1
|
Sakuma S, Mine J, Uchida Y, Kumagai A, Takadate Y, Tsunekuni R, Nishiura H, Miyazawa K. Long-term immune responses induced by low-dose infection with high pathogenicity avian influenza viruses can protect mallards from reinfection with a heterologous strain. Arch Virol 2025; 170:33. [PMID: 39779578 PMCID: PMC11711648 DOI: 10.1007/s00705-024-06209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season. Mallards were experimentally infected with H5N1 and H5N8 HPAIVs that were isolated recently in Japan and phylogenetically belong to different hemagglutinin groups (G2a, G2b, and G2d). All of these strains are more infectious to mallards than to chickens, and the infected mallards shed enough virus to infect others, regardless of whether they exhibited clinical signs. Serum antibodies to the homologous antigen, induced by a single infection with a low virus dose (10 times the 50% mallard infectious dose), were maintained at detectable levels for 84 days. Immunity at 84 days post-inoculation fully protected the mallards from a challenge with the homologous strain, as demonstrated by a lack of viral shedding, and antibody levels did not increase significantly in most of these birds. Protection against heterologous challenge was also observed despite undetectable levels of antibodies to the challenge strain. Our findings suggest that repeated infections with homologous and heterologous HPAIV strains do not occur frequently in individual wild mallards within a season, particularly at low viral doses, and the frequency with which they act as carriers may be limited.
Collapse
Affiliation(s)
- Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Asuka Kumagai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yoshihiro Takadate
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ryota Tsunekuni
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hayate Nishiura
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
2
|
Bordes L, Germeraad EA, Roose M, van Eijk NMHA, Engelsma M, van der Poel WHM, Vreman S, Beerens N. Experimental infection of chickens, Pekin ducks, Eurasian wigeons and Barnacle geese with two recent highly pathogenic avian influenza H5N1 clade 2.3.4.4b viruses. Emerg Microbes Infect 2024; 13:2399970. [PMID: 39221587 PMCID: PMC11395873 DOI: 10.1080/22221751.2024.2399970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Multiple genotypes of highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b viruses have caused epizootics in wild birds and poultry. The HPAI H5N1 genotype C virus caused a modest epizootic, whereas the occurrence of the HPAI H5N1 genotype AB virus in 2021 resulted in the largest avian influenza epizootic in Europe to date. Here we studied the pathogenicity of two HPAI H5N1 viruses by experimentally infecting chickens, Pekin ducks, Eurasian wigeons and Barnacle geese. Our study demonstrates that pathogenicity of the H5N1-2021-AB virus is lower in Pekin ducks, Eurasian wigeons and Barnacle geese compared to the H5N1-2020-C virus, whereas virus shedding was high for both viruses. After inoculation with H5N1-2021-C viral antigen expression was higher in the brain of Pekin ducks, Eurasian wigeons and Barnacle geese, which caused higher mortality compared to inoculation with H5N1-2021-AB virus. Subclinical infections occurred in Pekin ducks and Eurasian wigeons and mortality was reduced in Barnacle geese after inoculation with H5N1-2021-AB virus while H5N1-2020-C virus caused high morbidity and mortality in these species. This H5N1-2021-AB virus trait may have contributed to efficient spread of the virus in wild bird populations. Therefore, high mortality, virus shedding and long-lasting viral antigen expression found in Barnacle geese may have increased the risk for introduction into poultry.
Collapse
Affiliation(s)
- Luca Bordes
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Evelien A Germeraad
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Marit Roose
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Nadiah M H A van Eijk
- Department Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marc Engelsma
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Sandra Vreman
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| |
Collapse
|
3
|
Moatasim Y, Aboulhoda BE, Gomaa M, El Taweel A, Kutkat O, Kamel MN, El Sayes M, GabAllah M, Elkhrsawy A, AbdAllah H, Kandeil A, Ali MA, Kayali G, El-Shesheny R. Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models. PLoS One 2024; 19:e0312134. [PMID: 39471134 PMCID: PMC11521303 DOI: 10.1371/journal.pone.0312134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024] Open
Abstract
Since its first isolation from migratory birds in Egypt in 2016, highly pathogenic avian influenza (HPAI) H5N8 has caused several outbreaks among domestic poultry in various areas of the country affecting poultry health and production systems. However, the genetic and biological properties of the H5N8 HPAI viruses have not been fully elucidated yet. In this study, we aimed to monitor the evolution of circulating H5N8 viruses and identify the pathogenicity and mammalian adaptation in vitro and in vivo. Three H5N8 HPAI viruses were used in this study and were isolated in 2021-2022 from poultry and wild birds during our routine surveillance. RNA extracts were subjected to full genome sequencing. Genetic, phylogenetic, and antigenic analyses were performed to assess viral characteristics and similarities to previously isolated viruses. Phylogenetic analysis showed that the hemagglutinin genes of the three isolates belonged to clade 2.3.4.4b and grouped with the 2019 viruses from G3 with high similarity to Russian and European lineages. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, several mutations associated with increased virulence and polymerase activity in mammals were observed. Growth kinetics assays showed that the H5N8 isolate is capable of replicating efficiently in mammalian cells lines. In vivo studies were conducted in SPF chickens (White Leghorn), mice, and hamsters to compare the virological characteristics of the 2022 H5N8 isolates with previous H5N8 viruses isolated in 2016 from the first introduction. The H5N8 viruses caused lethal infection in all tested chickens and transmitted by direct contact. However, we showed that the 2016 H5N8 virus causes a higher mortality in chickens compared to 2022 H5N8 virus. Moreover, the 2022 virus can replicate efficiently in hamsters and mice without preadaptation causing systemic infection. These findings underscore the need for continued surveillance of H5 viruses to identify circulating strains, determine the commercial vaccine's effectiveness, and identify zoonotic potential.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Amany Elkhrsawy
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | | | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Gonnerman M, Leyson C, Sullivan JD, Pantin-Jackwood MJ, Spackman E, Mullinax JM, Prosser DJ. A systematic review of laboratory investigations into the pathogenesis of avian influenza viruses in wild avifauna of North America. Proc Biol Sci 2024; 291:20241845. [PMID: 39471857 PMCID: PMC11521597 DOI: 10.1098/rspb.2024.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
The lack of consolidated information regarding the response of wild bird species to infection with avian influenza virus (AIV) is a challenge to both conservation managers and researchers alike, with related sectors also impacted, such as public health and commercial poultry. Using two independent searches, we reviewed published literature for studies describing wild bird species experimentally infected with avian influenza to assess host species' relative susceptibility to AIVs. Additionally, we summarize broad-scale parameters for elements such as shedding duration and minimum infectious dose that can be used in transmission modelling efforts. Our synthesis shows that waterfowl (i.e. Anatidae) compose the vast majority of published AIV pathobiology studies, whereas gulls and passerines are less represented in research despite evidence that they also are susceptible and contribute to highly pathogenic avian influenza disease dynamics. This study represents the first comprehensive effort to compile available literature regarding the pathobiology of AIVs in all wild birds in over a decade. This database can now serve as a tool to all researchers, providing generalized estimates of pathobiology parameters for a variety of wild avian families and an opportunity to critically examine and assess what is known and identify where further insight is needed.
Collapse
Affiliation(s)
- Matthew Gonnerman
- Department of Environmental Science and Technology, University of Maryland, College Park, MD20742, USA
- Post-doctoral affiliate with the U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD20708, USA
| | - Christina Leyson
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA30602, USA
- Department of Microbiology and Immunology, School of Medicine, Emory University, Emory, GA30322, USA
| | - Jeffery D. Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD20708, USA
| | - Mary J. Pantin-Jackwood
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA30602, USA
| | - Erica Spackman
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA30602, USA
| | - Jennifer M. Mullinax
- Department of Environmental Science and Technology, University of Maryland, College Park, MD20742, USA
| | - Diann J. Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD20708, USA
| |
Collapse
|
5
|
Shemmings-Payne W, De Silva D, Warren CJ, Thomas S, Slomka MJ, Reid SM, James J, Banyard AC, Brown IH, Ward AI. Repeatability and reproducibility of hunter-harvest sampling for avian influenza virus surveillance in Great Britain. Res Vet Sci 2024; 173:105279. [PMID: 38704977 DOI: 10.1016/j.rvsc.2024.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Emerging pathogens can threaten human and animal health, necessitating reliable surveillance schemes to enable preparedness. We evaluated the repeatability and reproducibility of a method developed previously during a single year at one study site. Hunter-harvested ducks and geese were sampled for avian influenza virus at three discrete locations in the UK. H5N1 highly pathogenic avian influenza (HPAIV) was detected in four species (mallard [Anas platyrhynchos], Eurasian teal [Anas crecca], Eurasian wigeon [Mareca penelope] and pink-footed goose [Anser brachyrhynchus]) across all three locations and two non-HPAIV H5N1, influenza A positive detections were made from a mallard and Eurasian wigeon at two locations. Virus was detected within 1-to-4 days of sampling at every location. Application of rapid diagnostic methods to samples collected from hunter-harvested waterfowl offers potential as an early warning system for the surveillance and monitoring of emerging and existing strains of avian influenza A viruses in key avian species.
Collapse
Affiliation(s)
| | - Dilhani De Silva
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK
| | - Caroline J Warren
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK
| | - Saumya Thomas
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK
| | - Marek J Slomka
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK
| | - Scott M Reid
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK
| | - Joe James
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK; WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone KT15 3NB, UK
| | - Ashley C Banyard
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK; WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone KT15 3NB, UK
| | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, New Haw, Surrey KT15 3NB, UK; WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone KT15 3NB, UK
| | | |
Collapse
|
6
|
Lee SH, Jeong S, Cho AY, Kim TH, Choi YJ, Lee H, Song CS, Nahm SS, Swayne DE, Lee DH. Caught Right on the Spot: Isolation and Characterization of Clade 2.3.4.4b H5N8 High Pathogenicity Avian Influenza Virus from a Common Pochard ( Aythya ferina) Being Attacked by a Peregrine Falcon ( Falco peregrinus). Avian Dis 2024; 68:72-79. [PMID: 38687111 DOI: 10.1637/aviandiseases-d-23-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 05/02/2024]
Abstract
We isolated a high pathogenicity avian influenza (HPAI) virus from a common pochard (Aythya ferina) that was being attacked by a bird of prey in South Korea in December 2020. Genetic analyses indicated that the isolate was closely related to the clade 2.3.4.4b H5N8 HPAI viruses found in South Korea and Japan during the winter season of 2020-2021. The histopathological examination revealed multifocal necrotizing inflammation in the liver, kidney, and spleen. Viral antigens were detected in the liver, kidney, spleen, trachea, intestine, and pancreas, indicating the HPAI virus caused a systemic infection. The presence of immunoreactivity for the viral antigen was observed in the cells involved in multifocal necrotic inflammation. Notably, epitheliotropic-positive patterns were identified in the epithelial cells of the trachea, mucosal epithelium of the intestine, and ductular epithelium of the pancreas. These findings provide direct evidence supporting the possibility of HPAI transmission from infected waterfowl to predators.
Collapse
Affiliation(s)
- Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Sol Jeong
- National Institute of Wildlife Disease Control and Prevention (NIWDC), 1, Songam-gil, Gwangsan-gu, Gwangju, Republic of Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Tae-Hyeon Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yun-Jeong Choi
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Heesu Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Seoul, Republic of Korea
| | - Sang-Soep Nahm
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | - Dong-Hun Lee
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Seoul, Republic of Korea,
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Xie R, Edwards KM, Wille M, Wei X, Wong SS, Zanin M, El-Shesheny R, Ducatez M, Poon LLM, Kayali G, Webby RJ, Dhanasekaran V. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023; 622:810-817. [PMID: 37853121 DOI: 10.1038/s41586-023-06631-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sook-San Wong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mariette Ducatez
- IHAP, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Soda K, Tomioka Y, Usui T, Ozaki H, Ito H, Nagai Y, Yamamoto N, Okamatsu M, Isoda N, Kajihara M, Sakoda Y, Takada A, Ito T. Susceptibility of common dabbling and diving duck species to clade 2.3.2.1 H5N1 high pathogenicity avian influenza virus: an experimental infection study. J Vet Med Sci 2023; 85:942-949. [PMID: 37495526 PMCID: PMC10539830 DOI: 10.1292/jvms.23-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
In the winter of 2010-2011, Japan experienced a large outbreak of infections caused by clade 2.3.2.1 H5N1 high pathogenicity avian influenza viruses (HPAIVs) in wild birds. Interestingly, many tufted ducks (Aythya fuligula), which are migratory diving ducks, succumbed to the infection, whereas only one infection case was reported in migratory dabbling duck species, the major natural hosts of the influenza A virus, during the outbreak. To assess whether the susceptibility of each duck species to HPAIVs was correlated with the number of cases, tufted duck and dabbling duck species (Eurasian wigeon, Mareca penelope; mallard, Anas platyrhynchos; Northern pintail, Anas acuta) were intranasally inoculated with A/Mandarin duck/Miyazaki/22M807-1/2011 (H5N1), an index clade 2.3.2.1 virus previously used for experimental infection studies in various bird species. All ducks observed for 10 days post-inoculation (dpi) mostly shed the virus via the oral route and survived. The tufted ducks shed a higher titer of the virus than the other dabbling duck species, and one of them showed apparent neurological symptoms after 7 dpi, which were accompanied by eye lesions. No clinical symptoms were observed in the dabbling ducks, although systemic infection and viremia were observed in some of them sacrificed at 3 dpi. These results suggest that the susceptibility of clade 2.3.2.1 HPAIVs might differ by duck species.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yukiko Tomioka
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tatsufumi Usui
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroichi Ozaki
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yasuko Nagai
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoki Yamamoto
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Present address: Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
9
|
Teitelbaum CS, Masto NM, Sullivan JD, Keever AC, Poulson RL, Carter DL, Blake-Bradshaw AG, Highway CJ, Feddersen JC, Hagy HM, Gerhold RW, Cohen BS, Prosser DJ. North American wintering mallards infected with highly pathogenic avian influenza show few signs of altered local or migratory movements. Sci Rep 2023; 13:14473. [PMID: 37660131 PMCID: PMC10475108 DOI: 10.1038/s41598-023-40921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. Despite its prominence and economic impacts, we know relatively little about how HPAI spreads in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement patterns of infected and uninfected birds and found no clear differences; infected birds moved just as much during winter, migrated slightly earlier, and migrated similar distances as uninfected birds. Infected mallards also contacted and shared space with uninfected birds while on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or movement behavior in mallards infected at this location during winter; if these results are confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds could contribute to the maintenance and dispersal of HPAI in North America. Further research on more species across larger geographic areas and multiple seasons would help clarify potential impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals.
Collapse
Affiliation(s)
- Claire S Teitelbaum
- Akima Systems Engineering, Herndon, VA, USA.
- Contractor to U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
- Bay Area Environmental Research Institute and NASA Ames Research Center, Moffett Field, CA, USA.
| | - Nicholas M Masto
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Jeffery D Sullivan
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| | - Allison C Keever
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Deborah L Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Cory J Highway
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | | | - Heath M Hagy
- U.S. Fish and Wildlife Service, National Wildlife Refuge System, Stanton, TN, USA
| | - Richard W Gerhold
- University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Bradley S Cohen
- College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
| | - Diann J Prosser
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| |
Collapse
|
10
|
El-Shall NA, Abd El Naby WSH, Hussein EGS, Yonis AE, Sedeik ME. Pathogenicity of H5N8 avian influenza virus in chickens and in duck breeds and the role of MX1 and IFN-α in infection outcome and transmission to contact birds. Comp Immunol Microbiol Infect Dis 2023; 100:102039. [PMID: 37591150 DOI: 10.1016/j.cimid.2023.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
This study examined the pathogenicity, immunogenicity, and transmission potential of the H5N8 HPAI clade 2.3.4.4b virus in three breeds of ducks and in broiler chickens. Chickens, Muscovy, Pekin, and Mallard ducks (n = 10) received a dose of 6 log10 EID50 of HPAIV H5N8 directly. Nine contact chickens were introduced to each group on the day of infection. All infected chickens died, with MDT of 7.6 days. Muscovy and Pekin ducks died by 11.1% and 10%, respectively, with MDTs of 7 and 6 days. No Mallards died but showed more severe clinical disease than Pekin ducks. Mallards had the highest MX1 gene expression in the lung and spleen and IFN-α in the spleen. MX1 expression levels were lower in the spleen and lung of Pekin ducks, in the spleen of chickens and in the lung of Muscovy ducks than in noninfected controls. However, viral shedding was higher in ducks than in chickens and was highest in Mallards. 66.7% of chickens placed in contact with infected chickens died and 77.8% of in-contact chickens to infected three duck breeds died. In conclusion, there was a diversity in sensitivity and immunogenicity for HPAIV H5N8 among duck breeds, resulting in diverse infection outcomes and transmissibility to contacts. This study provides duck/chicken interface models for HPAIV transmission to poultry.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Walaa S H Abd El Naby
- Genetics and Genetic Engineering in the Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Eid G S Hussein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Damanhour Branch, Animal Health Research Institute, Agriculture Research Center, Egypt
| | - Ahlam E Yonis
- Biotechnology Department, Reference Laboratory for Veterinary Quality Control on Poultry Production ( RLQP), Damanhour branch, Animal health research institute (AHRI), Agriculture Research Center (ARC), Damanhour, 22511, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| |
Collapse
|
11
|
Tanikawa T, Fujii K, Sugie Y, Tsunekuni R. Ubiquitin-specific protease 18 in mallard (Anas platyrhynchos) interferes with type I interferon-mediated inhibition of high pathogenicity avian influenza virus replication. Virology 2022; 577:32-42. [PMID: 36270121 DOI: 10.1016/j.virol.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
Abstract
Ubiquitin-specific protease 18 (USP18) is a well-established innate immune factor in vertebrates. Although Anatidae birds rarely exhibit distinctive clinical signs during high pathogenicity avian influenza virus (HPAIV) infections, some virus strains cause deadly diseases. Here, we investigated the association between USP18 expression and pathogenicity during HPAIV infections in the Anatidae mallard Anas platyrhynchos. First, mallard USP18 gene (duUSP18) was cloned, and its transcriptional variants, with three different open reading frames, were characterized. Experimental infections with two different pathogenic strains, Miyazaki and Takeo, demonstrated an early induction of duUSP18 mRNA upon HPAIV infection in a bird's whole body in vivo and in primary duck cells in vitro, which was positively associated with pathogenicity in mallards. In addition, duUSP18 knockdown under interferon-β stimulation attenuated viral replication, regardless of pathogenicity. These results indicate a role for duUSP18 in favoring viral replication and virus resistance to type I interferon immunity in mallards.
Collapse
Affiliation(s)
- Taichiro Tanikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Kotaro Fujii
- Toyama Prefectural Tobu Livestock Hygiene Service Center, 46 Mizuhashi-kanao-shin, Toyama, 939-3536, Japan.
| | - Yuji Sugie
- Shiga Prefectural Livestock Hygiene Service Center, 226-1, Nishihongou, Oumihachiman, Shiga, 523-0813, Japan.
| | - Ryota Tsunekuni
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
12
|
Caliendo V, Leijten L, van de Bildt MWG, Poen MJ, Kok A, Bestebroer T, Richard M, Fouchier RAM, Kuiken T. Long-Term Protective Effect of Serial Infections with H5N8 Highly Pathogenic Avian Influenza Virus in Wild Ducks. J Virol 2022; 96:e0123322. [PMID: 36098512 PMCID: PMC9517725 DOI: 10.1128/jvi.01233-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of the Goose/Guangdong (Gs/Gd) lineage are an emerging threat to wild birds. In the 2016-2017 H5N8 outbreak, unexplained variability was observed in susceptible species, with some reports of infected birds dying in high numbers and other reports of apparently subclinical infections. This experimental study was devised to test the hypothesis that previous infection with a less-virulent HPAIV (i.e., 2014 H5N8) provides long-term immunity against subsequent infection with a more-virulent HPAIV (i.e., 2016 H5N8). Therefore, two species of wild ducks-the more-susceptible tufted duck (Aythya fuligula) and the more-resistant mallard (Anas platyrhynchos)-were serially inoculated, first with 2014 H5N8 and after 9 months with 2016 H5N8. For both species, a control group of birds was first sham inoculated and after 9 months inoculated with 2016 H5N8. Subsequent infection with the more-virulent 2016 H5N8 caused no clinical signs in tufted ducks that had previously been infected with 2014 H5N8 (n = 6) but caused one death in tufted ducks that had been sham inoculated (n = 7). In mallards, 2016 H5N8 infection caused significant body weight loss in previously sham-inoculated birds (n = 8) but not in previously infected birds (n = 7). IMPORTANCE This study showed that ducks infected with a less-virulent HPAIV developed immunity that was protective against a subsequent infection with a more-virulent HPAIV 9 months later. Following 2014 H5N8 infection, the proportion of birds with detectable influenza nucleoprotein antibody declined from 100% (8/8) in tufted ducks and 78% (7/9) in mallards after 1 month to 33% (2/6) in tufted ducks and 29% (2/7) in mallards after 9 months. This finding helps predict the expected impact that an HPAIV outbreak may have on wild bird populations, depending on whether they are immunologically naive or have survived previous infection with HPAIV.
Collapse
Affiliation(s)
- Valentina Caliendo
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lonneke Leijten
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Marjolein J. Poen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adinda Kok
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Tanikawa T, Fujii K, Sugie Y, Tsunekuni R, Nakayama M, Kobayashi S. Comparative susceptibility of mallard (Anas platyrhynchos) to infection with high pathogenicity avian influenza virus strains (Gs/Gd lineage) isolated in Japan in 2004–2017. Vet Microbiol 2022; 272:109496. [DOI: 10.1016/j.vetmic.2022.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
|
14
|
Vreman S, Bergervoet SA, Zwart R, Stockhofe-Zurwieden N, Beerens N. Tissue tropism and pathology of highly pathogenic avian influenza H5N6 virus in chickens and Pekin ducks. Res Vet Sci 2022; 146:1-4. [DOI: 10.1016/j.rvsc.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/15/2022]
|
15
|
de Vries EM, Cogan NOI, Gubala AJ, Mee PT, O'Riley KJ, Rodoni BC, Lynch SE. Rapid, in-field deployable, avian influenza virus haemagglutinin characterisation tool using MinION technology. Sci Rep 2022; 12:11886. [PMID: 35831457 PMCID: PMC9279447 DOI: 10.1038/s41598-022-16048-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.
Collapse
Affiliation(s)
- Ellen M de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aneta J Gubala
- Land Division, Defence Science & Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Peter T Mee
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Kim J O'Riley
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Stacey E Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
16
|
Caliendo V, Lewis NS, Pohlmann A, Baillie SR, Banyard AC, Beer M, Brown IH, Fouchier RAM, Hansen RDE, Lameris TK, Lang AS, Laurendeau S, Lung O, Robertson G, van der Jeugd H, Alkie TN, Thorup K, van Toor ML, Waldenström J, Yason C, Kuiken T, Berhane Y. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Sci Rep 2022; 12:11729. [PMID: 35821511 PMCID: PMC9276711 DOI: 10.1038/s41598-022-13447-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe, Africa and North America but are currently absent from South America and Oceania. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John's, Newfoundland and Labrador, Canada. Our phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Our analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration.
Collapse
Affiliation(s)
- V Caliendo
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N S Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
- Animal and Plant Health Agency, Addlestone, UK
| | - A Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - S R Baillie
- British Trust for Ornithology, Norfolk, UK
- European Union for Bird Ringing C/O British Trust for Ornithology, Norfolk, UK
| | - A C Banyard
- Animal and Plant Health Agency, Addlestone, UK
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - I H Brown
- Animal and Plant Health Agency, Addlestone, UK
| | - R A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - T K Lameris
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - A S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| | - S Laurendeau
- Canadian Food Inspection Agency, Winnipeg, Canada
| | - O Lung
- Canadian Food Inspection Agency, Winnipeg, Canada
| | - G Robertson
- Environment and Climate Change Canada, Mount Pearl, Canada
| | - H van der Jeugd
- Vogeltrekstation-Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - T N Alkie
- Canadian Food Inspection Agency, Winnipeg, Canada
| | - K Thorup
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - C Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - T Kuiken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Y Berhane
- Canadian Food Inspection Agency, Winnipeg, Canada
| |
Collapse
|
17
|
Lean FZ, Vitores AG, Reid SM, Banyard AC, Brown IH, Núñez A, Hansen RD. Gross pathology of high pathogenicity avian influenza virus H5N1 2021-2022 epizootic in naturally infected birds in the United Kingdom. One Health 2022; 14:100392. [PMID: 35686147 PMCID: PMC9171523 DOI: 10.1016/j.onehlt.2022.100392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/18/2022] Open
Abstract
High pathogenicity avian influenza virus (HPAIV) clade 2.3.4.4b has re-emerged in the United Kingdom in 2021-2022 winter season, with over 90 cases of HPAIV detected among poultry and captive birds in England, Scotland, Wales, and Northern Ireland. Globally, HPAIV H5N1 has also had a wide geographical dispersion, causing outbreaks in Europe, North America, Asia, and Africa, impacting on socioeconomic and wildlife conservation. It is important to raise awareness of the gross pathological features of HPAIV and subsequently aid disease investigation through definition of pathological indicators following natural infection. In this study, we report on the gross pathology of HPAI H5N1 in poultry species (chicken, turkey, pheasant, guineafowl, duck, goose), and captive or wild birds (mute swan, tufted duck, jackdaw, peahen, white-tailed eagle) that tested positive between October 2021 and February 2022. Pancreatic and splenic necrosis were the common pathological findings in both Galliformes and Anseriformes. In addition to the more severe lesions documented in Galliformes, we also noted increased detection of pathological changes in a broader range of Anseriformes particularly in domestic ducks, in contrast to those reported in previous seasons with other H5Nx HPAIV subtypes. A continual effort to characterise the pathological impact of the disease is necessary to update on the presentation of HPAIV for both domestic/captive and wild birds whilst guiding early presumptive diagnosis.
Collapse
Affiliation(s)
- Fabian Z.X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Ana Gómez Vitores
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Scott M. Reid
- Virology Department, APHA, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Ashley C. Banyard
- Virology Department, APHA, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
- OIE/FAO International Reference Laboratory for Avian Influenza, APHA, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ian H. Brown
- Virology Department, APHA, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
- OIE/FAO International Reference Laboratory for Avian Influenza, APHA, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Rowena D.E. Hansen
- Virology Department, APHA, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| |
Collapse
|
18
|
HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS (H5N8) OUTBREAK IN A WILD BIRD RESCUE CENTER, THE NETHERLANDS: CONSEQUENCES AND RECOMMENDATIONS. J Zoo Wildl Med 2022; 53:41-49. [DOI: 10.1638/2021-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
|
19
|
Caliendo V, Leijten L, van de Bildt M, Germeraad E, Fouchier RAM, Beerens N, Kuiken T. Tropism of Highly Pathogenic Avian Influenza H5 Viruses from the 2020/2021 Epizootic in Wild Ducks and Geese. Viruses 2022; 14:280. [PMID: 35215873 PMCID: PMC8880460 DOI: 10.3390/v14020280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks have become increasingly frequent in wild bird populations and have caused mass mortality in many wild bird species. The 2020/2021 epizootic was the largest and most deadly ever reported in Europe, and many new bird species tested positive for HPAI virus for the first time. This study investigated the tropism of HPAI virus in wild birds. We tested the pattern of virus attachment of 2020 H5N8 virus to intestinal and respiratory tissues of key bird species; and characterized pathology of naturally infected Eurasian wigeons (Mareca penelope) and barnacle geese (Branta leucopsis). This study determined that 2020 H5N8 virus had a high level of attachment to the intestinal epithelium (enterotropism) of dabbling ducks and geese and retained attachment to airway epithelium (respirotropism). Natural HPAI 2020 H5 virus infection in Eurasian wigeons and barnacle geese also showed a high level of neurotropism, as both species presented with brain lesions that co-localized with virus antigen expression. We concluded that the combination of respirotropism, neurotropism, and possibly enterotropism, contributed to the successful adaptation of 2020/2021 HPAI H5 viruses to wild waterbird populations.
Collapse
Affiliation(s)
- Valentina Caliendo
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (L.L.); (M.v.d.B.); (R.A.M.F.); (T.K.)
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (L.L.); (M.v.d.B.); (R.A.M.F.); (T.K.)
| | - Marco van de Bildt
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (L.L.); (M.v.d.B.); (R.A.M.F.); (T.K.)
| | - Evelien Germeraad
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (E.G.); (N.B.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (L.L.); (M.v.d.B.); (R.A.M.F.); (T.K.)
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (E.G.); (N.B.)
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (L.L.); (M.v.d.B.); (R.A.M.F.); (T.K.)
| |
Collapse
|
20
|
Comparative susceptibility of the common teal (Anas crecca) to infection with high pathogenic avian influenza virus strains isolated in Japan in 2004-2017. Vet Microbiol 2021; 263:109266. [PMID: 34739966 DOI: 10.1016/j.vetmic.2021.109266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
High pathogenic avian influenza viruses (HPAIVs) of the H5 subtype have spread in poultry and wild birds worldwide. Current studies have highlighted the association between the migration of wild birds and the spread of HPAIVs. However, virological studies examining responsible species of migratory birds to spread HPAIVs are limited. In Japan, the common teal (Anas crecca) arrives in great numbers for overwintering every autumn-spring season; therefore, we performed experimental infection using six H5 HPAIVs isolated in past outbreaks in Japan (A/chicken/Yamaguchi/7/2004 (H5N1), A/whooper swan/Akita/1/2008 (H5N1), A/mandarin duck/Miyazaki/22M-765/2011 (H5N1), A/duck/Chiba/26-372-48/2014 (H5N8), A/duck/Hyogo/1/2016 (H5N6) and A/mute swan/Shimane/3211A002/2017 (H5N6)) to evaluate the susceptibility of the species to HPAIV infection. The results illustrated that most birds in all experimental groups were infected by the strains, and they shed viruses for a prolonged period, in trachea than cloaca, without displaying distinctive clinical signs. In addition, comparative analysis using calculation value of total viral shedding during the experiment revealed that the birds shed viruses at above a certain level regardless of the differences of strains. These results suggested that the common teal could be a migratory bird species that disseminates viruses in the environment, thereby influencing HPAI outbreaks in wild birds in Japan.
Collapse
|
21
|
Gobbo F, Fornasiero D, De Marco MA, Zecchin B, Mulatti P, Delogu M, Terregino C. Active Surveillance for Highly Pathogenic Avian Influenza Viruses in Wintering Waterbirds in Northeast Italy, 2020-2021. Microorganisms 2021; 9:2188. [PMID: 34835314 PMCID: PMC8621713 DOI: 10.3390/microorganisms9112188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/30/2022] Open
Abstract
The increasing involvement of wild waterfowl in H5 Highly Pathogenic Avian Influenza Virus (HPAIV) circulation continues to pose a threat to animal and public health worldwide. In winter 2020-2021, two field surveillance activities were carried out on a weekly basis, through virological and serological analyses, in 823 hunted and 521 trapped migratory aquatic birds in northeast Italy. Sixty Eurasian teals were recaptured several times, which allowed us to follow the progression of the HPAI H5 infection in naturally infected wild waterfowl. Oropharyngeal, cloacal, and feather swabs (OS, CS and FS) were collected from each duck and tested by real time rRT-PCR Type A influenza. The identified viruses were characterized and pathotyped by sequencing. Several viruses belonging to three different HPAI H5 subtypes were detected: H5N8, H5N5, and H5N1. High prevalence of infection with HPAI H5 clade 2.3.4.4b during November-December 2020 (up to 27.1%) was observed in captured Eurasian teals, while infection rates in hunted dabbling ducks, mainly Eurasian wigeons, showed the highest prevalence of infection in November 2020 (8.9%) and January 2021 (10.2%). All HPAI positive birds were also clinically healthy when recaptured weeks apart. The OS and FS showed the highest detection efficiency of HPAIV. Our results highlight that HPAI passive surveillance should be complemented by a targeted active surveillance to more efficiently detect novel HPAI viruses.
Collapse
Affiliation(s)
- Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.)
| | - Diletta Fornasiero
- Veterinary Epidemiology Unit, Laboratory of Epidemiological Surveillance and Veterinary Legislation, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (D.F.); (P.M.)
| | | | - Bianca Zecchin
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.)
| | - Paolo Mulatti
- Veterinary Epidemiology Unit, Laboratory of Epidemiological Surveillance and Veterinary Legislation, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (D.F.); (P.M.)
| | - Mauro Delogu
- Wildlife and Exotic Animal Service, Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy;
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.)
| |
Collapse
|
22
|
Multiple Gene Segments Are Associated with Enhanced Virulence of Clade 2.3.4.4 H5N8 Highly Pathogenic Avian Influenza Virus in Mallards. J Virol 2021; 95:e0095521. [PMID: 34232725 DOI: 10.1128/jvi.00955-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses from the H5Nx Goose/Guangdong/96 lineage continue to cause outbreaks in domestic and wild bird populations. Two distinct genetic groups of H5N8 HPAI viruses, hemagglutinin (HA) clades 2.3.4.4A and 2.3.4.4B, caused intercontinental outbreaks in 2014 to 2015 and 2016 to 2017, respectively. Experimental infections using viruses from these outbreaks demonstrated a marked difference in virulence in mallards, with the H5N8 virus from 2014 causing mild clinical disease and the 2016 H5N8 virus causing high mortality. To assess which gene segments are associated with enhanced virulence of H5N8 HPAI viruses in mallards, we generated reassortant viruses with 2014 and 2016 viruses. For single-segment reassortants in the genetic backbone of the 2016 virus, pathogenesis experiments in mallards revealed that morbidity and mortality were reduced for all eight single-segment reassortants compared to the parental 2016 virus, with significant reductions in mortality observed with the polymerase basic protein 2 (PB2), nucleoprotein (NP), and matrix (M) reassortants. No differences in morbidity and mortality were observed with reassortants that either have the polymerase complex segments or the HA and neuraminidase (NA) segments of the 2016 virus in the genetic backbone of the 2014 virus. In vitro assays showed that the NP and polymerase acidic (PA) segments of the 2014 virus lowered polymerase activity when combined with the polymerase complex segments of the 2016 virus. Furthermore, the M segment of the 2016 H5N8 virus was linked to filamentous virion morphology. Phylogenetic analyses demonstrated that gene segments related to the more virulent 2016 H5N8 virus have persisted in the contemporary H5Nx HPAI gene pool until 2020. IMPORTANCE Outbreaks of H5Nx HPAI viruses from the goose/Guangdong/96 lineage continue to occur in many countries and have resulted in substantial impact on wild birds and poultry. Epidemiological evidence has shown that wild waterfowl play a major role in the spread of these viruses. While HPAI virus infection in gallinaceous species causes high mortality, a wide range of disease outcomes has been observed in waterfowl species. In this study, we examined which gene segments contribute to severe disease in mallards infected with H5N8 HPAI viruses. No virus gene was solely responsible for attenuating the high virulence of a 2016 H5N8 virus, but the PB2, NP, and M segments significantly reduced mortality. The findings herein advance our knowledge on the pathobiology of avian influenza viruses in waterfowl and have potential implications on the ecology and epidemiology of H5Nx HPAI in wild bird populations.
Collapse
|
23
|
Beerens N, Germeraad EA, Venema S, Verheij E, Pritz-Verschuren SBE, Gonzales JL. Comparative pathogenicity and environmental transmission of recent highly pathogenic avian influenza H5 viruses. Emerg Microbes Infect 2021; 10:97-108. [PMID: 33350337 PMCID: PMC7832006 DOI: 10.1080/22221751.2020.1868274] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strategies to control spread of highly pathogenic avian influenza (HPAI) viruses by wild birds appear limited, hence timely characterization of novel viruses is important to mitigate the risk for the poultry sector and human health. In this study we characterize three recent H5-clade 2.3.4.4 viruses, the H5N8-2014 group A virus and the H5N8-2016 and H5N6-2017 group B viruses. The pathogenicity of the three viruses for chickens, Pekin ducks and Eurasian wigeons was compared. The three viruses were highly pathogenic for chickens, but the two H5N8 viruses caused no to mild clinical symptoms in both duck species. The highest pathogenicity for duck species was observed for the most recent H5N6-2017 virus. For both duck species, virus shedding from the cloaca was higher after infection with group B viruses compared to the H5N8-2014 group A virus. Higher cloacal virus shedding of wild ducks may increase transmission between wild birds and poultry. Environmental transmission of H5N8-2016 virus to chickens was studied, which showed that chickens are efficiently infected by (fecal) contaminated water. These results suggest that pathogenicity of HPAI H5 viruses and virus shedding for ducks is evolving, which may have implications for the risk of introduction of these viruses into the poultry sector.
Collapse
Affiliation(s)
- Nancy Beerens
- Wageningen University and Research - Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Evelien A Germeraad
- Wageningen University and Research - Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Sandra Venema
- Wageningen University and Research - Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Eline Verheij
- Wageningen University and Research - Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Jose L Gonzales
- Wageningen University and Research - Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
24
|
Lean FZX, Núñez A, Banyard AC, Reid SM, Brown IH, Hansen RDE. Gross pathology associated with highly pathogenic avian influenza H5N8 and H5N1 in naturally infected birds in the UK (2020-2021). Vet Rec 2021; 190:e731. [PMID: 34310721 DOI: 10.1002/vetr.731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Multiple outbreaks with highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b viruses, including H5N8 and H5N1, have occurred in the United Kingdom, as well as in other European countries, since late 2020. METHODS This report describes the pathology among poultry species (chickens, turkeys, ducks, and pheasants) and captive birds (Black Swans, a whistling duck and peregrine falcons) naturally infected with HPAIV from 22 cases of HPAIV H5N8 and two cases of HPAIV H5N1 outbreaks investigated between October 2020 and April 2021. RESULTS On gross examination, pancreatic necrosis was easily identified and most commonly observed in galliformes infected with both subtypes of HPAIV but rarely in anseriformes. In addition, splenic necrosis was also frequently observed in chickens and turkeys infected with HPAIV H5N8. Other less common lesions included cardiac petechiae, serosal haemorrhages and ascites in a variety of species. CONCLUSION Given the widespread dissemination of HPAIV infection in susceptible avian species during autumn/winter 2020-2021, these data, when evaluated along with clinical information, is a valuable first step for both veterinarians and field services to evaluate gross pathology at post-mortem to support the diagnosis of HPAIV infection.
Collapse
Affiliation(s)
- Fabian Z X Lean
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Rowena D E Hansen
- Department of Virology, Animal and Plant Health Agency (APHA), Addlestone, Surrey, UK
| |
Collapse
|
25
|
Landmann M, Scheibner D, Graaf A, Gischke M, Koethe S, Fatola OI, Raddatz B, Mettenleiter TC, Beer M, Grund C, Harder T, Abdelwhab EM, Ulrich R. A Semiquantitative Scoring System for Histopathological and Immunohistochemical Assessment of Lesions and Tissue Tropism in Avian Influenza. Viruses 2021; 13:v13050868. [PMID: 34065126 PMCID: PMC8151536 DOI: 10.3390/v13050868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
The main findings of the post-mortem examination of poultry infected with highly pathogenic avian influenza viruses (HPAIV) include necrotizing inflammation and viral antigen in multiple organs. The lesion profile displays marked variability, depending on viral subtype, strain, and host species. Therefore, in this study, a semiquantitative scoring system was developed to compare histopathological findings across a wide range of study conditions. Briefly, the severity of necrotizing lesions in brain, heart, lung, liver, kidney, pancreas, and/or lymphocytic depletion in the spleen is scored on an ordinal four-step scale (0 = unchanged, 1 = mild, 2 = moderate, 3 = severe), and the distribution of the viral antigen in parenchymal and endothelial cells is evaluated on a four-step scale (0 = none, 1 = focal, 2 = multifocal, 3 = diffuse). These scores are used for a meta-analysis of experimental infections with H7N7 and H5N8 (clade 2.3.4.4b) HPAIV in chickens, turkeys, and ducks. The meta-analysis highlights the rather unique endotheliotropism of these HPAIV in chickens and a more severe necrotizing encephalitis in H7N7-HPAIV-infected turkeys. In conclusion, the proposed scoring system can be used to condensate HPAIV-typical pathohistological findings into semiquantitative data, thus enabling systematic phenotyping of virus strains and their tissue tropism.
Collapse
Affiliation(s)
- Maria Landmann
- Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany; (M.L.); (B.R.)
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Olanrewaju I. Fatola
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Barbara Raddatz
- Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany; (M.L.); (B.R.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany; (M.L.); (B.R.)
- Correspondence: ; Tel.: +49-341-973-8270
| |
Collapse
|
26
|
Genetic Characteristics of Avian Influenza Virus Isolated from Wild Birds in South Korea, 2019-2020. Viruses 2021; 13:v13030381. [PMID: 33673635 PMCID: PMC7997295 DOI: 10.3390/v13030381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Wild aquatic birds, a natural reservoir of avian influenza viruses (AIVs), transmit AIVs to poultry farms, causing huge economic losses. Therefore, the prevalence and genetic characteristics of AIVs isolated from wild birds in South Korea from October 2019 to March 2020 were investigated and analyzed. Fresh avian fecal samples (3256) were collected by active monitoring of 11 wild bird habitats. Twenty-eight AIVs were isolated. Seven HA and eight NA subtypes were identified. All AIV hosts were Anseriformes species. The HA cleavage site of 20 representative AIVs was encoded by non-multi-basic amino acid sequences. Phylogenetic analysis of the eight segment genes of the AIVs showed that most genes clustered within the Eurasian lineage. However, the HA gene of H10 viruses and NS gene of four viruses clustered within the American lineage, indicating intercontinental reassortment of AIVs. Representative viruses likely to infect mammals were selected and evaluated for pathogenicity in mice. JB21-58 (H5N3), JB42-93 (H9N2), and JB32-81 (H11N2) were isolated from the lungs, but JB31-69 (H11N9) was not isolated from the lungs until the end of the experiment at 14 dpi. None of infected mice showed clinical sign and histopathological change in the lung. In addition, viral antigens were not detected in lungs of all mice at 14 dpi. These data suggest that LPAIVs derived from wild birds are unlikely to be transmitted to mammals. However, because LPAIVs can reportedly infect mammals, including humans, continuous surveillance and monitoring of AIVs are necessary, despite their low pathogenicity.
Collapse
|
27
|
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021; 13:212. [PMID: 33573231 PMCID: PMC7912471 DOI: 10.3390/v13020212] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks-in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996-have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.
Collapse
Affiliation(s)
- Josanne H. Verhagen
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
28
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Highly Pathogenic Avian Influenza Clade 2.3.4.4b Subtype H5N8 Virus Isolated from Mandarin Duck in South Korea, 2020. Viruses 2020; 12:v12121389. [PMID: 33291548 PMCID: PMC7761861 DOI: 10.3390/v12121389] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
In October 2020, a highly pathogenic avian influenza (HPAI) subtype H5N8 virus was identified from a fecal sample of a wild mandarin duck (Aix galericulata) in South Korea. We sequenced all eight genome segments of the virus, designated as A/Mandarin duck/Korea/K20-551-4/2020(H5N8), and conducted genetic characterization and comparative phylogenetic analysis to track its origin. Genome sequencing and phylogenetic analysis show that the hemagglutinin gene belongs to H5 clade 2.3.4.4 subgroup B. All genes share high levels of nucleotide identity with H5N8 HPAI viruses identified from Europe during early 2020. Enhanced active surveillance in wild and domestic birds is needed to monitor the introduction and spread of HPAI via wild birds and to inform the design of improved prevention and control strategies.
Collapse
|
30
|
Luczo JM, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in surf scoters (Melanitta perspicillata). BMC Vet Res 2020; 16:351. [PMID: 32967673 PMCID: PMC7513502 DOI: 10.1186/s12917-020-02579-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aquatic waterfowl, particularly those in the order Anseriformes and Charadriiformes, are the ecological reservoir of avian influenza viruses (AIVs). Dabbling ducks play a recognized role in the maintenance and transmission of AIVs. Furthermore, the pathogenesis of highly pathogenic AIV (HPAIV) in dabbling ducks is well characterized. In contrast, the role of diving ducks in HPAIV maintenance and transmission remains unclear. In this study, the pathogenesis of a North American A/Goose/1/Guangdong/96-lineage clade 2.3.4.4 group A H5N2 HPAIV, A/Northern pintail/Washington/40964/2014, in diving sea ducks (surf scoters, Melanitta perspicillata) was characterized. RESULTS Intrachoanal inoculation of surf scoters with A/Northern pintail/Washington/40964/2014 (H5N2) HPAIV induced mild transient clinical disease whilst concomitantly shedding high virus titers for up to 10 days post-inoculation (dpi), particularly from the oropharyngeal route. Virus shedding, albeit at low levels, continued to be detected up to 14 dpi. Two aged ducks that succumbed to HPAIV infection had pathological evidence for co-infection with duck enteritis virus, which was confirmed by molecular approaches. Abundant HPAIV antigen was observed in visceral and central nervous system organs and was associated with histopathological lesions. CONCLUSIONS Collectively, surf scoters, are susceptible to HPAIV infection and excrete high titers of HPAIV from the respiratory and cloacal tracts whilst being asymptomatic. The susceptibility of diving sea ducks to H5 HPAIV highlights the need for additional research and surveillance to further understand the contribution of diving ducks to HPAIV ecology.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA
| | - Diann J Prosser
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD, 20708, USA
| | - Mary J Pantin-Jackwood
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA
| | - Alicia M Berlin
- US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD, 20708, USA
| | - Erica Spackman
- Department of Agriculture-Agricultural Research Service, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S., 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
31
|
Herrera-Barragan JA, Rodriguez-Hernandez F, Camarillo-Flores R, Quintero GE, Gual-Sill F, Perez-Rivero JJ. Harris's hawks ( Parabuteo unicinctus) hematological parameters in different tropical locations. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:281-283. [PMID: 33133466 PMCID: PMC7597788 DOI: 10.30466/vrf.2019.93254.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/04/2019] [Indexed: 06/11/2023]
Abstract
This work described and compared the hematological findings of 25 clinically healthy Harris's hawks (Parabuteo unicinctus) in captivity at two different tropical locations: 16 samples from Aguascalientes, which altitude is 1878 mean sea level, and nine samples from Amecameca which altitude is 2650 mean sea level. Blood samples were collected from the brachial vein of each raptor under physical restraint. Significant differences between the two locations were found in some parameters including total, erythrocytes, heterophils, basophils, lymphocytes, and heterophil/lymphocyte ratio. When the results were compared to the reference values, the population of Amecameca showed decreased values of hematocrit (32.21 ± 13.72%), hemoglobin (107.40 ± 45.60 g L-1) and erythrocytes (1.98 ± 0.63 ×1012 per µL). This work contributed to the knowledge of variations in blood parameters of clinically healthy captive Harris`s hawks at different tropical locations and sex. The information will enable clinicians to provide appropriate veterinary diagnostics and care to ensure the health and welfare of raptors kept in captivity.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Gual-Sill
- Department of Agricultural and Animal Production, Metropolitan Autonomous University, Mexico City, Mexico;
| | - Juan José Perez-Rivero
- Department of Agricultural and Animal Production, Metropolitan Autonomous University, Mexico City, Mexico;
| |
Collapse
|
32
|
Caliendo V, Leijten L, Begeman L, Poen MJ, Fouchier RAM, Beerens N, Kuiken T. Enterotropism of highly pathogenic avian influenza virus H5N8 from the 2016/2017 epidemic in some wild bird species. Vet Res 2020; 51:117. [PMID: 32928280 PMCID: PMC7491185 DOI: 10.1186/s13567-020-00841-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
In 2016/2017, H5N8 highly pathogenic avian influenza (HPAI) virus of the Goose/Guangdong lineage spread from Asia to Europe, causing the biggest and most widespread HPAI epidemic on record in wild and domestic birds in Europe. We hypothesized that the wide dissemination of the 2016 H5N8 virus resulted at least partly from a change in tissue tropism from the respiratory tract, as in older HPAIV viruses, to the intestinal tract, as in low pathogenic avian influenza (LPAI) viruses, allowing more efficient faecal-oral transmission. Therefore, we determined the tissue tropism and associated lesions in wild birds found dead during the 2016 H5N8 epidemic, as well as the pattern of attachment of 2016 H5N8 virus to respiratory and intestinal tissues of four key wild duck species. We found that, out of 39 H5N8-infected wild birds of 12 species, four species expressed virus antigen in both respiratory and intestinal epithelium, one species only in respiratory epithelium, and one species only in intestinal epithelium. Virus antigen expression was association with inflammation and necrosis in multiple tissues. The level of attachment to wild duck intestinal epithelia of 2016 H5N8 virus was comparable to that of LPAI H4N5 virus, and higher than that of 2005 H5N1 virus for two of the four duck species and chicken tested. Overall, these results indicate that 2016 H5N8 may have acquired a similar enterotropism to LPAI viruses, without having lost the respirotropism of older HPAI viruses of the Goose/Guangdong lineage. The increased enterotropism of 2016 H5N8 implies that this virus had an increased chance to persist long term in the wild waterbird reservoir.
Collapse
Affiliation(s)
- Valentina Caliendo
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marjolein J Poen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Yuan L, Chen S, Xu Y. Donning and doffing of personal protective equipment protocol and key points of nursing care for patients with COVID-19 in ICU. Stroke Vasc Neurol 2020; 5:302-307. [PMID: 32817272 PMCID: PMC7548514 DOI: 10.1136/svn-2020-000456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
Coronavirus pandemic is the most important public health event in the world currently. Patients with coronavirus disease 2019 (COVID-19) in a critical state are at risk of progressing rapidly into many serve complications; they require a high level of care from ICU nurses. How to avoid the virus to infect health care worker is also a critical issue. Based on the summarized experience of Chinese health workers, literature review and clinical practice, this article introduced donning and doffing of personal protective equipment (PPE) protocol and some keypoints of nursing critical care in patients with coronavirus disease 2019 (COVID-19): caring of patients requiring intubation and ventilation, venous thromboembolism (VTE) prevention, caring of patients on ECMO, caring for patients requiring enteral nutrition, psychological support and nursing management of COVID-19 ICU. This article introduced a useful protocol of donning and doffing personal protective equipment to protect health care workers, and provided key points for the ICU nurses how to take care of COVID-19 patients.
Collapse
Affiliation(s)
- Li Yuan
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yafang Xu
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc Natl Acad Sci U S A 2020; 117:20814-20825. [PMID: 32769208 PMCID: PMC7456104 DOI: 10.1073/pnas.2001813117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In 2016/2017, highly pathogenic avian influenza (HPAI) virus of the subtype H5 spilled over into wild birds and caused the largest known HPAI epidemic in Europe, affecting poultry and wild birds. During its spread, the virus frequently exchanged genetic material (reassortment) with cocirculating low-pathogenic avian influenza viruses. To determine where and when these reassortments occurred, we analyzed Eurasian avian influenza viruses and identified a large set of H5 HPAI reassortants. We found that new genetic material likely came from wild birds across their migratory range and from domestic ducks not only in China, but also in central Europe. This knowledge is important to understand how the virus could adapt to wild birds and become established in wild bird populations. Highly pathogenic avian influenza (HPAI) viruses of the H5 A/goose/Guangdong/1/96 lineage can cause severe disease in poultry and wild birds, and occasionally in humans. In recent years, H5 HPAI viruses of this lineage infecting poultry in Asia have spilled over into wild birds and spread via bird migration to countries in Europe, Africa, and North America. In 2016/2017, this spillover resulted in the largest HPAI epidemic on record in Europe and was associated with an unusually high frequency of reassortments between H5 HPAI viruses and cocirculating low-pathogenic avian influenza viruses. Here, we show that the seven main H5 reassortant viruses had various combinations of gene segments 1, 2, 3, 5, and 6. Using detailed time-resolved phylogenetic analysis, most of these gene segments likely originated from wild birds and at dates and locations that corresponded to their hosts’ migratory cycles. However, some gene segments in two reassortant viruses likely originated from domestic anseriforms, either in spring 2016 in east China or in autumn 2016 in central Europe. Our results demonstrate that, in addition to domestic anseriforms in Asia, both migratory wild birds and domestic anseriforms in Europe are relevant sources of gene segments for recent reassortant H5 HPAI viruses. The ease with which these H5 HPAI viruses reassort, in combination with repeated spillovers of H5 HPAI viruses into wild birds, increases the risk of emergence of a reassortant virus that persists in wild bird populations yet remains highly pathogenic for poultry.
Collapse
|
35
|
Yuyun I, Wibawa H, Setiaji G, Kusumastuti TA, Nugroho WS. Determining highly pathogenic H5 avian influenza clade 2.3.2.1c seroprevalence in ducks, Purbalingga, Central Java, Indonesia. Vet World 2020; 13:1138-1144. [PMID: 32801565 PMCID: PMC7396357 DOI: 10.14202/vetworld.2020.1138-1144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Aim In Indonesia, highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry are still reported. The disease causes a decrease in egg production and an increase in mortality; this has an impact on the economic losses of farmers. Several studies have considered that ducks play a role in the HPAI endemicity in the country; however, little is known about whether or not the type of duck farming is associated with HPAI H5 virus infection, particularly within clade 2.3.2.1c, which has been predominantly found in poultry since 2014. A cross-sectional study was conducted to determine the HPAI seroprevalence for H5 subtype clade 2.3.2.1c in laying ducks that are kept intensively and nomadically and to determine the associated risk factors. Materials and Methods Forty-nine duck farmers were randomly selected from ten sub-districts in Purbalingga District, Central Java, Indonesia; a cross-sectional study was implemented to collect field data. Based on an expected HPAI prevalence level of 10%, estimated accuracy of ± 5%, and 95% confidence interval (CI), the total sample size was calculated at 36 individuals. Samples must be multiplied by 7 to reduce bias; thus, 252 ducks were taken as samples in this study. Considering that the maintenance and duck handling were uniform and farmers complained that the effect of activity to take duck samples would reduce egg production, this study only took samples from 245 ducks (oropharyngeal swabs and serum). Those samples were taken from five birds on each farm. Hemagglutination inhibition tests examined the serum samples for HPAI H5 Clade 2.3.2.1c, and pool swab samples (five swabs in one viral media transport) were examined by real-time reverse transcription-polymerase chain reaction (qRT-PCR) test for influenza Type A and H5 subtype virus. Information regarding farm management was obtained using a questionnaire; face-to-face interviews were conducted with the duck farmers using native Javanese language. Results Serum and swabs from 245 ducks were collected in total. For individual birds, 54.69% (134/245) of serum samples were H5 seropositive. Seroprevalence among nomadic ducks was 59.28% (95% CI: 0.48-0.61), which was higher than among intensively farmed ducks (48.57%, 95% CI: 0.38-0.58). Farm-level seroprevalence was 50% (95% CI: 0.30-0.69) for nomadic ducks but only 28.57% (95% CI: 0.11-0.51) for intensively farmed ducks. The farm-level virus prevalence (proportion of flocks with at least one bird positive for influenza Type A) was 17.85% (95% CI: 0.07-0.35) for nomadic ducks and 4.76% (1/21) for intensively farmed ducks (95% CI: 0.008-0.23). All influenza Type A positive samples were negative for the H5 subtype, indicating that another HA subtype AI viruses might have been circulating in ducks in the study area. A relationship between duck farms that were H5 seropositive and their maintenance system was present; however, this relationship was not significant, the nomadic duck system detected 2 times higher H5-seropositive ducks than the intensive farming system (OR: 2.16, 95% CI: 0.33-14.31). Conclusion This study found that the seroprevalence of HPAI in the duck population level in Purbalingga was 54.69% and demonstrated that the nomadic duck farming system was more likely to acquire HPAI H5 infection than the intensive farming duck system. Other risk factors should be further investigated as the diversity of the farming system is partially related to HPAI H5 infection.
Collapse
Affiliation(s)
- Imas Yuyun
- Magister Sain Veteriner, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Directorate of Animal Health, Directorate General of Livestock and Animal Health Services, Jakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center, Wates, Yogyakarta, Indonesia
| | - Gunawan Setiaji
- Directorate of Veterinary Public Health, Directorate General of Livestock and Animal Health Services, Jakarta, Indonesia
| | - Tri Anggraeni Kusumastuti
- Department of Socio Economic, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Widagdo Sri Nugroho
- Departement of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
36
|
Using geospatial methods to measure the risk of environmental persistence of avian influenza virus in South Carolina. Spat Spatiotemporal Epidemiol 2020; 34:100342. [PMID: 32807394 DOI: 10.1016/j.sste.2020.100342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/07/2020] [Accepted: 03/20/2020] [Indexed: 11/24/2022]
Abstract
Avian influenza (AIV) is a highly contagious virus that can infect both wild birds and domestic poultry. This study aimed to define areas within the state of South Carolina (SC) at heightened risk for environmental persistence of AIV using geospatial methods. Environmental factors known to influence AIV survival were identified through the published literature and using a multi-criteria decision analysis with GIS was performed. Risk was defined using five categories following the World Organization for Animal Health Risk Assessment Guidelines. Less than 1% of 1km grid cells in SC showed a high risk of AIV persistence. Approximately 2% - 17% of counties with high or very high environmental risk also had medium to very high numbers of commercial poultry operations. Results can be used to improve surveillance activities and to inform biosecurity practices and emergency preparedness efforts.
Collapse
|
37
|
Outbreak Severity of Highly Pathogenic Avian Influenza A(H5N8) Viruses Is Inversely Correlated to Polymerase Complex Activity and Interferon Induction. J Virol 2020; 94:JVI.00375-20. [PMID: 32238581 DOI: 10.1128/jvi.00375-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-β) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-β despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-β. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-β. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.
Collapse
|
38
|
Chatzidionysiou K, Svenungsson E, Faustini F. Could severe COVID-19 be considered a complementopathy? Lupus Sci Med 2020; 7:e000415. [PMID: 32430402 PMCID: PMC7246101 DOI: 10.1136/lupus-2020-000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Katerina Chatzidionysiou
- Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet Department of Medicine Solna, Stockholm, Sweden
| | - Elisabet Svenungsson
- Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet Department of Medicine Solna, Stockholm, Sweden
| | - Francesca Faustini
- Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet Department of Medicine Solna, Stockholm, Sweden
| |
Collapse
|
39
|
Stephens CB, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The Pathogenesis of H7 Highly Pathogenic Avian Influenza Viruses in Lesser Scaup ( Aythya affinis). Avian Dis 2020; 63:230-234. [PMID: 31131581 DOI: 10.1637/11909-060118-resnote.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022]
Abstract
Waterfowl are the natural hosts of avian influenza virus (AIV), and through migration spread the virus worldwide. Most AIVs carried by wild waterfowl are low pathogenic strains; however, Goose/Guangdong/1996 lineage clade 2.3.4.4 H5 highly pathogenic (HP) AIV now appears to be endemic in wild birds in much of the Eastern Hemisphere. Most research efforts studying AIV pathogenicity in waterfowl thus far have been directed toward dabbling ducks. In order to better understand the role of diving ducks in AIV ecology, we previously characterized the pathogenesis of clade 2.3.4.4 H5 HPAIV in lesser scaup (Aythya affinis). In an effort to further elucidate AIV infection in diving ducks, the relative susceptibility and pathogenesis of two North American lineage H7 HPAIV isolates from the most recent outbreaks in the United States was investigated. Lesser scaup were inoculated with either A/turkey/IN/1403-1/2016 H7N8 or A/chicken/TN/17-007147-2/2017 H7N9 HPAIV by the intranasal route. The approximate 50% bird infectious dose (BID50) of the H7N8 isolate was determined to be 103 50% egg infectious doses (EID50), and the BID50 of the H7N9 isolate was determined to be <102 EID50, indicating some variation in adaptation between the two isolates. No mortality or clinical disease was observed in either group except for elevated body temperatures at 2 and 4 days postinoculation (DPI). Virus shedding was detected up to 14 DPI from both groups, and there was a trend for shedding to have a longer duration and at higher titer levels from the cloacal route. These results demonstrate that lesser scaup are susceptible to both H7 lineages of HPAIV, and similar to dabbling duck species, they shed virus for long periods relative to gallinaceous birds and don't present with clinical disease.
Collapse
Affiliation(s)
- Christopher B Stephens
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA 30605
| | - Diann J Prosser
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD 20708
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA 30605
| | - Alicia M Berlin
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD 20708
| | - Erica Spackman
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA 30605,
| |
Collapse
|
40
|
Koethe S, Ulrich L, Ulrich R, Amler S, Graaf A, Harder TC, Grund C, Mettenleiter TC, Conraths FJ, Beer M, Globig A. Modulation of lethal HPAIV H5N8 clade 2.3.4.4B infection in AIV pre-exposed mallards. Emerg Microbes Infect 2020; 9:180-193. [PMID: 31969057 PMCID: PMC7006783 DOI: 10.1080/22221751.2020.1713706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In 2016/2017, a severe epidemic of HPAIV H5N8 clade 2.3.4.4 group B (H5N8B) affected Europe. To analyse the role of mallards in the spatiotemporal dynamics of global HPAIV H5N8B dispersal, mallards (Anas platyrhynchos), naturally exposed to various AIV and therefore seropositive, were challenged with H5N8B. All experiments were controlled by infection and co-housing of seronegative juvenile Pekin ducklings. All ducks that survived the first infection were re-challenged 21 dpi with the homologous H5N8B strain. After the first H5N8B infection, seropositive mallards showed only mild clinical symptoms. Moderate to low viral shedding, occurring particularly from the oropharynx and lasting for 7 days maximum, led to severe clinical disease of all contact ducklings. All challenged seronegative Pekin ducks and contact ducklings died or had to be euthanized. H5-specific antibodies were detected in surviving birds within 2 weeks. Virus and viral RNA could be isolated from several water samples until 6 and 9 dpi, respectively. Conversely, upon re-infection with homologous H5N8B neither inoculated nor contact ducklings showed any clinical symptoms, nor was an antibody titer increase of seropositive mallards or any seroconversion of contact ducklings observed. Mallard ducks naturally pre-exposed to LPAIV can play a role as a clinically unsuspicious virus reservoir for H5N8B effective in virus transmission. Mallards with homologous immunity did not contribute to virus transmission.
Collapse
Affiliation(s)
| | | | - Reiner Ulrich
- Institute of Veterinary-Pathology, Leipzig University, Leipzig, Germany
| | | | - Annika Graaf
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | | | | | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Anja Globig
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
41
|
van der Kolk JH. Role for migratory domestic poultry and/or wild birds in the global spread of avian influenza? Vet Q 2019; 39:161-167. [PMID: 31752591 PMCID: PMC6913625 DOI: 10.1080/01652176.2019.1697013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Johannes H. van der Kolk
- Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty,
University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Disentangling the role of Africa in the global spread of H5 highly pathogenic avian influenza. Nat Commun 2019; 10:5310. [PMID: 31757953 PMCID: PMC6874648 DOI: 10.1038/s41467-019-13287-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022] Open
Abstract
The role of Africa in the dynamics of the global spread of a zoonotic and economically-important virus, such as the highly pathogenic avian influenza (HPAI) H5Nx of the Gs/GD lineage, remains unexplored. Here we characterise the spatiotemporal patterns of virus diffusion during three HPAI H5Nx intercontinental epidemic waves and demonstrate that Africa mainly acted as an ecological sink of the HPAI H5Nx viruses. A joint analysis of host dynamics and continuous spatial diffusion indicates that poultry trade as well as wild bird migrations have contributed to the virus spreading into Africa, with West Africa acting as a crucial hotspot for virus introduction and dissemination into the continent. We demonstrate varying paths of avian influenza incursions into Africa as well as virus spread within Africa over time, which reveal that virus expansion is a complex phenomenon, shaped by an intricate interplay between avian host ecology, virus characteristics and environmental variables.
Collapse
|
43
|
An SH, Lee CY, Hong SM, Choi JG, Lee YJ, Jeong JH, Kim JB, Song CS, Kim JH, Kwon HJ. Bioengineering a highly productive vaccine strain in embryonated chicken eggs and mammals from a non-pathogenic clade 2·3·4·4 H5N8 strain. Vaccine 2019; 37:6154-6161. [PMID: 31495597 DOI: 10.1016/j.vaccine.2019.08.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
The clade 2·3·4·4 H5Nx is a highly pathogenic avian influenza (HPAI) virus, which first appeared in China and has spread worldwide since then, including Korea. It is divided into subclades a - d, but the PR8-derived recombinant clade 2·3·4·4 a viruses replicate inefficiently in embryonated chicken eggs (ECEs). High virus titer in ECEs and no mammalian pathogenicity are the most important prerequisites of efficacious and safer vaccine strains against HPAI. In this study, we have synthesized hemagglutinin (HA) and neuraminidase (NA) genes based on the consensus amino acid sequences of the clade 2·3·4·4a and b H5N8 HPAIVs, using the GISAID database. We generated PR8-derived H5N8 recombinant viruses with single point mutations in HA and NA, which are related to efficient replication in ECEs. The H103Y mutation in HA increased mammalian pathogenicity as well as virus titer in ECEs, by 10-fold. We also successfully eradicated mammalian pathogenicity in H103Y-bearing H5N8 recombinant virus by exchanging PB2 genes of PR8 and 01310 (Korean H9N2 vaccine strain). The final optimized H5N8 vaccine strain completely protected against a heterologous clade 2·3·4·4c H5N6 HPAIV in chickens, and induced hemagglutination inhibition (HI) antibody in ducks. However, the antibody titer of ducks showed age-dependent results. Thus, H103Y and 01310PB2 gene have been successfully applied to generate a highly productive, safe, and efficacious clade 2·3·4·4 H5N8 vaccine strain in ECEs.
Collapse
Affiliation(s)
- Se-Hee An
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Seung-Min Hong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jun-Gu Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jei-Hyun Jeong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Jun-Beom Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Kangwon-do, Republic of Korea.
| |
Collapse
|
44
|
Hill SC, Hansen R, Watson S, Coward V, Russell C, Cooper J, Essen S, Everest H, Parag KV, Fiddaman S, Reid S, Lewis N, Brookes SM, Smith AL, Sheldon B, Perrins CM, Brown IH, Pybus OG. Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild bird population. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180259. [PMID: 31056057 PMCID: PMC6553603 DOI: 10.1098/rstb.2018.0259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding the epidemiological dynamics of highly pathogenic avian influenza virus (HPAIV) in wild birds is crucial for guiding effective surveillance and control measures. The spread of H5 HPAIV has been well characterized over large geographical and temporal scales. However, information about the detailed dynamics and demographics of individual outbreaks in wild birds is rare and important epidemiological parameters remain unknown. We present data from a wild population of long-lived birds (mute swans; Cygnus olor) that has experienced three outbreaks of related H5 HPAIVs in the past decade, specifically, H5N1 (2007), H5N8 (2016) and H5N6 (2017). Detailed demographic data were available and intense sampling was conducted before and after the outbreaks; hence the population is unusually suitable for exploring the natural epidemiology, evolution and ecology of HPAIV in wild birds. We show that key epidemiological features remain remarkably consistent across multiple outbreaks, including the timing of virus incursion and outbreak duration, and the presence of a strong age-structure in morbidity that likely arises from an equivalent age-structure in immunological responses. The predictability of these features across a series of outbreaks in a complex natural population is striking and contributes to our understanding of HPAIV in wild birds. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Sarah C. Hill
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Samantha Watson
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Vivien Coward
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Christine Russell
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Jayne Cooper
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Steve Essen
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Holly Everest
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Kris V. Parag
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Steven Fiddaman
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Scott Reid
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nicola Lewis
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- The Royal Veterinary College, Royal College Street, London, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Adrian L. Smith
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Ben Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Christopher M. Perrins
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Oliver G. Pybus
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Li X, Xu B, Shaman J. The Impact of Environmental Transmission and Epidemiological Features on the Geographical Translocation of Highly Pathogenic Avian Influenza Virus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1890. [PMID: 31142047 PMCID: PMC6603588 DOI: 10.3390/ijerph16111890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
The factors affecting the transmission and geographic translocation of avian influenza viruses (AIVs) within wild migratory bird populations remain inadequately understood. In a previous study, we found that environmental transmission had little impact on AIV translocation in a model of a single migratory bird population. In order to simulate virus transmission and translocation more realistically, here we expanded this model system to include two migratory bird flocks. We simulated AIV transmission and translocation while varying four core properties: 1) Contact transmission rate; 2) infection recovery rate; 3) infection-induced mortality rate; and 4) migration recovery rate; and three environmental transmission properties: 1) Virion persistence; 2) exposure rate; and 3) re-scaled environmental infectiousness; as well as the time lag in the migration schedule of the two flocks. We found that environmental exposure rate had a significant impact on virus translocation in the two-flock model. Further, certain epidemiological features (i.e., low infection recovery rate, low mortality rate, and high migration transmission rate) in both flocks strongly affected the likelihood of virus translocation. Our results further identified the pathobiological features supporting AIV intercontinental dissemination risk.
Collapse
Affiliation(s)
- Xueying Li
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua, Beijing 100084, China.
| | - Bing Xu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua, Beijing 100084, China.
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
46
|
Beerens N, Heutink R, Pritz-Verschuren S, Germeraad EA, Bergervoet SA, Harders F, Bossers A, Koch G. Genetic relationship between poultry and wild bird viruses during the highly pathogenic avian influenza H5N6 epidemic in the Netherlands, 2017-2018. Transbound Emerg Dis 2019; 66:1370-1378. [PMID: 30874364 PMCID: PMC6849594 DOI: 10.1111/tbed.13169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 01/22/2023]
Abstract
In the Netherlands, three commercial poultry farms and two hobby holdings were infected with highly pathogenic avian influenza (HPAI) H5N6 virus in the winter of 2017-2018. This H5N6 virus is a reassortant of HPAI H5N8 clade 2.3.4.4 group B viruses detected in Eurasia in 2016. H5N6 viruses were also detected in several dead wild birds during the winter. However, wild bird mortality was limited compared to the caused by the H5N8 group B virus in 2016-2017. H5N6 virus was not detected in wild birds after March, but in late summer infected wild birds were found again. In this study, the complete genome sequences of poultry and wild bird viruses were determined to study their genetic relationship. Genetic analysis showed that the outbreaks in poultry were not the result of farm-to-farm transmissions, but rather resulted from separate introductions from wild birds. Wild birds infected with viruses related to the first outbreak in poultry were found at short distances from the farm, within a short time frame. However, no wild bird viruses related to outbreaks 2 and 3 were detected. The H5N6 virus isolated in summer shares a common ancestor with the virus detected in outbreak 1. This suggests long-term circulation of H5N6 virus in the local wild bird population. In addition, the pathogenicity of H5N6 virus in ducks was determined, and compared to that of H5N8 viruses detected in 2014 and 2016. A similar high pathogenicity was measured for H5N6 and H5N8 group B viruses, suggesting that biological or ecological factors in the wild bird population may have affected the mortality rates during the H5N6 epidemic. These observations suggest different infection dynamics for the H5N6 and H5N8 group B viruses in the wild bird population.
Collapse
Affiliation(s)
- N Beerens
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - R Heutink
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | - E A Germeraad
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - S A Bergervoet
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - F Harders
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - A Bossers
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - G Koch
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
47
|
Spackman E, Prosser DJ, Pantin-Jackwood M, Stephens CB, Berlin AM. Clade 2.3.4.4 H5 North American Highly Pathogenic Avian Influenza Viruses Infect, but Do Not Cause Clinical Signs in, American Black Ducks (Anas rubripes). Avian Dis 2019; 63:366-370. [DOI: 10.1637/11950-081418-resnote.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA 30605
| | - Diann J. Prosser
- Patuxent Wildlife Research Center, United States Geological Survey, 12100 Beech Forest Road, Laurel, MD 20708
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA 30605
| | - Christopher B. Stephens
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA 30605
| | - Alicia M. Berlin
- Patuxent Wildlife Research Center, United States Geological Survey, 12100 Beech Forest Road, Laurel, MD 20708
| |
Collapse
|
48
|
Sullivan JD, Takekawa JY, Spragens KA, Newman SH, Xiao X, Leader PJ, Smith B, Prosser DJ. Waterfowl Spring Migratory Behavior and Avian Influenza Transmission Risk in the Changing Landscape of the East Asian-Australasian Flyway. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Dirsmith KL, Jeffrey Root J, Bentler KT, Sullivan HJ, Liebowitz AB, Petersen LH, McLean HE, Shriner SA. Persistence of maternal antibodies to influenza A virus among captive mallards (Anas platyrhynchos). Arch Virol 2018; 163:3235-3242. [PMID: 30128612 DOI: 10.1007/s00705-018-3978-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Wild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillance and transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wild bird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) has not been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmission dynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examined the transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five days from ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodies to IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5 days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 days post-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch. Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in the initial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies in ducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmission dynamics in waterfowl.
Collapse
Affiliation(s)
- Katherine L Dirsmith
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA. .,College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - J Jeffrey Root
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Kevin T Bentler
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Heather J Sullivan
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Andrea B Liebowitz
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Lauren H Petersen
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Hailey E McLean
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Susan A Shriner
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| |
Collapse
|
50
|
Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Muñoz Guajardo I, Verdonck F, Amato L, Baldinelli F. Avian influenza overview February - May 2018. EFSA J 2018; 16:e05358. [PMID: 32625951 PMCID: PMC7009712 DOI: 10.2903/j.efsa.2018.5358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Between 16 February and 15 May 2018, three highly pathogenic avian influenza (HPAI) A(H5N6) and 11 HPAI A(H5N8) outbreaks in poultry holdings, one HPAI A(H5N6) and one HPAI A(H5N8) outbreak in captive birds, and 55 HPAI A(H5N6) wild bird events were reported in Europe. There is no evidence to date that HPAI A(H5N6) viruses circulating in Europe are associated with clades infecting humans. Fewer HPAI wild bird cases have been detected than during the same period of previous year. Most of mortality events among wild birds involved single birds and species listed in the revised list of target species for passive surveillance. Raptor species constitute 74% of the HPAI-infected wild birds found dead. Those raptor species probably became infected by hunting or scavenging HPAI virus-positive birds, and so raptor cases may predominate later in the course of an HPAI epidemic. Despite the important HPAI virus incursion via wild birds there have been few associated HPAI A(H5N6) outbreaks in poultry. Fifteen low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. The risk of zoonotic transmission to the general public in Europe is considered to be very low. The situation in Africa and the Middle East should be closely monitored with regards to HPAI A(H5N1) and A(H5N8). Uncontrolled spread of the virus and subsequent further genetic evolution in regions geographically connected to Europe may increase uncertainty and the risk for further dissemination of virus. Long-distance migrating wild birds from southern Africa, e.g. the common tern (Sterna hirundo), may be included in targeted active surveillance schemes at a few priority locations in Europe in order to detect HPAI A(H5)-infected migrating birds early. However, the risk of HPAI introduction from non-EU countries via migratory wild birds to Europe is still considered to be much lower for wild birds crossing the southern borders than for those crossing the north-eastern borders.
Collapse
|