1
|
Wang H, Li Y, Li X, Sun Z, Yu F, Pashang A, Kulasiri D, Li HW, Chen H, Hou H, Zhang Y. The Primary Cilia are Associated with the Axon Initial Segment in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407405. [PMID: 39804991 DOI: 10.1002/advs.202407405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive. To study the link between the primary cilia and neuronal excitability, manipulation of somatostatin receptor 3 (SSTR3) is investigated, as an example of how alterations in ciliary signaling may affect neuronal activity. It is found that aberrant SSTR3 expression perturbed not only ciliary morphology but also disrupted ciliary signaling cascades. Genetic deletion of SSTR3 resulted in perturbed spatial memory and synaptic plasticity. The axon initial segment (AIS) is a specialized region in the axon where action potentials are initiated. Interestingly, loss of ciliary SSTR3 led to decrease of Akt-dependent cyclic AMP-response element binding protein (CREB)-mediated transcription at the AIS, specifically downregulating AIS master organizer adaptor protein ankyrin G (AnkG) expression. In addition, alterations of other ciliary proteins serotonin 6 receptor (5-HT6R)and intraflagellar transport protein 88 (IFT88) also induced length changes of the AIS. The findings elucidate a specific interaction between the primary cilia and AIS, providing insight into the impact of the primary cilia on neuronal excitability and circuit integrity.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xin Li
- Beijing Life Science Academy, Beijing, 102200, China
| | - Zehui Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Fengdan Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Abolghasem Pashang
- Centre for Advanced Computational Solutions (C-fACS), AGLS faculty, Lincoln University, Canterbury, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), AGLS faculty, Lincoln University, Canterbury, 7647, New Zealand
| | - Hung Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 102200, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 102200, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Han Y, Hacker D, Donders BC, Parperis C, Thuenauer R, Leterrier C, Grünewald K, Mikhaylova M. Unveiling the cell biology of hippocampal neurons with dendritic axon origin. J Cell Biol 2025; 224:e202403141. [PMID: 39495320 PMCID: PMC11536041 DOI: 10.1083/jcb.202403141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
In mammalian axon-carrying-dendrite (AcD) neurons, the axon emanates from a basal dendrite, instead of the soma, to create a privileged route for action potential generation at the axon initial segment (AIS). However, it is unclear how such unusual morphology is established and whether the structure and function of the AIS in AcD neurons are preserved. By using dissociated hippocampal cultures as a model, we show that the development of AcD morphology can occur prior to synaptogenesis and independently of the in vivo environment. A single precursor neurite first gives rise to the axon and then to the AcD. The AIS possesses a similar cytoskeletal architecture as the soma-derived AIS and similarly functions as a trafficking barrier to retain axon-specific molecular composition. However, it does not undergo homeostatic plasticity, contains lesser cisternal organelles, and receives fewer inhibitory inputs. Our findings reveal insights into AcD neuron biology and underscore AIS structural differences based on axon onset.
Collapse
Affiliation(s)
- Yuhao Han
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- AG “Neuronal Protein Transport”, Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Structural Cell Biology of Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Daniela Hacker
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | | | - Roland Thuenauer
- Advanced Light and Fluorescence Microscopy (ALFM) Facility, Centre for Structural Systems Biology, Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- Structural Cell Biology of Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- AG “Neuronal Protein Transport”, Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Eichel K. Endocytosis in the axon initial segment: Roles in neuronal polarity and plasticity. Curr Opin Neurobiol 2024; 90:102949. [PMID: 39689414 DOI: 10.1016/j.conb.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The axon initial segment (AIS) is a specialized domain that maintains neuronal polarity and is the site of action potential generation, both of which underlie the neuron's ability to send and receive signals. Disruption of the AIS leads to a loss of neuronal polarity, altered neuronal signaling, and an array of neurological disorders. Therefore, understanding how the AIS forms and functions is a central question in cellular neuroscience that is essential to understanding neuronal physiology. Decades of study have identified many molecular components and mechanisms at the AIS. Recently, endocytosis at the AIS has been identified to function in both maintaining neuronal polarity and in mediating AIS plasticity through its ability to dynamically remodel the plasma membrane composition. This review discusses the emerging evidence for the roles of endocytosis in regulating AIS function and structural insights into how endocytosis can occur at the AIS.
Collapse
Affiliation(s)
- Kelsie Eichel
- Howard Hughes Medical Institute, University of Colorado Boulder, USA.
| |
Collapse
|
4
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
5
|
Li Y, Wang H, Wang Y, Chen Z, Liu Y, Tian W, Kang X, Pashang A, Kulasiri D, Yang X, Li HW, Zhang Y. Alterations in the axon initial segment plasticity is involved in early pathogenesis in Alzheimer's disease. MedComm (Beijing) 2024; 5:e768. [PMID: 39415847 PMCID: PMC11473794 DOI: 10.1002/mco2.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, characterized by the early presence of amyloid-β (Aβ) and hyperphosphorylated tau. Identifying the neuropathological changes preceding cognitive decline is crucial for early intervention. Axon initial segment (AIS) maintains the orderly structure of the axon and is responsible for initiating action potentials (APs). To investigate the role of AIS in early stages of AD pathogenesis, we focused on alterations in the AIS of neurons from APP/PS1 mouse models harboring familial AD mutations. AIS length and electrophysiological properties were assessed in neurons using immunostaining and patch-clamp techniques. The expression and function of ankyrin G (AnkG) isoforms were evaluated by western blot and rescue experiments. We observed a significant shortening of AIS in APP/PS1 mice, which correlated with impaired action potential propagation. Furthermore, a decrease in the 480 kDa isoform of AnkG was observed. Rescue of this isoform restored AIS plasticity and improved long-term potentiation in APP/PS1 neurons. Our study implicates AIS plasticity alterations and AnkG dysregulation as early events in AD. The restoration of AIS integrity by the 480 kDa AnkG isoform presents a potential therapeutic strategy for AD, underscoring the importance of targeting AIS stability in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Han Wang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Yiming Wang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Zhiya Chen
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Yiqiong Liu
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Wu Tian
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Xinrui Kang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| | - Abolghasem Pashang
- Centre for Advanced Computational Solutions (C‐fACS)AGLS FacultyLincoln UniversityCanterburyNew Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C‐fACS)AGLS FacultyLincoln UniversityCanterburyNew Zealand
| | - Xiaoli Yang
- Division of Life Sciences and MedicineDepartment of NeurologyInstitute on Aging and Brain DisordersThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
- Neurodegenerative Disorder Research CenterAnhui Province Key Laboratory of Biomedical Aging ResearchDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hung Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Yan Zhang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
6
|
Benitez MJ, Retana D, Ordoñez-Gutiérrez L, Colmena I, Goméz MJ, Álvarez R, Ciorraga M, Dopazo A, Wandosell F, Garrido JJ. Transcriptomic alterations in APP/PS1 mice astrocytes lead to early postnatal axon initial segment structural changes. Cell Mol Life Sci 2024; 81:444. [PMID: 39485512 PMCID: PMC11530419 DOI: 10.1007/s00018-024-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Alzheimer´s disease (AD) is characterized by neuronal function loss and degeneration. The integrity of the axon initial segment (AIS) is essential to maintain neuronal function and output. AIS alterations are detected in human post-mortem AD brains and mice models, as well as, neurodevelopmental and mental disorders. However, the mechanisms leading to AIS deregulation in AD and the extrinsic glial origin are elusive. We studied early postnatal differences in AIS cellular/molecular mechanisms in wild-type or APP/PS1 mice and combined neuron-astrocyte co-cultures. We observed AIS integrity alterations, reduced ankyrinG expression and shortening, in APP/PS1 mice from P21 and loss of AIS integrity at 21 DIV in wild-type and APP/PS1 neurons in the presence of APP/PS1 astrocytes. AnkyrinG decrease is due to mRNAs and protein reduction of retinoic acid synthesis enzymes Rdh1 and Aldh1b1, as well as ADNP (Activity-dependent neuroprotective protein) in APP/PS1 astrocytes. This effect was mimicked by wild-type astrocytes expressing ADNP shRNA. In the presence of APP/PS1 astrocytes, wild-type neurons AIS is recovered by inhibition of retinoic acid degradation, and Adnp-derived NAP peptide (NAPVSIPQ) addition or P2X7 receptor inhibition, both regulated by retinoic acid levels. Moreover, P2X7 inhibitor treatment for 2 months impaired AIS disruption in APP/PS1 mice. Our findings extend current knowledge on AIS regulation, providing data to support the role of astrocytes in early postnatal AIS modulation. In conclusion, AD onset may be related to very early glial cell alterations that induce AIS and neuronal function changes, opening new therapeutic approaches to detect and avoid neuronal function loss.
Collapse
Affiliation(s)
- María José Benitez
- Instituto Cajal, CSIC, Madrid, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Lara Ordoñez-Gutiérrez
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Colmena
- Instituto Cajal, CSIC, Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
| | | | - Rebeca Álvarez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Wandosell
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan José Garrido
- Instituto Cajal, CSIC, Madrid, Spain.
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-ISCIII), Madrid, Spain.
| |
Collapse
|
7
|
Wang W, Williams DJ, Teoh JJ, Soundararajan D, Zuberi A, Lutz CM, Frankel WN, Makinson CD. Impaired axon initial segment structure and function in a model of ARHGEF9 developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2400709121. [PMID: 39374387 PMCID: PMC11494352 DOI: 10.1073/pnas.2400709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are rare but devastating and largely intractable childhood epilepsies. Genetic variants in ARHGEF9, encoding a scaffolding protein important for the organization of the postsynaptic density of inhibitory synapses, are associated with DEE accompanied by complex neurological phenotypes. In a mouse model carrying a patient-derived ARHGEF9 variant associated with severe disease, we observed aggregation of postsynaptic proteins and loss of functional inhibitory synapses at the axon initial segment (AIS), altered axo-axonic synaptic inhibition, disrupted action potential generation, and complex seizure phenotypes consistent with clinical observations. These results illustrate diverse roles of ARHGEF9 that converge on regulation of the structure and function of the AIS, thus revealing a pathological mechanism for ARHGEF9-associated DEE. This unique example of a neuropathological condition associated with multiple AIS dysfunctions may inform strategies for treating neurodevelopmental diseases.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Damian J. Williams
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY10032
| | - Jia Jie Teoh
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| | - Divyalakshmi Soundararajan
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| | - Aamir Zuberi
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Cathleen M. Lutz
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Wayne N. Frankel
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Christopher D. Makinson
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
8
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
9
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Wernert F, Moparthi SB, Pelletier F, Lainé J, Simons E, Moulay G, Rueda F, Jullien N, Benkhelifa-Ziyyat S, Papandréou MJ, Leterrier C, Vassilopoulos S. The actin-spectrin submembrane scaffold restricts endocytosis along proximal axons. Science 2024; 385:eado2032. [PMID: 39172837 DOI: 10.1126/science.ado2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Clathrin-mediated endocytosis has characteristic features in neuronal dendrites and presynapses, but how membrane proteins are internalized along the axon shaft remains unclear. We focused on clathrin-coated structures and endocytosis along the axon initial segment (AIS) and their relationship to the periodic actin-spectrin scaffold that lines the axonal plasma membrane. A combination of super-resolution microscopy and platinum-replica electron microscopy on cultured neurons revealed that AIS clathrin-coated pits form within "clearings", circular areas devoid of actin-spectrin mesh. Actin-spectrin scaffold disorganization increased clathrin-coated pit formation. Cargo uptake and live-cell imaging showed that AIS clathrin-coated pits are particularly stable. Neuronal plasticity-inducing stimulation triggered internalization of the clathrin-coated pits through polymerization of branched actin around them. Thus, spectrin and actin regulate clathrin-coated pit formation and scission to control endocytosis at the AIS.
Collapse
Affiliation(s)
- Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Satish Babu Moparthi
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Florence Pelletier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Jeanne Lainé
- Sorbonne Université, Department of Physiology, Faculty of Medicine Pitié-Salpêtrière, Paris, France
| | - Eline Simons
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Gilles Moulay
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Fanny Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Nicolas Jullien
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | | | | | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
11
|
Zhao R, Ren B, Xiao Y, Tian J, Zou Y, Wei J, Qi Y, Hu A, Xie X, Huang ZJ, Shu Y, He M, Lu J, Tai Y. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. SCIENCE ADVANCES 2024; 10:eadk4331. [PMID: 39093969 PMCID: PMC11296346 DOI: 10.1126/sciadv.adk4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.
Collapse
Affiliation(s)
- Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baihui Ren
- Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yujie Xiao
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Zou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiafan Wei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoying Xie
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Z. Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27708, USA
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangteng Lu
- Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Togawa S, Usui N, Doi M, Kobayashi Y, Koyama Y, Nakamura Y, Shinoda K, Kobayashi H, Shimada S. Neuroprotective effects of Si-based hydrogen-producing agent on 6-hydroxydopamine-induced neurotoxicity in juvenile mouse model. Behav Brain Res 2024; 468:115040. [PMID: 38723675 DOI: 10.1016/j.bbr.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.
Collapse
Affiliation(s)
- Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan.
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuki Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
13
|
Thome C, Janssen JM, Karabulut S, Acuna C, D’Este E, Soyka SJ, Baum K, Bock M, Lehmann N, Roos J, Stevens NA, Hasegawa M, Ganea DA, Benoit CM, Gründemann J, Min L, Bird KM, Schultz C, Bennett V, Jenkins PM, Engelhardt M. Live imaging of excitable axonal microdomains in ankyrin-G-GFP mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.01.525891. [PMID: 38948770 PMCID: PMC11212890 DOI: 10.1101/2023.02.01.525891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.
Collapse
Affiliation(s)
- Christian Thome
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jan Maximilian Janssen
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Seda Karabulut
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Stella J. Soyka
- Institute of Anatomy and Cell Biology, Dept. of Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Konrad Baum
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
| | - Michael Bock
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nadja Lehmann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Roos
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nikolas A. Stevens
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Masashi Hasegawa
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
| | - Dan A. Ganea
- University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
| | - Chloé M. Benoit
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
- University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
| | - Jan Gründemann
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
- University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
| | - Lia Min
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kalynn M. Bird
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christian Schultz
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul M. Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
14
|
Zhao R, Ren B, Xiao Y, Tian J, Zou Y, Wei J, Qi Y, Hu A, Xie X, Huang ZJ, Shu Y, He M, Lu J, Tai Y. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589005. [PMID: 38659885 PMCID: PMC11042219 DOI: 10.1101/2024.04.11.589005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The stability of functional brain network is maintained by homeostatic plasticity, which restores equilibrium following perturbation. As the initiation site of action potentials, the axon initial segment (AIS) of glutamatergic projection neurons (PyNs) undergoes dynamic adjustment that exerts powerful control over neuronal firing properties in response to changes in network states. Although AIS plasticity has been reported to be coupled with the changes of network activity, it is poorly understood whether it involves direct synaptic input to the AIS. Here we show that changes of GABAergic synaptic input to the AIS of cortical PyNs, specifically from chandelier cells (ChCs), are sufficient to drive homeostatic tuning of the AIS within 1-2 weeks, while those from parvalbumin-positive basket cells do not. This tuning is reflected in the morphology of the AIS, the expression level of voltage-gated sodium channels, and the intrinsic neuronal excitability of PyNs. Interestingly, the timing of AIS tuning in PyNs of the prefrontal cortex corresponds to the recovery of changes in social behavior caused by alterations of ChC synaptic transmission. Thus, homeostatic plasticity of the AIS at postsynaptic PyNs may counteract deficits elicited by imbalanced ChC presynaptic input. Teaser Axon initial segment dynamically responds to changes in local input from chandelier cells to prevent abnormal neuronal functions.
Collapse
|
15
|
Kohl PA, Song C, Fletcher BJ, Best RL, Tchounwou C, Garcia Arceo X, Chung PJ, Miller HP, Wilson L, Choi MC, Li Y, Feinstein SC, Safinya CR. Complexes of tubulin oligomers and tau form a viscoelastic intervening network cross-bridging microtubules into bundles. Nat Commun 2024; 15:2362. [PMID: 38491006 PMCID: PMC10943092 DOI: 10.1038/s41467-024-46438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The axon-initial-segment (AIS) of mature neurons contains microtubule (MT) fascicles (linear bundles) implicated as retrograde diffusion barriers in the retention of MT-associated protein (MAP) tau inside axons. Tau dysfunction and leakage outside of the axon is associated with neurodegeneration. We report on the structure of steady-state MT bundles in varying concentrations of Mg2+ or Ca2+ divalent cations in mixtures containing αβ-tubulin, full-length tau, and GTP at 37 °C in a physiological buffer. A concentration-time kinetic phase diagram generated by synchrotron SAXS reveals a wide-spacing MT bundle phase (Bws), a transient intermediate MT bundle phase (Bint), and a tubulin ring phase. SAXS with TEM of plastic-embedded samples provides evidence of a viscoelastic intervening network (IN) of complexes of tubulin oligomers and tau stabilizing MT bundles. In this model, αβ-tubulin oligomers in the IN are crosslinked by tau's MT binding repeats, which also link αβ-tubulin oligomers to αβ-tubulin within the MT lattice. The model challenges whether the cross-bridging of MTs is attributed entirely to MAPs. Tubulin-tau complexes in the IN or bound to isolated MTs are potential sites for enzymatic modification of tau, promoting nucleation and growth of tau fibrils in tauopathies.
Collapse
Affiliation(s)
- Phillip A Kohl
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chaeyeon Song
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Amorepacific R&I Center, Yongin, 17074, Republic of Korea
| | - Bretton J Fletcher
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Rebecca L Best
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Serimmune Inc., 150 Castilian Dr., Goleta, CA, 93117, USA
| | - Christine Tchounwou
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ximena Garcia Arceo
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, 93106, USA
| | - Peter J Chung
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Herbert P Miller
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Leslie Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon, 34141, Korea
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Stuart C Feinstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
16
|
Iwahashi M, Yoshimura T, Harigai W, Takuma K, Hashimoto H, Katayama T, Hayata-Takano A. Pituitary adenylate cyclase-activating polypeptide deficient mice show length abnormalities of the axon initial segment. J Pharmacol Sci 2023; 153:175-182. [PMID: 37770159 DOI: 10.1016/j.jphs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
We previously found that pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP-/-) mice exhibit dendritic spine morphology impairment and neurodevelopmental disorder (NDD)-like behaviors such as hyperactivity, increased novelty-seeking behavior, and deficient pre-pulse inhibition. Recent studies have indicated that rodent models of NDDs (e.g., attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder) show abnormalities in the axon initial segment (AIS). Here, we revealed that PACAP-/- mice exhibited a longer AIS length in layer 2/3 pyramidal neurons of the primary somatosensory barrel field compared with wild-type control mice. Further, we previously showed that a single injection of atomoxetine, an ADHD drug, improved hyperactivity in PACAP-/- mice. In this study, we found that repeated treatments of atomoxetine significantly improved AIS abnormality along with hyperactivity in PACAP-/- mice. These results suggest that AIS abnormalities are associated with NDDs-like behaviors in PACAP-/- mice. Thus, improvement in AIS abnormalities will be a novel drug therapy for NDDs.
Collapse
Affiliation(s)
- Misaki Iwahashi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Wakana Harigai
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuko Hayata-Takano
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Ogawa Y, Lim BC, George S, Oses-Prieto JA, Rasband JM, Eshed-Eisenbach Y, Hamdan H, Nair S, Boato F, Peles E, Burlingame AL, Van Aelst L, Rasband MN. Antibody-directed extracellular proximity biotinylation reveals that Contactin-1 regulates axo-axonic innervation of axon initial segments. Nat Commun 2023; 14:6797. [PMID: 37884508 PMCID: PMC10603070 DOI: 10.1038/s41467-023-42273-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Axon initial segment (AIS) cell surface proteins mediate key biological processes in neurons including action potential initiation and axo-axonic synapse formation. However, few AIS cell surface proteins have been identified. Here, we use antibody-directed proximity biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion molecule Neurofascin. To determine the distributions of the identified proteins, we use CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We identify Contactin-1 (Cntn1) as an AIS cell surface protein. Cntn1 is enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that Cntn1 contributes to assembly of the AIS extracellular matrix, and regulates AIS axo-axonic innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the cortex.
Collapse
Affiliation(s)
- Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brian C Lim
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shanu George
- Division of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Joshua M Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hamdan Hamdan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Physiology and Immunology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Supna Nair
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Francesco Boato
- Division of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Linda Van Aelst
- Division of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Puri D, Sharma S, Samaddar S, Ravivarma S, Banerjee S, Ghosh-Roy A. Muscleblind-1 interacts with tubulin mRNAs to regulate the microtubule cytoskeleton in C. elegans mechanosensory neurons. PLoS Genet 2023; 19:e1010885. [PMID: 37603562 PMCID: PMC10470942 DOI: 10.1371/journal.pgen.1010885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (β tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Dharmendra Puri
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sunanda Sharma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sarbani Samaddar
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sruthy Ravivarma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sourav Banerjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | |
Collapse
|
19
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
20
|
Teunissen MWA, Lewerissa E, van Hugte EJH, Wang S, Ockeloen CW, Koolen DA, Pfundt R, Marcelis CLM, Brilstra E, Howe JL, Scherer SW, Le Guillou X, Bilan F, Primiano M, Roohi J, Piton A, de Saint Martin A, Baer S, Seiffert S, Platzer K, Jamra RA, Syrbe S, Doering JH, Lakhani S, Nangia S, Gilissen C, Vermeulen RJ, Rouhl RPW, Brunner HG, Willemsen MH, Nadif Kasri N. ANK2 loss-of-function variants are associated with epilepsy, and lead to impaired axon initial segment plasticity and hyperactive network activity in hiPSC-derived neuronal networks. Hum Mol Genet 2023; 32:2373-2385. [PMID: 37195288 PMCID: PMC10321384 DOI: 10.1093/hmg/ddad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
PURPOSE To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.
Collapse
Affiliation(s)
- Maria W A Teunissen
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
| | - Elly Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Shan Wang
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Eva Brilstra
- Department of Human Genetics, University Medical Center Utrecht, Utrecht, CX 3584, The Netherlands
| | - Jennifer L Howe
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3H7, Canada
| | - Xavier Le Guillou
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers 86000, France
| | - Frédéric Bilan
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers 86000, France
- Laboratory of Experimental and Clinical Neurosciences University of Poitiers, INSERM U1084, Poitiers 86000, France
| | - Michelle Primiano
- Department of Clinical Genetics, Morgan Stanley Children’s Hospital of New York-Presbytarian, New York, NY, 10032, USA
| | - Jasmin Roohi
- Department of Clinical Genetics, Morgan Stanley Children’s Hospital of New York-Presbytarian, New York, NY, 10032, USA
- Clinical Genetics, Kaiser Permanente Mid-Atlantic Permanente Medical Group, Rockville, MD 20852, USA
| | - Amelie Piton
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d’Alsace (IGMA), Hôspitaux Universitaire de Strasbourg, Strasbourg, BP 426 67091, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
| | - Anne de Saint Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
- Department of Pediatric Neurology, Strasbourg University Hospital, Hôspital de Hautepierre, Strasbourg, BP 426 67091, France
| | - Sarah Baer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France
- Department of Pediatric Neurology, Strasbourg University Hospital, Hôspital de Hautepierre, Strasbourg, BP 426 67091, France
| | - Simone Seiffert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tuebingen, 72076, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Jan H Doering
- Division of Paediatric Epileptology, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Shenela Lakhani
- Department of neurogenetics, Weill Cornell Medicine, Brain and Mind Research Institute, New York, NY, 10065, USA
| | - Srishti Nangia
- Department of Pediatrics, Division of Child Neurology, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, 10032, USA
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, HX 6229, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
| | - Han G Brunner
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze 5591 VE, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, MD 6200, the Netherlands
- Department of Clinical Genetics and GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, MD 6299, the Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, HB 6500, the Netherlands
| |
Collapse
|
21
|
Oh H, Lee S, Oh Y, Kim S, Kim YS, Yang Y, Choi W, Yoo YE, Cho H, Lee S, Yang E, Koh W, Won W, Kim R, Lee CJ, Kim H, Kang H, Kim JY, Ku T, Paik SB, Kim E. Kv7/KCNQ potassium channels in cortical hyperexcitability and juvenile seizure-related death in Ank2-mutant mice. Nat Commun 2023; 14:3547. [PMID: 37321992 PMCID: PMC10272139 DOI: 10.1038/s41467-023-39203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.
Collapse
Affiliation(s)
- Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yusang Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heejin Cho
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Woojin Won
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Hyun Kim
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
22
|
Garrido JJ. Contribution of Axon Initial Segment Structure and Channels to Brain Pathology. Cells 2023; 12:cells12081210. [PMID: 37190119 DOI: 10.3390/cells12081210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Brain channelopathies are a group of neurological disorders that result from genetic mutations affecting ion channels in the brain. Ion channels are specialized proteins that play a crucial role in the electrical activity of nerve cells by controlling the flow of ions such as sodium, potassium, and calcium. When these channels are not functioning properly, they can cause a wide range of neurological symptoms such as seizures, movement disorders, and cognitive impairment. In this context, the axon initial segment (AIS) is the site of action potential initiation in most neurons. This region is characterized by a high density of voltage-gated sodium channels (VGSCs), which are responsible for the rapid depolarization that occurs when the neuron is stimulated. The AIS is also enriched in other ion channels, such as potassium channels, that play a role in shaping the action potential waveform and determining the firing frequency of the neuron. In addition to ion channels, the AIS contains a complex cytoskeletal structure that helps to anchor the channels in place and regulate their function. Therefore, alterations in this complex structure of ion channels, scaffold proteins, and specialized cytoskeleton may also cause brain channelopathies not necessarily associated with ion channel mutations. This review will focus on how the AISs structure, plasticity, and composition alterations may generate changes in action potentials and neuronal dysfunction leading to brain diseases. AIS function alterations may be the consequence of voltage-gated ion channel mutations, but also may be due to ligand-activated channels and receptors and AIS structural and membrane proteins that support the function of voltage-gated ion channels.
Collapse
Affiliation(s)
- Juan José Garrido
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28002 Madrid, Spain
| |
Collapse
|
23
|
Deng T, Jovanovic VM, Tristan CA, Weber C, Chu PH, Inman J, Ryu S, Jethmalani Y, Ferreira de Sousa J, Ormanoglu P, Twumasi P, Sen C, Shim J, Jayakar S, Bear Zhang HX, Jo S, Yu W, Voss TC, Simeonov A, Bean BP, Woolf CJ, Singeç I. Scalable generation of sensory neurons from human pluripotent stem cells. Stem Cell Reports 2023; 18:1030-1047. [PMID: 37044067 PMCID: PMC10147831 DOI: 10.1016/j.stemcr.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.
Collapse
Affiliation(s)
- Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Vukasin M Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Carlos A Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jason Inman
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Yogita Jethmalani
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Juliana Ferreira de Sousa
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Prisca Twumasi
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Chaitali Sen
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Weifeng Yu
- Sophion Bioscience, North Brunswick, NJ 08902, USA
| | - Ty C Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
24
|
Chai Z, Gu S, Lykotrafitis G. Dynamics of the axon plasma membrane skeleton. SOFT MATTER 2023; 19:2514-2528. [PMID: 36939651 DOI: 10.1039/d2sm01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It was recently revealed via super-resolution microscopy experiments that the axon plasma membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings connected via longitudinal spectrin filaments forming an orthotropic network. The common perception is that APMS enhances structural stability of the axon but its impact on axon deformation is unknown. To investigate the response of the APMS to extension, we introduce a coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of particles representing spectrin tetramers with repeats than can unfold. We observe that the shape of force-extension curve is initially linear and the force level depends on the extension rate. Even during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape of the corresponding force-extension curve observed in the case of one spectrin tetramer does not appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized across filaments during extension. If actin-spectrin associations remain intact, the force-extension response reaches a perfectly plastic region because of increased spectrin unfolding frequency. However, when actin-spectrin links dissociate, which can happen at moderate and high extension rates, APMS softens and the resistance force decreases linearly as the axon elongates until it reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation of the Zener model.
Collapse
Affiliation(s)
- Zhaojie Chai
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Shiju Gu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
25
|
Ma F, Akolkar H, Xu J, Liu Y, Popova D, Xie J, Youssef MM, Benosman R, Hart RP, Herrup K. The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci 2023; 43:1830-1844. [PMID: 36717226 PMCID: PMC10010458 DOI: 10.1523/jneurosci.0172-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.
Collapse
Affiliation(s)
- Fulin Ma
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Himanshu Akolkar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
| | - Jiaan Xie
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark M Youssef
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ryad Benosman
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
26
|
Ogawa Y, Lim BC, George S, Oses-Prieto JA, Rasband JM, Eshed-Eisenbach Y, Nair S, Boato F, Peles E, Burlingame AL, Van Aelst L, Rasband MN. Antibody-directed extracellular proximity biotinylation reveals Contactin-1 regulates axo-axonic innervation of axon initial segments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531378. [PMID: 36945454 PMCID: PMC10028829 DOI: 10.1101/2023.03.06.531378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Axon initial segment (AIS) cell surface proteins mediate key biological processes in neurons including action potential initiation and axo-axonic synapse formation. However, few AIS cell surface proteins have been identified. Here, we used antibody-directed proximity biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion molecule Neurofascin. To determine the distributions of the identified proteins, we used CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We found Contactin-1 (Cntn1) among the previously unknown AIS proteins we identified. Cntn1 is enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that Cntn1 contributes to assembly of the AIS-extracellular matrix, and is required for AIS axo-axonic innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the cortex.
Collapse
Affiliation(s)
- Yuki Ogawa
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, USA
| | - Brian C. Lim
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, USA
| | - Shanu George
- Cold Spring Harbor Laboratory, Division of Neuroscience, Cold Spring Harbor, NY, USA
| | - Juan A. Oses-Prieto
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Joshua M. Rasband
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, USA
| | - Yael Eshed-Eisenbach
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel
| | - Supna Nair
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Francesco Boato
- Cold Spring Harbor Laboratory, Division of Neuroscience, Cold Spring Harbor, NY, USA
| | - Elior Peles
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel
| | - Alma L. Burlingame
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Division of Neuroscience, Cold Spring Harbor, NY, USA
| | - Matthew N. Rasband
- Baylor College of Medicine, Department of Neuroscience, Houston, TX, USA
| |
Collapse
|
27
|
Kotler O, Khrapunsky Y, Shvartsman A, Dai H, Plant LD, Goldstein SAN, Fleidervish I. SUMOylation of Na V1.2 channels regulates the velocity of backpropagating action potentials in cortical pyramidal neurons. eLife 2023; 12:e81463. [PMID: 36794908 PMCID: PMC10014073 DOI: 10.7554/elife.81463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Voltage-gated sodium channels located in axon initial segments (AIS) trigger action potentials (AP) and play pivotal roles in the excitability of cortical pyramidal neurons. The differential electrophysiological properties and distributions of NaV1.2 and NaV1.6 channels lead to distinct contributions to AP initiation and propagation. While NaV1.6 at the distal AIS promotes AP initiation and forward propagation, NaV1.2 at the proximal AIS promotes the backpropagation of APs to the soma. Here, we show the small ubiquitin-like modifier (SUMO) pathway modulates Na+ channels at the AIS to increase neuronal gain and the speed of backpropagation. Since SUMO does not affect NaV1.6, these effects were attributed to SUMOylation of NaV1.2. Moreover, SUMO effects were absent in a mouse engineered to express NaV1.2-Lys38Gln channels that lack the site for SUMO linkage. Thus, SUMOylation of NaV1.2 exclusively controls INaP generation and AP backpropagation, thereby playing a prominent role in synaptic integration and plasticity.
Collapse
Affiliation(s)
- Oron Kotler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Yana Khrapunsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Arik Shvartsman
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Hui Dai
- Departments of Pediatrics and Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, Northeastern UniversityBostonUnited States
| | - Steven AN Goldstein
- Departments of Pediatrics and Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Ilya Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
28
|
Liu P, Zhao Y, Xiong W, Pan Y, Zhu M, Zhu X. Degradation of Perineuronal Nets in the Cerebellar Interpositus Nucleus Ameliorated Social Deficits in Shank3-deficient Mice. Neuroscience 2023; 511:29-38. [PMID: 36587867 DOI: 10.1016/j.neuroscience.2022.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Perineuronal nets (PNNs) are structures that contain extracellular matrix chondroitin sulfate proteoglycan and surround the soma and dendrites of various neuronal cell types. They are involved in synaptic plasticity and undertake important physiological functions. Altered expression of PNNs has been demonstrated in the brains of autism-related animal models. However, the underlying mechanism is still unknown. In this study, we demonstrated that the PNNs in the cerebellum are involved in modulating social and repetitive/inflexible behaviors in Shank3B-/- mice, an established animal model of autism spectrum disorder. First, we performed wisteria floribunda agglutinin staining of the whole brain of Shank3B-/- mice, and found wisteria floribunda agglutinin-positive PNNs are significantly increased in the cerebellar interpositus nucleus (IntP) in Shank3B-/- mice compared to control littermates. After degradation of PNNs in the IntP by chondroitinase ABC, the repetitive behaviors of Shank3B-/- mice were decreased, while their social behaviors were ameliorated. These results suggested that PNNs homeostasis is involved in the regulation of social behavior, revealing a potential therapeutic strategy targeting PNNs in the IntP for the treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Peng Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulu Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenchao Xiong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yida Pan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minzhen Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinhong Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China.
| |
Collapse
|
29
|
Higerd-Rusli GP, Tyagi S, Liu S, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. The fates of internalized Na V1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation. J Biol Chem 2023; 299:102816. [PMID: 36539035 PMCID: PMC9843449 DOI: 10.1016/j.jbc.2022.102816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal function relies on the maintenance of appropriate levels of various ion channels at the cell membrane, which is accomplished by balancing secretory, degradative, and recycling pathways. Neuronal function further depends on membrane specialization through polarized distribution of specific proteins to distinct neuronal compartments such as axons. Voltage-gated sodium channel NaV1.7, a threshold channel for firing action potentials in nociceptors, plays a major role in human pain, and its abundance in the plasma membrane is tightly regulated. We have recently characterized the anterograde axonal trafficking of NaV1.7 channels in Rab6A-positive vesicles, but the fate of internalized channels is not known. Membrane proteins that have undergone endocytosis can be directed into multiple pathways including those for degradation, recycling to the membrane, and transcytosis. Here, we demonstrate NaV1.7 endocytosis and dynein-dependent retrograde trafficking in Rab7-containing late endosomes together with other axonal membrane proteins using real-time imaging of live neurons. We show that some internalized NaV1.7 channels are delivered to lysosomes within the cell body, and that there is no evidence for NaV1.7 transcytosis. In addition, we show that NaV1.7 is recycled specifically to the axonal membrane as opposed to the soma membrane, suggesting a novel mechanism for the development of neuronal polarity. Together, these results shed light on the mechanisms by which neurons maintain excitable membranes and may inform efforts to target ion channel trafficking for the treatment of disorders of excitability.
Collapse
Affiliation(s)
- Grant P Higerd-Rusli
- MD/PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Sidharth Tyagi
- MD/PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA; Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Fadia B Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| |
Collapse
|
30
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
31
|
Tulin EKC, Yoshimura T, Nakazawa C, Saito S, Kanai K, Kozono T, Nakakita SI, Tonozuka T, Ikenaka K, Nishikawa A. Recombinant lectin Gg for brain imaging of glycan structure and formation in the CNS node of Ranvier. J Neurochem 2022; 163:461-477. [PMID: 36156798 DOI: 10.1111/jnc.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
The nodes of Ranvier are unmyelinated gaps in the axon, important for the efficient transmission of action potentials. Despite the identification of several glycoproteins involved in node formation and maintenance, glycans' structure and formation in the node remain unclear. Previously, we developed a recombinant lectin from the Clostridium botulinum neurotoxin complex, specific to the galactose and N-acetylgalactosamine terminal epitopes (Gg). Gg stained Neuro2a cells. Here, we show Gg punctuate staining in mouse brain cryosections. Thus, we hypothesized that Gg could help study glycans in the node of Ranvier. Lectin histochemistry on mouse brain cryosections confirmed that Gg binds specifically to the node of Ranvier in the central nervous system (CNS). Using a combination of lectin blotting, glycosidase treatment on tissue sections, and lectin histochemistry, Gg ligands were identified as α-galactose terminal glycoproteins in the perinodal extracellular matrix. Furthermore, we detected the spatiotemporal distribution of galactosylated glycans in the CNS node of Ranvier in mouse brain tissues at different postnatal times. Finally, we observed impaired clustering of galactosylated glycans in the nodes during demyelination and remyelination in cuprizone-induced demyelination and remyelination mouse model. In conclusion, Gg can serve as a novel brain imaging tool in glycobiology and report glycoprotein formation and alterations in the CNS node of Ranvier. Our findings might serve as a first step to establish the role of glycans in the node of Ranvier.
Collapse
Affiliation(s)
- Ea Kristine Clarisse Tulin
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Chiaki Nakazawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shion Saito
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kyoko Kanai
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takuma Kozono
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | - Takashi Tonozuka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Atsushi Nishikawa
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
32
|
Senol AD, Pinto G, Beau M, Guillemot V, Dupree JL, Stadelmann C, Ranft J, Lubetzki C, Davenne M. Alterations of the axon initial segment in multiple sclerosis grey matter. Brain Commun 2022; 4:fcac284. [PMID: 36451656 PMCID: PMC9700164 DOI: 10.1093/braincomms/fcac284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/14/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023] Open
Abstract
Grey matter damage has been established as a key contributor to disability progression in multiple sclerosis. Aside from neuronal loss and axonal transections, which predominate in cortical demyelinated lesions, synaptic alterations have been detected in both demyelinated plaques and normal-appearing grey matter, resulting in functional neuronal damage. The axon initial segment is a key element of neuronal function, responsible for action potential initiation and maintenance of neuronal polarity. Despite several reports of profound axon initial segment alterations in different pathological models, among which experimental auto-immune encephalomyelitis, whether the axon initial segment is affected in multiple sclerosis is still unknown. Using immunohistochemistry, we analysed axon initial segments from control and multiple sclerosis tissue, focusing on layer 5/6 pyramidal neurons in the neocortex and Purkinje cells in the cerebellum and performed analysis on the parameters known to control neuronal excitability, i.e. axon initial segment length and position. We found that the axon initial segment length was increased only in pyramidal neurons of inactive demyelinated lesions, compared with normal appearing grey matter tissue. In contrast, in both cell types, the axon initial segment position was altered, with an increased soma-axon initial segment gap, in both active and inactive demyelinated lesions. In addition, using a computational model, we show that this increased gap between soma and axon initial segment might increase neuronal excitability. Taken together, these results show, for the first time, changes of axon initial segments in multiple sclerosis, in active as well as inactive grey matter lesions in both neocortex and cerebellum, which might alter neuronal function.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
| | - Giulia Pinto
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
| | - Maxime Beau
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Vincent Guillemot
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris F-75015, France
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Jonas Ranft
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Catherine Lubetzki
- Sorbonne University, Paris Brain Institute—ICM, Inserm, CNRS, Pitié-Salpêtrière Hospital, Paris, France
- Assistance Publique des Hôpitaux de Paris (APHP), Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Marc Davenne
- Correspondence to: Dr Marc Davenne Paris Brain Institute, Pitié-Salpêtrière Hospital 47, bd de l’hôpital, F-75013 Paris, France E-mail:
| |
Collapse
|
33
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
34
|
Ostos S, Aparicio G, Fernaud-Espinosa I, DeFelipe J, Muñoz A. Quantitative analysis of the GABAergic innervation of the soma and axon initial segment of pyramidal cells in the human and mouse neocortex. Cereb Cortex 2022; 33:3882-3909. [PMID: 36058205 DOI: 10.1093/cercor/bhac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.
Collapse
Affiliation(s)
- Sandra Ostos
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Aparicio
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Isabel Fernaud-Espinosa
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Alberto Muñoz
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biología Celular, Universidad Complutense, José Antonio Novais 12, 28040 Madrid, Spain
| |
Collapse
|
35
|
Jia X, Shao W, Hu N, Shi J, Fan X, Chen C, Wang Y, Chen L, Qiao H, Li X. Learning populations with hubs govern the initiation and propagation of spontaneous bursts in neuronal networks after learning. Front Neurosci 2022; 16:854199. [PMID: 36061604 PMCID: PMC9433803 DOI: 10.3389/fnins.2022.854199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous bursts in neuronal networks with propagation involving a large number of synchronously firing neurons are considered to be a crucial feature of these networks both in vivo and in vitro. Recently, learning has been shown to improve the association and synchronization of spontaneous events in neuronal networks by promoting the firing of spontaneous bursts. However, little is known about the relationship between the learning phase and spontaneous bursts. By combining high-resolution measurement with a 4,096-channel complementary metal-oxide-semiconductor (CMOS) microelectrode array (MEA) and graph theory, we studied how the learning phase influenced the initiation of spontaneous bursts in cultured networks of rat cortical neurons in vitro. We found that a small number of selected populations carried most of the stimulus information and contributed to learning. Moreover, several new burst propagation patterns appeared in spontaneous firing after learning. Importantly, these "learning populations" had more hubs in the functional network that governed the initiation of spontaneous burst activity. These results suggest that changes in the functional structure of learning populations may be the key mechanism underlying increased bursts after learning. Our findings could increase understanding of the important role that synaptic plasticity plays in the regulation of spontaneous activity.
Collapse
Affiliation(s)
- Xiaoli Jia
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Jianxin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Youwei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| | - Xiaohong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin, China
| |
Collapse
|
36
|
He L, Jiang W, Li J, Wang C. Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment. J Biol Chem 2022; 298:102272. [PMID: 35850303 PMCID: PMC9396398 DOI: 10.1016/j.jbc.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
Collapse
Affiliation(s)
- Liping He
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wenli Jiang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P. R. China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
37
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
38
|
Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp Mol Med 2022; 54:867-877. [PMID: 35794211 PMCID: PMC9356056 DOI: 10.1038/s12276-022-00798-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
Ankyrin proteins act as molecular scaffolds and play an essential role in regulating cellular functions. Recent evidence has implicated the ANK3 gene, encoding ankyrin-G, in bipolar disorder (BD), schizophrenia (SZ), and autism spectrum disorder (ASD). Within neurons, ankyrin-G plays an important role in localizing proteins to the axon initial segment and nodes of Ranvier or to the dendritic shaft and spines. In this review, we describe the expression patterns of ankyrin-G isoforms, which vary according to the stage of brain development, and consider their functional differences. Furthermore, we discuss how posttranslational modifications of ankyrin-G affect its protein expression, interactions, and subcellular localization. Understanding these mechanisms leads us to elucidate potential pathways of pathogenesis in neurodevelopmental and psychiatric disorders, including BD, SZ, and ASD, which are caused by rare pathogenic mutations or changes in the expression levels of ankyrin-G in the brain. Mutations affecting the production, distribution, or function of the ankyrin-G protein may contribute to a variety of different neuropsychiatric disorders. Ankyrin-G is typically observed at the synapses between neurons, and contributes to intercellular adhesion and signaling along with other important functions. Peter Penzes and colleagues at Northwestern University, Chicago, USA, review the biology of this protein and identify potential mechanisms by which ankyrin-G mutations might impair healthy brain development. Mutations in the gene encoding this protein are strongly linked with bipolar disorder, but have also been tentatively connected to autism spectrum disorders and schizophrenia. The authors highlight physiologically important interactions with a diverse array of other brain proteins, which can in turn be modulated by various chemical modifications to ankyrin-G, and conclude that drugs that influence these modifications could have potential therapeutic value.
Collapse
|
39
|
Thyagarajan P, Feng C, Lee D, Shorey M, Rolls MM. Microtubule polarity is instructive for many aspects of neuronal polarity. Dev Biol 2022; 486:56-70. [PMID: 35341730 PMCID: PMC9058238 DOI: 10.1016/j.ydbio.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
Many neurons in bilaterian animals are polarized with functionally distinct axons and dendrites. Microtubule polarity, microtubule stability, and the axon initial segment (AIS) have all been shown to influence polarized transport in neurons. Each of these cytoskeletal cues could act independently to control axon and dendrite identity, or there could be a hierarchy in which one acts upstream of the others. Here we test the hypothesis that microtubule polarity acts as a master regulator of neuronal polarity by using a Drosophila genetic background in which some dendrites have normal minus-end-out microtubule polarity and others have the axonal plus-end-out polarity. In these mosaic dendrite arbors, we found that ribosomes, which are more abundant in dendrites than axons, were reduced in plus-end-out dendrites, while an axonal cargo was increased. In addition, we determined that microtubule stability was different in plus-end-out and minus-end-out dendrites, with plus-end-out ones having more stable microtubules like axons. Similarly, we found that ectopic diffusion barriers, like those at the AIS, formed at the base of dendrites with plus-end-out regions. Thus, changes in microtubule polarity were sufficient to rearrange other cytoskeletal features associated with neuronal polarization. However, overall neuron shape was maintained with only subtle changes in branching in mosaic arbors. We conclude that microtubule polarity can act upstream of many aspects of intracellular neuronal polarization, but shape is relatively resilient to changes in microtubule polarity in vivo.
Collapse
Affiliation(s)
- Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Lee
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
40
|
Ma J, Li J, Hu S, Wang X, Li M, Xie J, Shi Q, Li B, Lafu S, Chen H. Collagen Modified Anisotropic PLA Scaffold as a base for Peripheral Nerve Regeneration. Macromol Biosci 2022; 22:e2200119. [PMID: 35526091 DOI: 10.1002/mabi.202200119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Indexed: 11/09/2022]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. Topographical and mechanical stimulations play important roles to repair peripheral nerve injury. The synergistic effects of topography and mechanical rigidity may significantly accelerate nerve regeneration. In this work, we developed a nerve-guiding collagen/polylactic acid (PLA) electrospun scaffold to facilitate peripheral nerve repair. The obtained anisotropic PLA electrospun scaffolds simulated the directional arranged structure of nerve realistically and promoted axonal regeneration after sciatic nerve injury when compared with the isotropic PLA electrospun scaffolds. Moreover, the collagen-modified PLA electrospun scaffolds further provided sufficient mechanical support and favorable microenvironment for axon regeneration. In addition, we observed that collagen-modified PLA electrospun scaffolds facilitated the axon regeneration by regulating YAP molecular pathway. Taken together, we engineered collagen-modified anisotropic PLA electrospun scaffolds may be a potential candidate to combine topography and mechanical rigidity for peripheral nerve regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinjin Ma
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Sihan Hu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingran Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meimei Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jile Xie
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Shi
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Saiji Lafu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hao Chen
- Affiliated Hospital & Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
41
|
Eichel K, Shen K. The function of the axon initial segment in neuronal polarity. Dev Biol 2022; 489:47-54. [DOI: 10.1016/j.ydbio.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
42
|
Rosado J, Bui VD, Haas CA, Beck J, Queisser G, Vlachos A. Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an “all-or-nothing” communication switch between the spine head and dendrite. PLoS Comput Biol 2022; 18:e1010069. [PMID: 35468131 PMCID: PMC9071165 DOI: 10.1371/journal.pcbi.1010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/05/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Dendritic spines are highly dynamic neuronal compartments that control the synaptic transmission between neurons. Spines form ultrastructural units, coupling synaptic contact sites to the dendritic shaft and often harbor a spine apparatus organelle, composed of smooth endoplasmic reticulum, which is responsible for calcium sequestration and release into the spine head and neck. The spine apparatus has recently been linked to synaptic plasticity in adult human cortical neurons. While the morphological heterogeneity of spines and their intracellular organization has been extensively demonstrated in animal models, the influence of spine apparatus organelles on critical signaling pathways, such as calcium-mediated dynamics, is less well known in human dendritic spines. In this study we used serial transmission electron microscopy to anatomically reconstruct nine human cortical spines in detail as a basis for modeling and simulation of the calcium dynamics between spine and dendrite. The anatomical study of reconstructed human dendritic spines revealed that the size of the postsynaptic density correlates with spine head volume and that the spine apparatus volume is proportional to the spine volume. Using a newly developed simulation pipeline, we have linked these findings to spine-to-dendrite calcium communication. While the absence of a spine apparatus, or the presence of a purely passive spine apparatus did not enable any of the reconstructed spines to relay a calcium signal to the dendritic shaft, the calcium-induced calcium release from this intracellular organelle allowed for finely tuned “all-or-nothing” spine-to-dendrite calcium coupling; controlled by spine morphology, neck plasticity, and ryanodine receptors. Our results suggest that spine apparatus organelles are strategically positioned in the neck of human dendritic spines and demonstrate their potential relevance to the maintenance and regulation of spine-to-dendrite calcium communication. During the past decade it has become increasingly clear that abnormal synaptic plasticity is a major hallmark of neurological and cognitive disorders. Developing a better understanding of the synaptic plasticity process, which describes the ability of neurons to adapt their contacts in an activity-dependent manner, will lead to improved treatment of many neurological and cognitive disorders. It is known that calcium-dependent events such as synaptic transmission, intracellular calcium release, and calcium wave propagation, are required for many types of synaptic plasticity expression. However, the biological significance of these processes in neurons of the adult human cortex remains unknown. Due to technical limitations and ethical concerns, experimental data addressing this biologically and clinically relevant topic are not available. Therefore, we have implemented a computational model to study the intracellular calcium dynamics in realistic human dendritic spines based on detailed morphological reconstructions. With our model and simulations, we have established the morphological and biological requirements for the propagation of calcium from spines into the dendrites. Our results suggest a critical role for the calcium-storing spine apparatus organelle in regulating calcium homeostasis and propagation in human dendritic spines.
Collapse
Affiliation(s)
- James Rosado
- Department of Mathematics, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Viet Duc Bui
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carola A. Haas
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gillian Queisser
- Department of Mathematics, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (GQ); (AV)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail: (GQ); (AV)
| |
Collapse
|
43
|
Abstract
Chandelier cells (ChCs) are a unique type of GABAergic interneuron that form axo-axonic synapses exclusively on the axon initial segment (AIS) of neocortical pyramidal neurons (PyNs), allowing them to exert powerful yet precise control over PyN firing and population output. The importance of proper ChC function is further underscored by the association of ChC connectivity defects with various neurological conditions. Despite this, the cellular mechanisms governing ChC axo-axonic synapse formation remain poorly understood. Here, we identify microglia as key regulators of ChC axonal morphogenesis and AIS synaptogenesis, and show that disease-induced aberrant microglial activation perturbs proper ChC synaptic development/connectivity in the neocortex. In doing so, such findings highlight the therapeutic potential of manipulating microglia to ensure proper brain wiring. Microglia have emerged as critical regulators of synapse development and circuit formation in the healthy brain. To date, examination of microglia in such processes has largely been focused on excitatory synapses. Their roles, however, in the modulation of GABAergic interneuron synapses—particularly those targeting the axon initial segment (AIS)—during development remain enigmatic. Here, we identify a synaptogenic/growth-promoting role for microglia in regulating pyramidal neuron (PyN) AIS synapse formation by chandelier cells (ChCs), a unique interneuron subtype whose axonal terminals, called cartridges, selectively target the AIS. We show that a subset of microglia contacts PyN AISs and ChC cartridges and that such tripartite interactions, which rely on the unique AIS cytoskeleton and microglial GABAB1 receptors, are associated with increased ChC cartridge length and bouton number and AIS synaptogenesis. Conversely, microglia depletion or disease-induced aberrant microglia activation impairs the proper development and maintenance of ChC cartridges and boutons, as well as AIS synaptogenesis. These findings unveil key roles for homeostatic, AIS-associated microglia in regulating proper ChC axonal morphogenesis and synaptic connectivity in the neocortex.
Collapse
|
44
|
Tian T, Quintana-Urzainqui I, Kozić Z, Pratt T, Price DJ. Pax6 loss alters the morphological and electrophysiological development of mouse prethalamic neurons. Development 2022; 149:274738. [PMID: 35224626 PMCID: PMC8977098 DOI: 10.1242/dev.200052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022]
Abstract
Pax6 is a well-known regulator of early neuroepithelial progenitor development. Its constitutive loss has a particularly strong effect on the developing prethalamus, causing it to become extremely hypoplastic. To overcome this difficulty in studying the long-term consequences of Pax6 loss for prethalamic development, we used conditional mutagenesis to delete Pax6 at the onset of neurogenesis and studied the developmental potential of the mutant prethalamic neurons in vitro. We found that Pax6 loss affected their rates of neurite elongation, the location and length of their axon initial segments, and their electrophysiological properties. Our results broaden our understanding of the long-term consequences of Pax6 deletion in the developing mouse forebrain, suggesting that it can have cell-autonomous effects on the structural and functional development of some neurons. Summary: Pax6 impacts neurite extension, axon initial segment properties and the ability to fire normal action potentials in maturing neurons, revealing actions extending beyond those previously characterised in progenitors.
Collapse
Affiliation(s)
- Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Idoia Quintana-Urzainqui
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J. Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
45
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
46
|
Involvement of Paired Immunoglobulin-like Receptor B in Diabetes-Associated Cognitive Dysfunction Through Modulation of Axon Outgrowth and Dendritic Remodeling. Mol Neurobiol 2022; 59:2563-2579. [PMID: 35091963 DOI: 10.1007/s12035-021-02679-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Type 2 diabetic patients have high risk of developing cognitive dysfunction, in which neural structural plasticity has played a pivotal role. Paired immunoglobulin-like receptor B (PirB), a receptor mainly expressed in neurons, acts as a critical inhibitor of neurite outgrowth and neural plasticity. However, the role of PirB in type 2 diabetes-associated cognitive dysfunction remains unknown. In this study, learning and memory impairment was observed in 24-week-old db/db mice by performing Morris water maze task, and the number of synapses along with the length of postsynaptic density by transmission electron microscopy were reduced in the hippocampus of db/db mice. Furthermore, PirB expression in the hippocampus of db/db mice was significantly upregulated using western blotting and immunofluorescence analysis. In cultured hippocampal neurons, high glucose treatment reduced the length of the longest neurite as well as axon initial segment (AIS), whereas silencing PirB expression rescued high glucose-induced neurite outgrowth inhibition, but not AIS. Additionally, cognitive deficits, dendrite morphology defects, and synapse-related proteins loss in db/db mice were alleviated when PirB knockdown was performed by adeno-associated virus injection. In conclusion, PirB is involved in diabetes-associated cognitive dysfunction through modulation of axon outgrowth and dendritic remodeling, providing a potential therapeutic target for diabetes-associated cognitive dysfunction.
Collapse
|
47
|
Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:481-495. [PMID: 35034756 DOI: 10.1016/b978-0-12-819410-2.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Neuroscience, Albert Einstein Medical College, Bronx, NY, United States; Department of Psychiatry and Behavioral Sciences, Albert Einstein Medical College, Bronx, NY, United States.
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Usui N, Tian X, Harigai W, Togawa S, Utsunomiya R, Doi T, Miyoshi K, Shinoda K, Tanaka J, Shimada S, Katayama T, Yoshimura T. Length impairments of the axon initial segment in rodent models of attention-deficit hyperactivity disorder and autism spectrum disorder. Neurochem Int 2021; 153:105273. [PMID: 34971749 DOI: 10.1016/j.neuint.2021.105273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022]
Abstract
The axon initial segment (AIS) is a structural neuronal compartment of the proximal axon that plays key roles in sodium channel clustering, action potential initiation, and signal propagation of neuronal outputs. Mutations in constitutive genes of the AIS, such as ANK3, have been identified in patients with neurodevelopmental disorders. Nevertheless, morphological changes in the AIS in neurodevelopmental disorders have not been characterized. In this study, we investigated the length of the AIS in rodent models of attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We observed abnormalities in AIS length in both animal models. In ADHD model rodents, we observed shorter AIS length in layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC) and primary somatosensory barrel field (S1BF). Further, we observed shorter AIS length in S1BF L5 neurons. In ASD model mice, we observed shorter AIS length in L2/3 and L5 neurons of the S1BF. These results suggest that impairments in AIS length are common phenomena in neurodevelopmental disorders such as ADHD and ASD and may be conserved across species. Our findings provide novel insight into the potential contribution of the AIS to the pathophysiology and pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, 573-0022, Japan.
| | - Xiaoye Tian
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan
| | - Wakana Harigai
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan
| | - Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Ryo Utsunomiya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan
| | - Tomomi Doi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan
| | - Ko Miyoshi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, 573-0022, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
49
|
Gao Y, Kong L, Liu S, Liu K, Zhu J. Impact of Neurofascin on Chronic Inflammatory Demyelinating Polyneuropathy via Changing the Node of Ranvier Function: A Review. Front Mol Neurosci 2021; 14:779385. [PMID: 34975399 PMCID: PMC8716720 DOI: 10.3389/fnmol.2021.779385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
The effective conduction of action potential in the peripheral nervous system depends on the structural and functional integrity of the node of Ranvier and paranode. Neurofascin (NF) plays an important role in the conduction of action potential in a saltatory manner. Two subtypes of NF, NF186, and NF155, are involved in the structure of the node of Ranvier. In patients with chronic inflammatory demyelinating polyneuropathy (CIDP), anti-NF antibodies are produced when immunomodulatory dysfunction occurs, which interferes with the conduction of action potential and is considered the main pathogenic factor of CIDP. In this study, we describe the assembling mechanism and anatomical structure of the node of Ranvier and the necessary cell adhesion molecules for its physiological function. The main points of this study are that we summarized the recent studies on the role of anti-NF antibodies in the changes in the node of Ranvier function and its impact on clinical manifestations and analyzed the possible mechanisms underlying the pathogenesis of CIDP.
Collapse
Affiliation(s)
- Ying Gao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lingxin Kong
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
50
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|