1
|
Shen Y, Jin H, Guo F, Zhang W, Fu H, Jin M, Chen G. Association of Magnesium, Iron, Copper, and Zinc Levels with the Prevalence of Behavior Problems in Children and Adolescents. Biol Trace Elem Res 2024; 202:5356-5365. [PMID: 38388752 DOI: 10.1007/s12011-024-04098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Magnesium (Mg), iron (Fe), copper (Cu), and zinc (Zn) are indispensable elements in children's growth and development. However, epidemiological evidence regarding essential elements and their mixed exposure to behavior problems remains in its infancy. The objective of the present study was to evaluate the association between essential elements and the manifestation of behavior problems, with an additional focus on the implications of their mixture. An electronic medical records review was performed among 4122 subjects aged 6-18 years who underwent examinations at Children's Hospital, Zhejiang University School of Medicine, between January 2019 and July 2022. The concentrations of essential elements were measured by atomic absorption spectrometry, and behavior problems were assessed by using the Conners' Parent Rating Scale (CPRS). A total of 895 (21.7%) children and adolescents were identified as having behavior problems. For single exposure, inversely linear dose-response relationships were identified between continuous Mg and Zn levels and the prevalence of behavior problems, and the prevalence ratios (PRs) in the categorical lowest tertile were 1.28 (95% confidence interval, CI: 1.07-1.54) for Mg and 1.31 (95% CI: 1.05-1.63) for Zn compared to the highest tertile. For mixture exposure, an inverse association between essential elements and behavior problems was also found, mainly contributed by Mg (posterior inclusion probability, PIP = 0.854). Whole blood levels of Mg and Zn were significantly inversely associated with behavior problems. The findings highlight the pivotal role of essential elements in behavior problems and emphasize the importance of maintaining adequate levels of essential elements during children's maturation.
Collapse
Affiliation(s)
- Ying Shen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Huyi Jin
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fanjia Guo
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Wanting Zhang
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314000, China
| | - Hao Fu
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingjuan Jin
- Department of Public Health, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Wang H, Zu P, Yin W, Zhang L, Ruan L, Chen X, Zhu P. Maternal insulinemic and inflammatory dietary patterns and risk of child neurodevelopmental delay. Eur J Nutr 2024; 64:25. [PMID: 39589432 DOI: 10.1007/s00394-024-03531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/22/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Our aim was to assess the risk of higher insulinemic, inflammatory, and hyperglycemia potential in the diet during pregnancy with child neurodevelopmental delay. METHODS We enrolled 7,438 pregnant women participating in a prospective cohort study. The food frequency questionnaire was used to evaluate the empirical dietary index for hyperinsulinemia (EDIH), empirical dietary inflammatory pattern (EDIP), glycemic index (GI), and glycemic load (GL) during mid-pregnancy. Child neurodevelopmental assessment was conducted at 6-36 months postpartum using the Denver Developmental Screening Test-II (DDST-II) scale, and the Gesell Developmental Diagnosis Scale (GDDS) was administered to assess children who did not meet the criteria for passing the DDST-II screening. RESULTS We documented 540 incident child neurodevelopmental delay cases over 7,438 pregnant women (median follow-up: 2 years). Pregnant women exhibiting the high levels of hyperinsulinemic or proinflammatory components, or GI encountered an elevated risk of child neurodevelopmental delay; HRs (95% CI) comparing highest to lowest dietary index quintiles were EDIH 1.48 (1.07,2.04; P trend = 0.017), EDIP 1.39 (1.05,1.84; P trend = 0.019) and GI 1.36 (1.02,1.81; P trend = 0.038). In sex-stratified analyses, these results remained significant only in boys (P trend = 0.018 for EDIH, P trend = 0.028 for EDIP, P trend = 0.029 for GI). The performance of combined model of EDIH and EDIP for boys is comparable to that of the combined model of EDIH, EDIP, and GI to assess the risk of neurodevelopmental delay (AUC [area under curve] 0.801 vs. AUC 0.830). Both values are higher than the AUC values achieved by models using either set of indicators individually. CONCLUSION Our findings suggest that maternal consumption of diets with high insulinemic, inflammatory, or glycemic index properties may be associated with neurodevelopmental delays in children, particularly in boys. Higher insulinemic and inflammatory potentials in maternal diet may forecast neurodevelopmental delay in boys.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Ping Zu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Wanjun Yin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China
| | - Liang Ruan
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Anhui Maternal and Child Health Hospital, 15 Yimin Street, Hefei, China.
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Shen Y, Zhang W, Jin H, Guo F, Jin M, Chen G. Association of whole blood essential metals with neurodevelopment among preschool children. Pediatr Res 2024:10.1038/s41390-024-03729-9. [PMID: 39550514 DOI: 10.1038/s41390-024-03729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Essential metals may play roles in neurodevelopment. The aim was to evaluate the associations of magnesium (Mg), iron (Fe), copper (Cu), and zinc (Zn) levels with neurodevelopment among preschool children. METHODS The medical records of eligible children enrolled between January 2019 and July 2022 were retrospectively reviewed for required information. The quantitative measurement of metals was conducted using atomic absorption spectroscopy, while screening of neurodevelopment was performed using the Ages and Stages Questionnaire. Modified Poisson regression and Bayesian kernel machine regression (BKMR) analyses were used to evaluate the prevalence ratio (PR) of their independent and joint associations. RESULTS 662 (14.8%) children were found to have possible neurodevelopmental delays. Modified Poisson regression showed that Mg, Cu, and Zn levels were independently and negatively associated with the risk of neurodevelopmental delay. The PRs (95% CIs) for per log2 increment of the above metals were 0.35 (0.19-0.62), 0.57 (0.42-0.77), and 0.63 (0.42-0.96). These negative associations were more pronounced in the gross motor and personal-social domains while considering the concrete five domains. BKMR showed a negative association of metal mixture with the risk of neurodevelopmental delay. CONCLUSION Mg, Cu, and Zn were inversely associated with neurodevelopmental delay. Sufficient essential metal levels are important for neurodevelopment. IMPACT Essential metals play a key role in neurodevelopment. The association of essential metal mixture with neurodevelopment is relatively scarce. Preschool children with possible neurodevelopmental delay are found to have lower Mg, Cu, and Zn levels than their counterparts. Single Mg, Cu, Zn levels, and elevated essential metal mixture are negatively associated with the risk of possible neurodevelopmental delay.
Collapse
Affiliation(s)
- Ying Shen
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wanting Zhang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Jiaxing Center for Disease Control and Prevention, Jia Xing, China
| | - Huyi Jin
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Fanjia Guo
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Mingjuan Jin
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guangdi Chen
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Luders E, Gaser C, Spencer D, Thankamony A, Hughes I, Srirangalingam U, Gleeson H, Hines M, Kurth F. Effects of Congenital Adrenal Hyperplasia (CAH) and Biological Sex on Brain Size. ANATOMIA (BASEL, SWITZERLAND) 2024; 3:155-162. [PMID: 39391581 PMCID: PMC11461354 DOI: 10.3390/anatomia3030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Congenital Adrenal Hyperplasia (CAH) has been reported to involve structural alterations in some brain regions. However, it remains to be established whether there is also an impact on the size of the brain as a whole. Here, we compiled the largest CAH sample to date (n = 53), matched pair-wise to a control group (n = 53) on sex, age, and verbal intelligence. Using T1-weighted brain scans, we calculated intracranial volume (ICV) as well as total brain volume (TBV), which are both common estimates for brain size. The statistical analysis was performed using a general linear model assessing the effects of CAH (CAH vs. controls), sex (women vs. men), and any CAH-by-sex interaction. The outcomes were comparable for ICV and TBV, i.e., there was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex, with larger ICVs and TBVs in men than in women. Our findings contribute to an understudied field of research exploring brain anatomy in CAH. In contrast to some existing studies suggesting a smaller brain size in CAH, we did not observe such an effect. In other words, ICV and TBV in women and men with CAH did not differ significantly from those in controls. Notwithstanding, we observed the well-known sex difference in brain size (12.69% for ICV and 12.50% for TBV), with larger volumes in men than in women, which is in agreement with the existing literature.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women’s and Children’s Health, Uppsala University, 75237 Uppsala, Sweden
- Swedish Collegium for Advanced Study (SCAS), 75238 Uppsala, Sweden
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07747 Jena, Germany
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Cambridge CB2 3RQ, UK
| | - Ajay Thankamony
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Weston Centre for Paediatric Endocrinology & Diabetes, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Umasuthan Srirangalingam
- Department of Endocrinology and Diabetes, University College Hospital London, London NW1 2BU, UK
| | | | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge CB2 3RQ, UK
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Department of Diagnostic and Interventional Radiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
5
|
Friedman A, Schildroth S, Fruh V, Krengel MH, Tripodis Y, Placidi D, White RF, Lucchini RG, Smith DR, Wright RO, Horton MK, Claus Henn B. Sex-specific associations of a ferroalloy metal mixture with motor function in Italian adolescents. Environ Epidemiol 2024; 8:e321. [PMID: 39022189 PMCID: PMC11254121 DOI: 10.1097/ee9.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Motor function is critical for children's health, yet remains an understudied neurodevelopmental domain. Exposure to metals has been linked with motor function, but no study has examined the joint effects of metal mixtures. Methods We evaluated cross-sectional associations between a metal mixture and motor function among 569 adolescents (10-14 years old) living near the ferroalloy industry. Concentrations of blood lead, hair manganese, hair copper, and hair chromium were quantified using inductively coupled plasma mass spectrometry. Neuropsychologists administered multiple fine motor function assessments: pursuit aiming, finger tapping, visual reaction time (VRT), and subtests from the Luria Nebraska battery. We estimated associations between motor function and the metal mixture using quantile-based g-computation and multivariable linear regression, adjusting for child age, sex, and socioeconomic status. We explored sex-specific associations in stratified models. Results Associations between the metal mixture and motor function were mostly null but were modified by sex. We observed a beneficial association among females: a quartile increase in all metals in the mixture was associated with a 2.6% faster average response time on the VRT (95% confidence interval [CI] = -4.7%, -0.5%), driven by Cu and Cr. In contrast, this association was adverse among males (ß = 1.5% slower response time [95% CI = -0.7%, 3.9%]), driven by Cu and Mn. Conclusions Results suggest that males may be more susceptible to the adverse effects of metal exposure on motor function during adolescence than females. Future studies, particularly prospective study designs, are warranted to further understand the associations of metal mixtures with motor function.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Maxine H. Krengel
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, Florida
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
6
|
Dhamala E, Bassett DS, Yeo T, Holmes AJ. Functional brain networks are associated with both sex and gender in children. SCIENCE ADVANCES 2024; 10:eadn4202. [PMID: 38996031 PMCID: PMC11244548 DOI: 10.1126/sciadv.adn4202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sex and gender are associated with human behavior throughout the life span and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are more distributed throughout the cortex. These results suggest that sex and gender are irreducible to one another not only in society but also in biology.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
| | - Dani S. Bassett
- University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Thomas Yeo
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Kimura KI, Kumano R, Yamamoto D. Activin is a neural inducer of a male-specific muscle in Drosophila. Sci Rep 2024; 14:3740. [PMID: 38355873 PMCID: PMC10866940 DOI: 10.1038/s41598-024-54295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Drosophila melanogaster has a pair of male-specific muscles called the muscle of Lawrence (MOL) in abdominal segment 5 (A5) of adult flies. The MOL is produced only when its innervating motoneuron expresses FruitlessM (FruM) neural masculinizing proteins. We show that MOL induction is hampered by: (1) silencing electrical activities in the motoneuron, (2) blocking vesicular release from the motoneuron, and (3) knocking down Activin ß (Actß) in the motoneuron or knocking down Actß signaling pathway components in the myoblasts. Our timelapse live imaging of the developing neuromuscular system reveals that, upon contact with the presumptive MOL, the motoneuronal axon retracts concomitant with the progression of MOL degeneration resulting from neural silencing. We conclude that MOL formation depends on the bidirectional trophic interactions between pre- and postsynaptic cells, with motoneuron-derived Actß playing an inducing role in MOL formation.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan.
| | - Rimi Kumano
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan
| | - Daisuke Yamamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| |
Collapse
|
9
|
Rock KD, Folts LM, Zierden HC, Marx-Rattner R, Leu NA, Nugent BM, Bale TL. Developmental transcriptomic patterns can be altered by transgenic overexpression of Uty. Sci Rep 2023; 13:21082. [PMID: 38030664 PMCID: PMC10687263 DOI: 10.1038/s41598-023-47977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
The genetic material encoded on X and Y chromosomes provides the foundation by which biological sex differences are established. Epigenetic regulators expressed on these sex chromosomes, including Kdm6a (Utx), Kdm5c, and Ddx3x have far-reaching impacts on transcriptional control of phenotypic sex differences. Although the functionality of UTY (Kdm6c, the Y-linked homologue of UTX), has been supported by more recent studies, its role in developmental sex differences is not understood. Here we test the hypothesis that UTY is an important transcriptional regulator during development that could contribute to sex-specific phenotypes and disease risks across the lifespan. We generated a random insertion Uty transgenic mouse (Uty-Tg) to overexpress Uty. By comparing transcriptomic profiles in developmental tissues, placenta and hypothalamus, we assessed potential UTY functional activity, comparing Uty-expressing female mice (XX + Uty) with wild-type male (XY) and female (XX) mice. To determine if Uty expression altered physiological or behavioral outcomes, adult mice were phenotypically examined. Uty expression masculinized female gene expression patterns in both the placenta and hypothalamus. Gene ontology (GO) and gene set enrichment analysis (GSEA) consistently identified pathways including immune and synaptic signaling as biological processes associated with UTY. Interestingly, adult females expressing Uty gained less weight and had a greater glucose tolerance compared to wild-type male and female mice when provided a high-fat diet. Utilizing a Uty-overexpressing transgenic mouse, our results provide novel evidence as to a functional transcriptional role for UTY in developing tissues, and a foundation to build on its prospective capacity to influence sex-specific developmental and health outcomes.
Collapse
Affiliation(s)
- Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Lillian M Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Biomedical Sciences Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hannah C Zierden
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Ruth Marx-Rattner
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bridget M Nugent
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Colorado School of Medicine, CU Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, CO, 80045, USA.
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Dhamala E, Bassett DS, Yeo BT, Homes AJ. Functional brain networks are associated with both sex and gender in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566592. [PMID: 38013996 PMCID: PMC10680589 DOI: 10.1101/2023.11.12.566592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sex and gender are associated with human behavior throughout the lifespan and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Unimodal networks are more strongly associated with sex while heteromodal networks are more strongly associated with gender. These results suggest sex and gender are irreducible to one another not only in society but also in biology.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Zucker Hillside Hospital, Glen Oaks, New York, USA
| | - Dani S. Bassett
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | | | - Avram J. Homes
- Rutgers University, Department of Psychiatry, Brain Health Institute, Piscataway, New Jersey, USA
| |
Collapse
|
11
|
Parsaei M, Sanjari Moghaddam H, Aarabi MH. Sex differences in brain structures throughout the lifetime. AGING BRAIN 2023; 4:100098. [PMID: 37809276 PMCID: PMC10550774 DOI: 10.1016/j.nbas.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Heitzmann LD, Challe M, Perez J, Castell L, Galibert E, Martin AO, Valjent E, Veyrunes F. Genotypic sex shapes maternal care in the African pygmy mouse, Mus minutoides. Proc Biol Sci 2023; 290:20231224. [PMID: 37670585 PMCID: PMC10510450 DOI: 10.1098/rspb.2023.1224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Sexually dimorphic behaviours, such as parental care, have long been thought to be mainly driven by gonadal hormones. In the past two decades, a few studies have challenged this view, highlighting the direct influence of the sex chromosome complement (XX versus XY or ZZ versus ZW). The African pygmy mouse, Mus minutoides, is a wild mouse species with naturally occurring XY sex reversal induced by a third, feminizing X* chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that sex reversal in X*Y females shapes a divergent maternal care strategy (maternal aggression, pup retrieval and nesting behaviours) from both XX and XX* females. Although neuroanatomical investigations were inconclusive, we show that the dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is worth investigating further as it may support differences in pup retrieval behaviour between females. Combining behaviours and neurobiology in a rodent subject to natural selection, we evaluate potential candidates for the neural basis of maternal behaviours and strengthen the underestimated role of the sex chromosomes in shaping sex differences in brain and behaviours. All things considered, we further highlight the emergence of a third sexual phenotype, challenging the binary view of phenotypic sexes.
Collapse
Affiliation(s)
- Louise D. Heitzmann
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Marie Challe
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Julie Perez
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Laia Castell
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Evelyne Galibert
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Agnès O. Martin
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- IGF, Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Frédéric Veyrunes
- ISEM, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
13
|
Lozano Wun V, Foland‐Ross LC, Jo B, Green T, Hong D, Ross JL, Reiss AL. Adolescent brain development in girls with Turner syndrome. Hum Brain Mapp 2023; 44:4028-4039. [PMID: 37126641 PMCID: PMC10258525 DOI: 10.1002/hbm.26327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/08/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Turner syndrome (TS) is a common sex chromosome aneuploidy in females associated with various physical, cognitive, and socio-emotional phenotypes. However, few studies have examined TS-associated alterations in the development of cortical gray matter volume and the two components that comprise this measure-surface area and thickness. Moreover, the longitudinal direct (i.e., genetic) and indirect (i.e., hormonal) effects of X-monosomy on the brain are unclear. Brain structure was assessed in 61 girls with TS (11.3 ± 2.8 years) and 55 typically developing girls (10.8 ± 2.3 years) for up to 4 timepoints. Surface-based analyses of cortical gray matter volume, thickness, and surface area were conducted to examine the direct effects of X-monosomy present before pubertal onset and indirect hormonal effects of estrogen deficiency/X-monosomy emerging after pubertal onset. Longitudinal analyses revealed that, whereas typically developing girls exhibited normative declines in gray matter structure during adolescence, this pattern was reduced or inverted in TS. Further, girls with TS demonstrated smaller total surface area and larger average cortical thickness overall. Regionally, the TS group exhibited decreased volume and surface area in the pericalcarine, postcentral, and parietal regions relative to typically developing girls, as well as larger volume in the caudate, amygdala, and temporal lobe regions and increased thickness in parietal and temporal regions. Surface area alterations were predominant by age 8, while maturational differences in thickness emerged by age 10 or later. Taken together, these results suggest the involvement of both direct and indirect effects of X-chromosome haploinsufficiency on brain development in TS.
Collapse
Affiliation(s)
- Vanessa Lozano Wun
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lara C. Foland‐Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - David Hong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Judith L. Ross
- Department of PediatricsThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Nemours Children's HospitalWilmingtonDelawareUSA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Department of RadiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
14
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
15
|
Zhong X, Sun Y, Lu Y, Xu L. Immunomodulatory role of estrogen in ischemic stroke: neuroinflammation and effect of sex. Front Immunol 2023; 14:1164258. [PMID: 37180115 PMCID: PMC10167039 DOI: 10.3389/fimmu.2023.1164258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Although estrogen is predominantly related to the maintenance of reproductive functioning in females, it mediates various physiological effects in nearly all tissues, especially the central nervous system. Clinical trials have revealed that estrogen, especially 17β-estradiol, can attenuate cerebral damage caused by an ischemic stroke. One mechanism underlying this effect of 17β-estradiol is by modulating the responses of immune cells, indicating its utility as a novel therapeutic strategy for ischemic stroke. The present review summarizes the effect of sex on ischemic stroke progression, the role of estrogen as an immunomodulator in immune reactions, and the potential clinical value of estrogen replacement therapy. The data presented here will help better understand the immunomodulatory function of estrogen and may provide a basis for its novel therapeutic use in ischemic stroke.
Collapse
Affiliation(s)
- Xiaojun Zhong
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yajun Lu
- Department of Internal Medicine, Sunto Women & Children’s Hospital, Jiaxing, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
16
|
Suarez LM, Diaz-Del Cerro E, Felix J, Gonzalez-Sanchez M, Ceprian N, Guerra-Perez N, G Novelle M, Martinez de Toda I, De la Fuente M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech Ageing Dev 2023; 211:111798. [PMID: 36907251 DOI: 10.1016/j.mad.2023.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.
Collapse
Affiliation(s)
- Luz M Suarez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.
| | - Estefania Diaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Judith Felix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica Gonzalez-Sanchez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Noemi Ceprian
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Guerra-Perez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Marta G Novelle
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Irene Martinez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
17
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
20
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
21
|
Zhang H, Li J, Li Y, Xu F, Wang M, Lin X, Li Y, Yang C, Cao Z, Xia W, Xu S. Sex-specific associations of early postnatal blood copper levels with neurodevelopment at 2 years of age. J Trace Elem Med Biol 2022; 74:127072. [PMID: 36174460 DOI: 10.1016/j.jtemb.2022.127072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
Copper (Cu) is an essential trace element; however, it can be harmful in excess. Previous studies have shown that prenatal Cu levels may affect childhood neurodevelopment; however, studies focused on early postnatal Cu levels are limited. We studied 843 children born in Wuhan City and investigated the associations between early life Cu levels and neurodevelopment in 2-year-old children. Blood samples collected from children at 12 and 24 months of age were used to analyze Cu levels. Neurodevelopment was scored using the Bayley Scale of Children at 24 months of age. We found that a higher Cu level at 12 months of age was positively associated with mental development index (MDI) in boys (β = 6.75, 95 %CI: 1.12, 12.38). Further non-linear analysis showed an inverted U-shape association between Cu level at 20 months and PDI in boys, indicating that Cu levels may have an optimal concentration for neurodevelopment (p for overall association = 0.01, p for non-linear association < 0.01). In addition, all meaningful results mentioned above were observed only in boys, and a statistically significant sex-related modifying effect was observed (p < 0.05). In conclusion, this study repeated measures early life Cu levels and suggested sex-specific associations between early life Cu levels and neurodevelopment in 2-year-old children.
Collapse
Affiliation(s)
- Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, PR China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Fenghua Xu
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Meng Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaofang Lin
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhongqiang Cao
- Wuhan Medical & Healthcare Center for Women and Children, Wuhan 430000, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
22
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
23
|
Brinkley TE, Stites SD, Hunsberger HC, Karvonen-Gutierrez CA, Li M, Shaaban CE, Thorpe RJ, Kritchevsky SB. Research Centers Collaborative Network Workshop on Sex and Gender Differences in Aging. Innov Aging 2022; 6:igac055. [PMID: 36267320 PMCID: PMC9579719 DOI: 10.1093/geroni/igac055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
Aging affects men and women differently; however, the impact of sex and gender on the aging process is not well understood. Moreover, these 2 concepts are often conflated, which further contributes to a lack of clarity on this important issue. In an effort to better understand the relevance of sex and gender in aging research, the Research Centers Collaborative Network sponsored a 1.5-day conference on sex and gender differences in aging that brought together key thought leaders from the 6 National Institute on Aging center programs. The meeting included sessions on comparing males and females, pathophysiological differences, sex/gender in clinical care, and gender and health in the social context. Presenters from a wide array of disciplines identified opportunities for multidisciplinary research to address current gaps in the field and highlighted the need for a more systematic approach to understanding the how and why of sex/gender differences, as well as the health implications of these differences and the sex/gender biases that affect clinical treatment and outcomes. This article summarizes the proceedings of the workshop and provides several recommendations to move the field forward, such as better data collection tools to assess the intersection of sex and gender in epidemiological research; a life course perspective with attention to fetal/developmental origins and key life stages; innovative animal models to distinguish contributions from sex hormones versus sex chromosomes; and integration of sex/gender into teaching and clinical practice. Ultimately, successful implementation of these recommendations will require thoughtful investigations across the translational spectrum and increased collaborations among those with expertise in sex and gender differences.
Collapse
Affiliation(s)
- Tina E Brinkley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shana D Stites
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Holly C Hunsberger
- Department of Foundational Science and Humanities, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | - Mengting Li
- School of Nursing, Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - C Elizabeth Shaaban
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Roland J Thorpe
- Department of Health, Behavior, and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
24
|
DiMarco M, Khalifa K. Sins of inquiry: How to criticize scientific pursuits. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 92:86-96. [PMID: 35152065 DOI: 10.1016/j.shpsa.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Criticism is a staple of the scientific enterprise and of the social epistemology of science. Philosophical discussions of criticism have traditionally focused on its roles in relation to objectivity, confirmation, and theory choice. However, attention to criticism and to criticizability should also inform our thinking about scientific pursuits: the allocation of resources with the aim of developing scientific tools and ideas. In this paper, we offer an account of scientific pursuitworthiness which takes criticizability as its starting point. We call this the apokritic model of pursuit. Its core ideas are that pursuits are practices governed by norms for asking and answering questions, and that criticism arises from the breach of these norms. We illustrate and advertise our approach using examples from institutional grant review, neuroscience, and sociology. We show that the apokritic model can unify several indices of criticizability, that it can account for the importance of criticizing pursuits in scientific practice, and that it can offer ameliorative advice to erstwhile pursuers.
Collapse
Affiliation(s)
- Marina DiMarco
- Department of History and Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning, 4200 Fifth Avenue Pittsburgh, PA 15260, United States.
| | - Kareem Khalifa
- Department of Philosophy, Middlebury College, Middlebury, VT 05753, United States.
| |
Collapse
|
25
|
Xue Y, Xu Q, Wang J, Lin H, Wang C, Lou X, Wu C, Mao Z, Fu X. Prevalence and Associated Factors for Elevated Depressive Symptoms in 386,924 Primary Students during the COVID-19 Pandemic Normalization in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063406. [PMID: 35329093 PMCID: PMC8952816 DOI: 10.3390/ijerph19063406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
We aimed to assess the prevalence of elevated depressive symptoms and its associated factors during the coronavirus disease 2019 (COVID-19) pandemic among primary students in China. We included 386,924 students aged 6–12 years from three cities in Henan province, China, over the period 21–27 May 2021. The overall prevalence of depressive symptoms was 5.8%. Participants with high depressive symptoms were more likely to be senior urban primary students, and exhibited an insignificant increase in hand washing frequency, non-mask wearing behavior, higher error rates of cognition tests, and greater levels of worry and fear. The associated factors for high depressive symptoms were found to include age, sex, grade, location, worry level, fear level, cognitive status, and change in lifestyle after gaining knowledge about COVID-19. Our results suggest that governments need to focus on factors affecting the mental health of school-age children while combating COVID-19, as it would facilitate better decision making on the international and national level.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat Sen University, Guangzhou 510080, China;
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Xiaomin Lou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Cuiping Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
| | - Xiaoli Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Q.X.); (J.W.); (C.W.); (X.L.); (C.W.); (Z.M.)
- Correspondence: ; Tel.: +86-371-6778-1207
| |
Collapse
|
26
|
Tokatli MR, Sisti LG, Marziali E, Nachira L, Rossi MF, Amantea C, Moscato U, Malorni W. Hormones and Sex-Specific Medicine in Human Physiopathology. Biomolecules 2022; 12:413. [PMID: 35327605 PMCID: PMC8946266 DOI: 10.3390/biom12030413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
A prodigious increment of scientific evidence in both preclinical and clinical studies is narrowing a major gap in knowledge regarding sex-specific biological responses observed in numerous branches of clinical practices. Some paradigmatic examples include neurodegenerative and mental disorders, immune-related disorders such as pathogenic infections and autoimmune diseases, oncologic conditions, and cardiovascular morbidities. The male-to-female proportion in a population is expressed as sex ratio and varies eminently with respect to the pathophysiology, natural history, incidence, prevalence, and mortality rates. The factors that determine this scenario incorporate both sex-associated biological differences and gender-dependent sociocultural issues. A broad narrative review focused on the current knowledge about the role of hormone regulation in gender medicine and gender peculiarities across key clinical areas is provided. Sex differences in immune response, cardiovascular diseases, neurological disorders, cancer, and COVID-19 are some of the hints reported. Moreover, gender implications in occupational health and health policy are offered to support the need for more personalized clinical medicine and public health approaches to achieve an ameliorated quality of life of patients and better outcomes in population health.
Collapse
Affiliation(s)
| | - Leuconoe Grazia Sisti
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.G.S.); (E.M.); (L.N.); (U.M.)
- National Institute for Health, Migration and Poverty, 00153 Rome, Italy
| | - Eleonora Marziali
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.G.S.); (E.M.); (L.N.); (U.M.)
| | - Lorenza Nachira
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.G.S.); (E.M.); (L.N.); (U.M.)
| | - Maria Francesca Rossi
- Department of Life Sciences and Public Health, Section of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.F.R.); (C.A.)
| | - Carlotta Amantea
- Department of Life Sciences and Public Health, Section of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.F.R.); (C.A.)
| | - Umberto Moscato
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.G.S.); (E.M.); (L.N.); (U.M.)
- Department of Life Sciences and Public Health, Section of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.F.R.); (C.A.)
| | - Walter Malorni
- Course in Pharmacy, University of Tor Vergata, 00133 Rome, Italy;
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.G.S.); (E.M.); (L.N.); (U.M.)
| |
Collapse
|
27
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
28
|
Li F, Cui Y, Li Y, Guo L, Ke X, Liu J, Luo X, Zheng Y, Leckman JF. Prevalence of mental disorders in school children and adolescents in China: diagnostic data from detailed clinical assessments of 17,524 individuals. J Child Psychol Psychiatry 2022; 63:34-46. [PMID: 34019305 DOI: 10.1111/jcpp.13445] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, no national-scale psychiatric epidemiological survey for children and adolescents has been conducted in China. In order to inform government officials and policymakers and to develop a comprehensive plan for service providers, there was a clear need to conduct an up-to-date systematic nationwide psychiatric epidemiological survey. METHODS We conducted a two-stage large-scale psychiatric point prevalence survey. Multistage cluster stratified random sampling was used as the sampling strategy. Five provinces were selected by comprehensively considering geographical partition, economic development, and rural/urban factors. In Stage 1, the Child Behavior Checklist was used as the screening tool. In Stage 2, Mini-International Neuropsychiatric Interview for Children and Adolescents and a diagnostic process based on the Diagnostic and Statistical Manual were used to make the diagnoses. Sampling weights and poststratification weights were employed to match the population distributions. Exploratory analyses were also performed using socio-demographic factors. Prevalence in socio-demographic factor subgroups and overall were estimated. Rao-Scott adjusted chi-square tests were utilized to determine if between-group differences were present. Factor interactions were checked by logistic regression analyses. RESULTS A total of 73,992 participants aged 6-16 years of age were selected in Stage 1. In Stage 2, 17,524 individuals were screened and diagnosed. The weighted prevalence of any disorder was 17.5% (95% CI: 17.2-18.0). Statistically significant differences in prevalence of any psychiatric disorder were observed between sexes [χ2 (1, N = 71,929) = 223.0, p < .001], age groups [χ2 (1, N = 71,929) = 18.6, p < .001] and developed vs. developing areas [χ2 (1, N = 71,929) = 2,129.6, p < .001], while no difference was found between rural and urban areas [χ2 (1, N = 71,929) = 1.4, p = .239]. Male, younger individuals, children, and adolescents from developed areas had higher prevalence of any psychiatric disorder. The prevalence of any psychiatric disorder was found to decrease with the age in the male group, while the female group increased with the age. Individuals diagnosed with attention-deficit hyperactivity disorder, oppositional defiant disorder, a tic disorder, conduct disorder, and major depression disorder had the highest rates of comorbidity. CONCLUSIONS The prevalence of any psychiatric disorder we found is the highest ever reported in China. These results urgently need to be addressed by public mental health service providers and policymakers in order to provide access to the necessary treatments and to reduce the long-term negative impact of these conditions on families and the society as a whole.
Collapse
Affiliation(s)
- Fenghua Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yonghua Cui
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Li
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | | | - Jing Liu
- Sixth hospital, Peking University, Beijing, China
| | - Xuerong Luo
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zheng
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - James F Leckman
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
30
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Abstract
Animal models of addictive behaviors are useful for uncovering neural mechanisms involved in the development of dependence and for identifying risk factors for drug abuse. One such risk factor is biological sex, which strongly moderates drug self-administration behavior in rodents. Female rodents are more likely to acquire drug self-administration behaviors, consume higher amounts of drug, and reinstate drug-seeking behavior more readily. Despite this female vulnerability, preclinical addiction research has largely been done in male animals. The study of sex differences in rodent models of addictive behavior is increasing, however, as more investigators are choosing to include both male and female animals in experiments. This commentary is meant to serve as an introductory guide for preclinical investigators new to the study of sex differences in addiction. We provide an overview of self-administration models, a broad view of female versus male self-administration behaviors, and suggestions for study design and implementation. Inclusion of female subjects in preclinical addiction research is timely, as problem drug and alcohol use in women is increasing. With proper attention, design, and analysis, the study of sex differences in addiction has the potential to uncover novel neural mechanisms and lead to greater translational success for addiction research. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| | - Sean C. Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| |
Collapse
|
32
|
Qi S, Al Mamun A, Ngwa C, Romana S, Ritzel R, Arnold AP, McCullough LD, Liu F. X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. J Neuroinflammation 2021; 18:70. [PMID: 33712031 PMCID: PMC7953638 DOI: 10.1186/s12974-021-02120-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rodney Ritzel
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Nafian Dehkordi S, Khani F, Hassani SN, Baharvand H, Soleimanpour-Lichaei HR, Salekdeh GH. The Contribution of Y Chromosome Genes to Spontaneous Differentiation of Human Embryonic Stem Cells into Embryoid Bodies In Vitro. CELL JOURNAL 2021; 23:40-50. [PMID: 33650819 PMCID: PMC7944136 DOI: 10.22074/cellj.2021.7145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/30/2019] [Indexed: 11/04/2022]
Abstract
Objective Sexual dimorphism in mammals can be described as subsequent transcriptional differences from their distinct sex chromosome complements. Following X inactivation in females, the Y chromosome is the major genetic difference between sexes. In this study, we used a male embryonic stem cell line (Royan H6) to identify the potential role of the male-specific region of the Y chromosome (MSY) during spontaneous differentiation into embryoid bodies (EBs) as a model of early embryonic development. Materials and Methods In this experimental study, RH6 cells were cultured on inactivated feeder layers and Matrigel. In a dynamic suspension system, aggregates were generated in the same size and were spontaneously differentiated into EBs. During differentiation, expression patterns of specific markers for three germ layers were compared with MSY genes. Results Spontaneous differentiation was determined by downregulation of pluripotent markers and upregulation of fourteen differentiation markers. Upregulation of the ectoderm markers was observed on days 4 and 16, whereas mesoderm markers were upregulated on the 8th day and endodermic markers on days 12-16. Mesoderm markers correlated with 8 MSY genes namely DDX3Y, RPS4Y1, KDM5D, TBL1Y, BCORP1, PRY, DAZ, and AMELY, which were classified as a mesoderm cluster. Endoderm markers were co-expressed with 7 MSY genes, i.e. ZFY, TSPY, PRORY, VCY, EIF1AY, USP9Y, and RPKY, which were grouped as an endoderm cluster. Finally, the ectoderm markers correlated with TXLNGY, NLGN4Y, PCDH11Y, TMSB4Y, UTY, RBMY1, and HSFY genes of the MSY, which were categorized as an ectoderm cluster. In contrast, 2 MSY genes, SRY and TGIF2LY, were more highly expressed in RH6 cells compared to EBs. Conclusion We found a significant correlation between spontaneous differentiation and upregulation of specific MSY genes. The expression alterations of MSY genes implied the potential responsibility of their gene co-expression clusters for EB differentiation. We suggest that these genes may play important roles in early embryonic development.
Collapse
Affiliation(s)
- Simin Nafian Dehkordi
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzaneh Khani
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Hamid Reza Soleimanpour-Lichaei
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
34
|
Dump the "dimorphism": Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev 2021; 125:667-697. [PMID: 33621637 DOI: 10.1016/j.neubiorev.2021.02.026] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/01/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
With the explosion of neuroimaging, differences between male and female brains have been exhaustively analyzed. Here we synthesize three decades of human MRI and postmortem data, emphasizing meta-analyses and other large studies, which collectively reveal few reliable sex/gender differences and a history of unreplicated claims. Males' brains are larger than females' from birth, stabilizing around 11 % in adults. This size difference accounts for other reproducible findings: higher white/gray matter ratio, intra- versus interhemispheric connectivity, and regional cortical and subcortical volumes in males. But when structural and lateralization differences are present independent of size, sex/gender explains only about 1% of total variance. Connectome differences and multivariate sex/gender prediction are largely based on brain size, and perform poorly across diverse populations. Task-based fMRI has especially failed to find reproducible activation differences between men and women in verbal, spatial or emotion processing due to high rates of false discovery. Overall, male/female brain differences appear trivial and population-specific. The human brain is not "sexually dimorphic."
Collapse
|
35
|
Dorsey A, de Lecea L, Jennings KJ. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci 2021; 14:625397. [PMID: 33519372 PMCID: PMC7840832 DOI: 10.3389/fnins.2020.625397] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Sleep is crucial for optimal well-being, and sex differences in sleep quality have significant implications for women's health. We review the current literature on sex differences in sleep, such as differences in objective and subjective sleep measures and their relationship with aging. We then discuss the convincing evidence for the role of ovarian hormones in regulating female sleep, and survey how these hormones act on a multitude of brain regions and neurochemicals to impact sleep. Lastly, we identify several important areas in need of future research to narrow the knowledge gap and improve the health of women and other understudied populations.
Collapse
Affiliation(s)
| | | | - Kimberly J. Jennings
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
36
|
Worsham W, Dalton S, Bilder DA. The Prenatal Hormone Milieu in Autism Spectrum Disorder. Front Psychiatry 2021; 12:655438. [PMID: 34276434 PMCID: PMC8280339 DOI: 10.3389/fpsyt.2021.655438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Though the etiology of autism spectrum disorder (ASD) remains largely unknown, recent findings suggest that hormone dysregulation within the prenatal environment, in conjunction with genetic factors, may alter fetal neurodevelopment. Early emphasis has been placed on the potential role of in utero exposure to androgens, particularly testosterone, to theorize ASD as the manifestation of an "extreme male brain." The relationship between autism risk and obstetric conditions associated with inflammation and steroid dysregulation merits a much broader understanding of the in utero steroid environment and its potential influence on fetal neuroendocrine development. The exploration of hormone dysregulation in the prenatal environment and ASD development builds upon prior research publishing associations with obstetric conditions and ASD risk. The insight gained may be applied to the development of chronic adult metabolic diseases that share prenatal risk factors with ASD. Future research directions will also be discussed.
Collapse
Affiliation(s)
- Whitney Worsham
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Susan Dalton
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - Deborah A Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
37
|
Xu T, Shen X, Yang Z, Chen D, Lubeckyj RA, McCool EN, Sun L. Automated Capillary Isoelectric Focusing-Tandem Mass Spectrometry for Qualitative and Quantitative Top-Down Proteomics. Anal Chem 2020; 92:15890-15898. [PMID: 33263984 PMCID: PMC8564864 DOI: 10.1021/acs.analchem.0c03266] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Top-down proteomics (TDP) aims to delineate proteomes in a proteoform-specific manner, which is vital for accurately understanding protein function in cellular processes. It requires high-capacity separation of proteoforms before mass spectrometry (MS) and tandem MS (MS/MS). Capillary isoelectric focusing (cIEF)-MS has been recognized as a useful tool for TDP in the 1990s because cIEF is capable of high-resolution separation of proteoforms. Previous cIEF-MS studies concentrated on measuring the protein's mass without MS/MS, impeding the confident proteoform identification in complex samples and the accurate localization of post-translational modifications on proteoforms. Herein, for the first time, we present automated cIEF-MS/MS-based TDP for large-scale delineation of proteoforms in complex proteomes. Single-shot cIEF-MS/MS identified 711 proteoforms from an Escherichia coli (E. coli) proteome consuming only nanograms of proteins. Coupling two-dimensional size-exclusion chromatography (SEC)-cIEF to ESI-MS/MS enabled the identification of nearly 2000 proteoforms from the E. coli proteome. Label-free quantitative TDP of zebrafish male and female brains using SEC-cIEF-MS/MS quantified thousands of proteoforms and revealed sex-dependent proteoform profiles in brains. Particularly, we discovered several proteolytic proteoforms of pro-opiomelanocortin and prodynorphin with significantly higher abundance in male zebrafish brains as potential endogenous hormone proteoforms. Multilevel quantitative proteomics (TDP and bottom-up proteomics) of the brains revealed that the majority of proteoforms having statistically significant difference in abundance between genders showed no abundance difference at the protein group level. This work represents the first multilevel quantitative proteomics study of sexual dimorphism of the brain.
Collapse
Affiliation(s)
- Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Rachele A Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Elijah N McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
38
|
Pottmeier P, Doszyn O, Peuckert C, Jazin E. Increased Expression of Y-Encoded Demethylases During Differentiation of Human Male Neural Stem Cells. Stem Cells Dev 2020; 29:1497-1509. [PMID: 33040644 DOI: 10.1089/scd.2020.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human neural stem cells (hNSCs) have long been used as an in vitro model to study neurogenesis and as candidates for nervous system therapy. Many parameters have been considered when evaluating the success of transplantation, but sex of donor and recipients is often not discussed. We investigated two commercial NSC lines, the female hNSC-H9 and male hNSC-H14, and we observed faster growth rates in the male cells. At 4 days of differentiation, male cells presented a significant increase in expression of DCX, an immature neuronal marker, while female cells showed a significant increase in RMST, a long noncoding RNA, which is indispensable during neurogenesis. In addition, expression of neural markers MAP2, PSD95, SYP, DCX, and TUJ1 at day 14 of differentiation suggested a similar differentiation potential in both lines. The most significant differences at day 14 of differentiation were the expression levels of RELN, with almost 100-fold difference between the sexes, and MASH1, with more than 1,000-fold increase in male cells. To evaluate whether some of the observed differences may be sex related, we measured the expression of gametologous genes located on the X- and Y-chromosome. Most noticeable was the increase of Y-encoded demethylases KDM6C (UTY) and KDM5D during differentiation of male cells. Our results indicate that attention should be paid to sex when planning neurogenesis and transplantation experiments.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Olga Doszyn
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Department of Molecular Biology, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Rechtman E, Curtin P, Papazaharias DM, Renzetti S, Cagna G, Peli M, Levin-Schwartz Y, Placidi D, Smith DR, Lucchini RG, Wright RO, Horton MK. Sex-specific associations between co-exposure to multiple metals and visuospatial learning in early adolescence. Transl Psychiatry 2020; 10:358. [PMID: 33087698 PMCID: PMC7578810 DOI: 10.1038/s41398-020-01041-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
The predisposition, severity, and progression of many diseases differ between males and females. Sex-related differences in susceptibility to neurotoxicant exposures may provide insight into the cause of the observed discrepancy. Early adolescence, a period of substantial structural and functional brain changes, may present a critical window of vulnerability to environmental exposures. This study aimed to examine sex-specific associations between co-exposure to multiple metals and visuospatial memory in early adolescence. Manganese (Mn), lead (Pb), chromium (Cr), and copper (Cu) were measured in blood, urine, hair, nails, and saliva of 188 participants (88 girls; 10-14 years of age). Visuospatial memory skills were assessed using a computerized maze task, the virtual radial arm maze (VRAM). Using generalized weighted quantile sum regression, we investigated sex-specific associations between the combined effect of exposure to the metal mixture and visuospatial working memory and determined the contribution of each component to the outcome. The results suggest that sex moderates the association between the metal mixture and visuospatial learning for all outcomes measured. In girls, exposure was associated with slower visuospatial learning and driven by Mn and Cu. In boys, exposure was associated with faster visuospatial learning, and driven by Cr. These results suggest that (a) the effect of metal co-exposure on learning differs in magnitude, and in the direction between sexes, and (b) early adolescence may be a sensitive developmental period for metal exposure.
Collapse
Affiliation(s)
- Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Demetrios M Papazaharias
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- School of Public Health, Florida International University, Miami, FL, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Sun P, Wang J, Zhang M, Duan X, Wei Y, Xu F, Ma Y, Zhang YH. Sex-Related Differential Whole-Brain Input Atlas of Locus Coeruleus Noradrenaline Neurons. Front Neural Circuits 2020; 14:53. [PMID: 33071759 PMCID: PMC7541090 DOI: 10.3389/fncir.2020.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
As the most important organ in our bodies, the brain plays a critical role in deciding sex-related differential features; however, the underlying neural circuitry basis remains unclear. Here, we used a cell-type-specific rabies virus-mediated monosynaptic tracing system to generate a sex differences-related whole-brain input atlas of locus coeruleus noradrenaline (LC-NE) neurons. We developed custom pipelines for brain-wide comparisons of input sources in both sexes with the registration of the whole-brain data set to the Allen Mouse Brain Reference Atlas. Among 257 distinct anatomical regions, we demonstrated the differential proportions of inputs to LC-NE neurons in male and female mice at different levels. Locus coeruleus noradrenaline neurons of two sexes showed general similarity in the input patterns, but with differentiated input proportions quantitatively from major brain regions and diverse sub-regions. For instance, inputs to male LC-NE neurons were found mainly in the cerebrum, interbrain, and cerebellum, whereas inputs to female LC-NE neurons were found in the midbrain and hindbrain. We further found that specific subsets of nuclei nested within sub-regions contributed to overall sex-related differences in the input circuitry. Furthermore, among the totaled 123 anatomical regions with proportion of inputs >0.1%, we also identified 11 sub-regions with significant statistical differences of total inputs between male and female mice, and seven of them also showed such differences in ipsilateral hemispheres. Our study not only provides a structural basis to facilitate our understanding of sex differences at a circuitry level but also provides clues for future sexually differentiated functional studies related to LC-NE neurons.
Collapse
Affiliation(s)
- Pei Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Duan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Wei
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Xu
- Centre for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Ma
- HUST-WHBC United Hematology Optical Imaging Center, Wuhan Blood Center (WHBC), Wuhan, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Marrocco J, Einhorn NR, McEwen BS. Environmental epigenetics of sex differences in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:209-220. [PMID: 33008526 DOI: 10.1016/b978-0-444-64123-6.00015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Experiences throughout the life course lead to unique phenotypes even among those with the same genotype. Genotype sets the substrate on which physiologic processes, which communicate with the brain, mediate the effects of life experiences via epigenetics. Epigenetics modify the expression of genes in the brain and body in response to circulating hormones and other mediators, which are activated to facilitate survival responses through a process called allostasis. Epigenetic signatures can even be inherited, resulting in transgenerational effects. This chapter addresses epigenetics in the context of sex differences, discussing the intersection between genetics and gonadal hormones and their effect in the brain at discrete developmental periods.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States.
| | - Nathan R Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| |
Collapse
|
42
|
Gilli F, DiSano KD, Pachner AR. SeXX Matters in Multiple Sclerosis. Front Neurol 2020; 11:616. [PMID: 32719651 PMCID: PMC7347971 DOI: 10.3389/fneur.2020.00616] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | |
Collapse
|
43
|
Sano K, Matsukami H, Suzuki G, Htike NTT, Morishita M, Win-Shwe TT, Hashimoto S, Kawashima T, Isobe T, Nakayama SF, Tsukahara S, Maekawa F. Estrogenic action by tris(2,6-dimethylphenyl) phosphate impairs the development of female reproductive functions. ENVIRONMENT INTERNATIONAL 2020; 138:105662. [PMID: 32203809 DOI: 10.1016/j.envint.2020.105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Developmental exposure to environmental chemicals with estrogen-like activity is suspected to permanently impair women's health. In this study, a mouse model was used to evaluate whether tris(2,6-dimethylphenyl) phosphate (TDMPP), a chemical with a putative estrogen-like action, impairs sexual differentiation of the brain. Either TDMPP and 17β-estradiol (E2) as positive controls or sesame oil as a negative control were administered subcutaneously to dams from gestational day (GD) 14 to parturition, and to pups from postnatal day (PND) 0 to 9. Precocious puberty, irregular estrous cycles, and a lowered lordosis response were found in the TDMPP- and E2-treated groups. A certain amount of TDMPP and its metabolites in the perinatal brain and the masculinization of sexual dimorphic nuclei in the hypothalamus of female mice after treatment were also detected. The experimental evidence demonstrates that TDMPP directly enters the fetal and neonatal brain, thereby inducing changes of sex-related brain structures and impairing female reproductive functions.
Collapse
Affiliation(s)
- Kazuhiro Sano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | | | - Go Suzuki
- Center for Material Cycles and Waste Management Research, NIES, Japan
| | | | | | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | | | | | - Tomohiko Isobe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Shinji Tsukahara
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan.
| |
Collapse
|
44
|
Campbell RK, Tamayo-Ortiz M, Cantoral A, Schnaas L, Osorio-Valencia E, Wright RJ, Téllez-Rojo MM, Wright RO. Maternal Prenatal Psychosocial Stress and Prepregnancy BMI Associations with Fetal Iron Status. Curr Dev Nutr 2020; 4:nzaa018. [PMID: 32099952 PMCID: PMC7026381 DOI: 10.1093/cdn/nzaa018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron accrued in utero is critical for fetal and infant neurocognitive development. Psychosocial stress and obesity can each suppress fetal iron accrual. Their combined effects and differences by fetal sex are not known. In an observational pregnancy cohort study in Mexico City, we investigated associations of maternal prenatal life stressors, psychological dysfunction, and prepregnancy BMI with fetal iron status at delivery. OBJECTIVES We hypothesized that greater maternal prenatal psychosocial stress and prepregnancy overweight and obesity are associated with lower cord blood ferritin and hemoglobin (Hb), with stronger associations in boys than girls. METHODS Psychosocial stress in multiple domains of life stress (negative life events, perceived stress, exposure to violence) and psychological dysfunction symptoms (depression, generalized anxiety, and pregnancy-specific anxiety) were assessed with validated questionnaires during pregnancy. Prepregnancy BMI was predicted with a validated equation and categorized as normal/overweight/obese. Cord blood ferritin and Hb associations with prenatal psychosocial stress and BMI were modeled in multivariable linear regressions adjusted for maternal age, socioeconomic status, child sex, and prenatal iron supplementation. Interactions with child sex and 3-way stress-overweight/obesity-sex interactions were tested with product terms and likelihood ratio tests. RESULTS In 493 dyads, median (IQR) cord blood ferritin and Hb concentrations were 185 µg/L (126-263 g/dL) and 16 g/dL (14.7-17.1 g/dL), respectively. Ferritin was lower in infants of mothers with higher prenatal perceived stress (-23%; 95% CI: -35%, -9%), violence exposure (-28%; 95% CI: -42%, -12%), anxiety symptoms (-16%; 95% CI: -27%, -4%), and obesity (-17%; 95% CI: -31%, 0.2%). Interaction models suggested sex differences and synergism between maternal stress and overweight/obesity. No associations were observed between stress or BMI and Hb. CONCLUSIONS Multiple prenatal psychosocial stressors and excess prepregnancy BMI were each inversely associated with fetal iron status at birth. Pregnancies and infants at elevated risk of impaired fetal iron accrual may be identifiable according to observed synergism between maternal stress and obesity and differential associations with fetal iron status by infant sex.
Collapse
Affiliation(s)
- Rebecca K Campbell
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council for Science and Technology, Mexico City, Mexico
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council for Science and Technology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Research in Community Interventions, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Erika Osorio-Valencia
- Division of Research in Community Interventions, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Rosalind J Wright
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
Abstract
Sex differences in the incidence or severity of disease characterize many autoimmune and neurodegenerative diseases. Multiple sclerosis is a complex disease with both autoimmune and neurodegenerative aspects and is characterized by sex differences in susceptibility and progression. Research in the study sex differences is a way to capitalize on a known clinical observation, mechanistically disentangle it at the laboratory bench, then translate basic research findings back to the clinic as a novel treatment trial tailored to optimally benefit each sex. This "Bedside to Bench to Bedside" approach based on sex differences in MS will be reviewed here, first for disease susceptibility then for disability progression.
Collapse
Affiliation(s)
- Rhonda R Voskuhl
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
46
|
Sigurdardottir HL, Lanzenberger R, Kranz GS. Genetics of sex differences in neuroanatomy and function. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:179-193. [PMID: 33008524 DOI: 10.1016/b978-0-444-64123-6.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sex differences are observed at many distinct biologic levels, such as in the anatomy and functioning of the brain, behavior, and susceptibility to neuropsychiatric disorders. Previously, these differences were believed to entirely result from the secretion of gonadal hormones; however, recent research has demonstrated that differences are also the consequence of direct or nonhormonal effects of genes located on the sex chromosomes. This chapter reviews the four core genotype model that separates the effects of hormones and sex chromosomes and highlights a few genes that are believed to be partly responsible for sex dimorphism of the brain, in particular, the Sry gene. Genetics of the brain's neurochemistry is discussed and the susceptibility to certain neurologic and psychiatric disorders is reviewed. Lastly, we discuss the sex-specific genetic contribution in disorders of sexual development. The precise molecular mechanisms underlying these differences are currently not entirely known. An increased knowledge and understanding of the role of candidate genes will undeniably be of great aid in elucidating the molecular basis of sex-biased disorders and potentially allow for more sex-specific therapies.
Collapse
Affiliation(s)
- Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
47
|
" Bridging the Gap" Everything that Could Have Been Avoided If We Had Applied Gender Medicine, Pharmacogenetics and Personalized Medicine in the Gender-Omics and Sex-Omics Era. Int J Mol Sci 2019; 21:ijms21010296. [PMID: 31906252 PMCID: PMC6982247 DOI: 10.3390/ijms21010296] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gender medicine is the first step of personalized medicine and patient-centred care, an essential development to achieve the standard goal of a holistic approach to patients and diseases. By addressing the interrelation and integration of biological markers (i.e., sex) with indicators of psychological/cultural behaviour (i.e., gender), gender medicine represents the crucial assumption for achieving the personalized health-care required in the third millennium. However, ‘sex’ and ‘gender’ are often misused as synonyms, leading to frequent misunderstandings in those who are not deeply involved in the field. Overall, we have to face the evidence that biological, genetic, epigenetic, psycho-social, cultural, and environmental factors mutually interact in defining sex/gender differences, and at the same time in establishing potential unwanted sex/gender disparities. Prioritizing the role of sex/gender in physiological and pathological processes is crucial in terms of efficient prevention, clinical signs’ identification, prognosis definition, and therapy optimization. In this regard, the omics-approach has become a powerful tool to identify sex/gender-specific disease markers, with potential benefits also in terms of socio-psychological wellbeing for each individual, and cost-effectiveness for National Healthcare systems. “Being a male or being a female” is indeed important from a health point of view and it is no longer possible to avoid “sex and gender lens” when approaching patients. Accordingly, personalized healthcare must be based on evidence from targeted research studies aimed at understanding how sex and gender influence health across the entire life span. The rapid development of genetic tools in the molecular medicine approaches and their impact in healthcare is an example of highly specialized applications that have moved from specialists to primary care providers (e.g., pharmacogenetic and pharmacogenomic applications in routine medical practice). Gender medicine needs to follow the same path and become an established medical approach. To face the genetic, molecular and pharmacological bases of the existing sex/gender gap by means of omics approaches will pave the way to the discovery and identification of novel drug-targets/therapeutic protocols, personalized laboratory tests and diagnostic procedures (sex/gender-omics). In this scenario, the aim of the present review is not to simply resume the state-of-the-art in the field, rather an opportunity to gain insights into gender medicine, spanning from molecular up to social and psychological stances. The description and critical discussion of some key selected multidisciplinary topics considered as paradigmatic of sex/gender differences and sex/gender inequalities will allow to draft and design strategies useful to fill the existing gap and move forward.
Collapse
|
48
|
Leitner N, Ben-Shahar Y. The neurogenetics of sexually dimorphic behaviors from a postdevelopmental perspective. GENES BRAIN AND BEHAVIOR 2019; 19:e12623. [PMID: 31674725 DOI: 10.1111/gbb.12623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Most sexually reproducing animal species are characterized by two morphologically and behaviorally distinct sexes. The genetic, molecular and cellular processes that produce sexual dimorphisms are phylogenetically diverse, though in most cases they are thought to occur early in development. In some species, however, sexual dimorphisms are manifested after development is complete, suggesting the intriguing hypothesis that sex, more generally, might be considered a continuous trait that is influenced by both developmental and postdevelopmental processes. Here, we explore how biological sex is defined at the genetic, neuronal and behavioral levels, its effects on neuronal development and function, and how it might lead to sexually dimorphic behavioral traits in health and disease. We also propose a unifying framework for understanding neuronal and behavioral sexual dimorphisms in the context of both developmental and postdevelopmental, physiological timescales. Together, these two temporally separate processes might drive sex-specific neuronal functions in sexually mature adults, particularly as it pertains to behavior in health and disease.
Collapse
Affiliation(s)
- Nicole Leitner
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
49
|
Gokcen C, Erbagci AB, Mutluer T, Orkmez M, Correll CU. Mullerian inhibiting substance, sex hormone binding globulin and sex hormone levels in stimulant-naïve, first-diagnosed prepubertal boys with attention-deficit/hyperactivity disorder: comparison with matched healthy controls as well as before and after oros-methylpenidate treatment. Int J Psychiatry Clin Pract 2019; 23:251-257. [PMID: 31339400 DOI: 10.1080/13651501.2019.1602657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Attention-Deficit/Hyperactivity Disorder (ADHD) is a complex neurodevelopmental disorder with strong male predominance. Since Müllerian Inhibiting Substance (MIS) produces sex-linked bias in animal studies, we aimed to investigate the role of MIS, Sex Hormone Binding Globulin (SHBG) and sex hormone levels in boys with ADHD.Methods: We compared prepubertal, psychostimulant-naïve boys with ADHD with age-matched healthy control boys (HCs). Patients were re-evaluated after 30 days of methylphenidate treatment assessing ADHD severity, and serum MIS, testosterone, estradiol, and albumin concentrations.Results: Compared to 30 HCs, with ADHD (n = 49, age = 6.9 ± 0.2 years) had lower SHBG (p = .014), and higher free testosterone (p = 0.006) and bioavailable testosterone (p = .002) percentages. Methylphenidate improved ADHD measures (all p < .0001) and abnormal baseline hormonal levels, increasing SHBG levels (p = .024), and lowering free (p = .001) and bioavailable testosterone (p = .016) percentages so that only free testosterone percentages remained higher versus HCs post-treatment (p = .02).Conclusions: Compared to age- and sex-matched HCs, prepubertal, stimulant-naïve boys with ADHD had significantly lower SHBG and higher free and bioavailable testosterone percentages, suggesting a possible contribution of sex hormones to ADHD. Osmotic-release oral system methylphenidate treatment for 30 days significantly improved ADHD symptoms and abnormal sex hormone levels, normalizing SHBG and bioavailable testosterone percentages that were similar to HCs while free testosterone remained elevated versus HCs.Key pointsCompare to healthy matched controls prepubertal stimulant-naïve boys with ADHD had significantly lower SHBG and higher free and bioavailable testosterone percentages, suggesting a possible effect on sex hormones to ADHD.After 30-day methylphenidate treatment, ADHD symptoms significantly improved, and SHBG and bioavailable testosterone percentages normalized which were similar to HCs, while free testosterone remained elevated versus HCs.We found a negative relationship between MIS levels and hyperactivity scores in ADHD boys. This finding suggests that MIS may contribute to hyperactivity symptoms, either directly by affecting behavior or indirectly by affecting sex hormone levels.
Collapse
Affiliation(s)
- Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Ayse Binnur Erbagci
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Tuba Mutluer
- Child and Adolescent Psychiatry Clinic, Koc University Hospital, Istanbul, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA.,Hofstra Northwell School of Medicine, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA.,The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA.,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
50
|
Esteves FF, Matias D, Mendes AR, Lacoste B, Lima SQ. Sexually dimorphic neuronal inputs to the neuroendocrine dopaminergic system governing prolactin release. J Neuroendocrinol 2019; 31:e12781. [PMID: 31419363 PMCID: PMC6851580 DOI: 10.1111/jne.12781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
Abstract
Prolactin (PRL) is a pleiotropic hormone that was identified in the context of maternal care and its release from the anterior pituitary is primarily controlled by neuroendocrine dopaminergic (NEDA) neurones of the arcuate nucleus of the hypothalamus. The sexually dimorphic nature of PRL physiology and associated behaviours is evident in mammals, even though the number and density of NEDA neurones is reported as not being sexually dimorphic in rats. However, the underlying circuits controlling NEDA neuronal activity and subsequent PRL release are largely uncharacterised. Thus, we mapped whole-brain monosynaptic NEDA inputs in male and female mice. Accordingly, we employed a rabies virus based monosynaptic tracing system capable of retrogradely mapping inputs into genetically defined neuronal populations. To gain genetic access to NEDA neurones, we used the dopamine transporter promoter. Here, we unravel 59 brain regions that synapse onto NEDA neurones and reveal that male and female mice, despite monomorphic distribution of NEDA neurones in the arcuate nucleus of the hypothalamus, receive sexually dimorphic amount of inputs from the anterior hypothalamic nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular hypothalamic nucleus, posterior periventricular nucleus, supraoptic nucleus, suprachiasmatic nucleus, lateral supramammillary nucleus, tuberal nucleus and periaqueductal grey. Beyond highlighting the importance of considering sex as a biological variable when evaluating connectivity in the brain, these results illustrate a case where a neuronal population with similar anatomical distribution has a subjacent sexually dimorphic connectivity pattern, potentially capable of contributing to the sexually dimorphic nature of PRL release and function.
Collapse
Affiliation(s)
| | - Diogo Matias
- Champalimaud ResearchPrograma Champalimaud de NeurociênciasLisboaPortugal
| | - Ana R. Mendes
- Champalimaud ResearchPrograma Champalimaud de NeurociênciasLisboaPortugal
| | - Bertrand Lacoste
- Champalimaud ResearchPrograma Champalimaud de NeurociênciasLisboaPortugal
| | - Susana Q. Lima
- Champalimaud ResearchPrograma Champalimaud de NeurociênciasLisboaPortugal
| |
Collapse
|