenge of chronic inflammation and immune activation in PLWH, factors that are strongly predictive of non-AIDS-related diseases, including CVD, even in the context of effective viral suppression. The impact of ART on cardiovascular risk is examined, with particular attention to the metabolic implications of specific ART regimens, which can influence lipid profiles and body composition, thereby modifying CVD risk. The therapeutic potential of statins, aspirin, and emerging treatments such as PCSK9 inhibitors in mitigating cardiovascular morbidity and mortality among PLWH is discussed, alongside considerations for their use in conjunction with ART. Our review underscores the necessity for a comprehensive, multidisciplinary approach to cardiovascular care in PLWH, which integrates vigilant cardiovascular risk assessment and management with HIV treatment. As we navigate the evolving landscape of HIV care, the goal remains to optimize treatment outcomes while minimizing cardiovascular risk, ensuring that the gains in longevity afforded by ART translate into improved overall health and quality of life for PLWH.
Collapse
Affiliation(s)
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| | - Benedetto Maurizio Celesia
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| | - Serena Spampinato
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (M.S.P.R.); (S.S.); (C.G.); (E.V.R.)
| | - Carmen Giarratana
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (M.S.P.R.); (S.S.); (C.G.); (E.V.R.)
| | - Emmanuele Venanzi Rullo
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (M.S.P.R.); (S.S.); (C.G.); (E.V.R.)
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95123 Catania, Italy; (B.M.C.); (B.C.); (G.N.)
| |
Collapse
|
27
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
28
|
Shapiro MB, Ordonez T, Pandey S, Mahyari E, Onwuzu K, Reed J, Sidener H, Smedley J, Colgin LM, Johnson A, Lewis AD, Bimber B, Sacha JB, Hessell AJ, Haigwood NL. Immune perturbation following SHIV infection is greater in newborn macaques than in infants. JCI Insight 2024; 9:e144448. [PMID: 39190496 PMCID: PMC11466190 DOI: 10.1172/jci.insight.144448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Transmission of HIV-1 to newborns and infants remains high, with 130,000 new infections in 2022 in resource-limited settings. Half of HIV-infected newborns, if untreated, progress to disease and death within 2 years. While immunologic immaturity likely promotes pathogenesis and poor viral control, little is known about immune damage in newborns and infants. Here we examined pathologic, virologic, and immunologic outcomes in rhesus macaques exposed to pathogenic simian-human immunodeficiency virus (SHIV) at 1-2 weeks, defined as newborns, or at 4 months of age, considered infants. Kinetics of plasma viremia and lymph node seeding DNA were indistinguishable in newborns and infants, but levels of viral DNA in gut and lymphoid tissues 6-10 weeks after infection were significantly higher in newborns versus either infant or adult macaques. Two of 6 newborns with the highest viral seeding required euthanasia at 25 days. We observed age-dependent alterations in leukocyte subsets and gene expression. Compared with infants, newborns had stronger skewing of monocytes and CD8+ T cells toward differentiated subsets and little evidence of type I interferon responses by transcriptomic analyses. Thus, SHIV infection reveals distinct immunological alterations in newborn and infant macaques. These studies lay the groundwork for understanding how immune maturation affects pathogenesis in pediatric HIV-1 infection.
Collapse
Affiliation(s)
- Mariya B. Shapiro
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | - Eisa Mahyari
- Division of Pathobiology & Immunology and
- Genetics Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kosiso Onwuzu
- Division of Pathobiology & Immunology and
- Genetics Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jason Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Heather Sidener
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Lois M. Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Amanda Johnson
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Anne D. Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin Bimber
- Division of Pathobiology & Immunology and
- Genetics Division, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jonah B. Sacha
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Pathobiology & Immunology and
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Nancy L. Haigwood
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Pathobiology & Immunology and
| |
Collapse
|
29
|
Toapanta FR, Hu J, Shirey KA, Bernal PJ, Levine MM, Darton TC, Waddington CS, Pollard AJ, Sztein MB. Changes in monocyte subsets in volunteers who received an oral wild-type Salmonella Typhi challenge and reached typhoid diagnosis criteria. Front Immunol 2024; 15:1454857. [PMID: 39263222 PMCID: PMC11388309 DOI: 10.3389/fimmu.2024.1454857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
An oral Controlled Human Infection Model (CHIM) with wild-type S. Typhi was re-established allowing us to explore the development of immunity. In this model, ~55% of volunteers who received the challenge reached typhoid diagnosis criteria (TD), while ~45% did not (NoTD). Intestinal macrophages are one of the first lines of defense against enteric pathogens. Most organs have self-renewing macrophages derived from tissue-resident progenitor cells seeded during the embryonic stage; however, the gut lacks these progenitors, and all intestinal macrophages are derived from circulating monocytes. After infecting gut-associated lymphoid tissues underlying microfold (M) cells, S. Typhi causes a primary bacteremia seeding organs of the reticuloendothelial system. Following days of incubation, a second bacteremia and clinical disease ensue. S. Typhi likely interacts with circulating monocytes or their progenitors in the bone marrow. We assessed changes in circulating monocytes after CHIM. The timepoints studied included 0 hours (pre-challenge) and days 1, 2, 4, 7, 9, 14, 21 and 28 after challenge. TD participants provided extra samples at the time of typhoid diagnosis, and 48-96 hours later (referred as ToD). We report changes in Classical Monocytes -CM-, Intermediate Monocytes -IM- and Non-classical Monocytes -NCM-. Changes in monocyte activation markers were identified only in TD participants and during ToD. CM and IM upregulated molecules related to interaction with bacterial antigens (TLR4, TLR5, CD36 and CD206). Of importance, CM and IM showed enhanced binding of S. Typhi. Upregulation of inflammatory molecules like TNF-α were detected, but mechanisms involved in limiting inflammation were also activated (CD163 and CD354 downregulation). CM upregulated molecules to interact/modulate cells of the adaptive immunity, including T cells (HLA-DR, CD274 and CD86) and B cells (CD257). Both CM and IM showed potential to migrate to the gut as integrin α4β7 was upregulated. Unsupervised analysis revealed 7 dynamic cell clusters. Five of these belonged to CM showing that this is the main population activated during ToD. Overall, we provide new insights into the changes that diverse circulating monocyte subsets undergo after typhoid diagnosis, which might be important to control this disease since these cells will ultimately become intestinal macrophages once they reach the gut.
Collapse
Affiliation(s)
- Franklin R Toapanta
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jingping Hu
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paula J Bernal
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Myron M Levine
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B Sztein
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Ladinsky MS, Zhu L, Ullah I, Uchil PD, Kumar P, Kay MS, Bjorkman PJ. Electron tomography visualization of HIV-1 virions trapped by fusion inhibitors to host cells in infected tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608557. [PMID: 39229189 PMCID: PMC11370368 DOI: 10.1101/2024.08.19.608557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide. Although budding virions can be readily imaged by electron tomography (ET) of HIV-1-infected tissues and cultured cells, virions that are fusing (attached to host cells via pre-hairpin intermediates) are not normally visualized, perhaps because the process of membrane fusion is too fast to capture by EM. To image virions during fusion, we used fusion inhibitors to prevent downstream conformational changes in Env that lead to membrane fusion, thereby trapping HIV-1 virions linked to target cells by prehairpin intermediates. ET of HIV-1 pseudovirions bound to CD4+/CCR5+ TZM-bl cells revealed presumptive pre-hairpin intermediates as 2-4 narrow spokes linking a virion to the cell surface. To extend these results to a more physiological setting, we used ET to image tissues and organs derived from humanized bone marrow, liver, thymus (BLT) mice infected with HIV-1 and then treated with CPT31, a high-affinity D-peptide fusion inhibitor linked to cholesterol. Trapped HIV-1 virions were found in all tissues studied (small intestine, mesenteric lymph nodes, spleen, and bone marrow), and spokes representing pre-hairpin intermediates linking trapped virions to cell surfaces were similar in structure and number to those seen in the previous pseudovirus and cultured cell ET study.
Collapse
Affiliation(s)
- Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06510
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Michael S. Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
31
|
Georgakis S, Orfanakis M, Brenna C, Burgermeister S, Del Rio Estrada PM, González-Navarro M, Torres-Ruiz F, Reyes-Terán G, Avila-Rios S, Luna-Villalobos YA, Chén OY, Pantaleo G, Koup RA, Petrovas C. Follicular Immune Landscaping Reveals a Distinct Profile of FOXP3 hiCD4 hi T Cells in Treated Compared to Untreated HIV. Vaccines (Basel) 2024; 12:912. [PMID: 39204036 PMCID: PMC11359267 DOI: 10.3390/vaccines12080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Follicular helper CD4hi T cells (TFH) are a major cellular pool for the maintenance of the HIV reservoir. Therefore, the delineation of the follicular (F)/germinal center (GC) immune landscape will significantly advance our understanding of HIV pathogenesis. We have applied multiplex confocal imaging, in combination with the relevant computational tools, to investigate F/GC in situ immune dynamics in viremic (vir-HIV), antiretroviral-treated (cART HIV) People Living With HIV (PLWH) and compare them to reactive, non-infected controls. Lymph nodes (LNs) from viremic and cART PLWH could be further grouped based on their TFH cell densities in high-TFH and low-TFH subgroups. These subgroups were also characterized by different in situ distributions of PD1hi TFH cells. Furthermore, a significant accumulation of follicular FOXP3hiCD4hi T cells, which were characterized by a low scattering in situ distribution profile and strongly correlated with the cell density of CD8hi T cells, was found in the cART-HIV low-TFH group. An inverse correlation between plasma viral load and LN GrzBhiCD8hi T and CD16hiCD15lo cells was found. Our data reveal the complex GC immune landscaping in HIV infection and suggest that follicular FOXP3hiCD4hi T cells could be negative regulators of TFH cell prevalence in cART-HIV.
Collapse
Affiliation(s)
- Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Simon Burgermeister
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| | - Perla M. Del Rio Estrada
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mauricio González-Navarro
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Fernanda Torres-Ruiz
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Gustavo Reyes-Terán
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City 14610, Mexico
| | - Santiago Avila-Rios
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Yara Andrea Luna-Villalobos
- Centro de Investigacion en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico (M.G.-N.)
| | - Oliver Y. Chén
- Department of Laboratory Medicine and Pathology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland (M.O.)
| |
Collapse
|
32
|
Jia Z, Liu X, Liao W. Unraveling the association between gut microbiota and chemotherapy efficacy: a two-sample Mendelian randomization study. Microbiol Spectr 2024; 12:e0394823. [PMID: 38990028 PMCID: PMC11302730 DOI: 10.1128/spectrum.03948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
Emerging evidence has underscored the complex link between gut microbiota and chemotherapy efficacy; however, establishing causality remains elusive due to confounding factors. This study, leveraging bidirectional two-sample Mendelian randomization (MR) analyses, explores the casual relationship between gut microbiota and chemotherapy efficacy. Utilizing genome-wide association study (GWAS) data from the MiBioGen consortium for gut microbiota and IEU Open GWAS for chemotherapy efficacy, we employed genetic variants as instrumental variables (IVs). The inverse variance weighted (IVW) method, weighted median estimator (WME), and MR-Egger regression method were applied, with sensitivity analyses ensuring robustness. Furthermore, we conducted reverse MR analyses between chemotherapy efficacy and identified significant gut microbial taxa. The results indicated that genus Butyricicoccus (OR = 3.7908, 95% CI: 1.4464-9.9350, P = 0.01), Dorea (OR = 3.3295, 95% CI: 1.2794-8.6643, P = 0.01), Hungatella (OR = 2.6284, 95% CI: 1.0548-6.5498, P = 0.04), and Turicibacter (OR = 2.5694, 95% CI: 1.0392-6.3526, P = 0.04) were positively associated with chemotherapy efficacy using the IVW method. Conversely, family Porphyromonadaceae (OR = 0.2283, 95% CI: 0.0699-0.7461, P = 0.01) and genus Eggerthella (OR = 0.4953, 95% CI: 0.2443-1.0043, P = 0.05) exhibited negative associations. WME demonstrated consistent results with IVW method only for genus Eggerthella (OR = 0.3343, 95% CI: 0.1298-0.8610, P = 0.02). No significant heterogeneity or horizontal pleiotropy was observed. Reverse MR analyses revealed no significant causal effect of chemotherapy on identified gut microbiota. This study sheds light on the intricate relationship between gut microbiota, with a particular emphasis on the genus Eggerthella, and chemotherapy efficacy, offering valuable insights for refining cancer treatment strategies.IMPORTANCEGlobal advancements in cancer treatment, particularly in chemotherapy, have notably decreased mortality rates in recent years. However, the correlation between gut microbiota and chemotherapy efficacy remains elusive. Our study, emphasizing the role of genus Eggerthella, represented a crucial advance in elucidating this intricate interplay. The identified associations offer potential therapeutic targets, contributing to global efforts for enhanced treatment precision and improved patient outcomes. Furthermore, our findings hold promise for personalized therapeutic interventions, shaping improved strategies in the ever-evolving landscape of cancer treatment.
Collapse
Affiliation(s)
- Zixuan Jia
- Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiufeng Liu
- Biotherapy Center/Melanoma and Sarcoma Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Liao
- Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
33
|
Pretorius C, Luies L. Characterising the urinary acylcarnitine and amino acid profiles of HIV/TB co-infection, using LC-MS metabolomics. Metabolomics 2024; 20:92. [PMID: 39096437 PMCID: PMC11297823 DOI: 10.1007/s11306-024-02161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches. OBJECTIVE This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC-MS) metabolomics. METHODS Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC-MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups. RESULTS The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients. CONCLUSION The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.
Collapse
Affiliation(s)
- Charles Pretorius
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520, South Africa.
| |
Collapse
|
34
|
van Pul L, van Dort KA, Girigorie AF, Maurer I, Harskamp AM, Kootstra NA. Human Immunodeficiency Virus-Induced Interferon-Stimulated Gene Expression Is Associated With Monocyte Activation and Predicts Viral Load. Open Forum Infect Dis 2024; 11:ofae434. [PMID: 39104769 PMCID: PMC11298257 DOI: 10.1093/ofid/ofae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/07/2024] Open
Abstract
Background Chronic immune activation is one of the hallmarks of human immunodeficiency virus (HIV) pathogenesis. Persistent upregulation of interferons (IFNs) and interferon-stimulated genes (ISGs) has previously been associated with chronic immune activation and HIV progression. Here a longitudinal analysis of the IFN and ISG response during HIV infection was performed to gain insights into the ongoing immune activation during HIV infection. Methods IFN and ISG levels were determined using quantitative polymerase chain reaction in peripheral blood mononuclear cells of people with HIV at pre-seroconversion, during acute and chronic HIV infection, and during suppressive antiretroviral therapy (ART). Results HIV infection induced the expression of a set of 4 ISGs-RSAD2, ISG15, IFI44L, and IFI27-which remained upregulated during chronic infection. This set of ISGs showed no clear correlations with T-cell activation as determined by co-expression of CD38 and HLA-DR. However, a strong correlation with monocyte activation marker soluble CD163 in serum was found. Furthermore, the expression of this ISG cluster was predictive of viral load before ART initiation and, on ART, expression levels normalized to pre-seroconversion levels. Conclusions The results presented here suggests that ISG expression is linked to monocyte activation, possibly driven by viral replication.
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arginell F Girigorie
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M Harskamp
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Grunblatt E, Feinstein MJ. Precision Phenotyping of Heart Failure in People with HIV: Early Insights and Challenges. Curr Heart Fail Rep 2024; 21:417-427. [PMID: 38940893 DOI: 10.1007/s11897-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE OF REVIEW People with HIV have an elevated risk of developing heart failure even with optimally controlled disease. In this review, we outline the various mechanisms through which HIV infection may directly and indirectly contribute to heart failure pathology and highlight the emerging relationship between HIV, chronic inflammation, and cardiometabolic disease. RECENT FINDINGS HIV infection leads to chronic inflammation, immune dysregulation, and metabolic imbalances even in those with well controlled disease. These dysregulations occur through several diverse mechanisms which may lead to manifestations of different phenotypes of heart failure in people with HIV. While it has long been known that people with HIV are at risk of developing heart failure, recent studies have suggested numerous complex mechanisms involving chronic inflammation, immune dysregulation, and metabolic derangement through which this may be mediated. Further comprehensive studies are needed to elucidate the precise relationship between these mechanisms and the development of different subtypes of heart failure in people with HIV.
Collapse
Affiliation(s)
- Eli Grunblatt
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA
| | - Matthew J Feinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA.
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
36
|
Cai Y, Podlaha O, Deeks SG, Brinson C, Ramgopal MN, DeJesus E, Mills A, Shalit P, Abdel-Mohsen M, Zhang L, de Vries CR, Vendrame E, SenGupta D, Wallin JJ. HIV rebound in HIV controllers is associated with a specific fecal microbiome profile. Eur J Immunol 2024; 54:e2350809. [PMID: 38727191 DOI: 10.1002/eji.202350809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 08/09/2024]
Abstract
HIV infection is associated with gut dysbiosis, and microbiome variability may affect HIV control when antiretroviral therapy (ART) is stopped. The TLR7 agonist, vesatolimod, was previously associated with a modest delay in viral rebound following analytical treatment interruption in HIV controllers (HCs). Using a retrospective analysis of fecal samples from HCs treated with vesatolimod or placebo (NCT03060447), people with chronic HIV (CH; NCT02858401) or without HIV (PWOH), we examined fecal microbiome profile in HCs before/after treatment, and in CH and PWOH. Microbiome diversity and abundance were compared between groups to investigate the association between specific phyla/species, immune biomarkers, and viral outcomes during treatment interruption. Although there were no significant differences in gut microbiome diversity between people with and without HIV, HCs, and CH shared common features that distinguished them from PWOH. there was a trend toward greater microbiome diversity among HCs. Treatment with vesatolimod reduced dysbiosis in HCs. Firmicutes positively correlated with T-cell activation, while Bacteroidetes and Euryarchaeota inversely correlated with TLR7-mediated immune activation. Specific types of fecal microbiome abundance (e.g. Alistipes putredinis) positively correlated with HIV rebound. In conclusion, variability in the composition of the fecal microbiome is associated with markers of immune activation following vesatolimod treatment and ART interruption.
Collapse
Affiliation(s)
- Yanhui Cai
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Moti N Ramgopal
- Midway Immunology and Research Center, Fort Pierce, Florida, USA
| | | | - Anthony Mills
- Men's Health Foundation, West Hollywood, California, USA
| | - Peter Shalit
- Peter Shalit MD and Associates, Seattle, Washington, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Liao Zhang
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | |
Collapse
|
37
|
Grozdeva R, Ivanov D, Strashimirov D, Kapincheva N, Yordanova R, Mihailova S, Georgieva A, Alexiev I, Grigorova L, Partsuneva A, Dimitrova R, Gancheva A, Kostadinova A, Naseva E, Yancheva N. Relationship between Modern ART Regimens and Immunosenescence Markers in Patients with Chronic HIV Infection. Viruses 2024; 16:1205. [PMID: 39205179 PMCID: PMC11360605 DOI: 10.3390/v16081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The increased life expectancy of PLHIV (People Living with HIV) and the successful highly combined antiretroviral therapy (cART) poses new clinical challenges regarding aging and its co-morbid condition. It is commonly believed that HIV infection "accelerates" aging. Human immunodeficiency virus type 1 (HIV-1) infection is characterized by inflammation and immune activation that persists despite cART, and that may contribute to the development of co-morbid conditions. In this regard, we aimed to compare current cART regimens in light of premature aging to evaluate differences in their ability to reduce immune activation and inflammation in virologically suppressed patients. We studied a panel of biomarkers (IFN-γ, IL-1β, IL-12p70, IL-2, IL-4, IL-5, IL-6, IL-13, IL-18, GM-CSF, TNF-α, C-reactive protein, D-dimer, soluble CD14), which could provide a non-invasive and affordable approach to monitor HIV-related chronic inflammation. The results of the current study do not provide hard evidence favoring a particular cART regimen, although they show a less favorable regimen profile containing a protease inhibitor. Our data suggest an incomplete reduction of inflammation and immune activation in terms of the effective cART. It is likely that the interest in various biomarkers related to immune activation and inflammation as predictors of clinical outcomes among PLHIV will increase in the future.
Collapse
Affiliation(s)
- Rusina Grozdeva
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University Sofia, 1431 Sofia, Bulgaria; (D.I.); (D.S.); (N.K.); (R.Y.)
| | - Daniel Ivanov
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University Sofia, 1431 Sofia, Bulgaria; (D.I.); (D.S.); (N.K.); (R.Y.)
| | - Dimitar Strashimirov
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University Sofia, 1431 Sofia, Bulgaria; (D.I.); (D.S.); (N.K.); (R.Y.)
| | - Nikol Kapincheva
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University Sofia, 1431 Sofia, Bulgaria; (D.I.); (D.S.); (N.K.); (R.Y.)
| | - Ralitsa Yordanova
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University Sofia, 1431 Sofia, Bulgaria; (D.I.); (D.S.); (N.K.); (R.Y.)
| | - Snejina Mihailova
- Central Laboratory of Clinical Immunology, University Hospital Alexandrovska, 1431 Sofia, Bulgaria; (S.M.); (A.G.)
| | - Atanaska Georgieva
- Central Laboratory of Clinical Immunology, University Hospital Alexandrovska, 1431 Sofia, Bulgaria; (S.M.); (A.G.)
| | - Ivailo Alexiev
- National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases (NCIPD), 1504 Sofia, Bulgaria; (I.A.); (L.G.); (A.P.); (R.D.); (A.G.); (A.K.)
| | - Lyubomira Grigorova
- National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases (NCIPD), 1504 Sofia, Bulgaria; (I.A.); (L.G.); (A.P.); (R.D.); (A.G.); (A.K.)
| | - Alexandra Partsuneva
- National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases (NCIPD), 1504 Sofia, Bulgaria; (I.A.); (L.G.); (A.P.); (R.D.); (A.G.); (A.K.)
| | - Reneta Dimitrova
- National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases (NCIPD), 1504 Sofia, Bulgaria; (I.A.); (L.G.); (A.P.); (R.D.); (A.G.); (A.K.)
| | - Anna Gancheva
- National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases (NCIPD), 1504 Sofia, Bulgaria; (I.A.); (L.G.); (A.P.); (R.D.); (A.G.); (A.K.)
| | - Asya Kostadinova
- National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases (NCIPD), 1504 Sofia, Bulgaria; (I.A.); (L.G.); (A.P.); (R.D.); (A.G.); (A.K.)
| | - Emilia Naseva
- Department of Health Economics, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, 1527 Sofia, Bulgaria;
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Nina Yancheva
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University Sofia, 1431 Sofia, Bulgaria; (D.I.); (D.S.); (N.K.); (R.Y.)
| |
Collapse
|
38
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. Proc Natl Acad Sci U S A 2024; 121:e2404349121. [PMID: 38985764 PMCID: PMC11260138 DOI: 10.1073/pnas.2404349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Intron-containing RNA expressed from the HIV-1 provirus activates type 1 interferon in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with short hairpin RNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte-derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the interferon-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with nontargetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant 2-CARD domain-deletion or phosphomimetic point mutations, indicates that IFIH1 (MDA5) filament formation, dephosphorylation, and association with MAVS are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 (MDA5) and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1 knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes by HIV-1. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 (MDA5), over two orders of magnitude, was revealed by formaldehyde cross-linking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is the innate immune receptor for intron-containing RNA from the HIV-1 provirus and that IFIH1 potentially contributes to chronic inflammation in people living with HIV-1, even in the presence of effective antiretroviral therapy.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01605
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Massachusetts Consortium on Pathogen Readiness, Boston, MA02115
| |
Collapse
|
39
|
Peters BA, Hanna DB, Xue X, Weber K, Appleton AA, Kassaye SG, Topper E, Tracy RP, Guillemette C, Caron P, Tien PC, Qi Q, Burk RD, Sharma A, Anastos K, Kaplan RC. Menopause and Estrogen Associations With Gut Barrier, Microbial Translocation, and Immune Activation Biomarkers in Women With and Without HIV. J Acquir Immune Defic Syndr 2024; 96:214-222. [PMID: 38905473 PMCID: PMC11196004 DOI: 10.1097/qai.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES Estrogens may protect the gut barrier and reduce microbial translocation and immune activation, which are prevalent in HIV infection. We investigated relationships of the menopausal transition and estrogens with gut barrier, microbial translocation, and immune activation biomarkers in women with and without HIV. DESIGN Longitudinal and cross-sectional studies nested in the Women's Interagency HIV Study. METHODS Intestinal fatty acid binding protein, lipopolysaccharide binding protein, and soluble CD14 (sCD14) levels were measured in serum from 77 women (43 with HIV) before, during, and after the menopausal transition (∼6 measures per woman over ∼13 years). A separate cross-sectional analysis was conducted among 72 postmenopausal women with HIV with these biomarkers and serum estrogens. RESULTS Women in the longitudinal analysis were a median age of 43 years at baseline. In piecewise, linear, mixed-effects models with cutpoints 2 years before and after the final menstrual period to delineate the menopausal transition, sCD14 levels increased over time during the menopausal transition (Beta [95% CI]: 38 [12 to 64] ng/mL/yr, P = 0.004), followed by a decrease posttransition (-46 [-75 to -18], P = 0.001), with the piecewise model providing a better fit than a linear model (P = 0.0006). In stratified analyses, these results were only apparent in women with HIV. In cross-sectional analyses, among women with HIV, free estradiol inversely correlated with sCD14 levels (r = -0.26, P = 0.03). Lipopolysaccharide binding protein and intestinal fatty acid binding protein levels did not appear related to the menopausal transition and estrogen levels. CONCLUSIONS Women with HIV may experience heightened innate immune activation during menopause, possibly related to the depletion of estrogens.
Collapse
Affiliation(s)
- Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David B. Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kathleen Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Allison A. Appleton
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY, United States
| | | | - Elizabeth Topper
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Chantal Guillemette
- Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center, Cancer research center (CRC) and Faculty of Pharmacy, Université Laval, Québec City, QC, Canada
| | - Patrick Caron
- Centre Hospitalier Universitaire (CHU) de Québec - Université Laval Research Center, Cancer research center (CRC) and Faculty of Pharmacy, Université Laval, Québec City, QC, Canada
| | - Phyllis C. Tien
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology and Immunology and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
40
|
Spera AM, Conti V, Corbi G, Ascione T, Ciccarelli M, Masullo A, Franci G, Pagliano P. Changes in the Lipid Asset of HIV/HCV Patients after a Successful Course of Direct-Acting Antivirals. J Clin Med 2024; 13:3865. [PMID: 38999431 PMCID: PMC11242662 DOI: 10.3390/jcm13133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Highly Active Antiretroviral Therapy (HAART) for HIV infection and Direct-Acting Antivirals (DAA) for HCV infection currently represent the main treatment options for HIV/HCV co-infected patients. However, HAART has been associated with increased lipids. This study aimed to evaluate lipid profile changes after the DAA cycle in HIV/HCV co-infected patients undergoing HAART/DAA therapy. Methods: A prospective, longitudinal, observational study among HIV/HCV co-infected patients undergoing HAART/DAA treatment was conducted at the Infectious Diseases Unit of the University Hospital of Salerno. Inclusion criteria were age > 18 years, written informed consent, completion of the DAA cycle, and virologic suppression on HAART. Changes in the lipid profile were analyzed from baseline during and after DAA therapy at 12, 24, and 48 weeks after the sustained virologic response (SVR). A t-test was used to compare continuous variables. An analysis of variance was performed for each antiretroviral drug and genotype. Results: Fifty-four HIV/HCV patients (men/women n. 34/20 [68/32%], median age 56 years), all naïve to HCV therapy, were enrolled. HCV infection was caused by genotype 1 in 55% of cases and by genotype 3 in 29%. An increase in total cholesterol was recorded after the DAA treatment (from 165.03 ± 46.5 to 184.7 ± 44.9 mg/dL, p < 0.0001), after 12, 24, and 48 weeks, and in LDL-C at 24 weeks follow-up (at baseline 86.7 ± 34 mg/dL to 103.4 ± 41.38 mg/dL, p < 0.0001). Conclusions: Changes in the lipid profile after combined DAA/HAART treatment represent an important prognostic index. Further evaluation of cardiovascular-associated risk is necessary to implement appropriate prevention strategies.
Collapse
Affiliation(s)
- Anna Maria Spera
- Unit of Infectious Diseases, Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- UOC Clinica Infettivologica AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy
| | - Valeria Conti
- Unit of Pharmacology, Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Tiziana Ascione
- Service of Infectious Diseases AORN A Cardarelli, 80131 Naples, Italy
| | - Michele Ciccarelli
- Unit of Cardiology, Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Alfonso Masullo
- UOC Malattie Infettive AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy
| | - Gianluigi Franci
- Unit of Microbiology, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Pasquale Pagliano
- Unit of Infectious Diseases, Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- UOC Clinica Infettivologica AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy
| |
Collapse
|
41
|
Hoel H, Dahl TB, Yang K, Skeie LG, Michelsen AE, Ueland T, Damås JK, Dyrhol-Riise AM, Fevang B, Yndestad A, Aukrust P, Trøseid M, Sandanger Ø. Chronic HIV Infection Increases Monocyte NLRP3 Inflammasome-Dependent IL-1α and IL-1β Release. Int J Mol Sci 2024; 25:7141. [PMID: 39000248 PMCID: PMC11240952 DOI: 10.3390/ijms25137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Antiretroviral treatment (ART) has converted HIV from a lethal disease to a chronic condition, yet co-morbidities persist. Incomplete immune recovery and chronic immune activation, especially in the gut mucosa, contribute to these complications. Inflammasomes, multi-protein complexes activated by innate immune receptors, appear to play a role in these inflammatory responses. In particular, preliminary data indicate the involvement of IFI16 and NLRP3 inflammasomes in chronic HIV infection. This study explores inflammasome function in monocytes from people with HIV (PWH); 22 ART-treated with suppressed viremia and 17 untreated PWH were compared to 33 HIV-negative donors. Monocytes were primed with LPS and inflammasomes activated with ATP in vitro. IFI16 and NLRP3 mRNA expression were examined in a subset of donors. IFI16 and NLRP3 expression in unstimulated monocytes correlated negatively with CD4 T cell counts in untreated PWH. For IFI16, there was also a positive correlation with viral load. Monocytes from untreated PWH exhibit increased release of IL-1α, IL-1β, and TNF compared to treated PWH and HIV-negative donors. However, circulating monocytes in PWH are not pre-primed for inflammasome activation in vivo. The findings suggest a link between IFI16, NLRP3, and HIV progression, emphasizing their potential role in comorbidities such as cardiovascular disease. The study provides insights into inflammasome regulation in HIV pathogenesis and its implications for therapeutic interventions.
Collapse
Affiliation(s)
- Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Department of Internal Medicine, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Linda Gail Skeie
- Department of Infectious Diseases, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (L.G.S.); (A.M.D.-R.)
| | - Annika Elisabet Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jan Kristian Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7034 Trondheim, Norway;
- Department of Infectious Diseases, St. Olavs Hospital, 7030 Trondheim, Norway
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (L.G.S.); (A.M.D.-R.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Section of Dermatology, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
42
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
43
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
44
|
Trøseid M, Nielsen SD, Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. MICROBIOME 2024; 12:106. [PMID: 38877521 PMCID: PMC11177534 DOI: 10.1186/s40168-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Oe, 2100, Denmark
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
45
|
Rahmberg AR, Markowitz TE, Mudd JC, Ortiz AM, Brenchley JM. SIV infection and ARV treatment reshape the transcriptional and epigenetic profile of naïve and memory T cells in vivo. J Virol 2024; 98:e0028324. [PMID: 38780248 PMCID: PMC11237756 DOI: 10.1128/jvi.00283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Human and simian immunodeficiency viruses (HIV and SIV) are lentiviruses that reverse transcribe their RNA genome with subsequent integration into the genome of the target cell. How progressive infection and administration of antiretrovirals (ARVs) longitudinally influence the transcriptomic and epigenetic landscape of particular T cell subsets, and how these may influence the genetic location of integration are unclear. Here, we use RNAseq and ATACseq to study the transcriptomics and epigenetic landscape of longitudinally sampled naïve and memory CD4+ and CD8+ T cells in two species of non-human primates prior to SIV infection, during chronic SIV infection, and after administration of ARVs. We find that SIV infection leads to significant alteration to the transcriptomic profile of all T cell subsets that are only partially reversed by administration of ARVs. Epigenetic changes were more apparent in animals with longer periods of untreated SIV infection and correlated well with changes in corresponding gene expression. Known SIV integration sites did not vary due to SIV status but did contain more open chromatin in rhesus macaque memory T cells, and the expression of proteasome-related genes at the pre-SIV timepoint correlated with subsequent viremia.IMPORTANCEChronic inflammation during progressive human and simian immunodeficiency virus (HIV and SIV) infections leads to significant co-morbidities in infected individuals with significant consequences. Antiretroviral (ARV)-treated individuals also manifest increased levels of inflammation which are associated with increased mortalities. These data will help guide rational development of modalities to reduce inflammation observed in people living with HIV and suggest mechanisms underlying lentiviral integration site preferences.
Collapse
Affiliation(s)
- Andrew R. Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | - Joseph C. Mudd
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Wahl A, Yao W, Liao B, Chateau M, Richardson C, Ling L, Franks A, Senthil K, Doyon G, Li F, Frost J, Whitehurst CB, Pagano JS, Fletcher CA, Azcarate-Peril MA, Hudgens MG, Rogala AR, Tucker JD, McGowan I, Sartor RB, Garcia JV. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat Biotechnol 2024; 42:905-915. [PMID: 37563299 PMCID: PMC11073568 DOI: 10.1038/s41587-023-01906-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.
Collapse
Affiliation(s)
- Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wenbo Yao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Morgan Chateau
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cara Richardson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne Franks
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve Doyon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengling Li
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh Frost
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Fletcher
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Orion Biotechnology, Ottawa, Ontario, Canada
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Murray CH, Javanbakht M, Cho GD, Gorbach PM, Fulcher JA, Cooper ZD. Changes in Immune-Related Biomarkers and Endocannabinoids as a Function of Frequency of Cannabis Use in People Living With and Without HIV. Cannabis Cannabinoid Res 2024; 9:e897-e906. [PMID: 37093248 PMCID: PMC11295663 DOI: 10.1089/can.2022.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Cannabis use is common among people living with HIV (PLWH). Some observational studies of PLWH have linked cannabis use to lower immune markers; however, this is yet to be confirmed. In addition, whether HIV affects the endogenous cannabinoid system has not been studied. Our objective was to examine changes in immune-related biomarkers and endocannabinoids as a function of cannabis use frequency in people living with and without HIV. Materials and Methods: Data were obtained from a longitudinal study of men who have sex with men living in Los Angeles with, or at risk for, HIV. By design, half were PLWH. Those eligible for the parent study were willing and able to return for follow-up every 6 months. Those eligible for inclusion in this study reported varying levels of current cannabis use at follow-up. Specifically, one visit corresponded to a period of daily use and another to a period of infrequent use (weekly, monthly, or less than monthly). Banked serum from all eligible participants was analyzed for immune-related biomarkers, endocannabinoids, and paracannabinoids. Results: The analysis included 36 men, 19 of whom were PLWH. PLWH reported greater lifetime methamphetamine or amphetamine use (68% vs. 0%) and current cigarette use (55% vs. 20%) than people without HIV. Serum levels of HIV-related immune biomarkers including tumor necrosis factor receptor 2 (TNFR2; p=0.013) and CD27 (p=0.004) were greater in PLWH, alongside lower anandamide (AEA) (F1,34=5.337, p=0.027) and oleoylethanolamide (OEA) (F1,34=8.222, p=0.007) levels relative to people without HIV. Frequency of cannabis use did not impact the serum analytes in our study. Conclusions: Higher levels of TNFR2 and CD27 and lower levels of AEA and OEA in PLWH underscore the role of the TNF/TNFR superfamily in HIV, while highlighting a new role for the enzymatic activity of fatty acid amide hydrolase (the enzyme that hydrolyzes AEA and OEA) in HIV. Findings that cannabis frequency did not impact the immune phenotype may not generalize to other populations of PLWH. Additional work is required to further clarify the relationship between immune markers and endocannabinoids as a function of cannabis use frequency in PLWH. ClinicalTrials.gov ID: NCT01201083.
Collapse
Affiliation(s)
- Conor H. Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Marjan Javanbakht
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Grace D. Cho
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pamina M. Gorbach
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ziva D. Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
48
|
Obare LM, Bonami RH, Doran A, Wanjalla CN. B cells and atherosclerosis: A HIV perspective. J Cell Physiol 2024; 239:e31270. [PMID: 38651687 PMCID: PMC11209796 DOI: 10.1002/jcp.31270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Doran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
49
|
Ebasone PV, Dzudie A, Peer N, Hoover D, Shi Q, Kim HY, Brazier E, Ajeh R, Yotebieng M, Nash D, Anastos K, Kengne AP. Coprevalence and associations of diabetes mellitus and hypertension among people living with HIV/AIDS in Cameroon. AIDS Res Ther 2024; 21:36. [PMID: 38824579 PMCID: PMC11144319 DOI: 10.1186/s12981-024-00624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The association between HIV infection and increased cardiometabolic risk, attributed to chronic inflammation in people living with HIV (PLWH) and/or antiretroviral therapy (ART) effects, has been inconsistent. In this study, we aimed to assess the associations of HIV-related factors with hypertension (HTN) and type-2 diabetes mellitus (T2DM), and the potential mediation effects of body mass index (BMI) in the associations between ART use and HTN or T2DM in PLWH in Cameroon. METHODS A cross-sectional study was conducted with 14,119 adult PLWH from Cameroon enrolled in the International epidemiology Databases to Evaluate AIDS (IeDEA) between 2016 and 2021. HTN was defined as systolic/diastolic blood pressure ≥ 140/90 mmHg and/or current use of antihypertensive medication, while T2DM was defined as fasting blood sugar ≥ 126 mg/dL and/or use of antidiabetic medications. Univariable and multivariable multinomial logistic regression analyses examined the associations of factors with HTN alone, T2DM alone, and both (HTN + T2DM). Mediation analyses were conducted to assess the potential mediation roles of BMI, while controlling for age, sex, and smoking. RESULTS Of the 14,119 participants, 9177 (65%) were women, with a median age of 42 (25th-75th percentiles: 35-51) years. Age > 50 years was associated with HTN alone, T2DM alone, and HTN + T2DM compared to the age group 19-29 years. Men had higher odds of having HTN + T2DM. Overweight and obesity were predictors of HTN alone compared to being underweight. WHO stages II and III HIV disease were inversely associated with HTN alone compared to stage I. The odds of diabetes alone were lower with ART use. BMI partially mediated the association between ART use and hypertension, with a proportion of mediation effect of 49.6% (all p < 0.02). However, BMI did not mediate the relationship between ART use and diabetes. CONCLUSIONS Traditional cardiovascular risk factors were strongly associated with hypertension among PLWH, while HIV-related exposures had smaller associations. BMI partially mediated the association between ART use and hypertension. This study emphasizes the importance of screening, monitoring, and managing HTN and T2DM in older, male, and overweight/obese PLWH. Further research on the associations of HIV disease stage and ART use with HTN and T2DM is warranted.
Collapse
Affiliation(s)
- Peter Vanes Ebasone
- Department of Medicine, University of Cape Town, Cape Town, South Africa.
- Clinical Research Education Networking and Consultancy (CRENC), Yaounde, Cameroon.
| | - Anastase Dzudie
- Clinical Research Education Networking and Consultancy (CRENC), Yaounde, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
- Lown Scholars Program, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Nasheeta Peer
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Non-Communicable Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Donald Hoover
- Department of Statistics and Institute for Health, Health Care Policy and Aging Research, Rutgers the State University of New Jersey, New Brunswick, USA
| | - Qiuhu Shi
- Department of Public Health, New York Medical College, New York, USA
| | - Hae-Young Kim
- Department of Public Health, New York Medical College, New York, USA
| | - Ellen Brazier
- Institute for Implementation Science in Population Health, City University of New York, New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health, City University of New York, New York, USA
| | - Rogers Ajeh
- Clinical Research Education Networking and Consultancy (CRENC), Yaounde, Cameroon
- Ministry of Public Health, National AIDS Control Committee, Yaounde, Cameroon
| | - Marcel Yotebieng
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Denis Nash
- Institute for Implementation Science in Population Health, City University of New York, New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health, City University of New York, New York, USA
| | - Kathryn Anastos
- Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Andre Pascal Kengne
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Clinical Research Education Networking and Consultancy (CRENC), Yaounde, Cameroon
- Non-Communicable Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
50
|
Spera AM, Pagliano P, Conti V. Hepatitis C virus eradication in people living with human immunodeficiency virus: Where are we now? World J Hepatol 2024; 16:661-666. [PMID: 38818300 PMCID: PMC11135269 DOI: 10.4254/wjh.v16.i5.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Hepatitis C virus (HCV)/human immunodeficiency virus (HIV) co-infection still involves 2.3 million patients worldwide of the estimated 37.7 million living with HIV, according to World Health Organization. People living with HIV (PLWH) are six times greater affected by HCV, compared to HIV negative ones; the greater prevalence is encountered among people who inject drugs and men who have sex with men: the risk of HCV transmission through sexual contact in this setting can be increased by HIV infection. These patients experience a high rate of chronic hepatitis, which if left untreated progresses to end-stage liver disease and hepatocellular carcinoma (HCC) HIV infection increases the risk of mother to child vertical transmission of HCV. No vaccination against both infections is still available. There is an interplay between HIV and HCV infections. Treatment of HCV is nowadays based on direct acting antivirals (DAAs), HCV treatment plays a key role in limiting the progression of liver disease and reducing the risk of HCC development in mono- and coinfected individuals, especially when used at an early stage of fibrosis, reducing liver disease mortality and morbidity. Since the sustained virological response at week 12 rates were observed in PLWH after HCV eradication, the AASLD has revised its simplified HCV treatment algorithm to also include individuals living with HIV. HCV eradication can determine dyslipidemia, since HCV promotes changes in serum lipid profiles and may influence lipid metabolism. In addition to these apparent detrimental effects on the lipid profile, the efficacy of DAA in HCV/HIV patients needs to be considered in light of its effects on glucose metabolism mediated by improvements in liver function. The aim of the present editorial is to describe the advancement in HCV treatment among PLWH.
Collapse
Affiliation(s)
- Anna Maria Spera
- Infectious Disease Unit, Universitary Hospital OORR San Giovanni di Dio e Ruggi d'Aragona, Salerno 84131, Italy.
| | - Pasquale Pagliano
- Department of Infectious Diseases, University of Salerno, Salerno 84131, Italy
| | - Valeria Conti
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno 84131, Italy
| |
Collapse
|