1
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
2
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Rostami M, Mahmoudi T, Ardalani A, Mashaollahi A, Zafarjafarzadeh N, Mahban A, Roshani KB, Ghasemi F, Ourang Z, Dehghanitafti A, Kaboli HS, Rezamand G, Asadi A, Dabiri R, Nobakht H, Tabaeian SP, Zali MR. The rs2275738 variant of the adiponectin receptor 1 gene is associated with biopsy-proven nonalcoholic fatty liver disease. Per Med 2024:1-6. [PMID: 39469878 DOI: 10.1080/17410541.2024.2413354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Aim: Nonalcoholic fatty liver disease (NAFLD) is a significant health issue worldwide. This study investigated the effect of the adiponectin receptor 1 gene (ADIPOR1) polymorphism on susceptibility to NAFLD.Methods: Data from 330 participants, including 165 biopsy-proven NAFLD patients and 165 healthy controls, were collected. The PCR-RFLP method was used to detect the genotypes of ADIPOR1 rs2275738 or T-106C variant.Results: The "CC" genotype of the ADIPOR1 rs2275738 polymorphism, compared with the "TT" genotype and the "C" allele, compared with the "T" allele, are markers of increased NAFLD susceptibility (p = 0.018; OR = 2.07, 95% CI = 1.43-2.01 and p = 0.041; OR = 1.52, 95% CI = 1.24-2.35, respectively).Conclusion: This research suggests, for the first time, that the ADIPOR1 rs2275738 "CC" genotype is associated with a 107% increased risk for biopsy-proven NAFLD.
Collapse
Affiliation(s)
- Mitra Rostami
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Touraj Mahmoudi
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Abbas Ardalani
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Amirhesam Mashaollahi
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Nikta Zafarjafarzadeh
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Aidin Mahban
- Department of Business Management, Science & Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Kosar Babaeian Roshani
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Fatemeh Ghasemi
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Zahra Ourang
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Atefeh Dehghanitafti
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Helia Sadat Kaboli
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Gholamreza Rezamand
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, 1445613131, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Reza Dabiri
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, 3513138111, Iran
| | - Hossein Nobakht
- Internal Medicine Department, Semnan University of Medical Sciences, Semnan, 3513138111, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, 1445613131, Iran
| | - Mohammad Reza Zali
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| |
Collapse
|
4
|
Liu H, Zhao Q, Liu S, Li B, Zheng Z, Liu Y, Hu P, Luo E. Aging alters the effect of adiponectin receptor signaling on bone marrow-derived mesenchymal stem cells. Aging Cell 2024:e14390. [PMID: 39462849 DOI: 10.1111/acel.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Adiponectin receptor signaling represents a promising therapeutic target for age-related conditions such as osteoporosis and diabetes. However, the literature presents conflicting evidence regarding the role of adiponectin signaling in bone homeostasis and fracture repair across different health states, ages, and disease conditions. These inconsistencies may arise from the complex endocrine and paracrine feedback mechanisms regulating adiponectin, as well as the variability in adiponectin isoforms and receptor expressions. In this study, we observed differential expression of adiponectin receptors in the bone marrow (BM) of aged mice, characterized by elevated levels of adiponectin receptor 2 and reduced levels of receptor 1, as corroborated by both single-cell sequencing and in vivo staining. Additionally, circulating levels of adiponectin and its local expression were significantly higher in aged mice compared to younger counterparts. Treatment with adiponectin receptor agonist, AdipoRon, enhanced bone regeneration and repair in young mice by promoting osteogenesis and reducing osteoclastogenesis. Conversely, in aged mice, AdipoRon treatment led to cellular senescence, delayed bone repair, and inhibited osteogenic activity. Notably, the adiponectin receptor 1-Wnt and adiponectin receptor 2-MAPK and mTOR signaling pathways were differentially activated in AdipoRon-treated BM mesenchymal stem cells from young and aged mice. Additionally, the NF-κB, and AKT pathways were consistently downregulated in BM macrophages of both age groups following AdipoRon administration. In conclusion, aging significantly modulates the impact of adiponectin receptor signaling on BM mesenchymal stem cells. This modulation is potentially attributable to changes in receptor transcription and distribution, as well as differential activation of downstream signaling pathways.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Qiucheng Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Suzhou Stomatological Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zizhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Sarankhuu BE, Jeon HJ, Jeong DU, Park SR, Kim TH, Lee SK, Han AR, Yu SL, Kang J. Adiponectin receptor 1 regulates endometrial receptivity via the adenosine monophosphate‑activated protein kinase/E‑cadherin pathway. Mol Med Rep 2024; 30:184. [PMID: 39155876 DOI: 10.3892/mmr.2024.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024] Open
Abstract
Endometrial receptivity is essential for successful embryo implantation and pregnancy initiation and is regulated via various signaling pathways. Adiponectin, an important adipokine, may be a potential regulator of reproductive system functions. The aim of the present study was to elucidate the regulatory role of adiponectin receptor 1 (ADIPOR1) in endometrial receptivity. The endometrial receptivity between RL95‑2 and AN3CA cell lines was confirmed using an in vitro JAr spheroid attachment model. 293T cells were transfected with control or short hairpin (sh)ADIPOR1 vectors and RL95‑2 cells were transduced with lentiviral particles targeting ADIPOR1. Reverse transcription‑quantitative PCR and immunoblot assays were also performed. ADIPOR1 was consistently upregulated in the endometrium during the mid‑secretory phase compared with that in the proliferative phase and in receptive RL95‑2 cells compared with that in non‑receptive AN3CA cells. Stable cell lines with diminished ADIPOR1 expression caused by shRNA showed reduced E‑cadherin expression and attenuated in vitro endometrial receptivity. ADIPOR1 regulated AMP‑activated protein kinase (AMPK) activity in endometrial epithelial cells. Regulation of AMPK activity via dorsomorphin and 5‑aminoimidazole‑4‑carboxamide ribonucleotide affected E‑cadherin expression and in vitro endometrial receptivity. The ADIPOR1/AMPK/E‑cadherin axis is vital to endometrial receptivity. These findings can help improve fertility treatments and outcomes.
Collapse
Affiliation(s)
- Bolor-Erdene Sarankhuu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hye Jin Jeon
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Da-Un Jeong
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Sung Ki Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Ae Ra Han
- I‑Dream Clinic, Department of Obstetrics and Gynecology, Mizmedi Hospital, Seoul 07639, Republic of Korea
| | - Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
6
|
Yu M, Fan R, Yang SM. Effect of tannic acid on adiponectin and gonads in male Brandt's voles (Lasiopodomys brandtii). Gen Comp Endocrinol 2024; 357:114592. [PMID: 39043324 DOI: 10.1016/j.ygcen.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt's voles. Male Brandt's voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt's voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt's voles while acting as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Minghao Yu
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China; Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Ruiyang Fan
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Ma B, Zheng Y, Liu S, Qiu Y, Xing X, Gao M, Cao Z, Luan X. Effect of goose-derived adiponectin peptide gADP3 on LPS-induced inflammatory injury in goose liver. Br Poult Sci 2024:1-14. [PMID: 39249992 DOI: 10.1080/00071668.2024.2393960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 09/10/2024]
Abstract
1. This study evaluated the effects and mechanisms of action of the peptide gADP3 on hepatic inflammatory injury induced by lipopolysaccharide (LPS).2. Hepatic inflammatory injury was induced in geese by intraperitoneal injection of LPS and gADP3, and the adiponectin receptor agonist AdipoRon (positive control) was used for potential amelioration. Serum inflammatory factor levels, liver function-related biochemical indicators and oxidative stress-related biochemical parameters in the liver tissues were determined. The expression levels of adiponectin and its receptors, inflammation and oxidative stress-related genes and key signalling molecules involved in adiponectin, inflammation and oxidative stress signalling pathways in liver tissues were detected.3. The peptide gADP3 alleviated inflammatory cell infiltration and hepatic inflammatory changes, reversed the decrease in serum albumin (ALB), total protein (TP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) content or activity induced by LPS and increased the activity of the antioxidant enzymes CAT (catalase), SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase).4. The peptide gADP3 upregulated the expression of antioxidant enzyme-related genes GCLC, HO-1 and NQO1 in liver tissues, decreased the levels of inflammatory factors like TNF-α, IL-1β, IL-6, IFN-γ and TGF-β and reduced mRNA expression levels of inflammatory-related genes TNF-α, IL-1β, iNOS and TGF-β. Additionally, it increased the mRNA and protein expression levels of adiponectin and its receptors, as well as key molecules in the adiponectin signalling pathway like AMPK and PPARα. In addition, gADP3 reversed the changes in mRNA or protein expression of inflammatory and oxidative stress signalling pathway-related genes P38MAPK, NF-κBP65, TLR4 and Nrf2 in liver tissues caused by LPS treatment.5. In conclusion, goose-derived adiponectin peptide gADP3, similar to the adiponectin receptor agonist AdipoRon, attenuated LPS-induced hepatic inflammatory injury in geese.
Collapse
Affiliation(s)
- B Ma
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | | | - S Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - Y Qiu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - X Xing
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - M Gao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - Z Cao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| | - X Luan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
9
|
Anwar C, Lin JR, Tsai ML, Ho CT, Lai CS. Calebin A attenuated inflammation in RAW264.7 macrophages and adipose tissue to improve hepatic glucose metabolism and hyperglycemia in high-fat diet-fed obese mice. Eur J Pharmacol 2024; 978:176789. [PMID: 38945287 DOI: 10.1016/j.ejphar.2024.176789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Jing-Ru Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, 08901, USA.
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
10
|
Lim SY, Chien YW. Effects of Polyunsaturated Fatty Acid/Saturated Fatty Acid Ratio and Different Amounts of Monounsaturated Fatty Acids on Adipogenesis in 3T3-L1 Cells. Biomedicines 2024; 12:1980. [PMID: 39335493 PMCID: PMC11428251 DOI: 10.3390/biomedicines12091980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Adipose tissue serves as a central repository for energy storage and is an endocrine organ capable of secreting various adipokines, including leptin and adiponectin. These adipokines exert profound influences on diverse physiological processes such as insulin sensitivity, appetite regulation, lipid metabolism, energy homeostasis, and body weight. Given the integral role of adipose tissue in metabolic regulation, it is imperative to investigate the effects of varying proportions and types of dietary fats on adipocyte function. In addition, our previous study showed that P/S = 5 and MUFA = 60% appeared to be beneficial in preventing white adipose tissue accumulation by decreasing plasma insulin levels and increasing hepatic lipolytic enzyme activities involved in β-oxidation. Therefore, the objective of this study was to explore the effects of a polyunsaturated fatty acid (PUFA) to saturated fatty acid (SFA) ratio of 5 and varying levels of monounsaturated fatty acids (MUFA = 30% or 60%) on lipogenesis. (2) Methods: We cultured 3T3-L1 mouse embryo fibroblasts in Dulbecco's modified Eagle's medium (DMEM) containing 10% bovine calf serum until confluent. Varying ratios of palmitic acid (PA), oleic acid (OA), and linoleic acid (LA) were first bound with bovine serum albumin (BSA) before being applied to 3T3-L1 adipocytes in low doses and in high doses. (3) Results: Low doses of P/S ratio = 5, MUFA = 60% (M60) fatty acids decreased the accumulation of triglycerides in mature adipocytes by decreasing the mRNA expression of adipogenic factors, such as peroxisome proliferator-activated receptors (PPARs), lipoprotein lipase (LPL), and glucose transporter-4 (GLUT-4), while increasing lipolytic enzyme (hormone-sensitive lipase, HSL) expression when compared to high doses of P/S ratio = 5, MUFA = 60% (M60), low and high doses of P/S ratio = 5, MUFA = 30% (M30). Furthermore, the treatment of M60 in low doses also decreased the secretion of leptin and increased the secretion of adiponectin in adipocytes. (4) Conclusions: The composition of P/S = 5, MUFA = 60% fatty acid in low doses appeared to result in anti-adipogenic effects on 3T3-L1 adipocytes due to the down-regulation of adipogenic effects and the transcription factor.
Collapse
Affiliation(s)
- Sim Yee Lim
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Zhu J, Guo J, Liu Z, Liu J, Yuan A, Chen H, Qiu J, Dou X, Lu D, Le Y. Salvianolic acid A attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact 2024; 400:111162. [PMID: 39047806 DOI: 10.1016/j.cbi.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, 330106, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
13
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
14
|
Henin G, Loumaye A, Deldicque L, Leclercq IA, Lanthier N. Unlocking liver health: Can tackling myosteatosis spark remission in metabolic dysfunction-associated steatotic liver disease? Liver Int 2024; 44:1781-1796. [PMID: 38623714 DOI: 10.1111/liv.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d'Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
15
|
Hopkin SJ, Nathan P, Pezhman L, Begum J, Manning JE, Quinn LM, Rainger GE, McGettrick HM, Iqbal AJ, Chimen M. Rejuvenation of leukocyte trafficking in aged mice through PEPITEM intervention. NPJ AGING 2024; 10:33. [PMID: 39025913 PMCID: PMC11258258 DOI: 10.1038/s41514-024-00160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Inflammageing leads to uncontrolled leukocyte trafficking in response to inflammatory insults. Here, we used a zymosan-induced peritonitis mouse model on inflammation to investigate the role of the PEPITEM pathway on leukocyte migration in ageing. We then analysed whether PEPITEM could modulate leukocyte migration in older adults. We observed a loss of functionality in the PEPITEM pathway, which normally controls leukocyte trafficking in response to inflammation, in older adults and aged mice and show that this can be rescued by supplementation with PEPITEM. Thus, leading to the exciting possibility that PEPITEM supplementation may represent a potential pre-habilitation geroprotective agent to rejuvenate immune functions.
Collapse
Affiliation(s)
- Sophie J Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Poppy Nathan
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laleh Pezhman
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lauren M Quinn
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Myriam Chimen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
16
|
Lin C, Sun G, Li Y. Identification of AdipoRon analogues as novel activators of AMPK for the treatment of type 2 diabetes. RSC Med Chem 2024; 15:2413-2421. [PMID: 39026637 PMCID: PMC11253847 DOI: 10.1039/d3md00727h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The activation of AMPK has emerged as a promising therapeutic approach for the treatment of metabolic diseases. AdipoRon, an agonist of the adiponectin receptor, has been identified as a compound capable of activating AMPK via the adiponectin receptor. To identify novel AdipoRon analogues with AMPK activation potential, a total of 17 analogues were designed, synthesized, and subjected to biological evaluation. Among these analogues, X-12 was discovered to exhibit potent activation of AMPK. In experimental studies, X-12 demonstrated dose-dependent improvements in glucose tolerance in normal mice. Furthermore, it significantly reduced fasting blood glucose levels and ameliorated insulin resistance in db/db diabetic mice. These findings highlight the therapeutic potential of X-12 as a novel class of AMPK activators for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Chao Lin
- Yantai Institute of Materia Medica Shandong 264000 China
| | - Geng Sun
- School of Anesthesiology, Naval Medical University 168 Changhai Road Shanghai 200433 China
| | - Yi Li
- Yantai Vocational College Yantai 264000 Shandong China
| |
Collapse
|
17
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Liu L, Tang J, Liang X, Li Y, Zhu P, Zhou M, Qin L, Deng Y, Li J, Wang Y, Jiang L, Huang D, Zhou Y, Wang S, Xiao Q, Luo Y, Tang Y. Running exercise alleviates hippocampal neuroinflammation and shifts the balance of microglial M1/M2 polarization through adiponectin/AdipoR1 pathway activation in mice exposed to chronic unpredictable stress. Mol Psychiatry 2024; 29:2031-2042. [PMID: 38361125 DOI: 10.1038/s41380-024-02464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Running exercise has been shown to alleviate depressive symptoms. However, the mechanism underlying the antidepressant effects of running exercise is not fully understood. The imbalance of M1/M2 microglia phenotype/polarization and concomitant dysregulation of neuroinflammation play crucial roles in the pathogenesis of depression. Running exercise increases circulating levels of adiponectin which is known to cross the blood‒brain barrier and suppress inflammatory responses. AdipoR1 is an adiponectin receptor that is involved in regulating microglial phenotypes and activation states. However, whether running exercise regulates hippocampal microglial phenotypes and neuroinflammation through adiponectin/AdipoR1 to exert its antidepressant effects remains unclear. In the current study, 4 weeks of running exercise significantly alleviated the depressive-like behaviors of chronic unpredictable stress (CUS)-exposed mice. Moreover, running exercise decreased the microglial numbers and altered microglial morphology in three subregions of the hippocampus to restore the M1/M2 balance; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in CUS-exposed mice. These effects may involve elevation of peripheral tissue (adipose tissue and muscle) and plasma adiponectin levels, and hippocampal AdipoR1 levels as well as activation of the AMPK-NF-κB/STAT3 signaling pathway by running exercise. When an adeno-associated virus was used to knock down hippocampal AdipoR1, mice showed depressive-like behaviors and alterations in microglia and inflammatory factor expression in the hippocampus that were similar to those observed in CUS-exposed mice. Together, these results suggest that running exercise maintains the M1/M2 balance and inhibits neuroinflammation in the hippocampus of CUS-exposed mice. These effects might occur via adiponectin/AdipoR1-mediated activation of the AMPK-NF-κB/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Li Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Liang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yue Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mei Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Qin
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yiying Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dujuan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Xiao
- Department of Radioactive Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
19
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
20
|
Massart IS, Kouakou A, Pelet N, Lause P, Schakman O, Loumaye A, Abou‐Samra M, Deldicque L, Bindels LB, Brichard SM, Thissen J. Administration of adiponectin receptor agonist AdipoRon relieves cancer cachexia by mitigating inflammation in tumour-bearing mice. J Cachexia Sarcopenia Muscle 2024; 15:919-933. [PMID: 38572511 PMCID: PMC11154773 DOI: 10.1002/jcsm.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy. METHODS The effect of AR on cancer cachexia was investigated in two distinct murine models of colorectal cancer. First, 7-week-old CD2F1 male mice were subcutaneously injected with colon-26 carcinoma cells (C26) or vehicle (CT). Six days after injection, mice were treated for 5 days with AdipoRon (50 mg/kg/day; C26 + AR) or the corresponding vehicle (CT and C26). Additionally, a genetic model, the ApcMin/+ mouse, that develops spontaneously numerous intestinal polyps, was used. Eight-week-old male ApcMin/+ mice were treated with AdipoRon (50 mg/kg/day; Apc + AR) or the corresponding vehicle (Apc) over a period of 12 weeks, with C57BL/6J wild-type mice used as controls. In both models, several parameters were assessed in vivo: body weight, grip strength and serum parameters, as well as ex vivo: molecular changes in muscle, fat and liver. RESULTS The protective effect of AR on cachexia development was observed in both cachectic C26 and ApcMin/+ mice. In these mice, AR administration led to a significant alleviation of body weight loss and muscle wasting, together with rescued muscle strength (P < 0.05 for all). In both models, AR had a strong anti-inflammatory effect, reflected by lower systemic interleukin-6 levels (-55% vs. C26, P < 0.001 and -80% vs. Apc mice, P < 0.05), reduced muscular inflammation as indicated by lower levels of Socs3, phospho-STAT3 and Serpina3n, an acute phase reactant (P < 0.05 for all). In addition, AR blunted circulating levels of corticosterone (-46% vs. C26 mice, P < 0.001 and -60% vs. Apc mice, P < 0.05), the predominant murine glucocorticoid known to induce muscle atrophy. Accordingly, key glucocorticoid-responsive factors implicated in atrophy programmes were-or tended to be-significantly blunted in skeletal muscle by AR. Finally, AR protected against lipid metabolism alterations observed in ApcMin/+ mice, as it mitigated the increase in circulating triglyceride levels (-38%, P < 0.05) by attenuating hepatic triglyceride synthesis and fatty acid uptake by the liver. CONCLUSIONS Altogether, these results show that AdipoRon rescued the cachectic phenotype by alleviating body weight loss and muscle atrophy, along with restraining inflammation and hypercorticism in preclinical murine models. Therefore, AdipoRon could represent an innovative therapeutic strategy to counteract cancer cachexia.
Collapse
Affiliation(s)
- Isabelle S. Massart
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Axell‐Natalie Kouakou
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Nathan Pelet
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Pascale Lause
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Olivier Schakman
- Institute of NeuroscienceUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Audrey Loumaye
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Michel Abou‐Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Louise Deldicque
- Institute of NeuroscienceUniversité catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Jean‐Paul Thissen
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical ResearchUniversité catholique de LouvainBrusselsBelgium
| |
Collapse
|
21
|
Fawaz S, Martin Alonso A, Qiu Y, Ramnath R, Stowell-Connolly H, Gamez M, May C, Down C, Coward RJ, Butler MJ, Welsh GI, Satchell SC, Foster RR. Adiponectin Reduces Glomerular Endothelial Glycocalyx Disruption and Restores Glomerular Barrier Function in a Mouse Model of Type 2 Diabetes. Diabetes 2024; 73:964-976. [PMID: 38530908 DOI: 10.2337/db23-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah Fawaz
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Aldara Martin Alonso
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Raina Ramnath
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Holly Stowell-Connolly
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Monica Gamez
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Carl May
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Colin Down
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
22
|
Nguyen MLT, Pham C, Pham VT, Nham PLT, Ta BT, Le DT, Le QV, Hoang XC, Bozko P, Nguyen LT, Bui KC. Adiponectin Receptor Agonist Effectively Suppresses Hepatocellular Carcinoma Growth. Cell Biochem Biophys 2024; 82:687-695. [PMID: 38243102 DOI: 10.1007/s12013-024-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the second lethal cancer. Short overall survival, low five-year survival rate, and unimproved treatment efficacy urge the need to improve HCC prognosis. Adiponectin is key protector against cancer and hepatic abnormalities. Hypoadiponectinemia occurs in and promotes carcinogenesis and hepatic diseases. Adiponectin reactivation by different methods showed impressive effect against cancer and hepatic diseases. Recently, AdipoRon, an adiponectin receptor agonist, can interact with both Adiponectin receptors. AdipoRon showed promising anti-cancer effect in some cancers, but no study on HCC yet. The in vitro effect of AdipoRon on HCC was investigated by cell viability, migration, invasion, colony formation and apoptosis assays. The signalling alteration was determined by RT-qPCR and Western blot. The effect of treatment was interpreted by comparison between treatments and control. The difference between two cell lines was relatively compared. Our results showed significant in vitro anti-cancer effect of AdipoRon via AMPK- and dose-dependent manner. Huh7 cells showed a lower level of AdipoR1/2 and a superior proliferation and aggressiveness, compared to Hep3B. In addition, Huh7 cells were more sensitive to AdipoRon treatment (lower IC50, less cell growth, migration, invasion and colonies upon AdipoRon treatment) than Hep3B cells. In conclusion, AdipoRon effectively inhibited HCC growth and invasiveness in vitro. The deficient expression of adiponectin receptors affects efficacy of AdipoRon and aggressiveness of HCC cells.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Chi Pham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Van Tran Pham
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Hanoi, Vietnam
| | - Phuong Linh Thi Nham
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ba Thang Ta
- Vietnam Military Medical University, Hanoi, Vietnam
- Respiratory Centre, Military Hospital 103, Hanoi, Vietnam
| | - Dinh Tuan Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Rheumatology and Endocrinology, Military Hospital 103, Hanoi, Vietnam
| | - Quoc Vuong Le
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Medical Examination, Le Huu Trac National Burn Hospital, Hanoi, Vietnam
| | | | - Przemyslaw Bozko
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- The M3 Research Institute, Tübingen, Germany
| | - Linh Toan Nguyen
- Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Khac Cuong Bui
- Vietnam Military Medical University, Hanoi, Vietnam.
- Laboratory Animal Research Centre, Vietnam Military Medical University, Hanoi, Vietnam.
- Department of Internal medicine I, Universitätsklinikum Tübingen, Tübingen, Germany.
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam.
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.
| |
Collapse
|
23
|
Norris MK, Tippetts TS, Wilkerson JL, Nicholson RJ, Maschek JA, Levade T, Medin JA, Summers SA, Holland WL. Adiponectin overexpression improves metabolic abnormalities caused by acid ceramidase deficiency but does not prolong lifespan in a mouse model of Farber Disease. Mol Genet Metab Rep 2024; 39:101077. [PMID: 38595987 PMCID: PMC11002753 DOI: 10.1016/j.ymgmr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.
Collapse
Affiliation(s)
- Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Trevor S. Tippetts
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Jeffrey A. Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
25
|
Hyun Boo K, Woo Kim J, Song M. Isolation and purification of high molecular weight adiponectin from human plasma fraction. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124111. [PMID: 38603890 DOI: 10.1016/j.jchromb.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Adiponectin, a crucial protein hormone originating from adipose tissue, regulates key metabolic processes, including lipid metabolism, mitochondrial activity, and insulin sensitivity. These pleiotropic roles of adiponectin, along with its inverse correlation with metabolic disorders such as obesity, type II diabetes, and atherosclerosis, establish this protein as a potential therapeutic target. However, due to this complexity, challenges have arisen in its production with a natural conformation in bacterial or mammalian expression systems, hindering clinical translation. Furthermore, while inducers for adiponectin secretion or chemical agonists targeting adiponectin receptors have shown promise in laboratory settings, clinical studies with these agents have not yet been conducted. This study proposes a method for isolating and purifying natural high molecular weight (HMW) adiponectin from discarded plasma fractions during the conventional pharmaceutical protein manufacturing process. The process involved Cohn-Oncley fractionation, initial chromatography using reduced cellufine formyl, and subsequent purification via DEAE Sepharose chromatography. Characterization involved gel electrophoresis and biological assays on a hepatocyte cell-line. The purification process effectively captured adiponectin from the I + III paste, demonstrating that this fraction contained a significant portion of total plasma adiponectin. The two-step chromatography led to highly purified HMW adiponectin, confirmed by native-PAGE showing a 780 kDa multimeric complex. Biological assessments demonstrated normal downstream signaling, with HMW adiponectin inducing AMPK phosphorylation. This study demonstrates the feasibility of obtaining purified HMW adiponectin by repurposing plasma fractionation processes. It offers a promising avenue for the HMW adiponectin production, tapping into HMW adiponectin's therapeutic potential against metabolic disorders while optimizing plasma resource utilization in healthcare.
Collapse
Affiliation(s)
- Kyung Hyun Boo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; ECO lab, SK plasma, Seongnam 13494, Republic of Korea
| | - Jin Woo Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
26
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
27
|
Lewandowski D, Gao F, Imanishi S, Tworak A, Bassetto M, Dong Z, Pinto AFM, Tabaka M, Kiser PD, Imanishi Y, Skowronska-Krawczyk D, Palczewski K. Restoring retinal polyunsaturated fatty acid balance and retina function by targeting ceramide in AdipoR1-deficient mice. J Biol Chem 2024; 300:107291. [PMID: 38636661 PMCID: PMC11107370 DOI: 10.1016/j.jbc.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Fangyuan Gao
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksander Tworak
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dorota Skowronska-Krawczyk
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, and Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| |
Collapse
|
28
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
29
|
Meyer M, Schwärzler J, Jukic A, Tilg H. Innate Immunity and MASLD. Biomolecules 2024; 14:476. [PMID: 38672492 PMCID: PMC11048298 DOI: 10.3390/biom14040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most common liver disease worldwide in recent years. MASLD commonly presents as simple hepatic steatosis, but ~25% of patients develop liver inflammation, progressive fibrosis, liver cirrhosis and related hepatocellular carcinoma. Liver inflammation and the degree of fibrosis are key determinants of the prognosis. The pathophysiology of liver inflammation is incompletely understood and involves diverse factors and specifically innate and adaptive immune responses. More specifically, diverse mediators of innate immunity such as proinflammatory cytokines, adipokines, inflammasomes and various cell types like mononuclear cells, macrophages and natural killer cells are involved in directing the inflammatory process in MASLD. The activation of innate immunity is driven by various factors including excess lipids and lipotoxicity, insulin resistance and molecular patterns derived from gut commensals. Targeting pathways of innate immunity might therefore appear as an attractive therapeutic strategy in the future management of MASLD and possibly its complications.
Collapse
Affiliation(s)
| | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.M.); (A.J.)
| |
Collapse
|
30
|
Cheng L, Shi C, Nakamura S, Esaki N, Ichiba Y, Tanaka M, Sakai K, Matsui T. Adiponectin-Receptor Agonistic Dipeptide Tyr-Pro Stimulates the Acetylcholine Nervous System in NE-4C Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7121-7129. [PMID: 38511275 DOI: 10.1021/acs.jafc.3c07821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The dipeptide Tyr-Pro has physiological potential for intact transportability into the brain parenchyma, prevention of cognitive impairment, and an adiponectin receptor 1 (AdipoR1) agonistic effect. The present study aimed to understand the effect of Tyr-Pro on the acetylcholine (ACh) nervous system and its underlying mechanism in NE-4C nerve cells. Concentration-dependent ACh production was induced by stimulation with Tyr-Pro and AdipoRon (an AdipoR1 agonist), along with the expression of AdipoR1 and choline acetyltransferase (ChAT) in NE-4C cells. By knocking down AdipoR1 in the cells, Tyr-Pro promoted ChAT expression, along with the activations of AMPK and ERK 1/2. Tyr-Pro did not alter acetylcholinesterase or ACh receptors, indicating that the dipeptide might operate as an ACh accelerator in nerve cells. This study provides the first evidence that the AdipoR1 agonistic Tyr-Pro is a promising dipeptide responsible for the stimulation of the ACh nervous system by AdipoR1-induced ChAT activation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Saya Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nana Esaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuka Ichiba
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Sakai
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
31
|
Kobori T, Iwabu M, Okada-Iwabu M, Ohuchi N, Kikuchi A, Yamauchi N, Kadowaki T, Yamauchi T, Kasuga M. Decreased AdipoR1 signaling and its implications for obesity-induced male infertility. Sci Rep 2024; 14:5701. [PMID: 38459078 PMCID: PMC10923778 DOI: 10.1038/s41598-024-56290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Obesity is among the risk factors for male infertility. Although several mechanisms underlying obesity-induced male subfertility have been reported, the entire mechanism of obesity-induced male infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing ability were decreased in male mice fed a high-fat diet and that the expression of the AdipoR1 gene and protein was decreased, and the expression of pro-apoptotic genes and protein increased, in the testis from mice fed a high-fat diet. Moreover, we demonstrate that testes weight, sperm count, sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice compared to those in wild-type mice; furthermore, the phosphorylation of AMPK was decreased, and the expression of pro-apoptotic genes and proteins, caspase-6 activity and pathologically apoptotic seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, study findings show that orally administrated AdipoRon decreased caspase-6 activity and apoptotic seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high-fat diet. This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased caspase-6 activity/increased apoptosis in the testis thus likely accounting for male infertility.
Collapse
Affiliation(s)
- Toshiko Kobori
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Masato Iwabu
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nozomi Ohuchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akiko Kikuchi
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Naoko Yamauchi
- Digital Pathology Center, Asahi General Hospital, Asahi-Shi, Chiba, 289-2511, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Toranomon Hospital, Minato-Ku, Tokyo, 105-8470, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Masato Kasuga
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| |
Collapse
|
32
|
Eng PC, Phylactou M, Qayum A, Woods C, Lee H, Aziz S, Moore B, Miras AD, Comninos AN, Tan T, Franks S, Dhillo WS, Abbara A. Obesity-Related Hypogonadism in Women. Endocr Rev 2024; 45:171-189. [PMID: 37559411 PMCID: PMC10911953 DOI: 10.1210/endrev/bnad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Obesity-related hypogonadotropic hypogonadism is a well-characterized condition in men (termed male obesity-related secondary hypogonadism; MOSH); however, an equivalent condition has not been as clearly described in women. The prevalence of polycystic ovary syndrome (PCOS) is known to increase with obesity, but PCOS is more typically characterized by increased gonadotropin-releasing hormone (GnRH) (and by proxy luteinizing hormone; LH) pulsatility, rather than by the reduced gonadotropin levels observed in MOSH. Notably, LH levels and LH pulse amplitude are reduced with obesity, both in women with and without PCOS, suggesting that an obesity-related secondary hypogonadism may also exist in women akin to MOSH in men. Herein, we examine the evidence for the existence of a putative non-PCOS "female obesity-related secondary hypogonadism" (FOSH). We précis possible underlying mechanisms for the occurrence of hypogonadism in this context and consider how such mechanisms differ from MOSH in men, and from PCOS in women without obesity. In this review, we consider relevant etiological factors that are altered in obesity and that could impact on GnRH pulsatility to ascertain whether they could contribute to obesity-related secondary hypogonadism including: anti-Müllerian hormone, androgen, insulin, fatty acid, adiponectin, and leptin. More precise phenotyping of hypogonadism in women with obesity could provide further validation for non-PCOS FOSH and preface the ability to define/investigate such a condition.
Collapse
Affiliation(s)
- Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, National University of Singapore, Singapore 117549
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ambreen Qayum
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Casper Woods
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Hayoung Lee
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Sara Aziz
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Benedict Moore
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander D Miras
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Steve Franks
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| |
Collapse
|
33
|
Rehman A, Lathief S, Charoenngam N, Pal L. Aging and Adiposity-Focus on Biological Females at Midlife and Beyond. Int J Mol Sci 2024; 25:2972. [PMID: 38474226 DOI: 10.3390/ijms25052972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Menopause is a physiological phase of life of aging women, and more than 1 billion women worldwide will be in menopause by 2025. The processes of global senescence parallel stages of reproductive aging and occur alongside aging-related changes in the body. Alterations in the endocrine pathways accompany and often predate the physiologic changes of aging, and interactions of these processes are increasingly being recognized as contributory to the progression of senescence. Our goal for this review is to examine, in aging women, the complex interplay between the endocrinology of menopause transition and post-menopause, and the metabolic transition, the hallmark being an increasing tendency towards central adiposity that begins in tandem with reproductive aging and is often exacerbated post menopause. For the purpose of this review, our choice of the terms 'female' and 'woman' refer to genetic females.
Collapse
Affiliation(s)
- Amna Rehman
- Department of Internal Medicine, Berkshire Medical Center, Pittsfield, MA 02101, USA
| | - Sanam Lathief
- Division of Endocrinology, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nipith Charoenngam
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA 02138, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Lubna Pal
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Nielsen MB, Çolak Y, Benn M, Mason A, Burgess S, Nordestgaard BG. Plasma adiponectin levels and risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction: large-scale observational and Mendelian randomization evidence. Cardiovasc Res 2024; 120:95-107. [PMID: 37897683 PMCID: PMC10898934 DOI: 10.1093/cvr/cvad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Adiponectin may play an important protective role in heart failure and associated cardiovascular diseases. We hypothesized that plasma adiponectin is associated observationally and causally, genetically with risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. METHODS AND RESULTS In the Copenhagen General Population Study, we examined 30 045 individuals with plasma adiponectin measurements observationally and 96 903 individuals genetically in one-sample Mendelian randomization analyses using five genetic variants explaining 3% of the variation in plasma adiponectin. In the HERMES, UK Biobank, The Nord-Trøndelag Health Study (HUNT), deCODE, the Michigan Genomics Initiative (MGI), DiscovEHR, and the AFGen consortia, we performed two-sample Mendelian randomization analyses in up to 1 030 836 individuals using 12 genetic variants explaining 14% of the variation in plasma adiponectin.In observational analyses modelled linearly, a 1 unit log-transformed higher plasma adiponectin was associated with a hazard ratio of 1.51 (95% confidence interval: 1.37-1.66) for heart failure, 1.63 (1.50-1.78) for atrial fibrillation, 1.21 (1.03-1.41) for aortic valve stenosis, and 1.03 (0.93-1.14) for myocardial infarction; levels above the median were also associated with an increased risk of myocardial infarction, and non-linear U-shaped associations were more apparent for heart failure, aortic valve stenosis, and myocardial infarction in less-adjusted models. Corresponding genetic, causal risk ratios were 0.92 (0.65-1.29), 0.87 (0.68-1.12), 1.55 (0.87-2.76), and 0.93 (0.67-1.30) in one-sample Mendelian randomization analyses, and no significant associations were seen for non-linear one-sample Mendelian randomization analyses; corresponding causal risk ratios were 0.99 (0.89-1.09), 1.00 (0.92-1.08), 1.01 (0.79-1.28), and 0.99 (0.86-1.13) in two-sample Mendelian randomization analyses, respectively. CONCLUSION Observationally, elevated plasma adiponectin was associated with an increased risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. However, genetic evidence did not support causality for these associations.
Collapse
Affiliation(s)
- Maria Booth Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
| | - Yunus Çolak
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
- Department of Respiratory Medicine, Copenhagen University Hospital—Herlev and Gentofte, Copenhagen, Denmark
| | - Marianne Benn
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Amy Mason
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
35
|
Szymaszkiewicz A, Mierzejewski M, Januszkiewicz E, Machelak W, Talar M, Włodarczyk J, Świerczyński M, Kordek R, Fichna J, Zielińska M. The role of bidirectional communication between the adipokines and the endogenous opioid system in an experimental mouse model of colitis-associated colorectal cancer. Pharmacol Rep 2024; 76:112-126. [PMID: 38236555 DOI: 10.1007/s43440-023-00566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of death globally. Multiple factors may contribute to the pathogenesis of CRC, including the abnormalities in the functioning of the endogenous opioid system (EOS) or adiponectin-related signaling. The aim of our study was to evaluate if differences in the expression of opioid receptors (ORs) influence the development of CRC and if modulation of adiponectin receptors using AdipoRon, a selective AdipoR1 receptor agonist, affects colorectal carcinogenesis. METHODS Naltrexone, an opioid receptor antagonist, was injected intraperitoneally every second day for 2 weeks, at the dose of 1 mg/kg in healthy Balb/C mice to induce changes in ORs expression. CRC was induced by a single intraperitoneal injection of azoxymethane (AOM) and the addition of dextran sodium sulfate (DSS) into drinking water in three-week cycles. The development of CRC was assessed using macro- and microscopic scoring and molecular analysis (RT qPCR, ELISA) after 14 weeks. RESULTS Naltrexone significantly increased the mRNA expression of Oprm1, Oprd1, and Oprk1 in the mouse colon and in the brain (non-significantly). The pretreatment of mice with naltrexone aggravated the course of CRC (as indicated by tumor area, colon thickness, and spleen weight). The level of circulatory adiponectin was lowered in mice with CRC and increased in the colon as compared with healthy mice. The β-endorphin level was increased in the plasma of mice with CRC and decreased in the colon as compared to healthy mice. AdipoRon, AdipoR1 agonist, worsened the CRC development, and pretreatment with naltrexone enhanced this negative effect in mice. CRC did not affect the expression of the Adipor1 gene, but the Adipor1 level was increased in mice pretreated with naltrexone (AOM/DSS and healthy mice). AdipoRon did not influence the expression of opioid receptors at the mRNA level in the colon of mice with CRC. The mRNA expression of Ptgs2, Il6, Nos2, Il1b, Il18, Gsdmd, and Rela was increased in mice with CRC as compared to the healthy colon. AdipoRon significantly decreased mRNA expression of Ptgs2, Il6, Il1b, and Il18 as compared to CRC mice. CONCLUSION EOS and adiponectin-related signaling may play a role in the pathogenesis of CRC and these systems may present some additivity during carcinogenesis.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Mikołaj Mierzejewski
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Emilia Januszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Łódź, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Łódź, Molecolab, Mazowiecka 5, 92-215, Łódź, Poland.
| |
Collapse
|
36
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
37
|
Hafiane A. Adiponectin-mediated regulation of the adiponectin cascade in cardiovascular disease: Updates. Biochem Biophys Res Commun 2024; 694:149406. [PMID: 38134479 DOI: 10.1016/j.bbrc.2023.149406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The endocrine function of white adipose tissue is characterized by the synthesis of one its main hormones: adiponectin. Although the biological role of adiponectin has not been fully defined, clinical and experimental observations have shown that low plasma concentrations of adiponectin participate in the prevalence of insulin resistance and cardiovascular diseases, mainly in obese patients. Adiponectin also exerts its effects on the heart and blood vessels, thereby influencing their physiology. Studying the effects of adiponectin presents some complexities, primarily due to potential cross-interactions and interference with other pathways, such as the AdipoR1/R2 pathways. Under optimal conditions, the activation of the adiponectin cascade may involve signals such as AMPK and PPARα. Interestingly, these pathways may trigger similar responses, such as fatty acid oxidation. Understanding the downstream effectors of these pathways is crucial to comprehend the extent to which adiponectin signaling impacts metabolism. In this review, the aim is to explore the current mechanisms that regulate the adiponectin pathways. Additionally, updates on the major downstream factors involved in adiponectin signaling are provided, specifically in relation to metabolic syndrome and atherosclerosis.
Collapse
Affiliation(s)
- Anouar Hafiane
- Research Institute, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
38
|
Melchionna M, Ganusova EE, Harmon N, Alexandre G. TrhA, a bacterial progestin and adiponectin receptor homolog, couples membrane energetics homeostasis and unsaturated fatty acid metabolism. J Bacteriol 2024; 206:e0039723. [PMID: 38054739 PMCID: PMC10810207 DOI: 10.1128/jb.00397-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Members of the widely conserved progestin and adipoQ receptor (PAQR) family function to maintain membrane homeostasis: membrane fluidity and fatty acid composition in eukaryotes and membrane energetics and fatty acid composition in bacteria. All PAQRs consist of a core seven transmembrane domain structure and five conserved amino acids (three histidines, one serine, and one aspartic acid) predicted to form a hydrolase-like catalytic site. PAQR homologs in Bacteria (called TrhA, for transmembrane homeostasis protein A) maintain homeostasis of membrane charge gradients, like the membrane potential and proton gradient that comprise the proton motive force, but their molecular mechanisms are not yet understood. Here, we show that TrhA in Escherichia coli has a periplasmic C-terminus, which places the five conserved residues shared by all PAQRs at the cytoplasmic interface of the membrane. Here, we characterize several conserved residues predicted to form an active site by site-directed mutagenesis. We also identify a specific role for TrhA in modulating unsaturated fatty acid biosynthesis with conserved residues required to either promote or reduce the abundance of unsaturated fatty acids. We also identify distinct roles for the conserved residues in supporting TrhA's role in maintaining membrane energetics homeostasis that suggest that both functions are intertwined and probably partly dependent on one another. An analysis of domain architecture of TrhA-like domains in Bacteria further supports a function of TrhA linking membrane energetics homeostasis with biosynthesis of unsaturated fatty acid in the membrane. IMPORTANCE Progestin and adipoQ receptor (PAQR) family proteins are evolutionary conserved regulators of membrane homeostasis and have been best characterized in eukaryotes. Bacterial PAQR homologs, named TrhA (transmembrane homeostasis protein A), regulate membrane energetics homeostasis through an unknown mechanism. Here, we present evidence linking TrhA to both membrane energetics homeostasis and unsaturated fatty acid biosynthesis. Analysis of domain architecture together with experimental evidence suggests a model where TrhA activity on unsaturated fatty acid biosynthesis is regulated by changes in membrane energetics to dynamically adjust membrane homeostasis.
Collapse
Affiliation(s)
- Maddison Melchionna
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elena E. Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Neyland Harmon
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gladys Alexandre
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
39
|
Abdalla MMI. Therapeutic potential of adiponectin in prediabetes: strategies, challenges, and future directions. Ther Adv Endocrinol Metab 2024; 15:20420188231222371. [PMID: 38250316 PMCID: PMC10798122 DOI: 10.1177/20420188231222371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Adiponectin, an adipose-derived hormone, plays a pivotal role in glucose regulation and lipid metabolism, with a decrease in circulating adiponectin levels being linked to insulin resistance and prediabetes. This review examines the therapeutic potential of adiponectin in managing prediabetes, elucidating on multiple aspects including its role in glucose and lipid metabolism, influence on insulin sensitivity, and anti-inflammatory properties. Moreover, the paper highlights the latest strategies to augment adiponectin levels, such as gene therapy, pharmacological interventions, dietary modifications, and lifestyle changes. It also addresses the challenges encountered in translating preclinical findings into clinical practice, primarily related to drug delivery, safety, and efficacy. Lastly, the review proposes future directions, underlining the need for large-scale human trials, novel adiponectin analogs, and personalized treatment strategies to harness adiponectin's full therapeutic potential in preventing the transition from prediabetes to diabetes.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Human Biology Department, School of Medicine, International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur, Federal Territory of Kuala Lumpur 57000, Malaysia
| |
Collapse
|
40
|
Chuang YM, Stone H, Abouneameh S, Tang X, Fikrig E. Signaling between mammalian adiponectin and a mosquito adiponectin receptor reduces Plasmodium transmission. mBio 2024; 15:e0225723. [PMID: 38078744 PMCID: PMC10790699 DOI: 10.1128/mbio.02257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Wang Y, Liu Y, Fang J, Xing X, Wang H, Shi X, Liu X, Niu T, Liu K. Small-molecule agonist AdipoRon alleviates diabetic retinopathy through the AdipoR1/AMPK/EGR4 pathway. J Transl Med 2024; 22:2. [PMID: 38166990 PMCID: PMC10759471 DOI: 10.1186/s12967-023-04783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS This provides a new target for the early treatment of DR.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
- Department of Ophthalmology, Shanghai Renji Hospital, School of Medicine, Shanghai, 200127, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| |
Collapse
|
42
|
Engin A. Adiponectin Resistance in Obesity: Adiponectin Leptin/Insulin Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:431-462. [PMID: 39287861 DOI: 10.1007/978-3-031-63657-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and β-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
43
|
Zamora Z, Wang S, Chen YW, Diamante G, Yang X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. ENVIRONMENT INTERNATIONAL 2024; 183:108339. [PMID: 38043319 PMCID: PMC11216742 DOI: 10.1016/j.envint.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Cardiometabolic disorders (CMD) are a growing public health problem across the world. Among the known cardiometabolic risk factors are compounds that induce endocrine and metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially considering the complexity contributed by species-, chemical-, and dose-specific effects. Moreover, different experimental and analytical methodologies employed by different studies pose challenges when comparing findings across studies. To explore the molecular mechanisms of EDCs in a systematic manner, we established a data-driven computational approach to meta-analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological pathways, modeled gene regulatory networks and regulators, and determined CMD associations based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma (PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT exhibited highly divergent gene signatures, pathways, network regulators, and disease associations from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed highly variable transcriptomic patterns, providing molecular support for the variability in BPA responses. Our work offers insights into the commonality and differences in the molecular mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare molecular mechanisms of environmental substances to elucidate the underlying connections between chemical exposure and disease risks.
Collapse
Affiliation(s)
- Zacary Zamora
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Bui KC, Nguyen TML, Barat S, Scholta T, Xing J, Bhuria V, Sipos B, Wilkens L, Nguyen LT, Le HS, Velavan TP, Bozko P, Plentz RR. Novel Adiponectin Receptor Agonist Inhibits Cholangiocarcinoma via Adenosine Monophosphate-activated Protein Kinase. Curr Med Chem 2024; 31:4534-4548. [PMID: 38361349 DOI: 10.2174/0109298673254969231122114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) has a poor prognosis and only limited palliative treatment options. The deficiency of adiponectin and adenosine monophosphate-activated protein kinase (AMPK) signaling was reported in several malignancies, but the alteration of these proteins in CCA is still unclear. OBJECTIVES This study aimed to assess the role of adiponectin and AMPK signaling in CCA. Furthermore, AdipoRon, a novel adiponectin receptor (AdipoR) agonist, was evaluated in vitro and in vivo as a new anti-tumor therapy for CCA. METHODS The expression of AdipoR1 and p-AMPKα in human tissue microarrays (TMAs) was evaluated by immunohistochemistry staining (IHC). The effect of 2-(4-Benzoylphenoxy)-N-[1-(phenylmethyl)-4-piperidinyl]-acetamide (AdipoRon) was investigated in vitro with proliferation, crystal violet, migration, invasion, colony formation, senescence, cell cycle and apoptosis assays and in vivo using a CCA engineered mouse model (AlbCre/LSL-KRASG12D/p53L/L). RT-qPCR and western blot methods were applied to study molecular alterations in murine tissues. RESULTS AdipoR1 and p-AMPKα were impaired in human CCA tissues, compared to adjacent non-tumor tissue. There was a positive correlation between the AdipoR1 and p-AMPKα levels in CCA tissues. Treatment with AdipoRon inhibited proliferation, migration, invasion and colony formation and induced apoptosis in a time- and dose-dependent manner in vitro (p<0.05). In addition, AdipoRon reduced the number of CCA and tumor volume, prolonged survival, and decreased metastasis and ascites in the treated group compared to the control group (p<0.05). CONCLUSIONS AdipoR1 and p-AMPKα are impaired in CCA tissues, and AdipoRon effectively inhibits CCA in vitro and in vivo. Thus, AdipoRon may be considered as a potential anti-tumor therapy in CCA.
Collapse
Affiliation(s)
- Khac Cuong Bui
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Thi Mai Ly Nguyen
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Samarpita Barat
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Tim Scholta
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jun Xing
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Vikas Bhuria
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadt Krankenhaus, Hannover, Germany
| | - Linh Toan Nguyen
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Huu Song Le
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Faculty of Tropical and Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ruben R Plentz
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Tübingen, Germany
- Department of Internal Medicine, Klinikum Bremen Nord, Bremen, Germany
| |
Collapse
|
45
|
Ahuja A, Zboinski E, das S, Zhu X, Ma Q, Xie Y, Tu Q, Chen J. Antidiabetic features of AdipoAI, a novel AdipoR agonist. Cell Biochem Funct 2024; 42:e3910. [PMID: 38269524 PMCID: PMC10811407 DOI: 10.1002/cbf.3910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0-5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.
Collapse
Affiliation(s)
- Akash Ahuja
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Elissa Zboinski
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Siddhartha das
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Xiaofang Zhu
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Qian Ma
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Department of General Dentistry, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Ying Xie
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qisheng Tu
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
| | - Jake Chen
- Division of Oral Biology, Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- Dept. of Developmental, Molecular and Chemical Biology, Tufts School of Medicine; Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Wu Q, Yan L, Wu X, Chen Y, Ye L, Lv Y, Su Y. Experimental periodontitis induced hypoadiponectinemia by IRE1α-mediated endoplasmic reticulum stress in adipocytes. BMC Oral Health 2023; 23:1032. [PMID: 38129878 PMCID: PMC10740306 DOI: 10.1186/s12903-023-03758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUD Hypoadiponectinemia is the important cause of insulin resistance. Recent studies have shown that periodontitis is associated with hypoadiponectinemia. The purpose of this study was to investigate the effect of periodontitis-induced endoplasmic reticulum stress (ERS) in visceral adipocytes on hypoadiponectinemia. METHODS Rat periodontitis models were established by local ligation with silk around the bilateral maxillary second molars. Porphyromonas gingivalis-lipopolysaccharid (P.g-LPS) was also used to stimulate the visceral adipocytes in vitro. The protein expression levels of glucose regulated protein 78 (GRP78), inositol-requiring protein 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and adiponectin were detected. IRE1α lentiviruses were transfected into visceral adipocytes in vitro, and an IRE1α inhibitor (KIRA6) was injected in epididymal adipose tissue of rats to detect and verify the effect of ERS on adiponectin expression in visceral adipocytes in vivo. RESULTS Hypoadiponectinemia was observed in periodontitis rat, and the expression levels of ERS key proteins GRP78 and the phosphorylation levels of IRE1α (p-IRE1α)/IRE1α in visceral adipocytes were increased, while the expression levels of adiponectin protein were decreased. After KIRA6 injection into epididymal adipose tissue of rats with periodontitis, adiponectin levels in visceral adipocytes increased, and serum adiponectin levels recovered to a certain extent. The protein expression levels of GRP78 and p-IRE1α/IRE1α were increased and adiponectin protein expression was decreased in P.g-LPS-induced visceral adipocytes. Overexpression of IRE1α further inhibited adiponectin expression in P.g-LPS-stimulated visceral adipocytes, and conversely, IRE1α inhibition restored adiponectin expression. CONCLUSIONS Our findings suggest that periodontitis induces ERS in visceral adipocytes leading to hypoadiponectinemia. IRE1α is a key protein regulating adiponectin expression in visceral adipocytes.
Collapse
Affiliation(s)
- Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Leilei Ye
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology and Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
He L, Li H, Zhang L, Zhang J, Zhang G, Tong X, Zhang T, Wu Y, Li M, Jin L. Transcriptome analysis of norepinephrine-induced lipolysis in differentiated adipocytes of Bama pig. Gene 2023; 888:147753. [PMID: 37659599 DOI: 10.1016/j.gene.2023.147753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Sympathetic innervation of white adipose tissue (WAT) plays a key role in the regulation of lipid metabolism. Sympathetic activation promotes release of norepinephrine (NE), which binds to adrenergic receptors on adipocytes, promoting adipocyte lipolysis and enhanced oxidative metabolism. However, the mechanism by which sympathetic nerves regulate lipid metabolism in pig adipose tissue remains unclear. We used NE to simulate the process of sympathetic driving in pig adipocytes. RNA sequencing (RNA-seq) was used to determine the gene expression profile of pig adipocytes responding to NE stimulation. Our data suggests that the lipolytic signaling pathway is activated in pig adipocytes upon acute stimulation of NE, resulting in enhanced lipid metabolism and lipolysis, consistent with the phenomena found in humans and mice. Specifically, differentially expressed protein coding genes (PCGs) (SIRT4, SLC27A1) are mainly associated with functions that inhibit fatty acid oxidation and promote lipid synthesis. Similarly, we investigated the changes in regulatory transcripts such as long non-coding RNAs (lncRNAs) and transcripts of uncertain coding potential (TUCP) in response to NE and found that differentially expressed lncRNAs (lncG47338, lncG30660, lncG29516, lncG3790) and TUCP (TUCP_G38001) were co-expressed with target genes related to the promotion of fatty acid β-oxidation, lipolysis and oxidative metabolism, thus acting as regulators. These results indicate a broad suite of gene expression alterations in response to NE stimulation and promote the understanding of the molecular mechanisms by which NE regulates lipid metabolism in pigs.
Collapse
Affiliation(s)
- Li He
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Linzhen Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Geng Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Tong
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Wu
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| | - Long Jin
- Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
48
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
49
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
50
|
Gabbia D, De Martin S. Targeting the Adipose Tissue-Liver-Gut Microbiota Crosstalk to Cure MASLD. BIOLOGY 2023; 12:1471. [PMID: 38132297 PMCID: PMC10741127 DOI: 10.3390/biology12121471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota is a complex system, playing a peculiar role in regulating innate and systemic immunity. Increasing evidence links dysfunctional gut microbiota to metabolic dysfunction-associated steatotic liver disease (MASLD) due to the activation of multiple pathways in the gut and in the liver, including those mediated by Toll-like receptors (TLRs), that sustain hepatic inflammation. Thus, many efforts have been made to unravel the role of microbiota-associated dysfunction in MASLD, with the final aim of finding novel strategies to improve liver steatosis and function. Moreover, recent evidence underlines the role of adipose tissue in sustaining hepatic inflammation during MASLD development. In this review, we focus on the recently discovered strategies proposed to improve the alteration of gut microbiota observed in MASLD patients, with a particular insight into those known to modulate gut microbiota-associated dysfunction and to affect the complex crosstalk between the gut, the adipose tissue, and the liver.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy;
| | | |
Collapse
|