1
|
Taheri M, Moradi MH, Koraee Y, Moghadam FH, Ershad Nedaei S, Veisi M, Ghafouri H. Neuroprotective properties of a thiazolidine-2,4-dione derivative as an inhibitory agent against memory impairment and phosphorylated tau: In vitro and in vivo investigations. Neuroscience 2024; 562:227-238. [PMID: 39489476 DOI: 10.1016/j.neuroscience.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration that results in memory disorders and cognitive impairment. The present study investigated the neuroprotective effects of the synthesized thiazolidine-2,4-dione derivative, (E)-5-(4-chlorobenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4C), an inhibitor of p-Tau and memory impairment, using a SH-SY5Y cell model of methamphetamine-induced tauopathy and a scopolamine-induced memory impairment model in Wistar rats. In the present study, the neuroprotective effect of TZ4C was studied in a SH-SY5Y cellular model of methamphetamine-induced (2 mM) tauopathy and a scopolamine-induced (1.5 mg/kg/day) memory impairment model in male Wistar rats (n = 48). The memory functions and learning abilities of the rats were evaluated using the Morris water maze (MWM) and passive avoidance tests. Additionally, AChE activity in the rat hippocampus was quantified, and the expression of p-Tau, HSP70, and caspase-3 in both in vitro and in vivo samples was evaluated through Western blot analysis. TZ4C (0.1-1000 µM) did not exhibit significantly toxic effects on SH-SY5Y cell viability. Western blot results indicated that TZ4C led to reduced expression of p-Tau, HSP70, and cleaved caspase-3 in SH-SY5Y cells (3 and 10 µM) and the rat hippocampus (2 and 4 mg/kg). Additionally, the findings suggested that TZ4C enhanced memory function in rats with scopolamine-induced impairment and decreased acetylcholinesterase (AChE) specific activity. The comprehensive analysis of in vitro and in vivo experiments underscores the neuroprotective potential (improved neuropathology and reduced memory impairment) of TZ4C. These findings highlight the promise of TZ4C as a candidate for drug discovery programs to identify effective therapies for AD.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Mohammad Hadi Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Yasaman Koraee
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Shannon CE, Bakewell T, Fourcaudot MJ, Ayala I, Smelter AA, Hinostroza EA, Romero G, Asmis M, Freitas Lima LC, Wallace M, Norton L. The mitochondrial pyruvate carrier regulates adipose glucose partitioning in female mice. Mol Metab 2024; 88:102005. [PMID: 39137831 PMCID: PMC11382204 DOI: 10.1016/j.molmet.2024.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. METHODS The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. RESULTS Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. CONCLUSIONS These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.
Collapse
Affiliation(s)
- Christopher E Shannon
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Terry Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel J Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Martina Wallace
- UCD Conway Institute, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Natarajan D, Plakkot B, Tiwari K, Ekambaram S, Wang W, Rudolph M, Mohammad MA, Chacko SK, Subramanian M, Tarantini S, Yabluchanskiy A, Ungvari Z, Csiszar A, Balasubramanian P. Chronic β3-AR stimulation activates distinct thermogenic mechanisms in brown and white adipose tissue and improves systemic metabolism in aged mice. Aging Cell 2024:e14321. [PMID: 39177077 DOI: 10.1111/acel.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024] Open
Abstract
Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the United States (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the β3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice. Sustained β3-AR treatment resulted in reduced fat mass, increased energy expenditure, increased fatty acid oxidation and mitochondrial activity in adipose depots, improved glucose homeostasis, and a favorable adipokine profile. At the cellular level, CL treatment increased uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipose tissue (BAT). However, in white adipose tissue (WAT) depots, CL treatment increased glycerol and lipid de novo lipogenesis (DNL) and turnover suggesting the activation of the futile substrate cycle of lipolysis and reesterification in a UCP1-independent manner. Increased lipid turnover was also associated with the simultaneous upregulation of proteins involved in glycerol metabolism, fatty acid oxidation, and reesterification in WAT. Further, a dose-dependent impact of CL treatment on inflammation was observed, particularly in subcutaneous WAT, suggesting a potential mismatch between fatty acid supply and oxidation. These findings indicate that chronic β3-AR stimulation activates distinct cellular mechanisms that increase energy expenditure in BAT and WAT to improve systemic metabolism in aged mice. Considering that people lose BAT with aging, activation of futile lipid cycling in WAT presents a novel strategy for improving age-related metabolic dysfunction.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bhuvana Plakkot
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kritika Tiwari
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Shoba Ekambaram
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Weidong Wang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael Rudolph
- Department of Biochemistry and Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mahmoud A Mohammad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shaji K Chacko
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Biochemistry and Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Wang CH, Tsuji T, Wu LH, Yang CY, Huang TL, Sato M, Shamsi F, Tseng YH. Endothelin 3/EDNRB signaling induces thermogenic differentiation of white adipose tissue. Nat Commun 2024; 15:7215. [PMID: 39174539 PMCID: PMC11341701 DOI: 10.1038/s41467-024-51579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Thermogenic adipose tissue, consisting of brown and beige fat, regulates nutrient utilization and energy metabolism. Human brown fat is relatively scarce and decreases with obesity and aging. Hence, inducing thermogenic differentiation of white fat offers an attractive way to enhance whole-body metabolic capacity. Here, we show the role of endothelin 3 (EDN3) and endothelin receptor type B (EDNRB) in promoting the browning of white adipose tissue (WAT). EDNRB overexpression stimulates thermogenic differentiation of human white preadipocytes through cAMP-EPAC1-ERK activation. In mice, cold induces the expression of EDN3 and EDNRB in WAT. Deletion of EDNRB in adipose progenitor cells impairs cold-induced beige adipocyte formation in WAT, leading to excessive weight gain, glucose intolerance, and insulin resistance upon high-fat feeding. Injection of EDN3 into WAT promotes browning and improved whole-body glucose metabolism. The findings shed light on the mechanism of WAT browning and offer potential therapeutics for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Hong Wu
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Mari Sato
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Chang L, Meng F, Jiao B, Zhou T, Su R, Zhu C, Wu Y, Ling Y, Wang S, Wu K, Zhang D, Cao J. Integrated analysis of omics reveals the role of scapular fat in thermogenesis adaptation in sunite sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101292. [PMID: 39018792 DOI: 10.1016/j.cbd.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of -38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.
Collapse
Affiliation(s)
- Longwei Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Fanhua Meng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| | - Boran Jiao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Tong Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Rina Su
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Chunxiao Zhu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Yi Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Shenyuan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Kaifeng Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| |
Collapse
|
6
|
Natarajan D, Plakkot B, Tiwari K, Ekambaram S, Wang W, Rudolph M, Mohammad MA, Chacko SK, Subramanian M, Tarantini S, Yabluchanskiy A, Ungvari Z, Csiszar A, Balasubramanian P. The metabolic benefits of thermogenic stimulation are preserved in aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601572. [PMID: 39005396 PMCID: PMC11244901 DOI: 10.1101/2024.07.01.601572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the US (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the β3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice. Sustained β3-AR treatment resulted in reduced fat mass, increased energy expenditure, increased fatty acid oxidation and mitochondrial activity in adipose depots, improved glucose homeostasis, and a favorable adipokine profile. At the cellular level, CL treatment increased uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipose tissue (BAT). However, in white adipose tissue (WAT) depots, CL treatment increased glycerol and lipid de novo lipogenesis (DNL) and turnover suggesting the activation of the futile substrate cycle of lipolysis and reesterification in a UCP1-independent manner. Increased lipid turnover was also associated with the simultaneous upregulation of proteins involved in glycerol metabolism, fatty acid oxidation, and reesterification in WAT. Further, a dose-dependent impact of CL treatment on inflammation was observed, particularly in subcutaneous WAT, suggesting a potential mismatch between fatty acid supply and oxidation. These findings indicate that chronic β3-AR stimulation activates distinct cellular mechanisms that increase energy expenditure in BAT and WAT to improve systemic metabolism in aged mice. Our study provides foundational evidence for targeting adipose thermogenesis to improve age-related metabolic dysfunction.
Collapse
|
7
|
Cai Z, Zhong Q, Feng Y, Wang Q, Zhang Z, Wei C, Yin Z, Liang C, Liew CW, Kazak L, Cypess AM, Liu Z, Cai K. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging. Nat Metab 2024; 6:1367-1379. [PMID: 39054361 PMCID: PMC11272596 DOI: 10.1038/s42255-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Thermogenic brown adipose tissue (BAT) has a positive impact on whole-body metabolism. However, in vivo mapping of BAT activity typically relies on techniques involving ionizing radiation, such as [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) and computed tomography (CT). Here we report a noninvasive metabolic magnetic resonance imaging (MRI) approach based on creatine chemical exchange saturation transfer (Cr-CEST) contrast to assess in vivo BAT activity in rodents and humans. In male rats, a single dose of the β3-adrenoceptor agonist (CL 316,243) or norepinephrine, as well as cold exposure, triggered a robust elevation of the Cr-CEST MRI signal, which was consistent with the [18F]FDG PET and CT data and 1H nuclear magnetic resonance measurements of creatine concentration in BAT. We further show that Cr-CEST MRI detects cold-stimulated BAT activation in humans (both males and females) using a 3T clinical scanner, with data-matching results from [18F]FDG PET and CT measurements. This study establishes Cr-CEST MRI as a promising noninvasive and radiation-free approach for in vivo mapping of BAT activity.
Collapse
Affiliation(s)
- Zimeng Cai
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Chong Wee Liew
- Physiology and Biophysics Department, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Sahin C, Melanson JR, Le Billan F, Magomedova L, Ferreira TAM, Oliveira AS, Pollock-Tahari E, Saikali MF, Cash SB, Woo M, Romeiro LAS, Cummins CL. A novel fatty acid mimetic with pan-PPAR partial agonist activity inhibits diet-induced obesity and metabolic dysfunction-associated steatotic liver disease. Mol Metab 2024; 85:101958. [PMID: 38763495 PMCID: PMC11170206 DOI: 10.1016/j.molmet.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenna-Rose Melanson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Evan Pollock-Tahari
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sarah B Cash
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
9
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
10
|
Goerdeler C, Engelmann B, Aldehoff AS, Schaffert A, Blüher M, Heiker JT, Wabitsch M, Schubert K, Rolle-Kampczyk U, von Bergen M. Metabolomics in human SGBS cells as new approach method for studying adipogenic effects: Analysis of the effects of DINCH and MINCH on central carbon metabolism. ENVIRONMENTAL RESEARCH 2024; 252:118847. [PMID: 38582427 DOI: 10.1016/j.envres.2024.118847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the μM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 μM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.
Collapse
Affiliation(s)
- Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Alexandra Schaffert
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Matthias Blüher
- Department of Endocrinology, Nephrology and Rheumatology, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany.
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
11
|
Yang S, Liu Y, Wu X, Zhu R, Sun Y, Zou S, Zhang D, Yang X. Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes. Int J Mol Sci 2024; 25:6303. [PMID: 38928011 PMCID: PMC11203837 DOI: 10.3390/ijms25126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.
Collapse
Affiliation(s)
- Siqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yingke Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Shuoya Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| |
Collapse
|
12
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
13
|
Shannon CE, Bakewell T, Fourcaudot MJ, Ayala I, Romero G, Asmis M, Lima LCF, Wallace M, Norton L. Sex-dependent adipose glucose partitioning by the mitochondrial pyruvate carrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593540. [PMID: 38798427 PMCID: PMC11118482 DOI: 10.1101/2024.05.11.593540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. Methods The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. Results Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. Conclusion These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.
Collapse
Affiliation(s)
- Christopher E Shannon
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Terry Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel J Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Martina Wallace
- UCD Conway Institute, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
15
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
16
|
Naren Q, Lindsund E, Bokhari MH, Pang W, Petrovic N. Differential responses to UCP1 ablation in classical brown versus beige fat, despite a parallel increase in sympathetic innervation. J Biol Chem 2024; 300:105760. [PMID: 38367663 PMCID: PMC10944106 DOI: 10.1016/j.jbc.2024.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.
Collapse
Affiliation(s)
- Qimuge Naren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
17
|
Chang CF, Gunawan AL, Liparulo I, Zushin PJH, Vitangcol K, Timblin GA, Saijo K, Wang B, Parlakgül G, Arruda AP, Stahl A. Brown adipose tissue CoQ deficiency activates the integrated stress response and FGF21-dependent mitohormesis. EMBO J 2024; 43:168-195. [PMID: 38212382 PMCID: PMC10897314 DOI: 10.1038/s44318-023-00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2α kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Amanda L Gunawan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Irene Liparulo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kaitlyn Vitangcol
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Greg A Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, CA, 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Sharma AK, Wolfrum C. DGAT inhibition at the post-absorptive phase reduces plasma FA by increasing FA oxidation. EMBO Mol Med 2023; 15:e18209. [PMID: 37789773 PMCID: PMC10630880 DOI: 10.15252/emmm.202318209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
In this Correspondence, A. Sharma & C. Wolfrum report that DGAT1/2 pharmacological inhibition at post-absorptive phase in mice leads to increased fatty acid oxidation and reduced plasma fatty acid levels, which could open new therapeutic avenues to avoid GI complications observed in clinical trials.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition BiologyInstitute of Food, Nutrition and Health, ETH ZurichSchwerzenbachSwitzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition BiologyInstitute of Food, Nutrition and Health, ETH ZurichSchwerzenbachSwitzerland
| |
Collapse
|
19
|
El-Yazbi AF, Elrewiny MA, Habib HM, Eid AH, Elzahhar PA, Belal ASF. Thermogenic Modulation of Adipose Depots: A Perspective on Possible Therapeutic Intervention with Early Cardiorenal Complications of Metabolic Impairment. Mol Pharmacol 2023; 104:187-194. [PMID: 37567782 DOI: 10.1124/molpharm.123.000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Mohamed A Elrewiny
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Hosam M Habib
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Perihan A Elzahhar
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed S F Belal
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
20
|
Da Eira D, Jani S, Stefanovic M, Ceddia RB. The ketogenic diet promotes triacylglycerol recycling in white adipose tissue and uncoupled fat oxidation in brown adipose tissue, but does not reduce adiposity in rats. J Nutr Biochem 2023; 120:109412. [PMID: 37422170 DOI: 10.1016/j.jnutbio.2023.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The purpose of this study was to determine whether the weight-reducing and fat burning effects of the ketogenic diet (KD) could be attributed to alterations in the energy dissipating pathways of brown adipose tissue (BAT) uncoupled oxidation, and white adipose tissue (WAT) browning and triacylglycerol (TAG) recycling. To investigate this, male Wistar rats were fed one of the following three diets for either 8 or 16 weeks: a standard chow (SC), a high-fat, sucrose-enriched (HFS) obesogenic diet, or a KD. At the end of the intervention, subcutaneous inguinal (Sc Ing) and epididymal (Epid) fat, and interscapular and aortic BAT (iBAT and aBAT, respectively) were extracted. These tissues were used for the analysis of proteins involved in WAT browning and thermogenesis. Isolated adipocytes from WAT were assayed for basal and isoproterenol (Iso)-stimulated lipolysis and basal and insulin-stimulated lipogenesis, and BAT adipocytes were assayed for the determination of coupled and uncoupled glucose and palmitate oxidation. Adiposity similarly increased in HFS- and KD-fed rats at weeks 8 and 16. However, in HFS-fed animals insulin-stimulated lipogenesis and Iso-stimulated lipolysis were impaired in WAT adipocytes, whereas in KD-fed animals these pathways remained intact. The KD also significantly elevated WAT glycerol kinase levels, and favored TAG recycling under conditions of enhanced lipolysis. In BAT, the KD significantly increased uncoupling protein-1 levels and uncoupled fat oxidation. In summary, the KD preserved insulin sensitivity and lipolytic capacity in WAT and also upregulated energy-dissipating pathways in BAT, but it was not sufficient to prevent an increase in adiposity.
Collapse
Affiliation(s)
- Daniel Da Eira
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Shailee Jani
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Mateja Stefanovic
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada
| | - Rolando B Ceddia
- Muscle Health Research Centre - School of Kinesiology and Health Science, York University, North York, ON, Canada.
| |
Collapse
|
21
|
Klein Hazebroek M, Laterveer R, Kutschke M, Ramšak Marčeta V, Barthem CS, Keipert S. Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21. Sci Rep 2023; 13:10288. [PMID: 37355753 PMCID: PMC10290677 DOI: 10.1038/s41598-023-37264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.
Collapse
Affiliation(s)
- Marlou Klein Hazebroek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Rutger Laterveer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Maria Kutschke
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Vida Ramšak Marčeta
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Clarissa S Barthem
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
22
|
Tarantini S, Subramanian M, Butcher JT, Yabluchanskiy A, Li X, Miller RA, Balasubramanian P. Revisiting adipose thermogenesis for delaying aging and age-related diseases: Opportunities and challenges. Ageing Res Rev 2023; 87:101912. [PMID: 36924940 PMCID: PMC10164698 DOI: 10.1016/j.arr.2023.101912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Adipose tissue undergoes significant changes in structure, composition, and function with age including altered adipokine secretion, decreased adipogenesis, altered immune cell profile and increased inflammation. Considering the role of adipose tissue in whole-body energy homeostasis, age-related dysfunction in adipose metabolism could potentially contribute to an increased risk for metabolic diseases and accelerate the onset of other age-related diseases. Increasing cellular energy expenditure in adipose tissue, also referred to as thermogenesis, has emerged as a promising strategy to improve adipose metabolism and treat obesity-related metabolic disorders. However, translating this strategy to the aged population comes with several challenges such as decreased thermogenic response and the paucity of safe pharmacological agents to activate thermogenesis. This mini-review aims to discuss the current body of knowledge on aging and thermogenesis and highlight the unexplored opportunities (cellular mechanisms and secreted factors) to target thermogenic mechanisms for delaying aging and age-related diseases. Finally, we also discuss the emerging role of thermogenic adipocytes in healthspan and lifespan extension.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Joshua T Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xinna Li
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Rani R, Syngkli S, Nongkhlaw J, Das B. Expression and characterisation of human glycerol kinase: the role of solubilising agents and molecular chaperones. Biosci Rep 2023; 43:BSR20222258. [PMID: 37021775 PMCID: PMC10130975 DOI: 10.1042/bsr20222258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/11/2023] [Accepted: 04/06/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Glycerol kinase (GK; EC 2.7.1.30) facilitates the entry of glycerol into pathways of glucose and triglyceride metabolism and may play a potential role in Type 2 diabetes mellitus (T2DM). However, the detailed regulatory mechanisms and structure of the human GK are unknown. METHODS The human GK gene was cloned into the pET-24a(+) vector and over-expressed in Escherichia coli BL21 (DE3). Since the protein was expressed as inclusion bodies (IBs), various culture parameters and solubilising agents were used but they did not produce bioactive His-GK; however, co-expression of His-GK with molecular chaperones, specifically pKJE7, achieved expression of bioactive His-GK. The overexpressed bioactive His-GK was purified using coloumn chromatography and characterised using enzyme kinetics. RESULTS The overexpressed bioactive His-GK was purified apparently to homogeneity (∼295-fold) and characterised. The native His-GK was a dimer with a monomeric molecular weight of ∼55 kDa. Optimal enzyme activity was observed in TEA buffer (50 mM) at 7.5 pH. K+ (40 mM) and Mg2+ (2.0 mM) emerged as prefered metal ions for His-GK activity with specific activity 0.780 U/mg protein. The purified His-GK obeyed standard Michaelis-Menten kinetics with Km value of 5.022 µM (R2=0.927) for its substrate glycerol; whereas, that for ATP and PEP was 0.767 mM (R2=0.928) and 0.223 mM (R2=0.967), respectively. Other optimal parameters for the substrate and co-factors were also determined. CONCLUSION The present study demonstrates that co-expression of molecular chaperones assists with the expression of bioactive human GK for its characterisation.
Collapse
Affiliation(s)
- Riva Mary Rani
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Superior Syngkli
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Joplin Nongkhlaw
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Bidyadhar Das
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
24
|
Sharma AK, Wolfrum C. Lipid cycling isn't all futile. Nat Metab 2023; 5:540-541. [PMID: 37012497 DOI: 10.1038/s42255-023-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Raj RR, Lofquist S, Lee MJ. Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharm Res 2023; 40:467-480. [PMID: 36050546 DOI: 10.1007/s11095-022-03377-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Enhancing thermogenesis by increasing the amount and activity of brown and brite adipocytes is a potential therapeutic target for obesity and its associated diseases. Diet plays important roles in energy metabolism and a myriad of dietary components including lipids are known to regulate thermogenesis through recruitment and activation of brown and brite adipocytes. Depending on types of fatty acids (FAs), the major constituent in lipids, their health benefits differ. Long-chain polyunsaturated FAs (PUFAs), especially n-3 PUFAs remodel adipose tissues in a healthier manner with reduced inflammation and enhanced thermogenesis, while saturated FAs exhibit contrasting effects. Lipid mediators derived from FAs act as autocrine/paracrine as well as endocrine factors to regulate thermogenesis. We discuss lipid mediators that may contribute to the differential effects of FAs on adipose tissue remodeling and hence, cardiometabolic diseases. We also discuss current understanding of molecular and cellular mechanisms through which n-3 PUFAs enhance thermogenesis. Elucidating molecular details of beneficial effects of n-3 PUFAs on thermogenesis is expected to provide information that can be used for development of novel therapeutics for obesity and its associated diseases.
Collapse
Affiliation(s)
- Radha Raman Raj
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Sydney Lofquist
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA.
| |
Collapse
|
26
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
27
|
Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial Energy Metabolism in the Regulation of Thermogenic Brown Fats and Human Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021352. [PMID: 36674862 PMCID: PMC9861294 DOI: 10.3390/ijms24021352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Brown fats specialize in thermogenesis by increasing the utilization of circulating blood glucose and fatty acids. Emerging evidence suggests that brown adipose tissue (BAT) prevents the incidence of obesity-associated metabolic diseases and several types of cancers in humans. Mitochondrial energy metabolism in brown/beige adipocytes regulates both uncoupling protein 1 (UCP1)-dependent and -independent thermogenesis for cold adaptation and the utilization of excess nutrients and energy. Many studies on the quantification of human BAT indicate that mass and activity are inversely correlated with the body mass index (BMI) and visceral adiposity. Repression is caused by obesity-associated positive and negative factors that control adipocyte browning, de novo adipogenesis, mitochondrial energy metabolism, UCP1 expression and activity, and noradrenergic response. Systemic and local factors whose levels vary between lean and obese conditions include growth factors, inflammatory cytokines, neurotransmitters, and metal ions such as selenium and iron. Modulation of obesity-associated repression in human brown fats is a promising strategy to counteract obesity and related metabolic diseases through the activation of thermogenic capacity. In this review, we highlight recent advances in mitochondrial metabolism, thermogenic regulation of brown fats, and human metabolic diseases.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence: (Y.T.); (P.D.); Tel.: +81-75-251-5444 (Y.T.); +81-75-251-5135 (P.D.)
| |
Collapse
|
28
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
29
|
Mishra S, Wang Z, Volk MJ, Zhao H. Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae. Metab Eng 2023; 75:12-18. [PMID: 36371031 DOI: 10.1016/j.ymben.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Lipid biosynthesis plays a vital role in living cells and has been increasingly engineered to overproduce various lipid-based chemicals. However, owing to the tightly constrained and interconnected nature of lipid biosynthesis, both understanding and engineering of lipid metabolism remain challenging, even with the help of mathematical models. Here we report the development of a kinetic metabolic model of lipid metabolism in Saccharomyces cerevisiae that integrates fatty acid biosynthesis, glycerophospholipid metabolism, sphingolipid metabolism, storage lipids, lumped sterol synthesis, and the synthesis and transport of relevant target-chemicals, such as fatty acids and fatty alcohols. The model was trained on lipidomic data of a reference S. cerevisiae strain, single knockout mutants, and lipid overproduction strains reported in literature. The model was used to design mutants for fatty alcohol overproduction and the lipidomic analysis of the resultant mutant strains coupled with model-guided hypothesis led to discovery of a futile cycle in the triacylglycerol biosynthesis pathway. In addition, the model was used to explain successful and unsuccessful mutant designs in metabolic engineering literature. Thus, this kinetic model of lipid metabolism can not only enable the discovery of new phenomenon in lipid metabolism but also the engineering of mutant strains for overproduction of lipids.
Collapse
Affiliation(s)
- Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, USA
| | | | - Michael J Volk
- Department of Chemical and Biomolecular Engineering, Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, USA; Department of Biochemistry, USA; Departments of Chemistry and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
Selenium and selenoproteins in thermogenic adipocytes. Arch Biochem Biophys 2022; 731:109445. [PMID: 36265651 PMCID: PMC9981474 DOI: 10.1016/j.abb.2022.109445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022]
Abstract
Selenium (Se) is involved in energy metabolism in the liver, white adipose tissue, and skeletal muscle, and may also play a role in thermogenic adipocytes, i.e. brown and beige adipocytes. Thereby this micronutrient is a key nutritional target to aid in combating obesity and metabolic diseases. In thermogenic adipocytes, particularly in brown adipose tissue (BAT), the selenoprotein type 2 iodothyronine deiodinase (DIO2) is essential for the activation of adaptive thermogenesis. Recent evidence has suggested that additional selenoproteins may also be participating in this process, and a role for Se itself through its metabolic pathways is also envisioned. In this review, we discuss the recognized effects and the knowledge gaps in the involvement of Se metabolism and selenoproteins in the mechanisms of adaptive thermogenesis in thermogenic (brown and beige) adipocytes.
Collapse
|
31
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
32
|
Nomiyama K, Yamamoto Y, Eguchi A, Nishikawa H, Mizukawa H, Yokoyama N, Ichii O, Takiguchi M, Nakayama SMM, Ikenaka Y, Ishizuka M. Health impact assessment of pet cats caused by organohalogen contaminants by serum metabolomics and thyroid hormone analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156490. [PMID: 35667425 DOI: 10.1016/j.scitotenv.2022.156490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Companion animals are in close contact with the human surroundings, and there is growing concern about the effects of harmful substances on the health of pet cats. In this study, we investigated the potential health effects of organohalogen compounds (OHCs) on thyroid hormone (TH) homeostasis and metabolomics in Japanese pet cats. There was a significant negative correlation between concentrations of several contaminants, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hydroxylated PCBs (OH-PCBs), hydroxylated PBDEs (OH-PBDEs), and THs in cat serum samples. These results suggested that exposure to OHCs causes a decrease in serum TH levels in pet cats. In this metabolomics study, each exposure level of parent compounds (PCBs and PBDEs) and their hydroxylated compounds (OH-PCBs and OH-PBDEs) were associated with their own unique primary metabolic pathways, suggesting that parent and phenolic compounds exhibit different mechanisms of action and biological effects. PCBs were associated with many metabolic pathways, including glutathione and purine metabolism, and the effects were replicated in in-vivo cat PCB administration studies. These results demonstrated that OHC exposure causes chronic oxidative stress in pet cats. PBDEs were positively associated with alanine, aspartate, and glutamate metabolism. Due to the chronic exposure of cats to mixtures of these contaminants, the combination of their respective metabolic pathways may have a synergistic effect.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Yasuo Yamamoto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba-city 263-8522, Japan
| | - Hiroyuki Nishikawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori Ikenaka
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Sapporo, Hokkaido 060-0818, Japan; Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, X6001, Potchefstroom 2520, South Africa; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
33
|
Assis AP, Silva KE, Lautherbach N, Morgan HJN, Garófalo MAR, Zanon NM, Navegantes LCC, Chaves VE, Kettelhut IDC. Glucocorticoids decrease thermogenic capacity and increase triacylglycerol synthesis by glycerokinase activation in the brown adipose tissue of rats. Lipids 2022; 57:313-325. [PMID: 36098349 DOI: 10.1002/lipd.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/03/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Although it is well established that glucocorticoids inactivate thermogenesis and promote lipid accumulation in interscapular brown adipose tissue (IBAT), the underlying mechanisms remain unknown. We found that dexamethasone treatment (1 mg/kg) for 7 days in rats decreased the IBAT thermogenic activity, evidenced by its lower responsiveness to noradrenaline injection associated with reduced content of mitochondrial proteins, respiratory chain protein complexes, noradrenaline, and the β3 -adrenergic receptor. In parallel, to understand better how dexamethasone increases IBAT lipid content, we also investigated the activity of the ATP citrate lyase (ACL), a key enzyme of de novo fatty acid synthesis, glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, and the three glycerol-3-P generating pathways: (1) glycolysis, estimated by 2-deoxyglucose uptake, (2) glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase activity and pyruvate incorporation into triacylglycerol-glycerol, and (3) direct phosphorylation of glycerol, investigated by the content and activity of glycerokinase. Dexamethasone increased the mass and the lipid content of IBAT as well as plasma levels of glucose, insulin, non-esterified fatty acid, and glycerol. Furthermore, dexamethasone increased ACL and G6PD activities (79% and 48%, respectively). Despite promoting a decrease in the incorporation of U-[14 C]-glycerol into triacylglycerol (~54%), dexamethasone increased the content (~55%) and activity (~41%) of glycerokinase without affecting glucose uptake or glyceroneogenesis. Our data suggest that glucocorticoid administration reduces IBAT thermogenesis through sympathetic inactivation and stimulates glycerokinase activity and content, contributing to increased generation of glycerol-3-P, which is mostly used to esterify fatty acid and increase triacylglycerol content promoting IBAT whitening.
Collapse
Affiliation(s)
- Ana Paula Assis
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Karine Emanuelle Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Natalia Lautherbach
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Neusa Maria Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Isis do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
35
|
Special Issue: Emerging Paradigms in Insulin Resistance. Biomedicines 2022; 10:biomedicines10071471. [PMID: 35884776 PMCID: PMC9313343 DOI: 10.3390/biomedicines10071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
This Biomedicines Special Issue was designed to attract articles that focused on different facets of biology relating to insulin resistance, defined as reduced cellular and organismal response to the insulin hormone, and its underlying mechanisms [...]
Collapse
|
36
|
Oeckl J, Janovska P, Adamcova K, Bardova K, Brunner S, Dieckmann S, Ecker J, Fromme T, Funda J, Gantert T, Giansanti P, Hidrobo MS, Kuda O, Kuster B, Li Y, Pohl R, Schmitt S, Schweizer S, Zischka H, Zouhar P, Kopecky J, Klingenspor M. Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Mol Metab 2022; 61:101499. [PMID: 35470094 PMCID: PMC9097615 DOI: 10.1016/j.molmet.2022.101499] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Josef Oeckl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Sarah Brunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Thomas Gantert
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Maria Soledad Hidrobo
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Radek Pohl
- NMR spectroscopy, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Czech Republic
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabine Schweizer
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, Munich, Germany
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic.
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
37
|
Chen L, You Q, Liu M, Li S, Wu Z, Hu J, Ma Y, Xia L, Zhou Y, Xu N, Zhang S. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. eLife 2022; 11:72443. [PMID: 35324426 PMCID: PMC8947768 DOI: 10.7554/elife.72443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) therapy–associated cutaneous toxicity is a syndrome characterized by papulopustular rash, local inflammation, folliculitis, and microbial infection, resulting in a decrease in quality of life and dose interruption. However, no effective clinical intervention is available for this adverse effect. Here, we report the atrophy of dermal white adipose tissue (dWAT), a highly plastic adipose tissue with various skin-specific functions, correlates with rash occurrence and exacerbation in a murine model of EGFR inhibitor-induced rash. The reduction in dWAT is due to the inhibition of adipogenic differentiation by defects in peroxisome proliferator-activated receptor γ (PPARγ) signaling, and increased lipolysis by the induced expression of the lipolytic cytokine IL6. The activation of PPARγ by rosiglitazone maintains adipogenic differentiation and represses the transcription of IL6, eventually improving skin functions and ameliorating the severity of rash without altering the antitumor effects. Thus, activation of PPARγ represents a promising approach to ameliorate cutaneous toxicity in patients with cancer who receive anti-EGFR therapy.
Collapse
Affiliation(s)
- Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Hu W, Jiang C, Kim M, Xiao Y, Richter HJ, Guan D, Zhu K, Krusen BM, Roberts AN, Miller J, Steger DJ, Lazar MA. Isoform-specific functions of PPARγ in gene regulation and metabolism. Genes Dev 2022; 36:300-312. [PMID: 35273075 PMCID: PMC8973844 DOI: 10.1101/gad.349232.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
In this study, Hu et al. investigated the specific functions of the two main PPARγ isoforms by generating mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. They show that PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hannah J Richter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brianna M Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arielle N Roberts
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA
| | - Jessica Miller
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord 2022; 23:121-131. [PMID: 34741717 PMCID: PMC8873062 DOI: 10.1007/s11154-021-09690-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Obesity results from an imbalance in energy homeostasis, whereby excessive energy intake exceeds caloric expenditure. Energy can be dissipated out of an organism by producing heat (thermogenesis), explaining the long-standing interest in exploiting thermogenic processes to counteract obesity. Mitochondrial uncoupling is a process that expends energy by oxidizing nutrients to produce heat, instead of ATP synthesis. Energy can also be dissipated through mechanisms that do not involve mitochondrial uncoupling. Such mechanisms include futile cycles described as metabolic reactions that consume ATP to produce a product from a substrate but then converting the product back into the original substrate, releasing the energy as heat. Energy dissipation driven by cellular ATP demand can be regulated by adjusting the speed and number of futile cycles. Energy consuming futile cycles that are reviewed here are lipolysis/fatty acid re-esterification cycle, creatine/phosphocreatine cycle, and the SERCA-mediated calcium import and export cycle. Their reliance on ATP emphasizes that mitochondrial oxidative function coupled to ATP synthesis, and not just uncoupling, can play a role in thermogenic energy dissipation. Here, we review ATP consuming futile cycles, the evidence for their function in humans, and their potential employment as a strategy to dissipate energy and counteract obesity.
Collapse
Affiliation(s)
- Alexandra J Brownstein
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rebeca Acin-Perez
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Marc Liesa
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Orian S Shirihai
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Cellular Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
41
|
Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cell Mol Immunol 2021; 19:421-431. [PMID: 34837070 PMCID: PMC8891307 DOI: 10.1038/s41423-021-00804-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Glucose is a vital source of energy for all mammals. The balance between glucose uptake, metabolism and storage determines the energy status of an individual, and perturbations in this balance can lead to metabolic diseases. The maintenance of organismal glucose metabolism is a complex process that involves multiple tissues, including adipose tissue, which is an endocrine and energy storage organ that is critical for the regulation of systemic metabolism. Adipose tissue consists of an array of different cell types, including specialized adipocytes and stromal and endothelial cells. In addition, adipose tissue harbors a wide range of immune cells that play vital roles in adipose tissue homeostasis and function. These cells contribute to the regulation of systemic metabolism by modulating the inflammatory tone of adipose tissue, which is directly linked to insulin sensitivity and signaling. Furthermore, these cells affect the control of thermogenesis. While lean adipose tissue is rich in type 2 and anti-inflammatory cytokines such as IL-10, obesity tips the balance in favor of a proinflammatory milieu, leading to the development of insulin resistance and the dysregulation of systemic metabolism. Notably, anti-inflammatory immune cells, including regulatory T cells and innate lymphocytes, protect against insulin resistance and have the characteristics of tissue-resident cells, while proinflammatory immune cells are recruited from the circulation to obese adipose tissue. Here, we review the key findings that have shaped our understanding of how immune cells regulate adipose tissue homeostasis to control organismal metabolism.
Collapse
|
42
|
Pioglitazone Reverses Markers of Islet Beta-Cell De-Differentiation in db/db Mice While Modulating Expression of Genes Controlling Inflammation and Browning in White Adipose Tissue from Insulin-Resistant Mice and Humans. Biomedicines 2021; 9:biomedicines9091189. [PMID: 34572374 PMCID: PMC8470788 DOI: 10.3390/biomedicines9091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, insulin resistance, and type 2 diabetes contribute to increased morbidity and mortality in humans. The db/db mouse is an important mouse model that displays many key features of the human disease. Herein, we used the drug pioglitazone, a thiazolidinedione with insulin-sensitizing properties, to investigate blood glucose levels, indicators of islet β-cell health and maturity, and gene expression in adipose tissue. Oral administration of pioglitazone lowered blood glucose levels in db/db mice with a corresponding increase in respiratory quotient, which indicates improved whole-body carbohydrate utilization. In addition, white adipose tissue from db/db mice and from humans treated with pioglitazone showed increased expression of glycerol kinase. Both db/db mice and humans given pioglitazone displayed increased expression of UCP-1, a marker typically associated with brown adipose tissue. Moreover, pancreatic β-cells from db/db mice treated with pioglitazone had greater expression of insulin and Nkx6.1 as well as reduced abundance of the de-differentiation marker Aldh1a3. Collectively, these findings indicate that four weeks of pioglitazone therapy improved overall metabolic health in db/db mice. Our data are consistent with published reports of human subjects administered pioglitazone and with analysis of human adipose tissue taken from subjects treated with pioglitazone. In conclusion, the current study provides evidence that pioglitazone restores key markers of metabolic health and also showcases the utility of the db/db mouse to understand mechanisms associated with human metabolic disease and interventions that provide therapeutic benefit.
Collapse
|
43
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17:276-295. [PMID: 33627836 DOI: 10.1038/s41574-021-00471-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France.
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
45
|
Guan D, Sun H, Wang J, Wang Z, Li Y, Han H, Li X, Fang T. Rosiglitazone promotes glucose metabolism of GIFT tilapia based on the PI3K/Akt signaling pathway. Physiol Rep 2021; 9:e14765. [PMID: 33650786 PMCID: PMC7923568 DOI: 10.14814/phy2.14765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/24/2022] Open
Abstract
The study aimed to explore the effects of rosiglitazone on glucose metabolism of GIFT tilapia based on the PI3K/Akt signaling pathway. The experiment was divided into five groups: normal starch group (32%, LC), high starch group (53%, HC), high starch +rosiglitazone group 1 (10 mg/kg, R1), high starch + rosiglitazone group 2 (20 mg/kg, R2), and high starch + rosiglitazone group 3 (30 mg/kg, R3). The results showed that a high starch diet supplemented with 10-20 mg/kg rosiglitazone had a better specific growth rate and protein efficiency that was beneficial for the growth of the tilapia. Rosiglitazone had no significant effect on the contents of crude lipid, crude protein, crude ash, and moisture of the whole fish body (p > 0.05). The contents of triglycerides and total cholesterol in the R1, R2, and R3 groups were lower than those in the HC group. The levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) in R1 and R2 groups were significantly lower than those in the HC groups (p < 0.05). However, the GOT and GPT levels in the R3 groups were significantly higher than those in the R1 and R2 groups (p < 0.05). With an increase in the rosiglitazone concentration, the contents of serum glucose, insulin, and hepatic glycogen in the R1, R2, and R3 groups decreased gradually. Meanwhile, the muscle glycogen content in the R1, R2, and R3 groups increased gradually. The mRNA expression of the IRS-1, PI3K, GLUT-4, and Akt proteins in the R1, R2, and R3 groups was significantly higher than that in the HC group (p < 0.05). Compared with the HC group, the expression of the GSK-3 mRNA in the R1, R2, and R3 groups was significantly reduced (p < 0.05). The protein expression of p-Akt in the R1 and R2 groups was higher than that in the HC group (p > 0.05). The protein expression of p-GSK-3β in the R1 and R2 groups was significantly higher than that in the HC group (p < 0.05). In conclusion, a high starch diet supplemented with rosiglitazone can improve growth, enhance the serum biochemical indices, and increase the muscle glycogen content in the GIFT tilapia. It benefits in upregulating the IRS-1, PI3K, and GLUT-4 mRNA levels in the skeletal muscle and promotes glucose uptake. Meanwhile, the phosphorylation of Akt and GSK-3β increased significantly and resulted in the inactivation of GSK-3β and alleviation of insulin resistance.
Collapse
Affiliation(s)
- Dong‐Yan Guan
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Hui‐Wen Sun
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Ji‐Ting Wang
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Zhen Wang
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Yang Li
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Hao‐Jun Han
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Xiang Li
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| | - Ting‐Ting Fang
- Shandong Provincial Key Lab. of Animal Biotechnology and Disease Control and PreventionLab of Aquatic Animal Nutrition & Environmental HealthShandong Agricultural UniversityTaian CityShandong ProvinceChina
| |
Collapse
|
46
|
Poursharifi P, Attané C, Mugabo Y, Al-Mass A, Ghosh A, Schmitt C, Zhao S, Guida J, Lussier R, Erb H, Chenier I, Peyot ML, Joly E, Noll C, Carpentier AC, Madiraju SRM, Prentki M. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight 2020; 5:140294. [PMID: 33201859 PMCID: PMC7819748 DOI: 10.1172/jci.insight.140294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis. Visceral adipose adipose α/β-hydrolase domain 6 regulates cold adaptation and acts as a brake for heat production via the regulation of thermogenic glycerolipid/free fatty acid cycling.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Mugabo
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Clémence Schmitt
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Shangang Zhao
- Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julian Guida
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Roxane Lussier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Heidi Erb
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Isabelle Chenier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Erik Joly
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
47
|
Townsend LK, Brunetta HS, Mori MAS. Mitochondria-associated ER membranes in glucose homeostasis and insulin resistance. Am J Physiol Endocrinol Metab 2020; 319:E1053-E1060. [PMID: 32985254 DOI: 10.1152/ajpendo.00271.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and insulin resistance (IR) are associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction in several tissues. Although for many years mitochondrial and ER function were studied separately, these organelles also connect to produce interdependent functions. Communication occurs at mitochondria-associated ER membranes (MAMs) and regulates lipid and calcium homeostasis, apoptosis, and the exchange of adenine nucleotides, among other things. Recent evidence suggests that MAMs contribute to organelle, cellular, and systemic metabolism. In obesity and IR models, metabolic tissues such as the liver, skeletal muscle, pancreas, and adipose tissue present alterations in MAM structure or function. The purpose of this mini review is to highlight the MAM disruptions that occur in each tissue during obesity and IR and its relationship with glucose homeostasis and IR. We also discuss the current controversy that surrounds MAMs' role in the development of IR.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Henver S Brunetta
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| |
Collapse
|
48
|
Tam BT, Murphy J, Khor N, Morais JA, Santosa S. Acetyl-CoA Regulation, OXPHOS Integrity and Leptin Levels Are Different in Females With Childhood vs Adulthood Onset of Obesity. Endocrinology 2020; 161:bqaa142. [PMID: 32808657 DOI: 10.1210/endocr/bqaa142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 01/12/2023]
Abstract
Although childhood-onset obesity (CO) and adulthood-onset obesity (AO) are known to lead to distinctive clinical manifestations and disease risks, the fundamental differences between them are largely unclear. The aim of the current study is to investigate the fundamental differences between subcutaneous adipose tissue from CO and AO and to identify metabolic differences between abdominal (abSAT) and femoral subcutaneous adipose tissues (feSAT). Total and regional body composition was assessed using dual-energy x-ray absorptiometry (DXA) and computed tomography. Levels of acetyl-CoA, NAD+/NADH, acetyl-CoA network genes, mitochondrial complex abundance, H3 acetylation were determined in biopsied abSAT and feSAT. Serum leptin and adiponectin were measured. Our results showed that acetyl-CoA was higher in subcutaneous adipose tissue from subjects with AO compared with CO. Multiple linear regression revealed that ATP citrate lyase was the only main effect affecting the level of acetyl-CoA. Circulating leptin concentrations was higher in AO. The increased level of acetyl-CoA was strongly associated with histone H3 acetylation, LEP expression in adipose tissue, and circulating leptin in AO. NAD+/NADH was higher in CO; however, abundance of mitochondrial complexes, the complex II:complex V ratio, and the complex IV:complex V ratio were lower in CO, reflecting compromised mitochondrial function in subcutaneous adipose tissue from CO. Moreover, we identified differences in the level of acetyl-CoA and NAD+/NADH ratio between abSAT and feSAT, suggesting that these fat depots may possess different metabolic properties. The fundamental difference in the important metabolic intermediate acetyl-CoA between CO and AO may help us better understand the development of obesity and the pathogenesis of different obesity-related diseases in humans.
Collapse
Affiliation(s)
- Bjorn T Tam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Jessica Murphy
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Natalie Khor
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Jose A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Division of Geriatric Medicine and Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Ruan HB. Developmental and functional heterogeneity of thermogenic adipose tissue. J Mol Cell Biol 2020; 12:775-784. [PMID: 32569352 PMCID: PMC7816678 DOI: 10.1093/jmcb/mjaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic continues to rise as a global health challenge. Thermogenic brown and beige adipocytes dissipate chemical energy as heat, providing an opportunity for developing new therapeutics for obesity and related metabolic diseases. Anatomically, brown adipose tissue is distributed as discrete depots, while beige adipocytes exist within certain depots of white adipose tissue. Developmentally, brown and beige adipocytes arise from multiple embryonic progenitor populations that are distinct and overlapping. Functionally, they respond to a plethora of stimuli to engage uncoupling protein 1-dependent and independent thermogenic programs, thus improving systemic glucose homeostasis, lipid metabolism, and the clearance of branched-chain amino acids. In this review, we highlight recent advances in our understanding of the molecular and cellular mechanisms that contribute to the developmental and functional heterogeneity of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|