1
|
Jiao W, Cheng Y, Liu C, Feng J, Lin J, Shen Y. SGLT1 inhibition alleviates radiation-induced intestinal damage through promoting mitochondrial homeostasis. Free Radic Biol Med 2024; 224:831-845. [PMID: 39393555 DOI: 10.1016/j.freeradbiomed.2024.10.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Radiation-induced intestinal injury (RIII) constitutes a challenge in radiotherapy. Ionizing radiation (IR) induces DNA and mitochondrial damage by increasing reactive oxygen species (ROS). Sodium-glucose cotransporter 1 (SGLT1) is abundant in the gastrointestinal tract and the protective effects of inhibited SGLT1 in kidney and cardiovascular disease have been widely reported. However, the function of SGLT1 in RIII remains unclear. Herein, we reported that IR induced intestinal epithelial cell damage along with upregulation of SGLT1 in vivo and in vitro, which was alleviated by inhibition of SGLT1. Specifically, maintaining intestinal cell homeostasis was detected through cellular proliferation, apoptosis, and DNA damage assays, promoting epithelial regeneration and lifespan extension. Considering the importance of mitochondrial function in cell fate, we next confirmed that SGLT inhibition maintains mitochondrial homeostasis through enhanced mitophagy in intestinal epithelial cells. Finally, based on the bioinformatics analysis and cell validation, we demonstrated that inhibition of SGLT1 suppresses the PI3K/AKT/mTOR pathway to enhance mitophagy activation post-irradiation. In addition, we preliminarily demonstrate that SGLT inhibitors do not affect the radiosensitivity of tumors. Hence, our findings suggest that inhibition of SGLT is a promising therapeutic strategy to protect against RIII. To the best of our knowledge, this is the first report on the potential effect of SGLT1 inhibition in RIII.
Collapse
Affiliation(s)
- Wenlin Jiao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chang Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Jie Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Lyu Q, Xue W, Liu R, Ma Q, Kasaragod VB, Sun S, Li Q, Chen Y, Yuan M, Yang Y, Zhang B, Nie A, Jia S, Shen C, Gao P, Rong W, Yu C, Bi Y, Zhang C, Nan F, Ning G, Rao Z, Yang X, Wang J, Wang W. A brain-to-gut signal controls intestinal fat absorption. Nature 2024; 634:936-943. [PMID: 39261733 DOI: 10.1038/s41586-024-07929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Although fat is a crucial source of energy in diets, excessive intake leads to obesity. Fat absorption in the gut is prevailingly thought to occur organ-autonomously by diffusion1-3. Whether the process is controlled by the brain-to-gut axis, however, remains largely unknown. Here we demonstrate that the dorsal motor nucleus of vagus (DMV) plays a key part in this process. Inactivation of DMV neurons reduces intestinal fat absorption and consequently causes weight loss, whereas activation of the DMV increases fat absorption and weight gain. Notably, the inactivation of a subpopulation of DMV neurons that project to the jejunum shortens the length of microvilli, thereby reducing fat absorption. Moreover, we identify a natural compound, puerarin, that mimics the suppression of the DMV-vagus pathway, which in turn leads to reduced fat absorption. Photoaffinity chemical methods and cryogenic electron microscopy of the structure of a GABAA receptor-puerarin complex reveal that puerarin binds to an allosteric modulatory site. Notably, conditional Gabra1 knockout in the DMV largely abolishes puerarin-induced intestinal fat loss. In summary, we discover that suppression of the DMV-vagus-jejunum axis controls intestinal fat absorption by shortening the length of microvilli and illustrate the therapeutic potential of puerarin binding to GABRA1 in fat loss.
Collapse
Affiliation(s)
- Qianqian Lyu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Wenzhi Xue
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, SJTUSM, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Qinyun Ma
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | | | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Qian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yanru Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yuying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Aifang Nie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chongrong Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Po Gao
- Department of Anatomy and Physiology, SJTUSM, Shanghai, China
| | - Weifang Rong
- Department of Anatomy and Physiology, SJTUSM, Shanghai, China
| | - Chenxi Yu
- The Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Chunlei Zhang
- Institut Pasteur, Université de Paris, Neural Circuits for Spatial Navigation and Memory, Paris, France
| | - Fajun Nan
- The Chinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China.
| |
Collapse
|
3
|
Bohley M, Leroux J. Gastrointestinal Permeation Enhancers Beyond Sodium Caprate and SNAC - What is Coming Next? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400843. [PMID: 38884149 PMCID: PMC11434117 DOI: 10.1002/advs.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Indexed: 06/18/2024]
Abstract
Oral peptide delivery is trending again. Among the possible reasons are the recent approvals of two oral peptide formulations, which represent a huge stride in the field. For the first time, gastrointestinal (GI) permeation enhancers (PEs) are leveraged to overcome the main limitation of oral peptide delivery-low permeability through the intestinal epithelium. Despite some success, the application of current PEs, such as salcaprozate sodium (SNAC), sodium caprylate (C8), and sodium caprate (C10), is generally resulting in relatively low oral bioavailabilities (BAs)-even for carefully selected therapeutics. With several hundred peptide-based drugs presently in the pipeline, there is a huge unmet need for more effective PEs. Aiming to provide useful insights for the development of novel PEs, this review summarizes the biological hurdles to oral peptide delivery with special emphasis on the epithelial barrier. It describes the concepts and action modes of PEs and mentions possible new targets. It further states the benchmark that is set by current PEs, while critically assessing and evaluating emerging PEs regarding translatability, safety, and efficacy. Additionally, examples of novel PEs under preclinical and clinical evaluation and future directions are discussed.
Collapse
Affiliation(s)
- Marilena Bohley
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| |
Collapse
|
4
|
Ebrahim S, Ballesteros A, Zheng WS, Mukherjee S, Hu G, Weng WH, Montgomery JS, Agyemang Y, Cui R, Sun W, Krystofiak E, Foster MP, Sotomayor M, Kachar B. Transmembrane channel-like 4 and 5 proteins at microvillar tips are potential ion channels and lipid scramblases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609173. [PMID: 39229161 PMCID: PMC11370596 DOI: 10.1101/2024.08.22.609173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Microvilli-membrane bound actin protrusions on the surface of epithelial cells-are sites of critical processes including absorption, secretion, and adhesion. Increasing evidence suggests microvilli are mechanosensitive, but underlying molecules and mechanisms remain unknown. Here, we localize transmembrane channel-like proteins 4 and 5 (TMC4 and 5) and calcium and integrin binding protein 3 (CIB3) to microvillar tips in intestinal epithelial cells, near glycocalyx insertion sites. We find that TMC5 colocalizes with CIB3 in cultured cells and that a TMC5 fragment forms a complex with CIB3 in vitro. Homology and AlphaFold2 models reveal a putative ion permeation pathway in TMC4 and 5, and molecular dynamics simulations predict both proteins can conduct ions and perform lipid scrambling. These findings raise the possibility that TMC4 and 5 interact with CIB3 at microvillar tips to form a mechanosensitive complex, akin to TMC1 and 2, and CIB2 and 3, within the mechanotransduction channel complex at the tips of inner ear stereocilia.
Collapse
Affiliation(s)
- Seham Ebrahim
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Angela Ballesteros
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - W Sharon Zheng
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Shounak Mukherjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Gaizun Hu
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yaw Agyemang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Willy Sun
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Yazdi SAM, Farmani E, Shahvaisi S, Javadi AE, Nazar E. Prediction of villin expression and tumor behavior in colorectal cancer. Cancer Treat Res Commun 2024; 40:100825. [PMID: 38852262 DOI: 10.1016/j.ctarc.2024.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Colorectal cancer is one of the most common cancers and the leading cause of cancer-related deaths worldwide. The incidence is gradually increasing, and the mortality and recurrence rates of the disease remain high. METHODS This study was conducted as a cross-sectional study using tissue samples of 106 patients who underwent surgery at Sina Hospital from 2021 to 2022. After histopathological examination and identification of the pathological features of the tumor, the samples were subjected to immunohistochemical staining using a monoclonal antibody against villin. RESULTS In this study, we observed a significant association between villin expression and tumor depth, as well as a correlation between villin expression and tumor location (colon or rectum). However, no association was found between villin expression and the number of affected lymph nodes and age, sex, tumor grade, and size. Furthermore, there was no significant association between villin expression and tumor vascular or neural invasion. CONCLUSION The extent of local invasion and metastasis are important factors in disease progression and can lead to treatment failure. Therefore, new biomarkers are needed to identify patients at risk of local and distant metastases and to enable appropriate treatment of patients.
Collapse
Affiliation(s)
- Seyed Amir Miratashi Yazdi
- Department of General Surgery, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Farmani
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shahvaisi
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Eftekhar Javadi
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Nazar
- Department of Pathology, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Felipe-López A, Hansmeier N, Hensel M. Destruction of the brush border by Salmonella enterica sv. Typhimurium subverts resorption by polarized epithelial cells. Front Microbiol 2024; 15:1329798. [PMID: 38894970 PMCID: PMC11183102 DOI: 10.3389/fmicb.2024.1329798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is an invasive, facultative intracellular gastrointestinal pathogen that destroys the brush border of polarized epithelial cells (PEC). The brush border is critical for the functions of PEC because it resorbs nutrients from the intestinal lumen and builds a physical barrier to infecting pathogens. The manipuation of PEC during infection by Salmonella was investigated by live-cell imaging and ultrastructural analysed of the brush border. We demonstrate that the destruction of the brush border by Salmonella significantly reduces the resorption surface of PEC along with the abrogation of endocytosis at the apical side of PEC. Both these changes in the physiology of PEC were associated with the translocation of type III secretion system effector protein SopE. Additionally, the F-actin polymerization rate at the apical side of PEC was highly altered by SopE, indicating that reduced endocytosis observed in infected PEC is related to the manipulation of F-actin polymerization mediated by SopE and, to a lesser extent, by effectors SopE2 or SipA. We further observed that in the absence of SopE, Salmonella effaced microvilli and induced reticular F-actin by bacterial accumulation during prolonged infection periods. In contrast to strains translocating SopE, strains lacking SopE did not alter resorption by PEC. Finally, we observed that after engulfment of Salmonella, ezrin was lost from the apical side of PEC and found later in early endosomes containing Salmonella. Our observations suggest that the destruction of the brush border by Salmonella may contribute to the pathogenesis of diarrhea.
Collapse
Affiliation(s)
| | | | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs—Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
7
|
Morales EA, Fitz GN, Tyska MJ. Mitotic spindle positioning protein (MISP) preferentially binds to aged F-actin. J Biol Chem 2024; 300:107279. [PMID: 38588808 PMCID: PMC11101845 DOI: 10.1016/j.jbc.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Saito T, Kikuchi K, Ishikawa T. Glucose stockpile in the intestinal apical brush border in C. elegans. Biochem Biophys Res Commun 2024; 706:149762. [PMID: 38484572 DOI: 10.1016/j.bbrc.2024.149762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Revealing the mechanisms of glucose transport is crucial for studying pathological diseases caused by glucose toxicities. Numerous studies have revealed molecular functions involved in glucose transport in the nematode Caenorhabditis elegans, a commonly used model organism. However, the behavior of glucose in the intestinal lumen-to-cell remains elusive. To address that, we evaluated the diffusion coefficient of glucose in the intestinal apical brush border of C. elegans by using fluorescent glucose and fluorescence recovery after photobleaching. Fluorescent glucose taken in the intestine of worms accumulates in the apical brush border, and its diffusion coefficient of ∼10-8 cm2/s is two orders of magnitude slower than that in bulk. This result indicates that the intestinal brush border is a viscous layer. ERM-1 point mutations at the phosphorylation site, which shorten the microvilli length, did not significantly affect the diffusion coefficient of fluorescent glucose in the brush border. Our findings imply that glucose enrichment is dominantly maintained by the viscous layer composed of the glycocalyx and molecular complexes on the apical surface.
Collapse
Affiliation(s)
- Takumi Saito
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan; Department of Molecular Biophysics and Biochemistry, New Haven, Yale University, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - Kenji Kikuchi
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan.
| | - Takuji Ishikawa
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| |
Collapse
|
9
|
Cacho-Navas C, López-Pujante C, Reglero-Real N, Colás-Algora N, Cuervo A, Conesa JJ, Barroso S, de Rivas G, Ciordia S, Paradela A, D'Agostino G, Manzo C, Feito J, Andrés G, Molina-Jiménez F, Majano P, Correas I, Carazo JM, Nourshargh S, Huch M, Millán J. ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin. eLife 2024; 12:RP89261. [PMID: 38597186 PMCID: PMC11006420 DOI: 10.7554/elife.89261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.
Collapse
Affiliation(s)
| | | | - Natalia Reglero-Real
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | | | - Ana Cuervo
- Centro Nacional de Biotecnologia (CSIC)MadridSpain
| | | | - Susana Barroso
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Gema de Rivas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | | | | | - Carlo Manzo
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic – Universitat Central de Catalunya (UVic-UCC)VicSpain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de SalamancaSalamancaSpain
| | - Germán Andrés
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Francisca Molina-Jiménez
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa)MadridSpain
| | - Pedro Majano
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Department of Cellular Biology, Universidad Complutense de MadridMadridSpain
| | - Isabel Correas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jaime Millán
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| |
Collapse
|
10
|
Li M. Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology. Microsc Res Tech 2024; 87:631-659. [PMID: 38053519 DOI: 10.1002/jemt.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Single-cell analysis is an emerging and promising frontier in the field of life sciences, which is expected to facilitate the exploration of fundamental laws of physiological and pathological processes. Single-cell analysis allows experimental access to cell-to-cell heterogeneity to reveal the distinctive behaviors of individual cells, offering novel opportunities to dissect the complexity of severe human diseases such as cancers. Among the single-cell analysis tools, atomic force microscopy (AFM) is a powerful and versatile one which is able to nondestructively image the fine topographies and quantitatively measure multiple mechanical properties of single living cancer cells in their native states under aqueous conditions with unprecedented spatiotemporal resolution. Over the past few decades, AFM has been widely utilized to detect the structural and mechanical behaviors of individual cancer cells during the process of tumor formation, invasion, and metastasis, yielding numerous unique insights into tumor pathogenesis from the biomechanical perspective and contributing much to the field of cancer mechanobiology. Here, the achievements of AFM-based analysis of single cancer cells to advance physical oncology are comprehensively summarized, and challenges and future perspectives are also discussed. RESEARCH HIGHLIGHTS: Achievements of AFM in characterizing the structural and mechanical behaviors of single cancer cells are summarized, and future directions are discussed. AFM is not only capable of visualizing cellular fine structures, but can also measure multiple cellular mechanical properties as well as cell-generated mechanical forces. There is still plenty of room for harnessing AFM-based single-cell analysis to advance physical oncology.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Salahuddin M, Hiramatsu K, Al-Amin M, Imai Y, Kita K. Low dietary carbohydrate induces structural alterations in enterocytes of the chicken ileum. Anim Sci J 2024; 95:e13919. [PMID: 38287469 DOI: 10.1111/asj.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
We investigated the role of dietary carbohydrates in the maintenance of the enterocyte microvillar structure in the chicken ileum. Male chickens were divided into the control and three experimental groups, and the experimental groups were fed diets containing 50%, 25%, and 0% carbohydrates of the control diet. The structural alterations in enterocytes were examined using transmission electron microscopy and immunofluorescent techniques for β-actin and villin. Glucagon-like peptide (GLP)-2 and proglucagon mRNA were detected by immunohistochemistry and in situ hybridization, respectively. Fragmentation and wide gap spaces were frequently observed in the microvilli of the 25% and 0% groups. The length, width, and density of microvilli were also decreased in the experimental groups. The experimental groups had shorter terminal web extensions, and there were substantial changes in the mitochondrial density between the control and experimental groups. Intensities of β-actin and villin immunofluorescence observed on the apical surface of enterocytes were lower in the 0% group. The frequency of GLP-2-immunoreactive and proglucagon mRNA-expressing cells decreased with declining dietary carbohydrate levels. This study revealed that dietary carbohydrates contribute to the structural maintenance of enterocyte microvilli in the chicken ileum. The data from immunohistochemistry and in situ hybridization assays suggest the participation of GLP-2 in this maintenance system.
Collapse
Affiliation(s)
- Md Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Md Al-Amin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Yuriko Imai
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Kazumi Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
12
|
Šešelja K, Bazina I, Vrecl M, Farger J, Schicht M, Paulsen F, Baus Lončar M, Pirman T. Tff3 Deficiency Differentially Affects the Morphology of Male and Female Intestines in a Long-Term High-Fat-Diet-Fed Mouse Model. Int J Mol Sci 2023; 24:16342. [PMID: 38003531 PMCID: PMC10671422 DOI: 10.3390/ijms242216342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Trefoil factor family protein 3 (Tff3) protects the gastrointestinal mucosa and has a complex mode of action in different tissues. Here, we aimed to determine the effect of Tff3 deficiency on intestinal tissues in a long-term high-fat-diet (HFD)-fed model. A novel congenic strain without additional metabolically relevant mutations (Tff3-/-/C57Bl6NCrl strain, male and female) was used. Wild type (Wt) and Tff3-deficient mice of both sexes were fed a HFD for 36 weeks. Long-term feeding of a HFD induces different effects on the intestinal structure of Tff3-deficient male and female mice. For the first time, we found sex-specific differences in duodenal morphology. HFD feeding reduced microvilli height in Tff3-deficient females compared to that in Wt females, suggesting a possible effect on microvillar actin filament dynamics. These changes could not be attributed to genes involved in ER and oxidative stress, apoptosis, or inflammation. Tff3-deficient males exhibited a reduced cecal crypt depth compared to that of Wt males, but this was not the case in females. Microbiome-related short-chain fatty acid content was not affected by Tff3 deficiency in HFD-fed male or female mice. Sex-related differences due to Tff3 deficiency imply the need to consider both sexes in future studies on the role of Tff in intestinal function.
Collapse
Affiliation(s)
- Kate Šešelja
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Iva Bazina
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Mirela Baus Lončar
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. Dev Cell 2023; 58:2048-2062.e7. [PMID: 37832537 PMCID: PMC10615885 DOI: 10.1016/j.devcel.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jennifer B Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37235, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Chvalova V, Venkadasubramanian V, Klimova Z, Vojtova J, Benada O, Vanatko O, Vomastek T, Grousl T. Characterization of RACK1-depleted mammalian cells by a palette of microscopy approaches reveals defects in cell cycle progression and polarity establishment. Exp Cell Res 2023:113695. [PMID: 37393981 DOI: 10.1016/j.yexcr.2023.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is an evolutionarily conserved scaffold protein involved in the regulation of numerous cellular processes. Here, we used CRISPR/Cas9 and siRNA to reduce the expression of RACK1 in Madin-Darby Canine Kidney (MDCK) epithelial cells and Rat2 fibroblasts, respectively. RACK1-depleted cells were examined using coherence-controlled holographic microscopy, immunofluorescence, and electron microscopy. RACK1 depletion resulted in decreased cell proliferation, increased cell area and perimeter, and in the appearance of large binucleated cells suggesting a defect in the cell cycle progression. Our results show that the depletion of RACK1 has a pleiotropic effect on both epithelial and mesenchymal cell lines and support its essential role in mammalian cells.
Collapse
Affiliation(s)
- Vera Chvalova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Vignesh Venkadasubramanian
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jana Vojtova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 00, Prague, Czech Republic; Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
15
|
Morales EA, Tyska MJ. Mitotic spindle positioning protein (MISP) is an actin bundler that senses ADP-actin and binds near the pointed ends of filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539649. [PMID: 37205433 PMCID: PMC10187293 DOI: 10.1101/2023.05.05.539649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. Using in vitro TIRF microscopy assays, we found that MISP exhibits a clear binding preference for filaments enriched in ADP-actin monomers. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
|
16
|
Li P, Ren Z, Zhou J, Zhao A, Wang S, Xun Y, Jiang H, Wang P, Yuan Q, Zhang Y. Effect of Lacticaseibacillus paracasei N1115 on Immunomodulatory and Gut Microbial Composition in Young Children: A Randomized, Placebo-Controlled Study. Nutrients 2023; 15:nu15081970. [PMID: 37111189 PMCID: PMC10145370 DOI: 10.3390/nu15081970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Lactobacillus paracasei N1115 (Lp N1115) was isolated from fermented milk products. The administration of Lp N1115 is safe and well tolerated in Chinese children, but its effectiveness among young Chinese children is still unclear. To investigate the efficacy of Lp N1115 as a probiotic to enhance gut development in Chinese infants and toddlers born by cesarean section, 109 healthy and cesarean-delivered infants aged 6-24 months were recruited for a 12-week randomized, placebo-controlled trial, with 101 finally completing the study. Saliva and stool samples were collected and detected at weeks 0, 4, 8, and 12 of the intervention. Statistical analyses were performed by using a per-protocol (PP) approach. After 12 weeks of intervention, the fecal pH in the control group increased (p = 0.003), while the fecal pH in the experimental group did not change. Salivary cortisol decreased from baseline in the experimental group (p = 0.023), while the control group showed little change. In addition, Lp N1115 increased the fecal sIgA content of infants aged 6-12 months (p = 0.044) but had no obvious effect on fecal calprotectin and saliva sIgA. At week 4, the increase in Lactobacillus relative to baseline was higher in the experimental group than in the control group (p = 0.019). Further analysis showed a trend toward a higher detection rate of Lactobacillus in the experimental group than in the control group (p = 0.039). In conclusion, Lp N1115 was able to enhance the content of Lactobacillus and maintain fecal pH levels. Its beneficial effects on gut development were more obvious in 6-12-month-old infants.
Collapse
Affiliation(s)
- Pin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Zhongxia Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junxiu Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Shijie Wang
- Shijiazhuang Junlebao Dairy Co., Ltd., Shijiazhuang 050221, China
- The Joint Laboratory of Human Milk Research & Life Science by the Health Science Center of Peking University and the Junlebao Dairy Group, Beijing 100191, China
| | - Yiping Xun
- Shijiazhuang Junlebao Dairy Co., Ltd., Shijiazhuang 050221, China
- The Joint Laboratory of Human Milk Research & Life Science by the Health Science Center of Peking University and the Junlebao Dairy Group, Beijing 100191, China
| | - Hua Jiang
- School of Nursing, Peking University, Beijing 100091, China
| | - Peiyu Wang
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Qingbin Yuan
- Shijiazhuang Junlebao Dairy Co., Ltd., Shijiazhuang 050221, China
- The Joint Laboratory of Human Milk Research & Life Science by the Health Science Center of Peking University and the Junlebao Dairy Group, Beijing 100191, China
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- The Joint Laboratory of Human Milk Research & Life Science by the Health Science Center of Peking University and the Junlebao Dairy Group, Beijing 100191, China
| |
Collapse
|
17
|
Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol 2023:S1084-9521(23)00071-X. [PMID: 36948998 DOI: 10.1016/j.semcdb.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.
Collapse
Affiliation(s)
- Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
18
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531705. [PMID: 36945471 PMCID: PMC10028856 DOI: 10.1101/2023.03.08.531705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Differentiated transporting epithelial cells present an extensive apical array of microvilli - a "brush border" - where neighboring microvilli are linked together by intermicrovillar adhesion complexes (IMACs) composed of protocadherins CDHR2 and CDHR5. Although loss-of-function studies provide strong evidence that IMAC function is needed to build a mature brush border, how the IMAC contributes to the stabilization and accumulation of nascent microvilli remains unclear. We found that, early in differentiation, the apical surface exhibits a marginal accumulation of microvilli, characterized by higher packing density relative to medial regions of the surface. While medial microvilli are highly dynamic and sample multiple orientations over time, marginal protrusions exhibit constrained motion and maintain a vertical orientation. Unexpectedly, we found that marginal microvilli span the junctional space and contact protrusions on neighboring cells, mediated by complexes of CDHR2/CDHR5. FRAP analysis indicated that these transjunctional IMACs are highly stable relative to adhesion complexes between medial microvilli, which explains the restricted motion of protrusions in the marginal zone. Finally, long-term live imaging revealed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions of the cell. Collectively, our findings suggest that nascent microvilli are stabilized by a capture mechanism that is localized to cell margins and enabled by the transjunctional formation of IMACs. These results inform our understanding of how apical specializations are assembled in diverse epithelial systems.
Collapse
|
19
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
20
|
Mamone G, Picariello G. Optimized extraction and large-scale proteomics of pig jejunum brush border membranes for use in in vitro digestion models. Food Res Int 2023; 164:112326. [PMID: 36737918 DOI: 10.1016/j.foodres.2022.112326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/16/2022]
Abstract
Despite the physiological importance of the hydrolases from the intestinal brush border membrane (BBM), a step simulating the intestinal digestion has not been included yet in the harmonized protocols of in vitro digestion, due to commercial unavailability of these enzymes and lack of consensus for the conditions of use. The proper utilize of BBM requires a detailed investigation of their enzymatic composition. BBM vesicles were purified from specimens of pig jejunum optimizing previously described methods and assayed for aminopeptidase N and dipeptidyl peptidase IV activity. Large-scale proteomics was carried out with a bottom-up shotgun approach, also performing a rough quantification with the iBAQ (intensity Based Absolute Quantification). Overall, 1428 proteins were identified and functionally classified by gene ontology enrichment analysis. The predominant enzyme fraction (220 gene products) was represented by hydrolases, including peptidases, glycosidases, and lipases. Aminopeptidase N and sucrase-isomaltase represented 52.9 % and 50.2 % of the peptidase and glycosidase abundance, respectively. In addition to expected transporters and cytoskeletal actin-binding proteins, purified BBM vesicles also contains a complex array of protease inhibitors, here described for the first time, that may modulate the activity of hydrolases. Considering the similarity with the human counterpart, intestinal porcine BBM are suited for simulating the human small intestinal digestion.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 - Avellino, Italy.
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 - Avellino, Italy.
| |
Collapse
|
21
|
Morales EA, Gaeta I, Tyska MJ. Building the brush border, one microvillus at a time. Curr Opin Cell Biol 2023; 80:102153. [PMID: 36827850 PMCID: PMC10033394 DOI: 10.1016/j.ceb.2023.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Microvilli are actin bundle-supported surface protrusions assembled by diverse cell types to mediate biochemical and physical interactions with the external environment. Found on the surface of some of the earliest animal cells, primordial microvilli likely contributed to bacterial entrapment and feeding. Although millions of years of evolution have repurposed these protrusions to fulfill diverse roles such as detection of mechanical or visual stimuli in inner ear hair cells or retinal pigmented epithelial cells, respectively, solute uptake remains a key essential function linked to these structures. In this mini review, we offer a brief overview of the composition and structure of epithelial microvilli, highlight recent discoveries on the growth of these protrusions early in differentiation, and point to fundamental questions surrounding microvilli biogenesis that remain open for future studies.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Isabella Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
Nguyen TX, Agazzi A, McGill S, Weidt S, Han QH, Gelemanović A, McLaughlin M, Savoini G, Eckersall PD, Burchmore R. Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed Part II: Ileum proteomes. J Proteomics 2023; 270:104739. [PMID: 36174954 DOI: 10.1016/j.jprot.2022.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023]
Abstract
This study evaluates how long-term dietary low ω6:ω3 ratio in sows and offspring's seaweed (SW) intake affects piglet intestinal function and growth through modifying ileum proteome. Sows were assigned to either control diet (CR, ω6:ω3 ratio = 13:1) or treatment diet (LR, ω6:ω3 = 4:1) during gestation and lactation (n = 8 each). The male weaned offspring were received a basal diet with or without SW powder supplementation (4 g/kg) for 21 days, denoted as SW and CT groups, respectively. In total, four groups of weaned piglets were formed following maternal and offspring's diets combination, represented by CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet ileum tissue was collected on day 22 post-weaning and analysed using TMT-based quantitative proteomics. The differentially abundant proteins (n = 300) showed the influence of maternal LR diet on protein synthesis, cell proliferation, and cell cycle regulation. In contrast, the SW diet lowered the inflammation severity and promoted ileal tissue development in CRSW piglets but reduced the fat absorption capacity in LRSW piglets. These results uncovered the mechanism behind the anti-inflammation and intestinal-boosting effects of maternal LR diet in piglets supplemented with SW.
Collapse
Affiliation(s)
- Thi Xuan Nguyen
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy; University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Alessandro Agazzi
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Suzanne McGill
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Stefan Weidt
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Quang Hanh Han
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000 Split, Croatia
| | | | - Giovanni Savoini
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | | | | |
Collapse
|
23
|
Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023; 186:112-130.e20. [PMID: 36580912 PMCID: PMC9715480 DOI: 10.1016/j.cell.2022.11.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei He
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Miguel G Knight
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Rachel E Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Carlos Milla
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Brunet T, Booth DS. Cell polarity in the protist-to-animal transition. Curr Top Dev Biol 2023; 154:1-36. [PMID: 37100515 DOI: 10.1016/bs.ctdb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
25
|
Wang M, Bi C, Li H, Lu L, Gao T, Huang P, Liu C, Wang B. The emerging double-edged sword role of Sirtuins in the gastric inflammation-carcinoma sequence revealed by bulk and single-cell transcriptomes. Front Oncol 2022; 12:1004726. [PMID: 36324577 PMCID: PMC9619065 DOI: 10.3389/fonc.2022.1004726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Histone modification and the inflammation-carcinoma sequence (ICS) have been acknowledgedly implicated in gastric carcinogenesis. However, the extremum expression of some histone modification genes (HMGs) in intestinal metaplasia (IM) rather than GC obscures the roles of HMGs in ICS. In this study, we assumed an explanation that the roles of HMGs in ICS were stage specific. Bulk RNA-seq on endoscopy biopsy samples from a total of 50 patients was accompanied by reanalysis of a set of published single-cell transcriptomes, which cross-sectionally profiled the transcriptomic features of chronic superficial gastritis (SG), atrophy gastritis (AG), IM, and early gastric cancer (GC). Differential analysis observed significantly peaked expression of SIRT6 and SIRT7 at IM. Weighted correlation network analysis on bulk transcriptome recognized significant correlations between SIRT1/6 and IM. The single-cell atlas identified one subgroup of B cells expressing high level of TFF1 (TFF1hi naive B cell) that theoretically played important roles in defending microbial infection, while SIRT6 displayed a positive correlation with TFF1low naive B cells. Moreover, gene set enrichment analysis at different lesions (SG-AG, AG-IM, and IM-GC) highlighted that gene sets contributing to IM, e.g., Brush Border, were largely enriched from co-expressing genes of Sirtuins (SIRTs) in AG-IM. Surveys of the genes negatively correlated with SIRT6 in public databases considered SIRT6 as tumor suppressors, which was confirmed by the cell proliferation and migration assays after transient transfection of SIRT6 overexpression vector into AGS cells. All the above observations were then confirmed by serial section-based immunohistochemistry against Ki-67, MUC2, MUC5AC, p53, and SIRT6 on the endoscopic submucosal dissection tissue. By contrast, the expression of the other HMGs varied even opposite within same family. Taken together, this study preliminarily demonstrated the two-edged sword role of SIRTs in ICS and, by extension, showed that the roles of HMGs in ICS were probably stage specific. Our study may provide new insights into and attract attention on gastric prevention and therapy targeting HMGs.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Chenxiao Bi
- Department of Immunology, Binzhou Medical University, Yantai, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Hong Li
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Lizhen Lu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Tao Gao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Panpan Huang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
- *Correspondence: Chengxia Liu, ; Bin Wang,
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
- *Correspondence: Chengxia Liu, ; Bin Wang,
| |
Collapse
|
26
|
Lundquist P, Khodus G, Niu Z, Thwala LN, McCartney F, Simoff I, Andersson E, Beloqui A, Mabondzo A, Robla S, Webb DL, Hellström PM, Keita ÅV, Sima E, Csaba N, Sundbom M, Preat V, Brayden DJ, Alonso MJ, Artursson P. Barriers to the Intestinal Absorption of Four Insulin-Loaded Arginine-Rich Nanoparticles in Human and Rat. ACS NANO 2022; 16:14210-14229. [PMID: 35998570 PMCID: PMC9527806 DOI: 10.1021/acsnano.2c04330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peptide drugs and biologics provide opportunities for treatments of many diseases. However, due to their poor stability and permeability in the gastrointestinal tract, the oral bioavailability of peptide drugs is negligible. Nanoparticle formulations have been proposed to circumvent these hurdles, but systemic exposure of orally administered peptide drugs has remained elusive. In this study, we investigated the absorption mechanisms of four insulin-loaded arginine-rich nanoparticles displaying differing composition and surface characteristics, developed within the pan-European consortium TRANS-INT. The transport mechanisms and major barriers to nanoparticle permeability were investigated in freshly isolated human jejunal tissue. Cytokine release profiles and standard toxicity markers indicated that the nanoparticles were nontoxic. Three out of four nanoparticles displayed pronounced binding to the mucus layer and did not reach the epithelium. One nanoparticle composed of a mucus inert shell and cell-penetrating octarginine (ENCP), showed significant uptake by the intestinal epithelium corresponding to 28 ± 9% of the administered nanoparticle dose, as determined by super-resolution microscopy. Only a small fraction of nanoparticles taken up by epithelia went on to be transcytosed via a dynamin-dependent process. In situ studies in intact rat jejunal loops confirmed the results from human tissue regarding mucus binding, epithelial uptake, and negligible insulin bioavailability. In conclusion, while none of the four arginine-rich nanoparticles supported systemic insulin delivery, ENCP displayed a consistently high uptake along the intestinal villi. It is proposed that ENCP should be further investigated for local delivery of therapeutics to the intestinal mucosa.
Collapse
Affiliation(s)
- Patrik Lundquist
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| | - Georgiy Khodus
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| | - Zhigao Niu
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Lungile Nomcebo Thwala
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
- Université
catholique de Louvain, UCLouvain, Louvain Drug Research Institute,
Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium
| | - Fiona McCartney
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield D04 V1W8, Ireland
| | - Ivailo Simoff
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| | - Ellen Andersson
- Department
of Surgery in Norrköping, Linköping
University, SE-581 83 Norrköping, Sweden
- Department
of Biomedical and Clinical Sciences, Linköping
University, SE-581 83 Linköping, Sweden
| | - Ana Beloqui
- Université
catholique de Louvain, UCLouvain, Louvain Drug Research Institute,
Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium
| | - Aloise Mabondzo
- CEA,
Institute of Biology and Technology of Saclay, Department of Pharmacology
and Immunoanalysis, Gif sur Yvette FR 91191, France
| | - Sandra Robla
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Dominic-Luc Webb
- Department
of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Per M. Hellström
- Department
of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Åsa V Keita
- Department
of Biomedical and Clinical Sciences, Linköping
University, SE-581 83 Linköping, Sweden
| | - Eduardo Sima
- Department
of Surgical Sciences−Upper Abdominal Surgery, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Noemi Csaba
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Magnus Sundbom
- Department
of Surgical Sciences−Upper Abdominal Surgery, Uppsala University, SE-751
85 Uppsala, Sweden
| | - Veronique Preat
- Université
catholique de Louvain, UCLouvain, Louvain Drug Research Institute,
Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium
| | - David J. Brayden
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield D04 V1W8, Ireland
| | - Maria Jose Alonso
- Department
of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain
| | - Per Artursson
- Department
of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden
| |
Collapse
|
27
|
Wang H, Chen H, Lin Y, Wang G, Luo Y, Li X, Wang M, Huai M, Li L, Barri A. Butyrate Glycerides Protect against Intestinal Inflammation and Barrier Dysfunction in Mice. Nutrients 2022; 14:3991. [PMID: 36235644 PMCID: PMC9570839 DOI: 10.3390/nu14193991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigates the attenuating effects of butyrate glycerides (BG) on intestinal inflammatory responses and barrier dysfunction induced by LPS stimulation. An initial dose-response test was carried out to identify the optimal dose of BG for further testing. The mice were given intragastric administration of BG at different doses followed by lipopolysaccharide (LPS) intraperitoneal injection. The small intestinal morphology and cytokine mRNA expression were measured. With 1.5 g/kg BW BG administration, it was possible to alleviate the injury of duodenal morphology, attenuate ileum villus height reduction and promote IL-10 mRNA expression. Therefore, the optimal dosage of 1.5 g/kg BW BG was selected for the main experiment. The ultrastructure image of jejunum and ileum epithelial cells, mRNA expression, the level of cytokine and immunofluorescence in the ileum were analyzed. The results showed that BG maintain the ileac brush border, tight junction structures and protein expression. BG attenuated the increased inflammatory cytokines, TLR4 and JNK mRNA expression. Taken together, 1.5 g/kg BW BG administration maintained intestinal barrier function and reduced intestinal and body inflammation responses induced by LPS in mice. The mechanism by which BG alleviated intestinal inflammatory response and maintained intestinal barrier function may be related to the JNK signaling pathway.
Collapse
Affiliation(s)
- Haidong Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haohan Chen
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueying Lin
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Geng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Lily Li
- BASF SEA Pte Ltd., Singapore 038987, Singapore
| | | |
Collapse
|
28
|
Hartmann C, Thüring EM, Greune L, Michels BE, Pajonczyk D, Leußink S, Brinkmann F, Glaesner-Ebnet M, Wardelmann E, Zobel T, Schmidt MA, Janssen KP, Gerke V, Ebnet K. Intestinal brush border formation requires a TMIGD1-based intermicrovillar adhesion complex. Sci Signal 2022; 15:eabm2449. [PMID: 36099341 DOI: 10.1126/scisignal.abm2449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Intestinal epithelial cells absorb nutrients through the brush border, composed of dense arrays of highly ordered microvilli at their apical membranes. A protocadherin-based intermicrovillar adhesion complex localized at microvilli tips mediates microvilli packing and organization. Here, we identified a second adhesion complex localized at the proximal base region of microvilli. This complex contained the immunoglobulin superfamily member TMIGD1, which directly interacted with the microvillar scaffolding proteins EBP50 and E3KARP. Complex formation with EBP50 required the activation of EBP50 by the actin-binding protein ezrin and was enhanced by the dephosphorylation of Ser162 in the PDZ2 domain of EBP50 by the phosphatase PP1α. Binding of the EBP50-ezrin complex to TMIGD1 enhanced the dynamic turnover of EBP50 at microvilli. Enterocyte-specific inactivation of Tmigd1 in mice resulted in microvillar blebbing, loss of intermicrovillar adhesion, and perturbed brush border formation. Thus, we identified a second adhesion complex in microvilli and propose a mechanism that promotes microvillar formation and dynamics.
Collapse
Affiliation(s)
- Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Denise Pajonczyk
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Sophia Leußink
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Mark Glaesner-Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, D-48149 Münster, Germany
| | - Thomas Zobel
- Imaging Network Microscopy, University of Münster, D-48149 Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, ZMBE, University of Münster, D-48149 Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany.,Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, D-48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany.,Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, D-48419 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
29
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
30
|
Dum D, Lennartz M, Menz A, Kluth M, Hube-Magg C, Weidemann S, Fraune C, Luebke AM, Hornsteiner L, Bernreuther C, Simon R, Clauditz TS, Sauter G, Uhlig R, Hinsch A, Kind S, Jacobsen F, Möller K, Wilczak W, Steurer S, Minner S, Burandt E, Marx AH, Krech T, Lebok P. Villin expression in human tumours: a tissue microarray study on 14,398 tumours. Expert Rev Mol Diagn 2022; 22:665-675. [PMID: 35866621 DOI: 10.1080/14737159.2022.2104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Villin is a protein of the brush border of epithelial cells which is used as an immunohistochemical marker for colorectal and gastrointestinal neoplasms. However, other tumor entities can also express villin. METHODS To comprehensively determine villin expression, tissue microarrays containing 14,398 samples from 118 different tumor types as well as 608 samples of 76 different normal tissues were analyzed by immunohistochemistry. RESULTS Villin was found in 54 of 118 tumor categories, including 36 tumor categories with strong staining. Villin expression was frequent in colorectal, upper gastrointestinal tract, pancreatobiliary, and renal tumors as well as in mucinous ovarian cancers, yolk sac tumors and in neuroendocrine neoplasms. Reduced villin expression was linked to advanced pT stage, lymph vessel invasion and microsatellite instability (p≤0.0006) in colorectal adenocarcinoma. In summary, our data demonstrate that villin expression is most common in gastrointestinal, pancreatobiliary, and neuroendocrine neoplasms, yolk sac tumors and mucinous ovarian cancers. CONCLUSION Our data support a high utility of villin immunohistochemistry for the identification of tumors with gastrointestinal, pancreatobiliary, and yolk sac tumor origin. However, considering that at least a weak villin positivity in some tumor cells occurred in 54 different tumor categories, villin immunohistochemistry should be applied as a part of a marker panel rather than as a stand-alone marker.
Collapse
Affiliation(s)
- David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Hornsteiner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| |
Collapse
|
31
|
Abstract
We study microvilli of Caenorhabditis elegans larvae and mouse intestinal tissues by combining high-pressure freezing, cryo-focused ion-beam milling, cryo-electron tomography, and subtomogram averaging. We find that many radial nanometer bristles, referred to as nanobristles, project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long. We show that nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from their tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity. Microvilli are actin-bundle-supported membrane protrusions essential for absorption, secretion, and sensation. Microvilli defects cause gastrointestinal disorders; however, mechanisms controlling microvilli formation and organization remain unresolved. Here, we study microvilli by vitrifying the Caenorhabditis elegans larvae and mouse intestinal tissues with high-pressure freezing, thinning them with cryo-focused ion-beam milling, followed by cryo-electron tomography and subtomogram averaging. We find that many radial nanometer bristles referred to as nanobristles project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long and 4.5 nm wide. Nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity.
Collapse
|
32
|
Morales EA, Arnaiz C, Krystofiak ES, Zanic M, Tyska MJ. Mitotic Spindle Positioning (MISP) is an actin bundler that selectively stabilizes the rootlets of epithelial microvilli. Cell Rep 2022; 39:110692. [PMID: 35443169 PMCID: PMC9097542 DOI: 10.1016/j.celrep.2022.110692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022] Open
Abstract
Microvilli are conserved actin-based surface protrusions that have been repurposed throughout evolution to fulfill diverse cell functions. In the case of transporting epithelia, microvilli are supported by a core of actin filaments bundled in parallel by villin, fimbrin, and espin. Remarkably, microvilli biogenesis persists in mice lacking all three of these factors, suggesting the existence of unknown bundlers. We identified Mitotic Spindle Positioning (MISP) as an actin-binding factor that localizes specifically to the rootlet end of the microvillus. MISP promotes rootlet elongation in cells, and purified MISP exhibits potent filament bundling activity in vitro. MISP-bundled filaments also recruit fimbrin, which further elongates and stabilizes bundles. MISP confinement to the rootlet is enforced by ezrin, which prevents decoration of the membrane-wrapped distal end of the core bundle. These discoveries reveal how epithelial cells optimize apical membrane surface area and offer insight on the remarkable robustness of microvilli biogenesis. Morales et al. identify Mitotic Spindle Positioning (MISP) as an actin bundler in the rootlets of epithelial microvilli. MISP cooperates with other bundlers, and its rootlet-specific localization is enforced by membrane-actin linker ezrin. These findings illuminate mechanisms that drive the assembly and compartmentalization of actin bundle-supported protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Cayetana Arnaiz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan S Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN 37232, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To summarize knowledge on the gut function in relation to enteral nutrition. RECENT FINDINGS The gut is certainly suffering during critical illness but our understanding of the exact mechanisms involved is limited. Physicians at bedside are lacking tools to identify how well or bad the gut is doing and whether the gut is responding adequately to critical illness. Sensing nutrition as a signal is important for the gut and microbiome. Enteral nutrition has beneficial effects for the gut perfusion and function. However, early full enteral nutrition in patients with shock was associated with an increased number of rare but serious complications. SUMMARY Whenever synthesizing knowledge in physiology and available evidence in critically ill, we suggest that enteral nutrition has beneficial effects but may turn harmful if provided too aggressively. Contraindications to enteral nutrition are listed in recent guidelines. For patients with gastrointestinal dysfunction but without these contraindications, we suggest considering early enteral nutrition as a signal to the gut and to the body rather than an energy and protein provision. With this rationale, we think that low dose of enteral nutrition could and probably should be provided also when the gut does not feel very good. Understanding the feedback from the gut in response to enteral nutrition would be important, however, monitoring tools are currently limited to clinical assessment only.
Collapse
Affiliation(s)
- Annika Reintam Blaser
- Department of Anaesthesiology and Intensive Care, University of Tartu, Puusepa 8, Tartu, Estonia
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Michael Hiesmayr
- Division of Cardiac Thoracic and Vascular Anaesthesia and Intensive Care
- Center for Medical Statistics Informatics And Intelligent Systems, Medical University Vienna, Vienna, Austria
| |
Collapse
|
34
|
Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mège RM, Chen Y, Delacour D. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials 2022; 282:121380. [DOI: 10.1016/j.biomaterials.2022.121380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
|
35
|
Zhong C, Tong DQ, Zhang YR, Wang XQ, Yan HC, Tan HZ, Gao CQ. DL-methionine and DL-methionyl- DL-methionine increase intestinal development and activate Wnt/β-catenin signaling activity in domestic pigeons (Columba livia). Poult Sci 2022; 101:101644. [PMID: 34986451 PMCID: PMC8743218 DOI: 10.1016/j.psj.2021.101644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
This experiment was undertaken to investigate the effects of parental dietary DL-methionine (DL-Met) and DL-methionyl-DL-methionine (DL-Met-Met) supplementation on the intestinal development of young squabs. A total of 108 pairs of breeding pigeons and 432 one-day-old squabs were randomly divided into 3 groups: the control group (CON) was fed a basal diet (CP = 15%) and the experimental groups were fed a basal diet supplemented with 0.3% DL-Met or DL-Met-Met. Each pair of breeding pigeons nourished 4 young squabs, and 8 squabs from each treatment were randomly sampled at the end of the experiment. The results indicated that DL-Met and DL-Met-Met supplementation improved the intestinal morphology and structure in the squabs, as reflected by the increased relative intestinal weight of each small intestinal segment, villus height, and villus to crypt ratio. In addition, DL-Met and DL-Met-Met supplementation significantly increased the protein expression of cell proliferation markers (Ki67 and PCNA) and tight junction proteins (ZO-1 and Claudin-1) in the jejunum and strengthened the fluorescence signal intensity of Ki67, PCNA and Villin. Moreover, the expression of Wnt/β-catenin signaling pathway-related proteins (Frizzled 7 [FZD7], p-GSK-3β, Active β-catenin, β-catenin, TCF4, c-Myc, and Cyclin D1), and intestinal peptide transporter 1 (PepT1) in the jejunum was considerably higher in the treatment group than in the CON group (P < 0.05), with the DL-Met-Met group having the highest expression. Consistently, the molecular docking results predicted the possibility that DL-Met or DL-Met-Met binds to the membrane receptor FZD7, which mediates Wnt/β-catenin signaling. Collectively, the improvement of the intestinal development in squabs after parental dietary 0.3% DL-Met and DL-Met-Met supplementation could be through activation of Wnt/β-catenin signaling pathway, and DL-Met-Met is superior to DL-Met. Our findings may provide basic data for further optimizing the feeding formula of breeding pigeons and improving the growth and development of squabs.
Collapse
Affiliation(s)
- Chen Zhong
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Di-Qing Tong
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Ya-Ru Zhang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Hui-Ze Tan
- Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
36
|
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S, Mego M. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci 2022; 23:ijms23010488. [PMID: 35008915 PMCID: PMC8745082 DOI: 10.3390/ijms23010488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Nikola Izoldova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Barbora Kasperova
- Department of Oncohematology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| |
Collapse
|
37
|
Kip AM, Valverde JM, Altelaar M, Heeren RMA, Hundscheid IHR, Dejong CHC, Olde Damink SWM, Balluff B, Lenaerts K. Combined Quantitative (Phospho)proteomics and Mass Spectrometry Imaging Reveal Temporal and Spatial Protein Changes in Human Intestinal Ischemia-Reperfusion. J Proteome Res 2021; 21:49-66. [PMID: 34874173 PMCID: PMC8750167 DOI: 10.1021/acs.jproteome.1c00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Intestinal ischemia–reperfusion
(IR) injury is a severe
clinical condition, and unraveling its pathophysiology is crucial
to improve therapeutic strategies and reduce the high morbidity and
mortality rates. Here, we studied the dynamic proteome and phosphoproteome
in the human intestine during ischemia and reperfusion, using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis to gain
quantitative information of thousands of proteins and phosphorylation
sites, as well as mass spectrometry imaging (MSI) to obtain spatial
information. We identified a significant decrease in abundance of
proteins related to intestinal absorption, microvillus, and cell junction,
whereas proteins involved in innate immunity, in particular the complement
cascade, and extracellular matrix organization increased in abundance
after IR. Differentially phosphorylated proteins were involved in
RNA splicing events and cytoskeletal and cell junction organization.
In addition, our analysis points to mitogen-activated protein kinase
(MAPK) and cyclin-dependent kinase (CDK) families to be active kinases
during IR. Finally, matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) MSI presented peptide alterations in abundance and distribution,
which resulted, in combination with Fourier-transform ion cyclotron
resonance (FTICR) MSI and LC-MS/MS, in the annotation of proteins
related to RNA splicing, the complement cascade, and extracellular
matrix organization. This study expanded our understanding of the
molecular changes that occur during IR in the human intestine and
highlights the value of the complementary use of different MS-based
methodologies.
Collapse
Affiliation(s)
- Anna M Kip
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Juan Manuel Valverde
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Inca H R Hundscheid
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Cornelis H C Dejong
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.,Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.,Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
38
|
Chen L, Luo S, Dupre A, Vasoya RP, Parthasarathy A, Aita R, Malhotra R, Hur J, Toke NH, Chiles E, Yang M, Cao W, Flores J, Ellison CE, Gao N, Sahota A, Su X, Bonder EM, Verzi MP. The nuclear receptor HNF4 drives a brush border gene program conserved across murine intestine, kidney, and embryonic yolk sac. Nat Commun 2021; 12:2886. [PMID: 34001900 PMCID: PMC8129143 DOI: 10.1038/s41467-021-22761-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The brush border is comprised of microvilli surface protrusions on the apical surface of epithelia. This specialized structure greatly increases absorptive surface area and plays crucial roles in human health. However, transcriptional regulatory networks controlling brush border genes are not fully understood. Here, we identify that hepatocyte nuclear factor 4 (HNF4) transcription factor is a conserved and important regulator of brush border gene program in multiple organs, such as intestine, kidney and yolk sac. Compromised brush border gene signatures and impaired transport were observed in these tissues upon HNF4 loss. By ChIP-seq, we find HNF4 binds and activates brush border genes in the intestine and kidney. H3K4me3 HiChIP-seq identifies that HNF4 loss results in impaired chromatin looping between enhancers and promoters at gene loci of brush border genes, and instead enhanced chromatin looping at gene loci of stress fiber genes in the intestine. This study provides comprehensive transcriptional regulatory mechanisms and a functional demonstration of a critical role for HNF4 in brush border gene regulation across multiple murine epithelial tissues.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Roshan P Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Raj Malhotra
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Joseph Hur
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Natalie H Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Min Yang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Amrik Sahota
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
39
|
Smoothelin-like 2 Inhibits Coronin-1B to Stabilize the Apical Actin Cortex during Epithelial Morphogenesis. Curr Biol 2021; 31:696-706.e9. [PMID: 33275893 DOI: 10.1016/j.cub.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.
Collapse
|
40
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
41
|
Quénéhervé L, Olivier R, Gora MJ, Bossard C, Mosnier JF, Benoit A la Guillaume E, Boccara C, Brochard C, Neunlist M, Coron E. Full-field optical coherence tomography: novel imaging technique for extemporaneous high-resolution analysis of mucosal architecture in human gut biopsies. Gut 2021; 70:6-8. [PMID: 32447309 DOI: 10.1136/gutjnl-2020-321228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Full-field optical coherence tomography (FFOCT) is an imaging technique of biological tissue based on tissue light reflectance analysis. We evaluated the feasibility of imaging fresh digestive mucosal biopsies after a quick mounting procedure (5 min) using two distinct modalities of FFOCT. In static FFOCT mode, we gained high-resolution images of general gut tissue-specific architecture, such as oesophageal papillae, gastric pits, duodenal villi and colonic crypts. In dynamic FFOCT mode, we imaged individual epithelial cells of the mucosal lining with a cellular or subcellular resolution and identified cellular components of the lamina propria. FFOCT represents a promising dye-free imaging tool for on-site analysis of gut tissue remodelling.
Collapse
Affiliation(s)
- Lucille Quénéhervé
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, Hôtel Dieu, CHU Nantes, Nantes, France
| | - Raphael Olivier
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Gastroenterology Department, CHU Poitiers, Poitiers, France
| | - Michalina J Gora
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France
| | - Céline Bossard
- Service d'Anatomie et Cytologie Pathologique, INSERM, CRCINA, Université de Nantes, CHU Nantes, F44000 Nantes, France
| | - Jean-François Mosnier
- Service d'Anatomie et Cytologie Pathologique, INSERM, CRCINA, Université de Nantes, CHU Nantes, F44000 Nantes, France
| | | | - Claude Boccara
- LLTech, LLTech SAS, Paris, France.,Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, Paris, France
| | - Charlène Brochard
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Service d'Explorations Fonctionnelles Digestives, CHU Rennes, Rennes, France
| | - Michel Neunlist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France .,Institut des Maladies de l'Appareil Digestif, IMAD, Hôtel Dieu, CHU Nantes, Nantes, France
| | - Emmanuel Coron
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Institut des Maladies de l'Appareil Digestif, IMAD, Hôtel Dieu, CHU Nantes, Nantes, France
| |
Collapse
|
42
|
Mucin-2 knockout is a model of intercellular junction defects, mitochondrial damage and ATP depletion in the intestinal epithelium. Sci Rep 2020; 10:21135. [PMID: 33273633 PMCID: PMC7713437 DOI: 10.1038/s41598-020-78141-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
The disruption of the protective intestinal barrier—the ‘leaky gut’—is a common complication of the inflammatory bowel disease. There is limited data on the mechanisms of the intestinal barrier disruption upon low-grade inflammation characteristic of patients with inflammatory bowel disease in clinical remission. Thus, animal models that recapitulate the complexity of chronic intestinal inflammation in vivo are of particular interest. In this study, we used Mucin-2 (Muc2) knockout mice predisposed to colitis to study intestinal barrier upon chronic inflammation. We used 4-kDa FITC-Dextran assay and transmission electron microscopy to demonstrate the increased intestinal permeability and morphological defects in intercellular junctions in Muc2 knockout mice. Confocal microscopy revealed the disruption of the apical F-actin cytoskeleton and delocalization of tight junction protein Claudin-3 from the membrane. We further demonstrate mitochondrial damage, impaired oxygen consumption and the reduction of the intestinal ATP content in Muc2 knockout mice. Finally, we show that chemically induced mitochondrial uncoupling in the wild type mice mimics the intestinal barrier disruption in vivo and causes partial loss of F-actin and membrane localization of Claudin-3. We propose that mitochondrial damage and metabolic shifts during chronic inflammation contribute to the leaky gut syndrome in Muc2 knockout animal model of colitis.
Collapse
|
43
|
Yang Z, Mattingly BC, Hall DH, Ackley BD, Buechner M. Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis. J Cell Biol 2020; 219:e202003152. [PMID: 32860501 PMCID: PMC7594493 DOI: 10.1083/jcb.202003152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Single-celled tubules represent a complicated structure that forms during development, requiring extension of a narrow cytoplasm surrounding a lumen exerting osmotic pressure that can burst the luminal membrane. Genetic studies on the excretory canal cell of Caenorhabditis elegans have revealed many proteins that regulate the cytoskeleton, vesicular transport, and physiology of the narrow canals. Here, we show that βH-spectrin regulates the placement of intermediate filament proteins forming a terminal web around the lumen, and that the terminal web in turn retains a highly conserved protein (EXC-9/CRIP1) that regulates apical endosomal trafficking. EXC-1/IRG, the binding partner of EXC-9, is also localized to the apical membrane and affects apical actin placement and RAB-8-mediated vesicular transport. The results suggest that an intermediate filament protein acts in a novel pathway to direct the traffic of vesicles to locations of lengthening apical surface during single-celled tubule development.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | | | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| |
Collapse
|
44
|
Kwon O, Han TS, Son MY. Intestinal Morphogenesis in Development, Regeneration, and Disease: The Potential Utility of Intestinal Organoids for Studying Compartmentalization of the Crypt-Villus Structure. Front Cell Dev Biol 2020; 8:593969. [PMID: 33195268 PMCID: PMC7644937 DOI: 10.3389/fcell.2020.593969] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
The morphology and structure of the intestinal epithelium are rearranged dynamically during development, tissue regeneration, and disease progression. The most important characteristic of intestinal epithelial morphogenesis is the repetitive compartmentalized structures of crypt-villus units, which are crucial for maintaining intestinal homeostasis and functions. Abnormal structures are known to be closely associated with disease development and progression. Therefore, understanding how intestinal crypt-villus structures are formed and grown is essential for elucidating the physiological and pathophysiological roles of the intestinal epithelium. However, a critical knowledge gap in understanding the compartmentalization of the crypt-villus axis remains when using animal models, due to obvious inter-species differences and difficulty in real-time monitoring. Recently, emerging technologies such as organoid culture, lineage tracing, and single cell sequencing have enabled the assessment of the intrinsic mechanisms of intestinal epithelial morphogenesis. In this review, we discuss the latest research on the regulatory factors and signaling pathways that play a central role in the formation, maintenance, and regeneration of crypt-villus structures in the intestinal epithelium. Furthermore, we discuss how these factors and pathways play a role in development, tissue regeneration, and disease. We further explore how the current technology of three-dimensional intestinal organoids has contributed to the understanding of crypt-villus compartmentalization, highlighting new findings related to the self-organizing-process-driven initiation and propagation of crypt-villus structures. We also discuss intestinal diseases featuring abnormalities of the crypt-villus structure to provide insights for the development of novel therapeutic strategies targeting intestinal morphogenesis and crypt-villus formation.
Collapse
Affiliation(s)
- Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
45
|
Weck ML, Crawley SW, Tyska MJ. A heterologous in-cell assay for investigating intermicrovillar adhesion complex interactions reveals a novel protrusion length-matching mechanism. J Biol Chem 2020; 295:16191-16206. [PMID: 33051206 DOI: 10.1074/jbc.ra120.015929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott W Crawley
- Department of Biology, University of Toledo, Toledo, Ohio, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
46
|
Danielsen EM. Intestinal permeation enhancers: Lessons learned from studies using an organ culture model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183474. [PMID: 32946886 DOI: 10.1016/j.bbamem.2020.183474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023]
Abstract
Permeation enhancers (PEs) are compounds aimed to increase intestinal uptake of oral drugs with poor bioavailability. This mini-review focuses on results recently obtained with PEs using an intestinal organ culture model. The model predicts which paracellular/transcellular pathways across the epithelium are susceptible to different classes of PEs (mainly surfactants and cell penetrating peptides). PEs: 1) generate a transmembrane transcellular pathway, 2) block apical endocytosis (first step in apical-to-basolateral transcytosis), and 3) perturb normal cell membrane integrity. The results argue that surfactants and cell penetrating peptides are not suitable for use in formulations aimed to exploit transcytosis in oral drug delivery.
Collapse
Affiliation(s)
- E Michael Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
47
|
Steinway SN, Saleh J, Koo BK, Delacour D, Kim DH. Human Microphysiological Models of Intestinal Tissue and Gut Microbiome. Front Bioeng Biotechnol 2020; 8:725. [PMID: 32850690 PMCID: PMC7411353 DOI: 10.3389/fbioe.2020.00725] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a complex system responsible for nutrient absorption, digestion, secretion, and elimination of waste products that also hosts immune surveillance, the intestinal microbiome, and interfaces with the nervous system. Traditional in vitro systems cannot harness the architectural and functional complexity of the GI tract. Recent advances in organoid engineering, microfluidic organs-on-a-chip technology, and microfabrication allows us to create better in vitro models of human organs/tissues. These micro-physiological systems could integrate the numerous cell types involved in GI development and physiology, including intestinal epithelium, endothelium (vascular), nerve cells, immune cells, and their interplay/cooperativity with the microbiome. In this review, we report recent progress in developing micro-physiological models of the GI systems. We also discuss how these models could be used to study normal intestinal physiology such as nutrient absorption, digestion, and secretion as well as GI infection, inflammation, cancer, and metabolism.
Collapse
Affiliation(s)
- Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jad Saleh
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Deok-Ho Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
48
|
Roodsant T, Navis M, Aknouch I, Renes IB, van Elburg RM, Pajkrt D, Wolthers KC, Schultsz C, van der Ark KCH, Sridhar A, Muncan V. A Human 2D Primary Organoid-Derived Epithelial Monolayer Model to Study Host-Pathogen Interaction in the Small Intestine. Front Cell Infect Microbiol 2020; 10:272. [PMID: 32656095 PMCID: PMC7326037 DOI: 10.3389/fcimb.2020.00272] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Gut organoids are stem cell derived 3D models of the intestinal epithelium that are useful for studying interactions between enteric pathogens and their host. While the organoid model has been used for both bacterial and viral infections, this is a closed system with the luminal side being inaccessible without microinjection or disruption of the organoid polarization. In order to overcome this and simplify their applicability for transepithelial studies, permeable membrane based monolayer approaches are needed. In this paper, we demonstrate a method for generating a monolayer model of the human fetal intestinal polarized epithelium that is fully characterized and validated. Proximal and distal small intestinal organoids were used to generate 2D monolayer cultures, which were characterized with respect to epithelial cell types, polarization, barrier function, and gene expression. In addition, viral replication and bacterial translocation after apical infection with enteric pathogens Enterovirus A71 and Listeria monocytogenes were evaluated, with subsequent monitoring of the pro-inflammatory host response. This human 2D fetal intestinal monolayer model will be a valuable tool to study host-pathogen interactions and potentially reduce the use of animals in research.
Collapse
Affiliation(s)
- Thomas Roodsant
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Marit Navis
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ikrame Aknouch
- Department of Medical Microbiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Viroclinics Xplore, Schaijk, Netherlands
| | - Ingrid B Renes
- Danone Nutricia Research, Utrecht, Netherlands.,Department of Pediatrics, Amsterdam University Medical Center (UMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam University Medical Center (UMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Amsterdam University Medical Center (UMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kees C H van der Ark
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- Department of Medical Microbiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
49
|
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 2020; 594:3652-3667. [PMID: 32415987 DOI: 10.1002/1873-3468.13816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Cilia and microvilli are membrane protrusions that extend from the surface of many different mammalian cell types. Motile cilia or flagella are only found on specialized cells, where they control cell movement or the generation of fluid flow, whereas immotile primary cilia protrude from the surface of almost every mammalian cell to detect and transduce extracellular signals. Despite these differences, all cilia consist of a microtubule core called the axoneme. Microvilli instead contain bundled linear actin filaments and are mainly localized on epithelial cells, where they modulate the absorption of nutrients. Cilia and microvilli constitute subcellular compartments with distinctive lipid and protein repertoires and specialized functions. Here, we summarize the role of sphingolipids in defining the identity and controlling the function of cilia and microvilli in mammalian cells.
Collapse
Affiliation(s)
- Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
50
|
Aguilar-Rojas A, Castellanos-Castro S, Matondo M, Gianetto QG, Varet H, Sismeiro O, Legendre R, Fernandes J, Hardy D, Coppée JY, Olivo-Marin JC, Guillen N. Insights into amebiasis using a human 3D-intestinal model. Cell Microbiol 2020; 22:e13203. [PMID: 32175652 DOI: 10.1111/cmi.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México, Mexico
| | - Silvia Castellanos-Castro
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y Humanidades, Ciudad de México, Mexico
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Julien Fernandes
- Institut Pasteur, UTechSPBI, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | | | - Nancy Guillen
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|