1
|
Anisimov AP, Vagaiskaya AS, Trunyakova AS, Dentovskaya SV. Live Plague Vaccine Development: Past, Present, and Future. Vaccines (Basel) 2025; 13:66. [PMID: 39852845 DOI: 10.3390/vaccines13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
During the last 100 years, vaccine development has evolved from an empirical approach to one of the more rational vaccine designs where the careful selection of antigens and adjuvants is key to the desired efficacy for challenging pathogens and/or challenging populations. To improve immunogenicity while maintaining a favorable reactogenicity and safety profile, modern vaccine design must consider factors beyond the choice of target antigen alone. With new vaccine technologies currently emerging, it will be possible to custom-design vaccines for optimal efficacy in groups of people with different responses to vaccination. It should be noted that after a fairly long period of overwhelming dominance of papers devoted to subunit plague vaccines, materials devoted to the development of live plague vaccines have increasingly been published. In this review, we present our opinion on reasonable tactics for the development and application of live, safe, and protective human plague vaccines causing an enhanced duration of protection and breadth of action against various virulent strains in vaccination studies representing different ages, genders, and nucleotide polymorphisms of the genes responsible for immune response.
Collapse
Affiliation(s)
- Andrey P Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anastasia S Vagaiskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Alexandra S Trunyakova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Svetlana V Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| |
Collapse
|
2
|
Halligan NLN, Hanks SC, Matsuo K, Martins T, Zöllner S, Quasney MW, Scott LJ, Dahmer MK. Variants in the β-globin locus are associated with pneumonia in African American children. HGG ADVANCES 2025; 6:100374. [PMID: 39444160 PMCID: PMC11664401 DOI: 10.1016/j.xhgg.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
In African American adults, the strongest genetic predictor of pneumonia appears to be the A allele of rs334, a variant in the β-globin gene, which in homozygous form causes sickle cell disease (SCD). No comparable studies have been done in African American children. We performed genome-wide association analyses of 482 African American children with documented pneumonia and 2,048 African American control individuals using genotypes imputed from two reference panels: 1000 Genomes (1KG) (which contains rs334) and TOPMed (does not contain rs334). Using 1KG imputed genotypes, the most significant variant was rs334 (A allele; odds ratio [OR] = 2.76; 95% CI, 2.21-3.74; p = 5.9 × 10-19); using TOPMed imputed genotypes the most significant variant was rs2226952, found in the β-globin locus control region (G allele; OR = 2.14; 95% CI, 1.78-2.57; p = 5.1 × 10-16). After conditioning on rs334, the most strongly associated variant in the β-globin locus, rs33930165 (T allele, 1KG: OR = 4.09; 95% CI, 2.29-7.29; p = 1.7 × 10-6; TOPMed: OR = 3.58; 95% CI, 2.18-5.90; p = 4.7 × 10-7), which as a compound heterozygote with rs334 A allele, can cause SCD. To compare the power of different sample sets we developed a way to estimate the power of sample sets with different sample sizes, genotype arrays, and imputation platforms. Our results suggest that, in African American children, the strongest genetic determinants of pneumonia are those that increase the risk of SCD.
Collapse
Affiliation(s)
- Nadine L N Halligan
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah C Hanks
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Matsuo
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor Martins
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael W Quasney
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mary K Dahmer
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Chhibbar P, Guha Roy P, Harioudh MK, McGrail DJ, Yang D, Singh H, Hinterleitner R, Gong YN, Yi SS, Sahni N, Sarkar SN, Das J. Uncovering cell-type-specific immunomodulatory variants and molecular phenotypes in COVID-19 using structurally resolved protein networks. Cell Rep 2024; 43:114930. [PMID: 39504244 DOI: 10.1016/j.celrep.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/22/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Immunomodulatory variants that lead to the loss or gain of specific protein interactions often manifest only as organismal phenotypes in infectious disease. Here, we propose a network-based approach to integrate genetic variation with a structurally resolved human protein interactome network to prioritize immunomodulatory variants in COVID-19. We find that, in addition to variants that pass genome-wide significance thresholds, variants at the interface of specific protein-protein interactions, even though they do not meet genome-wide thresholds, are equally immunomodulatory. The integration of these variants with single-cell epigenomic and transcriptomic data prioritizes myeloid and T cell subsets as the most affected by these variants across both the peripheral blood and the lung compartments. Of particular interest is a common coding variant that disrupts the OAS1-PRMT6 interaction and affects downstream interferon signaling. Critically, our framework is generalizable across infectious disease contexts and can be used to implicate immunomodulatory variants that do not meet genome-wide significance thresholds.
Collapse
Affiliation(s)
- Prabal Chhibbar
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Integrative Systems Biology PhD Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priyamvada Guha Roy
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Human Genetics PhD Program, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Munesh K Harioudh
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donghui Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi-Nan Gong
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Oden Institute for Computational Engineering and Sciences (ICES) and Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, USA; Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Gardner RM, Brynge M, Sjöqvist H, Dalman C, Karlsson H. Maternal immune activation and autism in the offspring-what is the evidence for causation? Biol Psychiatry 2024:S0006-3223(24)01760-8. [PMID: 39581290 DOI: 10.1016/j.biopsych.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The maternal immune activation hypothesis has gained attention over the past two decades as a potential contributor to the etiology of autism. This hypothesis posits that maternal conditions associated with inflammation during pregnancy may increase the risk of autism in offspring. Autism is highly heritable, and causal environmental contributors to autism largely remain elusive. We review studies on maternal conditions during pregnancy, all associated with some degree of systemic inflammation; namely, maternal infections, autoimmunity, and high BMI. We additionally review studies of inflammatory markers in biological samples collected from the mother during pregnancy or from the neonate and their relationship with autism assessed in children later in life. Recent reports indicate familial clustering of autism, autoimmunity and infections, as well as genetic correlations between autism and aspects of immune function. In light of this literature, there is an apparent risk of confounding of the reported associations between inflammatory exposures and autism by familial genetic factors in both clinical and epidemiological cohort studies. We highlight recent studies that have attempted to address potential confounding to assess evidence of causal effects of inflammation during early life in autism.
Collapse
Affiliation(s)
- Renee M Gardner
- Departments of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Brynge
- Departments of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Sjöqvist
- Departments of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Christina Dalman
- Departments of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Mathew AM, Huber A, Sous RD, Weghorn KN, Powers-Fletcher MV, Jose S, Madan R. Effect of Leptin Receptor Q223R Polymorphism on Clostridioides difficile Infection-Induced Macrophage Migration Inhibitory Factor Production. J Infect Dis 2024; 230:816-820. [PMID: 38687212 PMCID: PMC11481448 DOI: 10.1093/infdis/jiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Proinflammatory cytokine levels and host genetic makeup are key determinants of Clostridioides difficile infection (CDI) outcomes. We previously reported that blocking the inflammatory cytokine macrophage migration inhibitory factor (MIF) ameliorates CDI. Here, we determined kinetics of MIF production and its association with a common genetic variant in leptin receptor (LEPR) using blood from patients with CDI. We found highest plasma MIF early after C difficile exposure and in individuals who express mutant/derived LEPR. Our data suggest that early-phase CDI provides a possible window of opportunity in which MIF targeting, potentially in combination with LEPR genotype, could have therapeutic utility.
Collapse
Affiliation(s)
- Ann M Mathew
- Division of Infectious Diseases
- Pathobiology and Molecular Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Alexander Huber
- Division of Infectious Diseases
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | | | | | - Margaret V Powers-Fletcher
- Division of Infectious Diseases
- Pathobiology and Molecular Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | | | - Rajat Madan
- Division of Infectious Diseases
- Pathobiology and Molecular Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Veterans Affairs Medical Center Cincinnati, Cincinnati, Ohio
| |
Collapse
|
7
|
Zhou Z, Shuai D. Disinfection and post-disinfection conditions drive bacterial and viral evolution across the environment and host. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134811. [PMID: 38850949 DOI: 10.1016/j.jhazmat.2024.134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Water disinfection practices have long been established as a critical engineering intervention for controlling pathogen transmission and safeguarding individual and public health. However, recent discoveries have unveiled the significant role disinfection and post-disinfection play in accelerating the development of resistance to disinfectants and antimicrobial drugs within bacterial and viral communities in the environment. This phenomenon, in turn, may facilitate the emergence of persistent microbes and those with new genetic characteristics. These microbes may thrive in host environments with increased infectivity and resistance, posing challenges to current medical treatments and jeopardizing human health. In this perspective, we illuminate the intricate interplay between aquatic environments, microbes, and hosts and how microbial virulence evolves across the environment and host under the pressure of disinfection and post-disinfection conditions. We aim to draw attention to the previously overlooked potential risks associated with disinfection in driving the virulence evolution of bacteria and viruses, establish connections between pathogens in diverse environments and hosts within the overarching framework of the One Health concept, and ultimately provide guidelines for advancing future water disinfection technologies to effectively curb the spread of infectious diseases.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
| |
Collapse
|
8
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
9
|
Korkmaz FN, Gökçay Canpolat A, Dalva K, Şahin M, Çorapçıoğlu D, Demir Ö. Common human leucocyte antigensassociated with the development of subacute thyroiditis and COVID-19. Hum Immunol 2024; 85:110834. [PMID: 38936012 DOI: 10.1016/j.humimm.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Case reports of subacute thyroiditis (SAT) following coronavirus disease-19 (COVID-19) have been reported. Because the relationship between SAT and human leucocyte antigen (HLA) alleles is known, we aimed to determine HLA alleles that may predispose a patient to coronavirus infection and/or post-COVID-19 SAT. METHOD This retrospective study was conducted in 51 patients with SAT and 190 healthy bone marrow donor volunteers. HLA-A, -B, -C, -DRB1, and -DQB1 were genotyped using next-generation sequencing. The study population was grouped into four groups according to SAT and COVID-19 history. RESULTS The frequency of HLA-DQB1*04:02 was higher in the COVID-19(-) participants than in the COVID-19(+) participants (=0.045). The presence of HLA-DQB1*04:02 was associated with a lower risk of developing COVID-19 in all groups. The frequencies of HLA-B*35:01, HLA-B*35:03, HLA-DRB1*12:01, and HLA-DRB1*14:01 were different in the SAT(+) group than in the SAT(-) group in COVID-19(-) group. The frequencies of HLA-C*12:03, HLA-DQB1*06:04, HLA-DRB1*13:02, and HLA-DRB1*13:03 were different in the SAT(+) group than in the SAT(-) group in the COVID-19 (+) group. The difference in the frequency of these HLA types remains significant when the four groups are included together as follows: In the COVID-19(+) group, the frequencies of HLA-DRB1*13:02, and HLA-DRB1*13:03 were higher in the SAT(+) group than in the SAT(-) group. In the COVID-19(-) group, the frequencies of HLA-B*35:03, HLA-DRB1*12:01, and HLA-DRB1*14:01 were higher in the SAT (+) group than in the SAT(-) group. CONCLUSION HLA alleles associated with SAT susceptibility may vary with COVID-19 history.
Collapse
Affiliation(s)
- Fatma Nur Korkmaz
- Ankara University, Faculty of Medicine, Department of Internal Medicine, Endocrinology and Metabolism, Ankara, Türkiye.
| | - Asena Gökçay Canpolat
- Ankara University, Faculty of Medicine, Department of Internal Medicine, Endocrinology and Metabolism, Ankara, Türkiye
| | - Klara Dalva
- Ankara University, Faculty of Medicine, Department of Internal Medicine, Hematology, Tissue Typing Laboratory, Ankara, Türkiye.
| | - Mustafa Şahin
- Ankara University, Faculty of Medicine, Department of Internal Medicine, Endocrinology and Metabolism, Ankara, Türkiye
| | - Demet Çorapçıoğlu
- Ankara University, Faculty of Medicine, Department of Internal Medicine, Endocrinology and Metabolism, Ankara, Türkiye
| | - Özgür Demir
- Ankara University, Faculty of Medicine, Department of Internal Medicine, Endocrinology and Metabolism, Ankara, Türkiye
| |
Collapse
|
10
|
Dukat-Mazurek A, Karolak W, Zielińska H, Moszkowska G, Wojarski J, Lipka K, Fercho J, Gallas M, Rystwej D, Sunesson F, Akily L, Karlsen W, Sawczuk M, Stachowicz-Chojnacka K, Nojek R, Żegleń S. Anti-HLA Immunization in Patients After Lung Transplantation: A Comparative Study Before and During the Pandemic. Transplant Proc 2024; 56:885-891. [PMID: 38729828 DOI: 10.1016/j.transproceed.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024]
Abstract
Anti-human leukocyte antigen (anti-HLA) sensitization in lung transplant recipients (LTRs) can significantly impact graft survival and patient outcomes. The global pandemic, induced by the SARS-CoV-2 virus, brought about numerous challenges in the medical sphere, including potential alterations in HLA immunization patterns among LTRs. A retrospective analysis of LTRs group transplanted from July 2018 to 1 March 2020 (pre-pandemic) was compared with patients transplanted from 1 March 2020 to December 2022 (during the pandemic). Totally 92 patients were controlled. Patients were also divided into 2 groups: vaccinated and non-vaccinated. The results of cytotoxic crossmatch, results of anti-HLA antibody testing, presence of DSA before and after transplantation, and early and late graft function were compared between groups. In the pandemic and vaccinated groups, an increase was observed in the number of positive crossmatch tests performed with a pool of B lymphocytes. However, the presence of dithiothreitol abolished the positive reaction in 90% of cases. We also observed an increased percentage of patients immunized based on the results of solid phase tests both in the pandemic group and in the group of patients who received vaccination against the SARS-CoV-2 virus. It might be that the pandemic/vaccination has influenced the prevalence of anti-HLA immunization in LTRs. Further studies are essential to establish causative factors and develop targeted interventions for this population of patients.
Collapse
Affiliation(s)
| | - Wojtek Karolak
- Department of Cardiac Surgery, Medical University of Gdansk, Poland
| | - Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdansk, Poland
| | | | - Jacek Wojarski
- Department of Cardiac Surgery, Medical University of Gdansk, Poland
| | - Karolina Lipka
- Department of Cardiac Surgery, Medical University of Gdansk, Poland
| | - Justyna Fercho
- Department of Neurosurgery, Medical University of Gdansk, Poland
| | - Marta Gallas
- Department of Cardiac Surgery, Medical University of Gdansk, Poland
| | - Dariusz Rystwej
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Poland
| | - Fanny Sunesson
- Emergency Department of Surgery (KAVA), Centralsjukhuset Kristianstad (CSK), Sweden
| | - Lin Akily
- Department of Pneumonology and Allergology, Medical University of Gdansk, Poland
| | - William Karlsen
- Department of Pneumonology and Allergology, Medical University of Gdansk, Poland
| | - Marcin Sawczuk
- Department of Pneumonology and Allergology, Medical University of Gdansk, Poland
| | | | - Rafał Nojek
- Department of Applied Computer Science, AGH University of Science and Technology in Krakow, Poland
| | - Sławomir Żegleń
- Department of Pneumonology and Allergology, Medical University of Gdansk, Poland.
| |
Collapse
|
11
|
Mentzer AJ, Dilthey AT, Pollard M, Gurdasani D, Karakoc E, Carstensen T, Muhwezi A, Cutland C, Diarra A, da Silva Antunes R, Paul S, Smits G, Wareing S, Kim H, Pomilla C, Chong AY, Brandt DYC, Nielsen R, Neaves S, Timpson N, Crinklaw A, Lindestam Arlehamn CS, Rautanen A, Kizito D, Parks T, Auckland K, Elliott KE, Mills T, Ewer K, Edwards N, Fatumo S, Webb E, Peacock S, Jeffery K, van der Klis FRM, Kaleebu P, Vijayanand P, Peters B, Sette A, Cereb N, Sirima S, Madhi SA, Elliott AM, McVean G, Hill AVS, Sandhu MS. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. Nat Med 2024; 30:1384-1394. [PMID: 38740997 PMCID: PMC11108778 DOI: 10.1038/s41591-024-02944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/25/2024] [Indexed: 05/16/2024]
Abstract
How human genetic variation contributes to vaccine effectiveness in infants is unclear, and data are limited on these relationships in populations with African ancestries. We undertook genetic analyses of vaccine antibody responses in infants from Uganda (n = 1391), Burkina Faso (n = 353) and South Africa (n = 755), identifying associations between human leukocyte antigen (HLA) and antibody response for five of eight tested antigens spanning pertussis, diphtheria and hepatitis B vaccines. In addition, through HLA typing 1,702 individuals from 11 populations of African ancestry derived predominantly from the 1000 Genomes Project, we constructed an imputation resource, fine-mapping class II HLA-DR and DQ associations explaining up to 10% of antibody response variance in our infant cohorts. We observed differences in the genetic architecture of pertussis antibody response between the cohorts with African ancestries and an independent cohort with European ancestry, but found no in silico evidence of differences in HLA peptide binding affinity or breadth. Using immune cell expression quantitative trait loci datasets derived from African-ancestry samples from the 1000 Genomes Project, we found evidence of differential HLA-DRB1 expression correlating with inferred protection from pertussis following vaccination. This work suggests that HLA-DRB1 expression may play a role in vaccine response and should be considered alongside peptide selection to improve vaccine design.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - Alexander T Dilthey
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | | | | | | | | | - Allan Muhwezi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Clare Cutland
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | | | - Sinu Paul
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Wareing
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | | | | | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Debora Y C Brandt
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, California, CA, USA
| | - Samuel Neaves
- Avon Longitudinal Study of Parents and Children at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicolas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Austin Crinklaw
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Anna Rautanen
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dennison Kizito
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Tom Parks
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Kate E Elliott
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tara Mills
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Nick Edwards
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Segun Fatumo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- The Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
| | - Emily Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Sarah Peacock
- Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katie Jeffery
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Bjorn Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Sodiomon Sirima
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248, Ouagadougou, Burkina Faso
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison M Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine London, London, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Centre for Human Genetics, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Manjinder S Sandhu
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
12
|
Kotliar D, Raju S, Tabrizi S, Odia I, Goba A, Momoh M, Sandi JD, Nair P, Phelan E, Tariyal R, Eromon PE, Mehta S, Robles-Sikisaka R, Siddle KJ, Stremlau M, Jalloh S, Gire SK, Winnicki S, Chak B, Schaffner SF, Pauthner M, Karlsson EK, Chapin SR, Kennedy SG, Branco LM, Kanneh L, Vitti JJ, Broodie N, Gladden-Young A, Omoniwa O, Jiang PP, Yozwiak N, Heuklom S, Moses LM, Akpede GO, Asogun DA, Rubins K, Kales S, Happi AN, Iruolagbe CO, Dic-Ijiewere M, Iraoyah K, Osazuwa OO, Okonkwo AK, Kunz S, McCormick JB, Khan SH, Honko AN, Lander ES, Oldstone MBA, Hensley L, Folarin OA, Okogbenin SA, Günther S, Ollila HM, Tewhey R, Okokhere PO, Schieffelin JS, Andersen KG, Reilly SK, Grant DS, Garry RF, Barnes KG, Happi CT, Sabeti PC. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Nat Microbiol 2024; 9:751-762. [PMID: 38326571 PMCID: PMC10914620 DOI: 10.1038/s41564-023-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.
Collapse
Affiliation(s)
- Dylan Kotliar
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Siddharth Raju
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Shervin Tabrizi
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ikponmwosa Odia
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Augustine Goba
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Mambu Momoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Eastern Polytechnic College, Kenema, Sierra Leone
| | - John Demby Sandi
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Philomena E Eromon
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | - Samar Mehta
- Department of Critical Care Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Refugio Robles-Sikisaka
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine J Siddle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Simbirie Jalloh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Sarah Winnicki
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Bridget Chak
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Stephen F Schaffner
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Elinor K Karlsson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Sarah R Chapin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sharon G Kennedy
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Joseph J Vitti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nisha Broodie
- New York-Presbyterian Hospital-Columbia and Cornell, New York, NY, USA
| | - Adrianne Gladden-Young
- Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - Nathan Yozwiak
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
| | - Shannon Heuklom
- San Francisco Community Health Center, San Francisco, CA, USA
| | - Lina M Moses
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - George O Akpede
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Danny A Asogun
- Department of Community Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Kathleen Rubins
- National Aeronautics and Space Administration, Houston, TX, USA
| | | | - Anise N Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | | | - Mercy Dic-Ijiewere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Kelly Iraoyah
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Omoregie O Osazuwa
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- UTHealth Houston School of Public Health, Brownsville Campus, Brownsville, TX, USA
| | - S Humarr Khan
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Anna N Honko
- Boston University School of Medicine, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Hensley
- National Institutes of Health Integrated Research Facility, Frederick, MA, USA
| | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna M Ollila
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter O Okokhere
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - John S Schieffelin
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Donald S Grant
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Robert F Garry
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Kayla G Barnes
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria.
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA.
| |
Collapse
|
13
|
Sela U, Corrêa da Rosa JM, Fischetti VA, Cohen JE. Quantifying how much host, pathogen, and other factors affect human protective adaptive immune responses. Front Immunol 2024; 15:1330253. [PMID: 38410519 PMCID: PMC10895049 DOI: 10.3389/fimmu.2024.1330253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Recognizing the "essential" factors that contribute to a clinical outcome is critical for designing appropriate therapies and prioritizing limited medical resources. Demonstrating a high correlation between a factor and an outcome does not necessarily imply an essential role of the factor to the outcome. Human protective adaptive immune responses to pathogens vary among (and perhaps within) pathogenic strains, human individual hosts, and in response to other factors. Which of these has an "essential" role? We offer three statistical approaches that predict the presence of newly contributing factor(s) and then quantify the influence of host, pathogen, and the new factors on immune responses. We illustrate these approaches using previous data from the protective adaptive immune response (cellular and humoral) by human hosts to various strains of the same pathogenic bacterial species. Taylor's law predicts the existence of other factors potentially contributing to the human protective adaptive immune response in addition to inter-individual host and intra-bacterial species inter-strain variability. A mixed linear model measures the relative contribution of the known variables, individual human hosts and bacterial strains, and estimates the summed contributions of the newly predicted but unknown factors to the combined adaptive immune response. A principal component analysis predicts the presence of sub-variables (currently not defined) within bacterial strains and individuals that may contribute to the combined immune response. These observations have statistical, biological, clinical, and therapeutic implications.
Collapse
Affiliation(s)
- Uri Sela
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| | - Joel M. Corrêa da Rosa
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| | - Joel E. Cohen
- Laboratory of Populations, The Rockefeller University, New York, NY, United States
- Department of Statistics, Columbia University, New York, NY, United States
- Department of Statistics, University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Chen XT, Zhi S, Han XY, Jiang JW, Liu GM, Rao ST. A systematic two-sample and bidirectional MR process highlights a unidirectional genetic causal effect of allergic diseases on COVID-19 infection/severity. J Transl Med 2024; 22:94. [PMID: 38263182 PMCID: PMC10804553 DOI: 10.1186/s12967-024-04887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Allergic diseases (ADs) such as asthma are presumed risk factors for COVID-19 infection. However, recent observational studies suggest that the assumed correlation contradicts each other. We therefore systematically investigated the genetic causal correlations between various ADs and COVID-19 infection/severity. METHODS We performed a two-sample, bidirectional Mendelian randomization (MR) study for five types of ADs and the latest round of COVID-19 GWAS meta-analysis datasets (critically ill, hospitalized, and infection cases). We also further validated the significant causal correlations and elucidated the potential underlying molecular mechanisms. RESULTS With the most suitable MR method, asthma consistently demonstrated causal protective effects on critically ill and hospitalized COVID-19 cases (OR < 0.93, p < 2.01 × 10-2), which were further confirmed by another validated GWAS dataset (OR < 0.92, p < 4.22 × 10-3). In addition, our MR analyses also observed significant causal correlations of food allergies such as shrimp allergy with the risk of COVID-19 infection/severity. However, we did not find any significant causal effect of COVID-19 phenotypes on the risk of ADs. Regarding the underlying molecular mechanisms, not only multiple immune-related cells such as CD4+ T, CD8+ T and the ratio of CD4+/CD8+ T cells showed significant causal effects on COVID-19 phenotypes and various ADs, the hematology traits including monocytes were also significantly correlated with them. Conversely, various ADs such as asthma and shrimp allergy may be causally correlated with COVID-19 infection/severity by affecting multiple hematological traits and immune-related cells. CONCLUSIONS Our systematic and bidirectional MR analyses suggest a unidirectional causal effect of various ADs, particularly of asthma on COVID-19 infection/severity, but the reverse is not true. The potential underlying molecular mechanisms of the causal effects call for more attention to clinical monitoring of hematological cells/traits and may be beneficial in developing effective therapeutic strategies for allergic patients following infection with COVID-19.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Shuai Zhi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Xin-Yu Han
- Xiamen Key Laboratory of Marine Functional Food, College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Jian-Wei Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China
| | - Guang-Ming Liu
- Xiamen Key Laboratory of Marine Functional Food, College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Shi-Tao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, No. 1 Xue-Yuan Rd., University Town, Fuzhou, 350122, Fujian, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
15
|
Mirsharif ES, Rostamian A, Salehi M, Askari N, Ghazanfari T. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) +49A>G (rs231775) gene polymorphism is not associated with COVID-19 severity and mortality in an Iranian population. Heliyon 2024; 10:e23308. [PMID: 38116190 PMCID: PMC10726245 DOI: 10.1016/j.heliyon.2023.e23308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates T cell immune responses as an immune activation inhibitor. Literature reviews suggest that COVID-19 is associated with dysregulation of the inflammatory immune response. The purpose of the present hospital-based case-control study was to evaluate the genetic association of the CTLA4 +49A > G (rs231775) Single Nucleotide Polymorphism (SNP) with COVID-19 severity and mortality among the Iranian people. Method Genomic DNA of peripheral blood nuclear cells was extracted from the 794 COVID-19 patients and 167 control individuals. The polymorphic site of rs231775 was genotyped using the PCR-RFLP technique. Also, to identify whether this genetic variation was related to CTLA-4 mRNA expression, total RNA was extracted from 178 COVID-19 patients and 70 controls. The mRNA levels of CTLA-4 were determined using real-time PCR. Result There were no statistically significant differences found in the genotype and allele frequencies among the different genetic models with regards to the severity and mortality of COVID-19. Furthermore, there was no significant association between rs231775 genotypes and CTLA-4 mRNA expression in patients. Conclusion Our findings demonstrated that SARS-CoV-2 infection is not associated with rs231775 in the Iranian people. More investigations are crucial to show how this genetic variation affects other ethnic groups. Given the importance of CTLA-4 in regulating immune responses, further studies are recommended to examine other CTLA-4 SNPs and the function of this gene in COVID-19 patients.
Collapse
Affiliation(s)
| | - Abdolrahman Rostamian
- Rheumatology Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infectious and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahid Bahonar, University of Kerman, Kerman, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
16
|
Boix-Palop L, Arranz MJ, Sangil A, Dietl B, Xercavins M, Pérez J, Calbo E. Host genetic variants associated with susceptibility and severity of pneumococcal pneumonia in adult patients. Pneumonia (Nathan) 2023; 15:18. [PMID: 38143267 PMCID: PMC10749500 DOI: 10.1186/s41479-023-00120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Pneumococcal community-acquired pneumonia (P-CAP) is a major cause of morbidity and hospitalization. Several host genetics factors influencing risk of pneumococcal disease have been identified, with less information about its association with P-CAP. The aim of the study was to assess the influence of single nucleotide polymorphisms (SNP) within key genes involved in the innate immune response on the susceptibility to P-CAP and to study whether these polymorphic variants were associated with the severity and outcome of the episodes in a cohort of adult Caucasian patients. METHODS Seventeen SNPs from 7 genes (IL-R1, IL-4, IL-10, IL-12B, NFKBIA, NFKBIE, NFKBIZ) were analyzed. For susceptibility, a case-control study including a cohort of 57 adult with P-CAP, and 280 ethnically matched controls was performed. Genetic influence on clinical severity and outcome was evaluated in a prospective observational study including all consecutive adult P-CAP patients from November 2015 to May 2017. RESULTS The NFKBIA polymorphism rs696 and a haplotype combination were associated with susceptibility to P-CAP (OR = 0.62, p = 0.005 and OR = 0.63, p = 0.008, respectively). The SNP IL4 rs2227284 was associated with severe P-CAP (OR = 2.17, p = 0.04). IL-R1 (rs3917267) and IL-10 (rs3024509) variants were related with respiratory failure (OR = 3.31, p = 0.001 and OR = 0.18, p = 0.003, respectively) as well as several haplotype combinations in NFKBIA, NFKBIZ, IL-R1 and IL-10 (p = 0,02, p = 0,01, p = 0,001, p = 0,03, respectively). CURB-65 values were associated with the IL-10 rs3024509 variant (beta = - 0.4, p = 0.04), and with haplotype combinations of NFKBIZ and IL-10 (p = 0.05, p = 0.04, respectively). Genetic variants in IL-10 (rs3024509) and in IL-12B (rs730691) were associated with PSI values (beta = - 0.54, p = 0.01, and beta = - 0.28, p = 0.04, respectively), as were allelic combinations in IL-R1 (p = 0.02) and IL-10 (p = 0.01). Finally, several polymorphisms in the IL-R1 gene (rs13020778, rs2160227, & rs3917267) were associated with the time elapsed until clinical stability (beta = - 0.83, p = 0.03; beta = - 1, p = 0.02 and beta = 1.07, p = 0.008, respectively). CONCLUSIONS A genetic variant in NFKBIA was associated with susceptibility to P-CAP in adult Caucasian patients and genetic variants from key cytokines of the innate immune response (Il-4, IL-10, IL-R1 and IL-12B) and NF-κB inhibitors were associated with different phenotypes of severe P-CAP. If validated, these SNPs may help to identify people at risk of P-CAP or severe P-CAP on which preventive measures could be applied.
Collapse
Affiliation(s)
- Lucía Boix-Palop
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain.
- Universitat Internacional de Catalunya, Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| | - María J Arranz
- Fundació Docència i Recerca Mútua Terrassa, Barcelona, Spain
| | - Anna Sangil
- Internal Medicine Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Beatriz Dietl
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | | | - Josefa Pérez
- Microbiology Department, CatLab, Barcelona, Spain
| | - Esther Calbo
- Infectious Diseases Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain.
- Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
17
|
Wang Q, Jia M, Jiang M, Cao Y, Dai P, Yang J, Yang X, Xu Y, Yang W, Feng L. Increased population susceptibility to seasonal influenza during the COVID-19 pandemic in China and the United States. J Med Virol 2023; 95:e29186. [PMID: 37855656 DOI: 10.1002/jmv.29186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
To the best of our knowledge, no previous study has quantitatively estimated the dynamics and cumulative susceptibility to influenza infections after the widespread lifting of COVID-19 public health measures. We constructed an imitated stochastic susceptible-infected-removed model using particle-filtered Markov Chain Monte Carlo sampling to estimate the time-dependent reproduction number of influenza based on influenza surveillance data in southern China, northern China, and the United States during the 2022-2023 season. We compared these estimates to those from 2011 to 2019 seasons without strong social distancing interventions to determine cumulative susceptibility during COVID-19 restrictions. Compared to the 2011-2019 seasons without a strong intervention with social measures, the 2022-2023 influenza season length was 45.0%, 47.1%, and 57.1% shorter in southern China, northern China, and the United States, respectively, corresponding to an 140.1%, 74.8%, and 50.9% increase in scale of influenza infections, and a 60.3%, 72.9%, and 45.1% increase in population susceptibility to influenza. Large and high-intensity influenza epidemics occurred in China and the United States in 2022-2023. Population susceptibility increased in 2019-2022, especially in China. We recommend promoting influenza vaccination, taking personal prevention actions on at-risk populations, and monitoring changes in the dynamic levels of influenza and other respiratory infections to prevent potential outbreaks in the coming influenza season.
Collapse
Affiliation(s)
- Qing Wang
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Mengmeng Jia
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Mingyue Jiang
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Yanlin Cao
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Peixi Dai
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiao Yang
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Xiaokun Yang
- Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunshao Xu
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Weizhong Yang
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Luzhao Feng
- School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Salihefendić L, Čeko I, Bešić L, Mulahuseinović N, Durgut S, Pećar D, Prnjavorac L, Kandić E, Meseldžić N, Bego T, Prnjavorac B, Marjanović D, Konjhodžić R, Ašić A. Identification of human genetic variants modulating the course of COVID-19 infection with importance in other viral infections. Front Genet 2023; 14:1240245. [PMID: 37795240 PMCID: PMC10545899 DOI: 10.3389/fgene.2023.1240245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: COVID-19 has been a major focus of scientific research since early 2020. Due to its societal, economic, and clinical impact worldwide, research efforts aimed, among other questions, to address the effect of host genetics in susceptibility and severity of COVID-19. Methods: We, therefore, performed next-generation sequencing of coding and regulatory regions of 16 human genes, involved in maintenance of the immune system or encoding receptors for viral entry into the host cells, in a subset of 60 COVID-19 patients from the General Hospital Tešanj, Bosnia and Herzegovina, classified into three groups of clinical conditions of different severity ("mild," "moderate," and "severe"). Results: We confirmed that the male sex and older age are risk factors for severe clinical picture and identified 13 variants on seven genes (CD55, IL1B, IL4, IRF7, DDX58, TMPRSS2, and ACE2) with potential functional significance, either as genetic markers of modulated susceptibility to SARS-CoV-2 infection or modifiers of the infection severity. Our results include variants reported for the first time as potentially associated with COVID-19, but further research and larger patient cohorts are required to confirm their effect. Discussion: Such studies, focused on candidate genes and/or variants, have a potential to answer the questions regarding the effect of human genetic makeup on the expected infection outcome. In addition, loci we identified here were previously reported to have clinical significance in other diseases and viral infections, thus confirming a general, broader significance of COVID-19-related research results following the end of the pandemic period.
Collapse
Affiliation(s)
- Lana Salihefendić
- ALEA Genetic Center, Sarajevo, Bosnia and Herzegovina
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Ivana Čeko
- ALEA Genetic Center, Sarajevo, Bosnia and Herzegovina
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Larisa Bešić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | - Selma Durgut
- ALEA Genetic Center, Sarajevo, Bosnia and Herzegovina
| | - Dino Pećar
- ALEA Genetic Center, Sarajevo, Bosnia and Herzegovina
| | | | - Enis Kandić
- ALEA Genetic Center, Sarajevo, Bosnia and Herzegovina
| | - Neven Meseldžić
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Tamer Bego
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Damir Marjanović
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
- Institute for Anthropological Research, University of Zagreb, Zagreb, Croatia
| | - Rijad Konjhodžić
- ALEA Genetic Center, Sarajevo, Bosnia and Herzegovina
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Adna Ašić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
19
|
Smith BR, Patch KB, Gupta A, Knoles EM, Unckless RL. The genetic basis of variation in immune defense against Lysinibacillus fusiformis infection in Drosophila melanogaster. PLoS Pathog 2023; 19:e1010934. [PMID: 37549163 PMCID: PMC10434897 DOI: 10.1371/journal.ppat.1010934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/17/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023] Open
Abstract
The genetic causes of phenotypic variation often differ depending on the population examined, particularly if the populations were founded by relatively small numbers of genotypes. Similarly, the genetic causes of phenotypic variation among similar traits (resistance to different xenobiotic compounds or pathogens) may also be completely different or only partially overlapping. Differences in genetic causes for variation in the same trait among populations suggests context dependence for how selection acts on those traits. Similarities in the genetic causes of variation for different traits, on the other hand, suggests pleiotropy which would also influence how natural selection shapes variation in a trait. We characterized immune defense against a natural Drosophila pathogen, the Gram-positive bacterium Lysinibacillus fusiformis, in three different populations and found almost no overlap in the genetic architecture of variation in survival post infection. However, when comparing our results to a similar experiment with the fungal pathogen, B. bassiana, we found a convincing shared QTL peak for both pathogens. This peak contains the Bomanin cluster of Drosophila immune effectors. Loss of function mutants and RNAi knockdown experiments confirms a role of some of these genes in immune defense against both pathogens. This suggests that natural selection may act on the entire cluster of Bomanin genes (and the linked region under the QTL) or specific peptides for specific pathogens.
Collapse
Affiliation(s)
- Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kistie B. Patch
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Anjali Gupta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Emma M. Knoles
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
20
|
Bhatt IS, Washnik NJ, Kingsbury S, Deshpande AK, Kingsbury H, Bhagavan SG, Michel K, Dias R, Torkamani A. Identifying Health-Related Conditions Associated with Tinnitus in Young Adults. Audiol Res 2023; 13:546-562. [PMID: 37489384 PMCID: PMC10366783 DOI: 10.3390/audiolres13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE The present study investigated the epidemic of tinnitus in college-aged young adults. Our first objective was to identify health conditions associated with tinnitus in young adults. The second objective was to evaluate the predictive utility of some known risk factors. STUDY DESIGN A cross-sectional design was used to investigate the prevalence and risk factors for tinnitus. SETTING A questionnaire was distributed, reaching out to a large college-aged population. A total of 2258 young adults aged 18-30 years were recruited from April 2021 to February 2022. INTERVENTIONS A questionnaire was administered to investigate the epidemiology of tinnitus in a population of college-aged young adults. RESULTS About 17.7% of young adults reported bothersome tinnitus perception lasting for ≥5 min in the last 12 months. The prevalence of chronic tinnitus (bothersome tinnitus for ≥1 year) and acute tinnitus (bothersome tinnitus for <1 year) was 10.6% and 7.1%, respectively. About 19% of the study sample reported at least one health condition. Individuals reporting head injury, hypertension, heart disease, scarlet fever, and malaria showed significantly higher odds of reporting chronic tinnitus. Meningitis and self-reported hearing loss showed significant associations with bothersome tinnitus. The prevalence of chronic tinnitus was significantly higher in males reporting high noise exposure, a positive history of reoccurring ear infections, European ethnic background, and a positive health history. Risk modeling showed that noise exposure was the most important risk factor for chronic tinnitus, followed by sex, reoccurring ear infections, and a history of any health condition. A positive history of COVID-19 and self-reported severity showed no association with tinnitus. Individuals reporting reoccurring ear infections showed a significantly higher prevalence of COVID-19. CONCLUSIONS While young adults with health conditions are at a higher risk of reporting tinnitus, the predictive utility of a positive health history remains relatively low, possibly due to weak associations between health conditions and tinnitus. Noise, male sex, reoccurring ear infections, European ethnicity, and a positive health history revealed higher odds of reporting chronic tinnitus than their counterparts. These risk factors collectively explained about 16% variability in chronic tinnitus, which highlights the need for identifying other risk factors for chronic tinnitus in young adults.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Nilesh J Washnik
- Department of Hearing Speech and Language Sciences, Ohio University, Athens, OH 45701, USA
| | - Sarah Kingsbury
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Aniruddha K Deshpande
- Department of Speech-Language-Hearing Sciences, Hofstra University, Hempstead, NY 11549, USA
| | - Hailey Kingsbury
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Klayre Michel
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Science Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Naseeb MW, Adedara VO, Haseeb MT, Fatima H, Gangasani S, Kailey KR, Ahmed M, Abbas K, Razzaq W, Qayyom MM, Abdin ZU. Immunomodulatory Therapy for Giant Cell Myocarditis: A Narrative Review. Cureus 2023; 15:e40439. [PMID: 37456487 PMCID: PMC10349211 DOI: 10.7759/cureus.40439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Giant cell myocarditis (GCM) is a rare, often rapidly progressive, and potentially fatal disease because of myocardium inflammation due to the infiltration of giant cells triggered by infectious as well as non-infectious etiologies. Several studies have reported that GCM can occur in patients of all ages but is more commonly found in adults. It is relatively more common among African American and Hispanic patients than in the White population. Early diagnosis and treatment are critical. Electrocardiogram (EKG), complete blood count, erythrocyte sedimentation rate, C-reactive protein, and cardiac biomarkers such as troponin and brain natriuretic peptide (BNP), echocardiogram, cardiac magnetic resonance imaging (MRI), myocardial biopsy, and myocardial gene profiling are useful diagnostic tools. Current research has identified several potential biomarkers for GCM, including myocarditis-associated immune cells, cytokines, and other chemicals. The standard of care for GCM includes aggressive immunosuppressive therapy with corticosteroids and immunomodulatory agents like rituximab, cyclosporine, and infliximab, which have shown promising results in GCM by balancing the immune system and preventing the attack on healthy tissues, resulting in the reduction of inflammation, promotion of healing, and decreasing the necessity for cardiac transplantation. Without immunosuppression, the chance of mortality or cardiac surgery was 100%. Multiple studies have revealed that a treatment combination of corticosteroids and immunomodulatory agents is superior to corticosteroids alone. Combination therapy significantly increased transplant-free survival (TFS) and decreased the likelihood of heart transplantation, hence improving overall survival. It is important to balance the benefits of immunosuppression with its potentially adverse effects. In conclusion, immunomodulatory therapy adds significant long-term survival benefits to GCM.
Collapse
Affiliation(s)
| | - Victor O Adedara
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | | | - Hareem Fatima
- Internal Medicine, Federal Medical College, Islamabad, PAK
| | - Swapna Gangasani
- Internal Medicine, New York Medical College (NYMC) St. Mary's General Hospital and Saint Clare's Hospitals, New Jersey, USA
| | - Kamaljit R Kailey
- Medicine and Surgery, Gian Sagar Medical College and Hospital, Patiala, IND
| | - Moiz Ahmed
- Cardiology, National Institute of Cardiovascular Diseases, Karachi, PAK
| | - Kiran Abbas
- Community Health Sciences, Aga Khan University, Karachi, PAK
| | | | | | - Zain U Abdin
- Medicine, District Headquarter Hospital, Faisalabad, PAK
| |
Collapse
|
22
|
Gelemanović A, Ćatipović Ardalić T, Pribisalić A, Hayward C, Kolčić I, Polašek O. Genome-Wide Meta-Analysis Identifies Multiple Novel Rare Variants to Predict Common Human Infectious Diseases Risk. Int J Mol Sci 2023; 24:7006. [PMID: 37108169 PMCID: PMC10138356 DOI: 10.3390/ijms24087006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Infectious diseases still threaten global human health, and host genetic factors have been indicated as determining risk factors for observed variations in disease susceptibility, severity, and outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the immune response. Expanding our knowledge on rare variants could contribute to the development of genetic panels that could assist in predicting an individual's life-long susceptibility to major infectious diseases. In addition, longitudinal biobanks are an interesting source of information for identifying the host genetic variants involved in infectious disease susceptibility and severity. Since infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for a large consortium of biobanks with access to genetic and environmental data to further elucidate the complex mechanisms behind host-pathogen interactions and infectious disease susceptibility.
Collapse
Affiliation(s)
- Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Ajka Pribisalić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
24
|
Wu K, Fang Q, Zhao Z, Li Z. CoID-LAMP: Color-Encoded, Intelligent Digital LAMP for Multiplex Nucleic Acid Quantification. Anal Chem 2023; 95:5069-5078. [PMID: 36892003 DOI: 10.1021/acs.analchem.2c05665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Multiplex, digital nucleic acid tests have important biomedical applications, but existing methods mostly use fluorescent probes that are target-specific and difficult to optimize, limiting their widespread applications. Here, we report color-encoded, intelligent digital loop-mediated isothermal amplification (CoID-LAMP) for the coidentification of multiple nucleic acid targets. CoID-LAMP supplements different primer solutions with different dyes, generates primer droplets and sample droplets, and collectively pairs these two types of droplets in a microwell array device to perform LAMP. After imaging, the droplet colors were analyzed to decode the primer information, and the precipitate byproducts within droplets were detected to determine the target occupancy and calculate the concentrations. We first established an image analysis pipeline based on a deep learning algorithm for reliable droplet detection and validated the analytical performance in nucleic acid quantification. We then implemented CoID-LAMP using fluorescent dyes as the coding materials and established an 8-plex digital nucleic acid assay, confirming the reliable coding performance and the capability of multiplex nucleic acid quantification. We further implemented CoID-LAMP using brightfield dyes for a 4-plex assay, suggesting that the assay could be realized solely by brightfield imaging with minimal demand on the optics. Leveraging the advantages of droplet microfluidics in multiplexing and deep learning in intelligent image analysis, CoID-LAMP offers a useful tool for multiplex nucleic acid quantification.
Collapse
Affiliation(s)
- Kai Wu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Qi Fang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhantao Zhao
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Scharf RE, Anaya JM. Post-COVID Syndrome in Adults-An Overview. Viruses 2023; 15:675. [PMID: 36992384 PMCID: PMC10056158 DOI: 10.3390/v15030675] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
This article provides an overview of various aspects related to post-COVID syndrome. Apart from its prevalence, symptoms and sequelae, risk determinants, and psychosocial implications, the pathogenesis of post-COVID condition is discussed in more detail. A focus on thrombo-inflammation in SARS-CoV-2 infection, the role of neutrophil extracellular traps, and the prevalence of venous thromboembolism is made. Moreover, COVID-19 and post-COVID syndrome in immunocompromising conditions, and the impact of vaccination on the prevention and treatment of post-COVID symptoms are reviewed. Autoimmunity is a hallmark of post-COVID syndrome, and, therefore, is another focus of this article. Thus, misdirected cellular and humoral immune responses can enhance the risk of latent autoimmunity in post-COVID syndrome. Facing the high prevalence of COVID-19 cases worldwide, it can be assumed that autoimmune disorders will increase globally over the next few years. Recent advances in identifying genetically determined variants may open the avenue for a better understanding of the susceptibility to and severity of SARS-CoV-2 infection and post-COVID syndrome.
Collapse
Affiliation(s)
- Rüdiger E. Scharf
- Current Address: Department of Medicine, Division of Cardiology, Angiology, Hemostasis and Internal Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
- Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Karp Family Research Laboratories, Boston, MA 02115, USA
- Institute of Transplantation Diagnostics and Cell Therapy, Division of Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University Medical Center, D-40225 Düsseldorf, Germany
| | - Juan-Manuel Anaya
- Current Affiliation & Address: National Academy of Medicine of Colombia, Bogotá 110221, Colombia
- Health Research and Innovation Center at Coosalud, Cartagena 130001, Colombia
| |
Collapse
|
26
|
Fang MZ, Jackson SS, Pfeiffer RM, Kim EY, Chen S, Hussain SK, Jacobson LP, Martinson J, Prokunina-Olsson L, Thio CL, Duggal P, Wolinsky S, O’Brien TR. No Association of IFNL4 Genotype With Opportunistic Infections and Cancers Among Men With Human Immunodeficiency Virus 1 Infection. Clin Infect Dis 2023; 76:521-527. [PMID: 36573283 PMCID: PMC10169417 DOI: 10.1093/cid/ciac447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND IFNL4 genetic variants that are strongly associated with clearance of hepatitis C virus have been linked to risk of certain opportunistic infections (OIs) and cancers, including Kaposi sarcoma, cytomegalovirus infection, and herpes simplex virus infection. As the interferon (IFN) λ family plays a role in response to viral, bacterial, and fungal infections, IFNL4 genotype might affect risk for a wide range of OIs/cancers. METHODS We examined associations between genotype for the functional IFNL4 rs368234815 polymorphism and incidence of 16 OIs/cancers among 2310 men with human immunodeficiency virus (2038 white; 272 black) enrolled in the Multicenter AIDS Cohort Study during 1984-1990. Our primary analyses used Cox proportional hazards models adjusted for self-reported racial ancestry to estimate hazard ratios with 95% confidence intervals, comparing participants with the genotypes that generate IFN-λ4 and those with the genotype that abrogates IFN-λ4. We censored follow-up at the introduction of highly effective antiretroviral therapies. RESULTS We found no statistically significant association between IFNL4 genotype and the incidence of Kaposi sarcoma (hazard ratio, 0.92 [95% confidence interval, .76-1.11]), cytomegalovirus infection (0.94 [.71-1.24]), herpes simplex virus infection (1.37 [.68-2.93]), or any other OI/cancer. We observed consistent results using additive genetic models and after controlling for CD4 cell count through time-dependent adjustment or restriction to participants with a low CD4 cell count. CONCLUSIONS The absence of associations between IFNL4 genotype and these OIs/cancers provides evidence that this gene does not affect the risk of disease from opportunistic pathogens.
Collapse
Affiliation(s)
- Michelle Z Fang
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sarah S Jackson
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Eun-Young Kim
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabrina Chen
- Information Management Services Inc., Calverton, Maryland, USA
| | - Shehnaz K Hussain
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Lisa P Jacobson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chloe L Thio
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Steven Wolinsky
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas R O’Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Zhu Z, Chen X, Wang C, Zhang S, Yu R, Xie Y, Yuan S, Cheng L, Shi L, Zhang X. An integrated strategy to identify COVID-19 causal genes and characteristics represented by LRRC37A2. J Med Virol 2023; 95:e28585. [PMID: 36794676 DOI: 10.1002/jmv.28585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Genome-wide association study (GWAS) could identify host genetic factors associated with coronavirus disease 2019 (COVID-19). The genes or functional DNA elements through which genetic factors affect COVID-19 remain uncharted. The expression quantitative trait locus (eQTL) provides a path to assess the correlation between genetic variations and gene expression. Here, we firstly annotated GWAS data to describe genetic effects, obtaining genome-wide mapped genes. Subsequently, the genetic mechanisms and characteristics of COVID-19 were investigated by an integrated strategy that included three GWAS-eQTL analysis approaches. It was found that 20 genes were significantly associated with immunity and neurological disorders, including prior and novel genes such as OAS3 and LRRC37A2. The findings were then replicated in single-cell datasets to explore the cell-specific expression of causal genes. Furthermore, associations between COVID-19 and neurological disorders were assessed as a causal relationship. Finally, the effects of causal protein-coding genes of COVID-19 were discussed using cell experiments. The results revealed some novel COVID-19-related genes to emphasize disease characteristics, offering a broader insight into the genetic architecture underlying the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yubin Xie
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Shi
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
- 3McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Saarentaus EC, Karjalainen J, Rämö JT, Kiiskinen T, Havulinna AS, Mehtonen J, Hautakangas H, Ruotsalainen S, Tamlander M, Mars N, Toppila-Salmi S, Pirinen M, Kurki M, Ripatti S, Daly M, Palotie T, Mäkitie A, Palotie A. Inflammatory and infectious upper respiratory diseases associate with 41 genomic loci and type 2 inflammation. Nat Commun 2023; 14:83. [PMID: 36653354 PMCID: PMC9849224 DOI: 10.1038/s41467-022-33626-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/26/2022] [Indexed: 01/19/2023] Open
Abstract
Inflammatory and infectious upper respiratory diseases (ICD-10: J30-J39), such as diseases of the sinonasal tract, pharynx and larynx, are growing health problems yet their genomic similarity is not known. We analyze genome-wide association to eight upper respiratory diseases (61,195 cases) among 260,405 FinnGen participants, meta-analyzing diseases in four groups based on an underlying genetic correlation structure. Aiming to understand which genetic loci contribute to susceptibility to upper respiratory diseases in general and its subtypes, we detect 41 independent genome-wide significant loci, distinguishing impact on sinonasal or pharyngeal diseases, or both. Fine-mapping implicated non-synonymous variants in nine genes, including three linked to immune-related diseases. Phenome-wide analysis implicated asthma and atopic dermatitis at sinonasal disease loci, and inflammatory bowel diseases and other immune-mediated disorders at pharyngeal disease loci. Upper respiratory diseases also genetically correlated with autoimmune diseases such as rheumatoid arthritis, autoimmune hypothyroidism, and psoriasis. Finally, we associated separate gene pathways in sinonasal and pharyngeal diseases that both contribute to type 2 immunological reaction. We show shared heritability among upper respiratory diseases that extends to several immune-mediated diseases with diverse mechanisms, such as type 2 high inflammation.
Collapse
Affiliation(s)
- Elmo C Saarentaus
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tuula Palotie
- Orthodontics, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Baranova A, Cao H, Teng S, Zhang F. A phenome-wide investigation of risk factors for severe COVID-19. J Med Virol 2023; 95:e28264. [PMID: 36316288 PMCID: PMC9874597 DOI: 10.1002/jmv.28264] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
With the continued spread of COVID-19 globally, it is crucial to identify the potential risk or protective factors associated with COVID-19. Here, we performed genetic correlation analysis and Mendelian randomization analysis to examine genetic relationships between COVID-19 hospitalization and 405 health conditions and lifestyle factors in 456 422 participants from the UK Biobank. The genetic correlation analysis revealed 134 positive and 65 negative correlations, including those with intakes of a variety of dietary components. The MR analysis indicates that a set of body fat-related traits, maternal smoking around birth, basal metabolic rate, lymphocyte count, peripheral enthesopathies and allied syndromes, blood clots in the leg, and arthropathy are causal risk factors for severe COVID-19, while higher education attainment, physical activity, asthma, and never smoking status protect against the illness. Our findings have implications for risk stratification in patients with COVID-19 and the prevention of its severe outcomes.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, Virginia, USA.,Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Salehzadeh F, Pourfarzi F, Molatefi R, Davarnia B, Shahbazfar E, Ahmadabadi F. Immunogenic Potential of the Mediterranean Fever Gene in Patients with Coronavirus Disease: A Cross-Sectional Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:43-48. [PMID: 36688196 PMCID: PMC9843464 DOI: 10.30476/ijms.2022.92802.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 01/24/2023]
Abstract
Background In December 2019, an outbreak of pneumonia caused by the novel coronavirus disease 2019 (COVID-19) became a pandemic and caused a global health crisis. This study evaluates the immunogenic potential of the Mediterranean fever (MEFV) gene in patients with COVID-19. Methods A cross-sectional study was conducted from March to April 2020 in various COVID-19 referral centers in Ardabil, Iran. Blood samples of 50 hospitalized patients with confirmed COVID-19 were evaluated for MEFV gene mutation using the amplification refractory mutation system polymerase chain reaction (ARMS-PCR) and Sanger sequencing. Statistical analysis was performed using SPSS software, version 22.0. Results Mutations of the MEFV gene were found in 6 (12%) of the patients. All mutations were heterozygous, and no homozygous or compound heterozygous forms were detected. The total mutant allele frequency was 6% and the carrier rate was 12%. The most common allele of the MEFV variant was E148Q, detected in 3 (6%) patients. No mutant variant of the MEFV gene was detected in deceased patients. None of the mutation carriers had familial Mediterranean fever (FMF) symptoms or a family history of FMF. Conclusion MEFV gene mutations may have immunogenic potential in patients with COVID-19. A preprint version of this article has already been published at https://www.researchsquare.com/article/rs-69373/latest.pdf.
Collapse
Affiliation(s)
- Farhad Salehzadeh
- Department of Pediatric, Bouali Children’s Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Department of Community Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasool Molatefi
- Department of Pediatric, Bouali Children’s Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Davarnia
- Department of Genetic, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ehsan Shahbazfar
- Department of Pediatric, Bouali Children’s Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Ahmadabadi
- Department of Pediatric, Bouali Children’s Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
31
|
Liberalesso VYSW, Azevedo MLV, Malaquias MAS, de Paula CBV, Nagashima S, de Souza DG, Neto PC, Gouveia KO, Biscaro LC, Giamberardino ALG, Gonçalves GT, Kondo TTS, Raboni SM, Weiss I, Machado-Souza C, de Noronha L. The role of IL17 and IL17RA polymorphisms in lethal pandemic acute viral pneumonia (Influenza A virus H1N1 subtype). SURGICAL AND EXPERIMENTAL PATHOLOGY 2023; 6:1. [PMCID: PMC9907201 DOI: 10.1186/s42047-023-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Background The cytokines play an essential role in acute inflammatory processes, and the IL-17 may be responsible for ambiguous aspects, and the correlation with genetic polymorphisms could improve the search for this critical biomarker. Thus, this study aimed to evaluate the IL-17A and IL-17RA tissue expression and the polymorphisms that codified these proteins in a population that died of pandemic Influenza A virus H1N1 subtype compared to a non-pandemic Influenza virus population. Methods Necropsy lung samples immunohistochemistry was performed to assess the presence of IL-17A and IL-17RA in the pulmonary tissue. Eight single nucleotide polymorphisms were genotyped using TaqMan® technology. Results The Influenza A H1N1 pandemic group had higher tissue expression of IL-17A, higher neutrophil recruitment and shorter survival time between admission and death. Three single nucleotide polymorphisms conferred risk for pandemic influenza A H1N1, the AA genotype of rs3819025 G/A, the CC genotype of rs2241044 A/C, and the TT genotype of rs 2,241,043 C/T. Conclusions One IL17A polymorphism (rs381905) and two IL17RA polymorphisms (rs2241044 and rs2241043) represented biomarkers of worse prognosis in the population infected with pandemic influenza A H1N1. The greater tissue expression of IL-17A shows a Th17 polarization and highlights the aggressiveness of the pandemic influenza virus with its duality in the protection and pathogenesis of the pulmonary infectious process.
Collapse
Affiliation(s)
| | - Marina Luise Viola Azevedo
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Mineia Alessandra Scaranello Malaquias
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Caroline Busatta Vaz de Paula
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Daiane Gavlik de Souza
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Plínio Cézar Neto
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Kauana Oliveira Gouveia
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Larissa Cristina Biscaro
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Ana Luisa Garcia Giamberardino
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Gabrielle Tasso Gonçalves
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Thais Teles Soares Kondo
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| | - Sonia Maria Raboni
- grid.411078.b0000 0004 0502 3690Laboratory of Virology, Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Isabelle Weiss
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Cleber Machado-Souza
- Postgraduation Program in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Lucia de Noronha
- grid.412522.20000 0000 8601 0541Postgraduation Program in Health Sciences of School of Medicine, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil
| |
Collapse
|
32
|
Sowpati DT, Tallapaka KB. Host genetics in disease susceptibility and protection. GENOMIC SURVEILLANCE AND PANDEMIC PREPAREDNESS 2023:27-48. [DOI: 10.1016/b978-0-443-18769-8.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Peng Y, Wu Q, Liu H, Zhang J, Han Q, Yin F, Wang L, Chen Q, Zhang F, Feng C, Zhu H. An immune-related gene signature predicts the 28-day mortality in patients with sepsis. Front Immunol 2023; 14:1152117. [PMID: 37033939 PMCID: PMC10076848 DOI: 10.3389/fimmu.2023.1152117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Sepsis is the leading cause of death in intensive care units and is characterized by multiple organ failure, including dysfunction of the immune system. In the present study, we performed an integrative analysis on publicly available datasets to identify immune-related genes (IRGs) that may play vital role in the pathological process of sepsis, based on which a prognostic IRG signature for 28-day mortality prediction in patients with sepsis was developed and validated. Methods Weighted gene co-expression network analysis (WGCNA), Cox regression analysis and least absolute shrinkage and selection operator (LASSO) estimation were used to identify functional IRGs and construct a model for predicting the 28-day mortality. The prognostic value of the model was validated in internal and external sepsis datasets. The correlations of the IRG signature with immunological characteristics, including immune cell infiltration and cytokine expression, were explored. We finally validated the expression of the three IRG signature genes in blood samples from 12 sepsis patients and 12 healthy controls using qPCR. Results We established a prognostic IRG signature comprising three gene members (LTB4R, HLA-DMB and IL4R). The IRG signature demonstrated good predictive performance for 28-day mortality on the internal and external validation datasets. The immune infiltration and cytokine analyses revealed that the IRG signature was significantly associated with multiple immune cells and cytokines. The molecular pathway analysis uncovered ontology enrichment in myeloid cell differentiation and iron ion homeostasis, providing clues regarding the underlying biological mechanisms of the IRG signature. Finally, qPCR detection verified the differential expression of the three IRG signature genes in blood samples from 12 sepsis patients and 12 healthy controls. Discussion This study presents an innovative IRG signature for 28-day mortality prediction in sepsis patients, which may be used to facilitate stratification of risky sepsis patients and evaluate patients' immune state.
Collapse
Affiliation(s)
- Yaojun Peng
- Department of Graduate Administration, Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qiyan Wu
- Institute of Oncology, The Fifth Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Graduate Administration, Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Neurosurgery, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, Hainan, China
| | - Jinying Zhang
- Department of Basic Medicine, Medical School of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qingru Han
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fan Yin
- Department of Oncology, The Second Medical Center & National Clinical Research Center of Geriatric Disease, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lingxiong Wang
- Institute of Oncology, The Fifth Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qi Chen
- Department of Traditional Chinese Medicine, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fei Zhang
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Fei Zhang, ; Cong Feng, ; Haiyan Zhu,
| | - Cong Feng
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Fei Zhang, ; Cong Feng, ; Haiyan Zhu,
| | - Haiyan Zhu
- Department of Emergency, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Fei Zhang, ; Cong Feng, ; Haiyan Zhu,
| |
Collapse
|
34
|
Krishnamoorthy S, Li GH, Cheung C. Transcriptome-wide summary data-based Mendelian randomization analysis reveals 38 novel genes associated with severe COVID-19. J Med Virol 2022; 95:e28162. [PMID: 36127160 PMCID: PMC9538104 DOI: 10.1002/jmv.28162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Severe COVID-19 has a poor prognosis, while the genetic mechanism underlying severe COVID-19 remains largely unknown. We aimed to identify genes that are potentially causally associated with severe COVID-19. We conducted a summary data-based Mendelian randomization (SMR) analysis using expression quantitative trait loci (eQTL) data from 49 different tissues as the exposure and three COVID-19-phenotypes (very severe respiratory confirmed COVID-19 [severe COVID-19], hospitalized COVID-19, and SARS-CoV-2 infection) as the outcomes. SMR using multiple SNPs was used as a sensitivity analysis to reduce false positive rate. Multiple testing was corrected using the false discovery rate (FDR) q-value. We identified 309 significant gene-trait associations (FDR q value < 0.05) across 46 tissues for severe COVID-19, which mapped to 64 genes, of which 38 are novel. The top five most associated protein-coding genes were Interferon Alpha and Beta Receptor Subunit 2 (IFNAR2), 2'-5'-Oligoadenylate Synthetase 3 (OAS3), mucin 1 (MUC1), Interleukin 10 Receptor Subunit Beta (IL10RB), and Napsin A Aspartic Peptidase (NAPSA). The potential causal genes were enriched in biological processes related to type I interferons, interferon-gamma inducible protein 10 production, and chemokine (C-X-C motif) ligand 2 production. In addition, we further identified 23 genes and 5 biological processes which are unique to hospitalized COVID-19, as well as 13 genes that are unique to SARS-CoV-2 infection. We identified several genes that are potentially causally associated with severe COVID-19. These findings improve our limited understanding of the mechanism of COVID-19 and shed light on the development of therapeutic agents for treating severe COVID-19.
Collapse
Affiliation(s)
- Suhas Krishnamoorthy
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Gloria H.‐Y. Li
- Department of Health Technology and Informatics, Faculty of Health and Social SciencesThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Ching‐Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong,Laboratory of Data Discovery for Health (D24H)Pak Shek KokHong Kong
| |
Collapse
|
35
|
Brynge M, Sjöqvist H, Gardner RM, Lee BK, Dalman C, Karlsson H. Maternal infection during pregnancy and likelihood of autism and intellectual disability in children in Sweden: a negative control and sibling comparison cohort study. Lancet Psychiatry 2022; 9:782-791. [PMID: 36087610 DOI: 10.1016/s2215-0366(22)00264-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maternal infections during pregnancy are associated with intellectual disability and autism in exposed children. Whether these associations are causal, and therefore should be targets of preventive strategies, remains unknown. We aimed to investigate these associations, to determine whether there is a causal role of maternal infection during pregnancy for children's risk of autism and intellectual disability, by accounting for unmeasured familial factors. METHODS We used a register-based cohort study design, and included children living in Stockholm County, Sweden, who were born in 1987-2010. We excluded children not born in Sweden, adopted children, and children with unknown biological mothers or fathers. Maternal infections during pregnancy, defined by ICD-8, ICD-9, and ICD-10 codes, were identified in the National Patient Register and Medical Birth Register. Children were followed up from birth to an outcome or a censoring event (death, migration from Stockholm, age 18 years, or Dec 31, 2016, whichever occurred first). The primary outcomes were diagnosis of autism or diagnosis of intellectual disability. We did a survival analysis to examine the association between inpatient and outpatient specialised care for any infection during pregnancy and likelihood of autism or intellectual disability in the child. To address potential residual confounding, we also estimated the relationship between maternal infection in the year preceding pregnancy as a negative control exposure and conducted a matched sibling analysis of sibling pairs who were discordant for autism or intellectual disability. FINDINGS 647 947 children living in Stockholm County were identified and, after excluding 97 980 children, we included 549 967 in the study (267 995 [48·7%] were female and 281 972 [51·3%] were male; mean age at censoring 13·5 years [SD 5·0; range <1 to 18]; 142 597 [25·9%] had a mother who was not born in Sweden). 445 (1·3%) of 34 013 children exposed to maternal infection during pregnancy were diagnosed with intellectual disability and 1123 (3·3%) with autism. 5087 (1·0%) of 515 954 unexposed children were diagnosed with intellectual disability and 13 035 (2·5%) with autism. Maternal infection during pregnancy was associated with autism (hazard ratio [HR] 1·16, 95% CI 1·09-1·23) and intellectual disability (1·37, 1·23-1·51) in exposed children compared with unexposed children. Maternal infection in the year before pregnancy (negative control exposure) was also associated with autism (HR 1·25, 95% CI 1·14-1·36), but was not associated with intellectual disability (1·09, 0·94-1·27). In sibling comparisons, the associations with maternal infection during pregnancy were attenuated for autism (HR 0·94, 95% CI 0·82-1·08; n=21 864), but not to the same extent for intellectual disability (1·15, 0·95-1·40; n=9275). INTERPRETATION Although infections in pregnant women are associated with both autism and intellectual disability in their children, the association with autism does not appear to reflect a causal relationship, but is more likely to be explained by factors shared between family members such as genetic variation or aspects of the shared environment. Thus, infection prevention is not expected to reduce autism incidence. For intellectual disability, unmeasured familial factors might not fully explain the observed associations, and a causal role of maternal infections cannot be excluded. Causal effects of specific but rare infections or infections not requiring health care contact cannot be excluded in either autism or intellectual disability. FUNDING Swedish Research Council, Stanley Medical Research Institute, and Autism Speaks. TRANSLATION For the Swedish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Martin Brynge
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Hugo Sjöqvist
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Renee M Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Brian K Lee
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA, USA; A J Drexel Autism Institute, Philadelphia, PA, USA
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Alhajri N, Rustom M, Adegbile A, Ahmed W, Kilidar S, Afify N. Deciphering the Basis of Molecular Biology of Selected Cardiovascular Diseases: A View on Network Medicine. Int J Mol Sci 2022; 23:ijms231911421. [PMID: 36232723 PMCID: PMC9569471 DOI: 10.3390/ijms231911421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death across the world. For decades, researchers have been studying the causes of cardiovascular disease, yet many of them remain undiscovered or poorly understood. Network medicine is a recently expanding, integrative field that attempts to elucidate this issue by conceiving of disease as the result of disruptive links between multiple interconnected biological components. Still in its nascent stages, this revolutionary application of network science facilitated a number of important discoveries in complex disease mechanisms. As methodologies become more advanced, network medicine harbors the potential to expound on the molecular and genetic complexities of disease to differentiate how these intricacies govern disease manifestations, prognosis, and therapy. This is of paramount importance for confronting the incredible challenges of current and future cardiovascular disease research. In this review, we summarize the principal molecular and genetic mechanisms of common cardiac pathophysiologies as well as discuss the existing knowledge on therapeutic strategies to prevent, halt, or reverse these pathologies.
Collapse
Affiliation(s)
- Noora Alhajri
- Department of Internal Medicine, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi P.O. Box 112412, United Arab Emirates
- Correspondence:
| | - Mohammad Rustom
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Adedayo Adegbile
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Weshah Ahmed
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Salsabeel Kilidar
- Department of Emergency Medicine, Sheikh Shakhbout Medical City SSMC, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Nariman Afify
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
37
|
Mendelian Susceptibility to Mycobacterial Diseases (MSMD) in a 13-Year-Old Ethiopian Girl with Autosomal Dominant Interferon Gamma Receptor 1(IFN-γ R1) Defect: A Clinical Diagnostic and Treatment Challenge. Case Rep Infect Dis 2022; 2022:6534009. [PMID: 36193331 PMCID: PMC9525766 DOI: 10.1155/2022/6534009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Mendelian susceptibility to mycobacterial diseases (MSMD) is an inborn error of immunity categorized as defects in intrinsic and innate immunity. MSMD is characterized by vulnerability to less virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccine strains, as well as environmental mycobacteria (EM). The definitive diagnosis is made by genetic analysis. Treatments constitute antimycobacterial, interferon-gamma, surgery, and hematopoietic stem cell transplantation (HSCT), which is the only known curative treatment. The mortality rate ranges from 40% to 80% depending on the severity of the mutation. Case A 13-year-old female patient had multiple hospital visits since the age of 6 months. The most striking diagnosis was repeated mycobacterial infections. She had tuberculosis affecting lymph nodes, skin and soft tissue, bone and joints, the lungs, and epidural and paraspinal regions. She has taken all the childhood vaccines, including BCG. She has been treated four times with first-line and once with second-line antituberculosis drugs. Currently, she is on treatment for nontuberculous mycobacteria and is receiving interferon-gamma. Genetic studies showed autosomal dominant Mendelian susceptibility to mycobacterial disease due to IFNG-R1 defect. Conclusion To the authors' knowledge, this is the first case report of Mendelian susceptibility to mycobacterial diseases secondary to interferon gamma receptor 1(IFNG-R1) defect in Ethiopia. Although it has been immensely challenging, our multidisciplinary team has learned a lot from the clinical presentation, diagnosis, and management of this child.
Collapse
|
38
|
Badia R, Garcia-Vidal E, Ballana E. Viral-Host Dependency Factors as Therapeutic Targets to Overcome Antiviral Drug-Resistance: A Focus on Innate Immune Modulation. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.935933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The development of antiviral drugs, has provided enormous achievements in our recent history in the fight against viral infections. To date, most of the approved antiviral drugs target virus-encoded proteins to achieve direct antiviral activity. Nonetheless, the inherent idiosyncrasy of viral mutations during their replication cycle, enable many viruses to adapt to the new barriers, becoming resistant to therapies, therefore, representing an ever-present menace and prompting the scientific community towards the development of novel therapeutic strategies. Taking advantage of the increasing knowledge of virus-host cell interactions, the targeting of cellular factors or pathways essential for virus survival turns into an alternative strategy to intervene in almost every step of viral replication cycle. Since host factors are evolutionary conserved, viral evasion to host-directed therapies (HDT) would impose a higher genetic barrier to the emergence of resistant strains. Thus, targeting host factors has long been considered an alternative strategy to overcome viral resistance. Nevertheless, targeting host factors or pathways potentially hints undesired off targets effects, and therefore, a critical risk-benefit evaluation is required. The present review discusses the current state-of-the-art on the identification of viral host dependency factors (HDF) and the workflow required for the development of HDT as antivirals. Then, we focus on the feasibility of using a specific class of host factors, those involved in innate immune modulation, as broad-spectrum antiviral therapeutic strategies. Finally, a brief summary of major roadblocks derived from targeting host cellular proteins and putative future strategies to overcome its major limitations is proposed.
Collapse
|
39
|
Werner MCF, Wirgenes KV, Shadrin AA, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Limited association between infections, autoimmune disease and genetic risk and immune activation in severe mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110511. [PMID: 35063598 DOI: 10.1016/j.pnpbp.2022.110511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Low-grade inflammation may be part of the underlying mechanism of schizophrenia and bipolar disorder. We investigated if genetic susceptibility, infections or autoimmunity could explain the immune activation. METHODS Seven immune markers were selected based on indicated associations to severe mental disorders (IL-1Ra, sIL-2R, IL-18, sgp130, sTNFR-1, APRIL, ICAM-1) and measured in plasma of patients with schizophrenia (SCZ, N = 732) and bipolar spectrum disorders (BD, N = 460) and healthy controls (HC, N = 938). Information on rate of infections and autoimmune diseases were obtained from Norwegian national health registries for a twelve-year period. Polygenic risk scores (PRS) of SCZ and BD were calculated from genome-wide association studies. Analysis of covariance were used to test effects of infection rate, autoimmune disease and PRS on differences in immune markers between patients and HC. RESULTS Infection rate differed between all groups (BD > HC > SCZ, all p < 0.001) whereas autoimmune disease was more frequent in BD compared to SCZ (p = 0.004) and HC (p = 0.003). sIL-2R was positively associated with autoimmune disease (p = 0.001) and negatively associated with PRS of SCZ (p = 0.006) across SCZ and HC; however, associations represented only small changes in the difference of sIL-2R levels between SCZ and HC. CONCLUSION There were few significant associations between rate of infections, autoimmune disease or PRS and altered immune markers in SCZ and BD, and the detected associations represented only small changes in the immune aberrations. The findings suggest that most of the low-grade inflammation in SCZ and BD is explained by other factors than the underlying PRS, autoimmunity and infection rates.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Baranova A, Cao H, Chen J, Zhang F. Causal Association and Shared Genetics Between Asthma and COVID-19. Front Immunol 2022; 13:705379. [PMID: 35386719 PMCID: PMC8977836 DOI: 10.3389/fimmu.2022.705379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Recent studies suggest that asthma may have a protective effect on COVID-19.We aimed to investigate the causality between asthma and two COVID-19 outcomes and explore the mechanisms underlining this connection. Methods Summary results of GWAS were used for the analyses, including asthma (88,486 cases and 447,859 controls), COVID-19 hospitalization (6,406 hospitalized COVID-19 cases and 902,088 controls), and COVID-19 infection (14,134 COVID-19 cases and 1,284,876 controls). The Mendelian randomization (MR) analysis was performed to evaluate the causal effects of asthma on the two COVID-19 outcomes. A cross-trait meta-analysis was conducted to analyze genetic variants within two loci shared by COVID-19 hospitalization and asthma. Results Asthma is associated with decreased risk both for COVID-19 hospitalization (odds ratio (OR): 0.70, 95% confidence interval (CI): 0.70-0.99) and for COVID-19 infection (OR: 0.83, 95%CI: 0.51-0.95). Asthma and COVID-19 share two genome-wide significant genes, including ABO at the 9q34.2 region and OAS2 at the 12q24.13 region. The meta-analysis revealed that ABO and ATXN2 contain variants with pleiotropic effects on both COVID-19 and asthma. Conclusion In conclusion, our results suggest that genetic liability to asthma is associated with decreased susceptibility to SARS-CoV-2 and to severe COVID-19 disease, which may be due to the protective effects of ongoing inflammation and, possibly, related compensatory responses against COVID-19 in its early stage.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Kirkpatrick BW, Cooke ME, Frie M, Sporer KRB, Lett B, Wells SJ, Coussens PM. Genome-wide association analysis for susceptibility to infection by Mycobacterium avium ssp. paratuberculosis in US Holsteins. J Dairy Sci 2022; 105:4301-4313. [PMID: 35307176 DOI: 10.3168/jds.2021-21276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Paratuberculosis, or Johne's disease, is a chronic, granulomatous, gastrointestinal tract disease of cattle and other ruminants caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Control of Johne's disease is based on programs of testing and culling animals positive for infection with MAP and concurrently modifying management to reduce the likelihood of infection. The current study was motivated by the hypothesis that genetic variation in host susceptibility to MAP infection can be dissected and quantifiable associations with genetic markers identified. Two separate GWAS analyses were conducted, the first using 897 genotyped Holstein artificial insemination sires with phenotypes derived from incidence of MAP infection among daughters based on milk ELISA testing records. The second GWAS analysis was a case-control design using US Holstein cows phenotyped for MAP infection by serum ELISA or fecal culture tests. Cases included cows positive for either serum ELISA, fecal culture, or both. Controls consisted of animals negative for all tests conducted. A total of 376 samples (70 cases and 306 controls) from a University of Minnesota Johne's management demonstration project and 184 samples (76 cases and 108 controls) from a Michigan State University study were used. Medium-density (sires) and high-density (cows) genotype data were imputed to full genome sequence for the analyses. Marker-trait associations were analyzed using the single-step (ss)GWAS procedure implemented in the BLUPF90 suite of programs. Evidence of significant genomic contributions for susceptibility to MAP infection were observed on multiple chromosomes. Results were combined across studies in a meta-analysis, and increased support for genomic regions on BTA7 and BTA21 were observed. Gene set enrichment analysis suggested pathways for antigen processing and presentation, antimicrobial peptides and natural killer cell-mediated cytotoxicity are relevant to variation in host susceptibility to MAP infection, among others. Genomic prediction was evaluated using a 5-fold cross-validation, and moderate correlations were observed between genomic breeding value predictions and daughter averages (∼0.43 to 0.53) for MAP infection in testing data sets. These results suggest that genomic selection against susceptibility to MAP infection is feasible in Holstein cattle.
Collapse
Affiliation(s)
- B W Kirkpatrick
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison 53706.
| | - M E Cooke
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison 53706
| | - M Frie
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing 48824
| | - K R B Sporer
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing 48824
| | - B Lett
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison 53706
| | - S J Wells
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul 55108
| | - P M Coussens
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing 48824
| |
Collapse
|
42
|
Li P, Zhang Y, Shen W, Shi S, Zhao Z. dbGSRV: A manually curated database of genetic susceptibility to respiratory virus. PLoS One 2022; 17:e0262373. [PMID: 35298480 PMCID: PMC8929643 DOI: 10.1371/journal.pone.0262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human genetics has been proposed to play an essential role in inter-individual differences in respiratory virus infection occurrence and outcomes. To systematically understand human genetic contributions to respiratory virus infection, we developed the database dbGSRV, a manually curated database that integrated the host genetic susceptibility and severity studies of respiratory viruses scattered over literatures in PubMed. At present, dbGSRV contains 1932 records of genetic association studies relating 1010 unique variants and seven respiratory viruses, manually curated from 168 published articles. Users can access the records by quick searching, batch searching, advanced searching and browsing. Reference information, infection status, population information, mutation information and disease relationship are provided for each record, as well as hyperlinks to public databases in convenient of users accessing more information. In addition, a visual overview of the topological network relationship between respiratory viruses and associated genes is provided. Therefore, dbGSRV offers a convenient resource for researchers to browse and retrieve genetic associations with respiratory viruses, which may inspire future studies and provide new insights in our understanding and treatment of respiratory virus infection. Database URL: http://www.ehbio.com/dbGSRV/front/
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
- * E-mail:
| |
Collapse
|
43
|
OUEMBA TASSÉ AJ, TSANOU B, LUBUMA J, WOUKENG JEANLOUIS, SIGNING FRANCIS. EBOLA VIRUS DISEASE DYNAMICS WITH SOME PREVENTIVE MEASURES: A CASE STUDY OF THE 2018–2020 KIVU OUTBREAK. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To fight against Ebola virus disease, several measures have been adopted. Among them, isolation, safe burial and vaccination occupy a prominent place. In this paper, we present a model which takes into account these three control strategies as well as the indirect transmission through a polluted environment. The asymptotic behavior of our model is achieved. Namely, we determine a threshold value [Formula: see text] of the control reproduction number [Formula: see text], below which the disease is eliminated in the long run. Whenever the value of [Formula: see text] ranges from [Formula: see text] and 1, we prove the existence of a backward bifurcation phenomenon, which corresponds to the case, where a locally asymptotically stable positive equilibrium co-exists with the disease-free equilibrium, which is also locally asymptotically stable. The existence of this bifurcation complicates the control of Ebola, since the requirement of [Formula: see text] below one, although necessary, is no longer sufficient for the elimination of Ebola, more efforts need to be deployed. When the value of [Formula: see text] is greater than one, we prove the existence of a unique endemic equilibrium, locally asymptotically stable. That is the disease may persist and become endemic. Numerically, we fit our model to the reported data for the 2018–2020 Kivu Ebola outbreak which occurred in Democratic Republic of Congo. Through the sensitivity analysis of the control reproduction number, we prove that the transmission rates of infected alive who are outside hospital are the most influential parameters. Numerically, we explore the usefulness of isolation, safe burial combined with vaccination and investigate the importance to combine the latter control strategies to the educational campaigns or/and case finding.
Collapse
Affiliation(s)
- A. J. OUEMBA TASSÉ
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - B. TSANOU
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
- Department of Science, Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- IRD Sorbonne University, UMMISCO, F-93143, Bondy, France
| | - J. LUBUMA
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
| | - JEAN LOUIS WOUKENG
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - FRANCIS SIGNING
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| |
Collapse
|
44
|
Rueda JC, Arcos-Burgos M, Santos AM, Martin-Arsanios D, Villota-Erazo C, Reyes V, Bernal-Macías S, Peláez-Ballestas I, Cardiel MH, Londono J. Human Genetic Host Factors and Its Role in the Pathogenesis of Chikungunya Virus Infection. Front Med (Lausanne) 2022; 9:654395. [PMID: 35252226 PMCID: PMC8888679 DOI: 10.3389/fmed.2022.654395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that causes acute arthropathy in humans. It is an arthropod-borne virus transmitted initially by the Aedes (Ae) aegypti and after 2006's epidemic in La Reunion by Ae albopictus due to an adaptive mutation of alanine for valine in the position 226 of the E1 glycoprotein genome (A226V). The first isolated cases of CHIKV were reported in Tanzania, however since its arrival to the Western Hemisphere in 2013, the infection became a pandemic. After a mosquito bite from an infected viremic patient the virus replicates eliciting viremia, fever, rash, myalgia, arthralgia, and arthritis. After the acute phase, CHIKV infection can progress to a chronic stage where rheumatic symptoms can last for several months to years. Although there is a great number of studies on the pathogenesis of CHIKV infection not only in humans but also in animal models, there still gaps in the proper understanding of the disease. To this date, it is unknown why a percentage of patients do not develop clinical symptoms despite having been exposed to the virus and developing an adaptive immune response. Also, controversy stills exist on the pathogenesis of chronic joint symptoms. It is known that host immune response to an infectious disease is reflected on patient's symptoms. At the same time, it is now well-established that host genetic variation is an important component of the varied onset, severity, and outcome of infectious disease. It is essential to understand the interaction between the aetiological agent and the host to know the chronic sequelae of the disease. The present review summarizes the current findings on human host genetics and its relationship with immune response in CHIKV infection.
Collapse
Affiliation(s)
- Juan C. Rueda
- Faculty of Medicine and Engineering, Universidad de La Sabana, Chía, Colombia
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Faculty of Medicine, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Ana M. Santos
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Daniel Martin-Arsanios
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Catalina Villota-Erazo
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Viviana Reyes
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Santiago Bernal-Macías
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | | | | | - John Londono
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
- *Correspondence: John Londono
| |
Collapse
|
45
|
The Myth of the Genetically Sick African. GENEALOGY 2022. [DOI: 10.3390/genealogy6010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Western medicine has an unfortunate history where it has been applied to address the health of African Americans. At its origins, it was aligned with the objectives of colonialism and chattel slavery. The degree to which medical “science” concerned itself with persons of African descent was to keep them alive for sale on the auction block, or to keep them healthy as they toiled to generate wealth for their European owners. Medicine in early America relied upon both dead and live African bodies to test its ideas to benefit Europeans. As medicine moved from quackery to a discipline based in science, its understanding of human biological variation was flawed. This was not a problem confined to medicine alone, but to the biological sciences in general. Biology had no solid theoretical basis until after 1859. As medicine further developed in the 20th century, it never doubted the difference between Europeans and Africans, and also asserted the innate inferiority of the latter. The genomic revolution in the latter 20th century produced tools that were deployed in a biomedical culture still mired in “racial” medicine. This lack of theoretical perspective still misdirects research associated with health disparity. In contrast to this is evolutionary medicine, which relies on a sound unification of evolutionary (ultimate) and physiological, cellular, and molecular (proximate) mechanisms. Utilizing the perspectives of evolutionary medicine is a prerequisite for an effective intervention in health disparity and finally dispelling the myth of the genetically sick African.
Collapse
|
46
|
Dutta D, Nagappa M, Sreekumaran Nair BV, Das SK, Wahatule R, Sinha S, Ravi V, Taly AB, Debnath M. Variations within Toll-like receptor (TLR) and TLR signalling pathway-related genes and their synergistic effects on the risk of Guillain-Barré Syndrome. J Peripher Nerv Syst 2022; 27:131-143. [PMID: 35138004 DOI: 10.1111/jns.12484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
Guillain-Barré Syndrome (GBS) is the commonest postinfectious polyradiculopathy. Though genetic background of the host seems to play an important role in the susceptibility to GBS, genes conferring major risk are not yet known. Dysregulation of Toll-like receptor (TLR) molecules exacerbates immune-inflammatory responses and the genetic variations within TLR pathway-related genes contribute to differential risk to infection. To delineate the impact of genetic variations within TLR2, TLR3, and TLR4 genes and TLR signaling pathway-related genes such as MyD88, TRIF, TRAF3, TRAF6, IRF3, NFκβ1, and IκBα on risk of developing GBS. Fourteen polymorphisms located within TLR2 (rs3804099; rs111200466), TLR3 (rs3775290; rs3775291), TLR4 (rs1927911, rs11536891), MyD88 (rs7744, rs4988453), TRIF (rs8120 TRAF3 (rs12147254), TRAF6 (rs4755453), IRF3 (rs2304204), NFκβ1 (rs28362491) and IκBα (rs696) genes were genotyped in 150 GBS patients and 150 healthy subjects either by PCR-RFLP or TaqMan Allelic Discrimination Assay. Genotypes of two polymorphic variants, Del/Del of rs111200466 Insertion and Deletion (INDEL) polymorphism of TLR2 gene and TT of rs3775290 single nucleotide polymorphism (SNP) of TLR3 gene had significantly higher frequencies among GBS patients, while the frequencies of TT genotype of rs3804099 of TLR2 gene and TT genotype of rs11536891 SNP of TLR4 gene were significantly higher in controls. Gene-gene interaction study by Multifactor Dimensionality Reduction (MDR) analysis also suggested a significant combined effect of TLR2, and NFκβ1 genes on the risk of GBS. The SNPs in the IκBα and IRF3 genes correlated with severity of GBS. The genes encoding TLRs and TLR signalling pathway-related molecules could serve as crucial genetic markers of susceptibility and severity of GBS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Debprasad Dutta
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Binu V Sreekumaran Nair
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumit Kumar Das
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rahul Wahatule
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
47
|
Rupp SK, Weimer K, Goebel-Stengel M, Enck P, Zipfel S, Stengel A. Genetics, shared environment, or individual experience? A cross-sectional study of the health status following SARS-CoV-2 infection in monozygotic and dizygotic twins. Front Psychiatry 2022; 13:1048676. [PMID: 36506417 PMCID: PMC9729738 DOI: 10.3389/fpsyt.2022.1048676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The clinical presentation of COVID-19 shows a remarkably broad spectrum of symptoms. Although studies with adult twins on SARS-CoV-2 infection are rare so far, the fact that there is a genetic component associated with the highly variable clinical outcomes of COVID-19 has already been highlighted in recent studies investigating potential candidate genes and polymorphisms. This is the first study of adult monozygotic (MZ) and dizygotic (DZ) twins concordantly affected by SARS-CoV-2 infection to estimate variances explained by genetic, shared, and individual environmental components of both somatic and psychological symptoms following SARS-CoV-2 infection. MATERIALS AND METHODS Data were collected from 10 adult twin pairs (5 MZ, 5 DZ) in which both twins already had a SARS-CoV-2 infection. A self-designed questionnaire, the Barthel Index, and the Multidimensional Fatigue Inventory (MFI) were used to assess various symptoms and health status following SARS-CoV-2 infection. Intra-class correlations were calculated, and the Falconer formula was used to quantify and differentiate the percentages of genetic influences as well as common environment and personal experiences on the examined traits. In addition, potential factors influencing symptom burden were examined and discussed. RESULTS We found high estimated heritability for mental impairment after SARS-CoV-2 infection (h 2 = 1.158) and for general fatigue (h 2 = 1.258). For symptom burden, reduced activity, and reduced motivation the individual environment appears to have the strongest influence. Other fatigue symptoms are influenced by genetic effects which range between 42.8 and 69.4%. CONCLUSION Both genetics and individual environment play a role in health status after SARS-CoV-2 infection-mental status could be influenced primarily by genetic make-up, whereas for symptom burden and certain fatigue dimensions, non-shared environment could play a more critical role. Possible individual factors influencing the course of the disease were identified. However, gene-environment interactions may still be a source of differences between twins, and the search for candidate genes remains crucial on the road to personalized medicine.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Miriam Goebel-Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.,Clinic for Internal Medicine, Helios Clinic Rottweil, Rottweil, Germany
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.,Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
48
|
Ali A, Dar MA, Malla BA, Maqbool I, Hamdani SS, Bashir SM, Ganie SA. Understanding the immunogenetics of human viral diseases. CLINICAL APPLICATIONS OF IMMUNOGENETICS 2022:131-163. [DOI: 10.1016/b978-0-323-90250-2.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
49
|
A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR. Sci Rep 2021; 11:23338. [PMID: 34857792 PMCID: PMC8639772 DOI: 10.1038/s41598-021-02535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022] Open
Abstract
Polymerase chain reaction (PCR) is a powerful tool for nucleic acid amplification and quantification. However, long thermocycling time is a major limitation of the commercial PCR devices in the point-of-care (POC). Herein, we have developed a rapid droplet-based photonic PCR (dpPCR) system, including a gold (Au) nanofilm-based microfluidic chip and a plasmonic photothermal cycler. The chip is fabricated by adding mineral oil to uncured polydimethylsiloxane (PDMS) to suppress droplet evaporation in PDMS microfluidic chips during PCR thermocycling. A PDMS to gold bonding technique using a double-sided adhesive tape is applied to enhance the bonding strength between the oil-added PDMS and the gold nanofilm. Moreover, the gold nanofilm excited by two light-emitting diodes (LEDs) from the top and bottom sides of the chip provides fast heating of the PCR sample to 230 °C within 100 s. Such a design enables 30 thermal cycles from 60 to 95 °C within 13 min with the average heating and cooling rates of 7.37 ± 0.27 °C/s and 1.91 ± 0.03 °C/s, respectively. The experimental results demonstrate successful PCR amplification of the alcohol oxidase (AOX) gene using the rapid plasmonic photothermal cycler and exhibit the great performance of the microfluidic chip for droplet-based PCR.
Collapse
|
50
|
Allenspach EJ, Shubin NJ, Cerosaletti K, Mikacenic C, Gorman JA, MacQuivey MA, Rosen AB, Timms AE, Wray-Dutra MN, Niino K, Liggitt D, Wurfel MM, Buckner JH, Piliponsky AM, Rawlings DJ. The Autoimmune Risk R262W Variant of the Adaptor SH2B3 Improves Survival in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2710-2719. [PMID: 34740959 PMCID: PMC8612972 DOI: 10.4049/jimmunol.2100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The single-nucleotide polymorphism (SNP) rs3184504 is broadly associated with increased risk for multiple autoimmune and cardiovascular diseases. Although the allele is uniquely enriched in European descent, the mechanism for the widespread selective sweep is not clear. In this study, we find the rs3184504*T allele had a strong association with reduced mortality in a human sepsis cohort. The rs3184504*T allele associates with a loss-of-function amino acid change (p.R262W) in the adaptor protein SH2B3, a likely causal variant. To better understand the role of SH2B3 in sepsis, we used mouse modeling and challenged SH2B3-deficient mice with a polymicrobial cecal-ligation puncture (CLP) procedure. We found SH2B3 deficiency improved survival and morbidity with less organ damage and earlier bacterial clearance compared with control mice. The peritoneal infiltrating cells exhibited augmented phagocytosis in Sh2b3 -/- mice with enriched recruitment of Ly6Chi inflammatory monocytes despite equivalent or reduced chemokine expression. Rapid cycling of monocytes and progenitors occurred uniquely in the Sh2b3 -/- mice following CLP, suggesting augmented myelopoiesis. To model the hypomorphic autoimmune risk allele, we created a novel knockin mouse harboring a similar point mutation in the murine pleckstrin homology domain of SH2B3. At baseline, phenotypic changes suggested a hypomorphic allele. In the CLP model, homozygous knockin mice displayed improved mortality and morbidity compared with wild-type or heterozygous mice. Collectively, these data suggest that hypomorphic SH2B3 improves the sepsis response and that balancing selection likely contributed to the relative frequency of the autoimmune risk variant.
Collapse
Affiliation(s)
- Eric J. Allenspach
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Carmen Mikacenic
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jacquelyn A Gorman
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Matthew A. MacQuivey
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Aaron B.I. Rosen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew E. Timms
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Michelle N. Wray-Dutra
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Mark M. Wurfel
- Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Departments of Pediatrics, Pathology and Global Health, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA,Correspondence should be addressed to D.J.R. () and E.J.A. ()
| |
Collapse
|