1
|
Zhang G, Diamante G, Ahn IS, Palafox-Sanchez V, Cheng J, Cheng M, Ying Z, Wang SSM, Abuhanna KD, Phi N, Arneson D, Cely I, Arellano K, Wang N, Zhang S, Peng C, Gomez-Pinilla F, Yang X. Thyroid hormone T4 mitigates traumatic brain injury in mice by dynamically remodeling cell type specific genes, pathways, and networks in hippocampus and frontal cortex. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167344. [PMID: 39004380 DOI: 10.1016/j.bbadis.2024.167344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Daniel Abuhanna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nguyen Phi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kayla Arellano
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shujing Zhang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mary S. Easton Center for Alzheimer's Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Zhang Y, Li T, Wang G, Ma Y. Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:65. [PMID: 39387975 PMCID: PMC11467076 DOI: 10.1007/s10571-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
The incidence of central nervous system (CNS) disease has persistently increased over the last several years. There is an urgent need for effective methods to improve the cure rates of CNS disease. However, the precise molecular basis underlying the development and progression of major CNS diseases remains elusive. A complete molecular map will contribute to research on CNS disease treatment strategies. Emerging technologies such as single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) are potent tools for exploring the molecular complexity, cell heterogeneity, and functional specificity of CNS disease. scRNA-seq and ST can provide insights into the disease at cellular and spatial transcription levels. This review presents a survey of scRNA-seq and ST studies on CNS diseases, such as chronic neurodegenerative diseases, acute CNS injuries, and others. These studies offer novel perspectives in treating and diagnosing CNS diseases by discovering new cell types or subtypes associated with the disease, proposing new pathophysiological mechanisms, uncovering novel therapeutic targets, and identifying putative biomarkers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Teng Li
- Department of Laboratory Medicine, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yabin Ma
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Chen ZK, Quintanilla L, Su Y, Sheehy RN, Simon JM, Luo YJ, Li YD, Chen Z, Asrican B, Tart DS, Farmer WT, Ming GL, Song H, Song J. Septo-dentate gyrus cholinergic circuits modulate function and morphogenesis of adult neural stem cells through granule cell intermediaries. Proc Natl Acad Sci U S A 2024; 121:e2405117121. [PMID: 39312657 PMCID: PMC11459179 DOI: 10.1073/pnas.2405117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Luis Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jeremy M. Simon
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zhe Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Brent Asrican
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Dalton S. Tart
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - W. Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
4
|
Jha RM, Rajasundaram D, Sneiderman C, Schlegel BT, O'Brien C, Xiong Z, Janesko-Feldman K, Trivedi R, Vagni V, Zusman BE, Catapano JS, Eberle A, Desai SM, Jadhav AP, Mihaljevic S, Miller M, Raikwar S, Rani A, Rulney J, Shahjouie S, Raphael I, Kumar A, Phuah CL, Winkler EA, Simon DW, Kochanek PM, Kohanbash G. A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets. Neuron 2024; 112:3069-3088.e4. [PMID: 39019041 DOI: 10.1016/j.neuron.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Casey O'Brien
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Ria Trivedi
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vincent Vagni
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Benjamin E Zusman
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Adam Eberle
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Margaux Miller
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jarrod Rulney
- University of Arizona School of Medicine, Tucson, AZ 85724, USA
| | - Shima Shahjouie
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aditya Kumar
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Chia-Ling Phuah
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Ethan A Winkler
- Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis W Simon
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation-Research, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JJA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Ronde M, van der Zee EA, Kas MJH. Default mode network dynamics: An integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehav Rev 2024; 164:105839. [PMID: 39097251 DOI: 10.1016/j.neubiorev.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Our intricate social brain is implicated in a range of brain disorders, where social dysfunction emerges as a common neuropsychiatric feature cutting across diagnostic boundaries. Understanding the neurocircuitry underlying social dysfunction and exploring avenues for its restoration could present a transformative and transdiagnostic approach to overcoming therapeutic challenges in these disorders. The brain's default mode network (DMN) plays a crucial role in social functioning and is implicated in various neuropsychiatric conditions. By thoroughly examining the current understanding of DMN functionality, we propose that the DMN integrates diverse social processes, and disruptions in brain communication at regional and network levels due to disease hinder the seamless integration of these social functionalities. Consequently, this leads to an altered balance between self-referential and attentional processes, alongside a compromised ability to adapt to social contexts and anticipate future social interactions. Looking ahead, we explore how adopting an integrated neurocircuitry perspective on social dysfunction could pave the way for innovative therapeutic approaches to address brain disorders.
Collapse
Affiliation(s)
- Mirthe Ronde
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
7
|
Armstrong RC, Sullivan GM, Perl DP, Rosarda JD, Radomski KL. White matter damage and degeneration in traumatic brain injury. Trends Neurosci 2024; 47:677-692. [PMID: 39127568 DOI: 10.1016/j.tins.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.
Collapse
Affiliation(s)
- Regina C Armstrong
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA.
| | - Genevieve M Sullivan
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Defense - Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
| | - Jessica D Rosarda
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kryslaine L Radomski
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Mattar P, Reginato A, Lavados C, Das D, Kalyani M, Martinez-Lopez N, Sharma M, Skovbjerg G, Skytte JL, Roostalu U, Subbarayan R, Picarda E, Zang X, Zhang J, Guha C, Schwartz G, Rajbhandari P, Singh R. Insulin and leptin oscillations license food-entrained browning and metabolic flexibility. Cell Rep 2024; 43:114390. [PMID: 38900636 DOI: 10.1016/j.celrep.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure. Single-cell RNA-sequencing (scRNA-seq) analyses and flow cytometry demonstrate a role for insulin and leptin surges in innate lymphoid type 2 (ILC2) cell recruitment and sWAT browning, since sWAT depot denervation or loss of leptin or insulin receptor signaling or ILC2 recruitment each dampens TAN feeding-induced sWAT remodeling and energy expenditure. Consistently, recreating insulin and leptin oscillations via once-a-day timed co-injections is sufficient to favorably remodel innervated sWAT. Innervation is necessary for sWAT remodeling, since denervation of sWAT, but not brown adipose tissue (BAT), blocks TAN-induced sWAT remodeling and resolution of inflammation. In sum, reorganization of nutrient-sensitive pathways remodels sWAT and drives the metabolic benefits of timed feeding.
Collapse
Affiliation(s)
- Pamela Mattar
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Andressa Reginato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christian Lavados
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Debajyoti Das
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | - Manu Kalyani
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA
| | - Mridul Sharma
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | - Elodie Picarda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Prashant Rajbhandari
- Department of Medicine, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajat Singh
- Department of Medicine, Division of Digestive Diseases, University of Los Angeles, Los Angeles, CA, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Comprehensive Liver Research Center at UCLA, University of Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Ghannam A, Hahn V, Fan J, Tasevski S, Moughni S, Li G, Zhang Z. Sex-specific and cell-specific regulation of ER stress and neuroinflammation after traumatic brain injury in juvenile mice. Exp Neurol 2024; 377:114806. [PMID: 38701941 DOI: 10.1016/j.expneurol.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.
Collapse
Affiliation(s)
- Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Jie Fan
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Gengxin Li
- Statistics, Department of Mathematics and Statistics, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| |
Collapse
|
11
|
Sierra C, Sabariego-Navarro M, Fernández-Blanco Á, Cruciani S, Zamora-Moratalla A, Novoa EM, Dierssen M. The lncRNA Snhg11, a new candidate contributing to neurogenesis, plasticity, and memory deficits in Down syndrome. Mol Psychiatry 2024; 29:2117-2134. [PMID: 38409595 DOI: 10.1038/s41380-024-02440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Down syndrome (DS) stands as the prevalent genetic cause of intellectual disability, yet comprehensive understanding of its cellular and molecular underpinnings remains limited. In this study, we explore the cellular landscape of the hippocampus in a DS mouse model, the Ts65Dn, through single-nuclei transcriptional profiling. Our findings demonstrate that trisomy manifests as a highly specific modification of the transcriptome within distinct cell types. Remarkably, we observed a significant shift in the transcriptomic profile of granule cells in the dentate gyrus (DG) associated with trisomy. We identified the downregulation of a specific small nucleolar RNA host gene, Snhg11, as the primary driver behind this observed shift in the trisomic DG. Notably, reduced levels of Snhg11 in this region were also observed in a distinct DS mouse model, the Dp(16)1Yey, as well as in human postmortem brain tissue, indicating its relevance in Down syndrome. To elucidate the function of this long non-coding RNA (lncRNA), we knocked down Snhg11 in the DG of wild-type mice. Intriguingly, this intervention alone was sufficient to impair synaptic plasticity and adult neurogenesis, resembling the cognitive phenotypes associated with trisomy in the hippocampus. Our study uncovers the functional role of Snhg11 in the DG and underscores the significance of this lncRNA in intellectual disability. Furthermore, our findings highlight the importance of DG in the memory deficits observed in Down syndrome.
Collapse
Affiliation(s)
- Cesar Sierra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, 08003, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sonia Cruciani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, 08003, Spain
| | - Alfonsa Zamora-Moratalla
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, 08003, Spain
| | - Mara Dierssen
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, 08003, Spain.
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain.
| |
Collapse
|
12
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
14
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
15
|
Tang B, Vadgama A, Redmann B, Hong J. Charting the cellular landscape of pulmonary arterial hypertension through single-cell omics. Respir Res 2024; 25:192. [PMID: 38702687 PMCID: PMC11067161 DOI: 10.1186/s12931-024-02823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.
Collapse
Affiliation(s)
- Brian Tang
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA
| | - Arjun Vadgama
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA
| | - Bryce Redmann
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California, 200 UCLA Medical Plaza, Suite 365-B, Box 951693, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
Affiliation(s)
- Xiya Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Ning
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanze Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guoliang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liyan Zhao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiquan Sun
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
17
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
18
|
Thapak P, Ying Z, Palafox-Sanchez V, Zhang G, Yang X, Gomez-Pinilla F. Humanin ameliorates TBI-related cognitive impairment by attenuating mitochondrial dysfunction and inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166937. [PMID: 37926362 DOI: 10.1016/j.bbadis.2023.166937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Traumatic brain injury (TBI) often results in a reduction of the capacity of cells to sustain energy demands, thus, compromising neuronal function and plasticity. Here we show that the mitochondrial activator humanin (HN) counteracts a TBI-related reduction in mitochondrial bioenergetics, including oxygen consumption rate. HN normalized the disruptive action of TBI on memory function, and restored levels of synaptic proteins (synapsin 1 and p-CREB). HN also counteracted TBI-related elevations of pro-inflammatory cytokines in plasma (TNF-α, INF-y, IL 17, IL 5, MCP 5, GCSF, RANNETS, sTNFRI) as well as in the hippocampus (gp-130 and p-STAT3). Gp-130 is an integral part of cytokine receptor impinging on STAT3 (Tyr-705) signaling. Furthermore, HN reduced astrocyte proliferation in TBI. The overall evidence suggests that HN plays an integral role in normalizing fundamental aspects of TBI pathology which are central to energy balance, brain function, and plasticity.
Collapse
Affiliation(s)
- Pavan Thapak
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Zhe Ying
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Victoria Palafox-Sanchez
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Guanglin Zhang
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Xia Yang
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA
| | - Fernando Gomez-Pinilla
- Depts. of Neurosurgery and Integrative Biology and Physiology, UCLA BIRC, University of California, Los Angeles 90064, USA.
| |
Collapse
|
19
|
Park J, Lee SH, Shin D, Kim Y, Kim YS, Seong MY, Lee JJ, Seo HG, Cho WS, Ro YS, Kim Y, Oh BM. Multiplexed Quantitative Proteomics Reveals Proteomic Alterations in Two Rodent Traumatic Brain Injury Models. J Proteome Res 2024; 23:249-263. [PMID: 38064581 DOI: 10.1021/acs.jproteome.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In many cases of traumatic brain injury (TBI), conspicuous abnormalities, such as scalp wounds and intracranial hemorrhages, abate over time. However, many unnoticeable symptoms, including cognitive, emotional, and behavioral dysfunction, often last from several weeks to years after trauma, even for mild injuries. Moreover, the cause of such persistence of symptoms has not been examined extensively. Recent studies have implicated the dysregulation of the molecular system in the injured brain, necessitating an in-depth analysis of the proteome and signaling pathways that mediate the consequences of TBI. Thus, in this study, the brain proteomes of two TBI models were examined by quantitative proteomics during the recovery period to determine the molecular mechanisms of TBI. Our results show that the proteomes in both TBI models undergo distinct changes. A bioinformatics analysis demonstrated robust activation and inhibition of signaling pathways and core proteins that mediate biological processes after brain injury. These findings can help determine the molecular mechanisms that underlie the persistent effects of TBI and identify novel targets for drug interventions.
Collapse
Affiliation(s)
- Junho Park
- Department of Pharmacology, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Research Institute for Basic Medical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Dongyoon Shin
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Yeongshin Kim
- Department of Life Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Young Sik Kim
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jin Joo Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Sun Ro
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Proteomics Research Team, CHA Future Medicine Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Life Science, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Institute of Aging, Seoul National University College of Medicine, 71 Ihwajang-gil, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- National Traffic Injury Rehabilitation Hospital, 260 Jungang-ro, Yangpyeong-gun 12564, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Shi X, Yang Y, Ma X, Zhou Y, Guo Z, Wang C, Liu J. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno. Nucleic Acids Res 2023; 51:e115. [PMID: 37941153 PMCID: PMC10711557 DOI: 10.1093/nar/gkad1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
In the analysis of both single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data, classifying cells/spots into cell/domain types is an essential analytic step for many secondary analyses. Most of the existing annotation methods have been developed for scRNA-seq datasets without any consideration of spatial information. Here, we present SpatialAnno, an efficient and accurate annotation method for spatial transcriptomics datasets, with the capability to effectively leverage a large number of non-marker genes as well as 'qualitative' information about marker genes without using a reference dataset. Uniquely, SpatialAnno estimates low-dimensional embeddings for a large number of non-marker genes via a factor model while promoting spatial smoothness among neighboring spots via a Potts model. Using both simulated and four real spatial transcriptomics datasets from the 10x Visium, ST, Slide-seqV1/2, and seqFISH platforms, we showcase the method's improved spatial annotation accuracy, including its robustness to the inclusion of marker genes for irrelevant cell/domain types and to various degrees of marker gene misspecification. SpatialAnno is computationally scalable and applicable to SRT datasets from different platforms. Furthermore, the estimated embeddings for cellular biological effects facilitate many downstream analyses.
Collapse
Affiliation(s)
- Xingjie Shi
- KLATASDS-MOE, Academy of Statistics and Interdisciplinary Sciences, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Yi Yang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210018, China
| | - Xiaohui Ma
- College of Life Sciences, Nanjing University, Nanjing 210033, China
| | - Yong Zhou
- KLATASDS-MOE, Academy of Statistics and Interdisciplinary Sciences, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Zhenxing Guo
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jin Liu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| |
Collapse
|
21
|
Qiu X, Guo Y, Liu M, Zhang B, Li J, Wei J, Li M. Single-cell RNA-sequencing analysis reveals enhanced non-canonical neurotrophic factor signaling in the subacute phase of traumatic brain injury. CNS Neurosci Ther 2023; 29:3446-3459. [PMID: 37269057 PMCID: PMC10580338 DOI: 10.1111/cns.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of long-term disability in young adults and induces complex neuropathological processes. Cellular autonomous and intercellular changes during the subacute phase contribute substantially to the neuropathology of TBI. However, the underlying mechanisms remain elusive. In this study, we explored the dysregulated cellular signaling during the subacute phase of TBI. METHODS Single-cell RNA-sequencing data (GSE160763) of TBI were analyzed to explore the cell-cell communication in the subacute phase of TBI. Upregulated neurotrophic factor signaling was validated in a mouse model of TBI. Primary cell cultures and cell lines were used as in vitro models to examine the potential mechanisms affecting signaling. RESULTS Single-cell RNA-sequencing analysis revealed that microglia and astrocytes were the most affected cells during the subacute phase of TBI. Cell-cell communication analysis demonstrated that signaling mediated by the non-canonical neurotrophic factors midkine (MDK), pleiotrophin (PTN), and prosaposin (PSAP) in the microglia/astrocytes was upregulated in the subacute phase of TBI. Time-course profiling showed that MDK, PTN, and PSAP expression was primarily upregulated in the subacute phase of TBI, and astrocytes were the major source of MDK and PTN after TBI. In vitro studies revealed that the expression of MDK, PTN, and PSAP in astrocytes was enhanced by activated microglia. Moreover, MDK and PTN promoted the proliferation of neural progenitors derived from human-induced pluripotent stem cells (iPSCs) and neurite growth in iPSC-derived neurons, whereas PSAP exclusively stimulated neurite growth. CONCLUSION The non-canonical neurotrophic factors MDK, PTN, and PSAP were upregulated in the subacute phase of TBI and played a crucial role in neuroregeneration.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yaling Guo
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ming‐Feng Liu
- Department of NeurosurgeryXuzhou Hospital of Traditional Chinese MedicineXuzhouJiangsuChina
| | - Bingge Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jingzhen Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jian‐Feng Wei
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Department of Histology and EmbryologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Meng Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
22
|
Yang Q, Zhang L, Li M, Xu Y, Chen X, Yuan R, Ou X, He M, Liao M, Zhang L, Dai H, Lv M, Xie X, Liang W, Chen X. Single-nucleus transcriptomic mapping uncovers targets for traumatic brain injury. Genome Res 2023; 33:1818-1832. [PMID: 37730437 PMCID: PMC10691476 DOI: 10.1101/gr.277881.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lingxuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaofeng Ou
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Min He
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Lin Zhang
- Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaoqi Xie
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China;
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| |
Collapse
|
23
|
Sierra C, Sabariego-Navarro M, Fernández-Blanco Á, Cruciani S, Zamora-Moratalla A, Novoa EM, Dierssen M. The lncRNA Snhg11, a new candidate contributing to neurogenesis, plasticity and memory deficits in Down syndrome. RESEARCH SQUARE 2023:rs.3.rs-3184329. [PMID: 37841843 PMCID: PMC10571621 DOI: 10.21203/rs.3.rs-3184329/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Down syndrome (DS) stands as the prevalent genetic cause of intellectual disability, yet comprehensive understanding of its cellular and molecular underpinnings remains limited. In this study, we explore the cellular landscape of the hippocampus in a DS mouse model through single-nuclei transcriptional profiling. Our findings demonstrate that trisomy manifests as a highly specific modification of the transcriptome within distinct cell types. Remarkably, we observed a significant shift in the transcriptomic profile of granule cells in the dentate gyrus (DG) associated with trisomy. We identified the downregulation of a specific small nucleolar RNA host gene, Snhg11, as the primary driver behind this observed shift in the trisomic DG. Notably, reduced levels of Snhg11 in this region were also observed in a distinct DS mouse model, the Dp(16)1Yey, as well as in human postmortem tissue, indicating its relevance in Down syndrome. To elucidate the function of this long non-coding RNA (lncRNA), we knocked down Snhg11 in the DG of wild-type mice. Intriguingly, this intervention alone was sufficient to impair synaptic plasticity and adult neurogenesis, resembling the cognitive phenotypes associated with trisomy in the hippocampus. Our study uncovers the functional role of Snhg11 in the DG and underscores the significance of this lncRNA in intellectual disability. Furthermore, our findings highlight the importance of the DG in the memory deficits observed in Down syndrome.
Collapse
Affiliation(s)
- Cesar Sierra
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Miguel Sabariego-Navarro
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Sonia Cruciani
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Alfonsa Zamora-Moratalla
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
| | - Eva Maria Novoa
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), 08003 Barcelona, Spain
| |
Collapse
|
24
|
Muñoz-Ballester C, Robel S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech Dis 2023; 15:e1622. [PMID: 37332001 PMCID: PMC10526985 DOI: 10.1002/wsbm.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
Astrocytes respond to traumatic brain injury (TBI) with changes to their molecular make-up and cell biology, which results in changes in astrocyte function. These changes can be adaptive, initiating repair processes in the brain, or detrimental, causing secondary damage including neuronal death or abnormal neuronal activity. The response of astrocytes to TBI is often-but not always-accompanied by the upregulation of intermediate filaments, including glial fibrillary acidic protein (GFAP) and vimentin. Because GFAP is often upregulated in the context of nervous system disturbance, reactive astrogliosis is sometimes treated as an "all-or-none" process. However, the extent of astrocytes' cellular, molecular, and physiological adjustments is not equal for each TBI type or even for each astrocyte within the same injured brain. Additionally, new research highlights that different neurological injuries and diseases result in entirely distinctive and sometimes divergent astrocyte changes. Thus, extrapolating findings on astrocyte biology from one pathological context to another is problematic. We summarize the current knowledge about astrocyte responses specific to TBI and point out open questions that the field should tackle to better understand how astrocytes shape TBI outcomes. We address the astrocyte response to focal versus diffuse TBI and heterogeneity of reactive astrocytes within the same brain, the role of intermediate filament upregulation, functional changes to astrocyte function including potassium and glutamate homeostasis, blood-brain barrier maintenance and repair, metabolism, and reactive oxygen species detoxification, sex differences, and factors influencing astrocyte proliferation after TBI. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stefanie Robel
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
25
|
Khandelwal M, Krishna G, Ying Z, Gomez-Pinilla F. Liver acts as a metabolic gate for the traumatic brain injury pathology: Protective action of thyroid hormone. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166728. [PMID: 37137432 PMCID: PMC10601893 DOI: 10.1016/j.bbadis.2023.166728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Clinical evidence indicates that injury to the brain elicits systemic metabolic disturbances that contributes to the brain pathology. Since dietary fructose is metabolized in the liver, we explored mechanisms by which traumatic brain injury (TBI) and dietary fructose influence liver function and their possible repercussions to brain. Consumption of fructose contributed to the detrimental effects of TBI on liver operation, in terms of glucose and lipid metabolism, de novo lipogenesis, lipid peroxidation. Thyroid hormone (T4) is metabolized in the liver and found that T4 supply improved lipid metabolism by reducing de novo lipogenesis, lipid accumulation, lipogenic enzymes (ACC, AceCS1, FAS), lipid peroxidation in liver in response to fructose and fructose-TBI. T4 supply also helped to normalize glucose metabolism and improve insulin sensitivity. Furthermore, T4 counteracted elevations of the pro-inflammatory cytokines, Tnfα and Mcp-1 after TBI and/or fructose intake in liver and circulation. T4 also exerted an effect on isolated primary hepatocytes by potentiating phosphorylation of AMPKα and AKT substrate, AS160, leading to increased glucose uptake. In addition, T4 restored the metabolism of DHA in the liver disrupted by TBI and fructose, adding important information to optimize the action of DHA in therapeutics. The overall evidence seems to indicate that the liver works as a gate for the regulation of the effects of brain injury and foods on brain pathologies.
Collapse
Affiliation(s)
- Mayuri Khandelwal
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Gokul Krishna
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Hamel R, Peruzzotti-Jametti L, Ridley K, Testa V, Yu B, Rowitch D, Marioni JC, Pluchino S. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5+ subpopulation of inflammatory myeloid cells with delayed cytotoxic profile in chronic spinal cord injury. Heliyon 2023; 9:e18339. [PMID: 37636454 PMCID: PMC10450865 DOI: 10.1016/j.heliyon.2023.e18339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Traumatic spinal cord injuries (SCI) are a group of highly debilitating pathologies affecting thousands annually, and adversely affecting quality of life. Currently, no fully restorative therapies exist, and SCI still results in significant personal, societal and financial burdens. Inflammation plays a major role in the evolution of SCI, with myeloid cells, including bone marrow derived macrophages (BMDMs) and microglia (MG) being primary drivers of both early secondary pathogenesis and delayed wound healing events. The precise role of myeloid cell subsets is unclear as upon crossing the blood-spinal cord barrier, infiltrating bone marrow derived macrophages (BMDMs) may take on the morphology of resident microglia, and upregulate canonical microglia markers, thus making the two populations difficult to distinguish. Here, we used time-resolved scRNAseq and transgenic fate-mapping to chart the transcriptional profiles of tissue-resident and -infiltrating myeloid cells in a mouse model of thoracic contusion SCI. Our work identifies a novel subpopulation of foam cell-like inflammatory myeloid cells with increased expression of Fatty Acid Binding Protein 5 (Fabp5) and comprise both tissue-resident and -infiltrating cells. Fabp5+ inflammatory myeloid cells display a delayed cytotoxic profile that is predominant at the lesion epicentre and extends into the chronic phase of SCI.
Collapse
Affiliation(s)
- Regan Hamel
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Veronica Testa
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Bryan Yu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - David Rowitch
- Cambridge Stem Cell Institute, University of Cambridge, UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Abou-El-Hassan H, Rezende RM, Izzy S, Gabriely G, Yahya T, Tatematsu BK, Habashy KJ, Lopes JR, de Oliveira GLV, Maghzi AH, Yin Z, Cox LM, Krishnan R, Butovsky O, Weiner HL. Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males. Nat Commun 2023; 14:4286. [PMID: 37463881 DOI: 10.1038/s41467-023-39857-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-β that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl J Habashy
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gislane L V de Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amir-Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Truong L, Chen YW, Barrere-Cain R, Levenson MT, Shuck K, Xiao W, da Veiga Beltrame E, Panter B, Reich E, Sternberg PW, Yang X, Allard P. Single-nucleus resolution mapping of the adult C. elegans and its application to elucidate inter- and trans-generational response to alcohol. Cell Rep 2023; 42:112535. [PMID: 37227821 PMCID: PMC10592506 DOI: 10.1016/j.celrep.2023.112535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Single-cell transcriptomic platforms provide an opportunity to map an organism's response to environmental cues with high resolution. Here, we applied single-nucleus RNA sequencing (snRNA-seq) to establish the tissue and cell type-resolved transcriptome of the adult C. elegans and characterize the inter- and trans-generational transcriptional impact of ethanol. We profiled the transcriptome of 41,749 nuclei resolving into 31 clusters, representing a diverse array of adult cell types including syncytial tissues. Following exposure to human-relevant doses of alcohol, several germline, striated muscle, and neuronal clusters were identified as being the most transcriptionally impacted at the F1 and F3 generations. The effect on germline clusters was confirmed by phenotypic enrichment analysis as well as by functional validation, which revealed a remarkable inter- and trans-generational increase in germline apoptosis, aneuploidy, and embryonic lethality. Together, snRNA-seq represents a valuable approach for the detailed examination of an adult organism's response to environmental exposures.
Collapse
Affiliation(s)
- Lisa Truong
- Human Genetics Graduate Program, UCLA, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Rio Barrere-Cain
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Max T Levenson
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Karissa Shuck
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Blake Panter
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Ella Reich
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Paul W Sternberg
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xia Yang
- Integrative Biology and Physiology Department, UCLA, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA; Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Dammer E, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg mice exposed to successive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544838. [PMID: 37397993 PMCID: PMC10312742 DOI: 10.1101/2023.06.13.544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aβ pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.
Collapse
|
30
|
Moore TM, Lee S, Olsen T, Morselli M, Strumwasser AR, Lin AJ, Zhou Z, Abrishami A, Garcia SM, Bribiesca J, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Nguyen CQA, Anand ATS, Yackly A, Mendoza LQ, Leyva BK, Aliman C, Artiga DJ, Meng Y, Charugundla S, Pan C, Jedian V, Seldin MM, Ahn IS, Diamante G, Blencowe M, Yang X, Mouisel E, Pellegrini M, Turcotte LP, Birkeland KI, Norheim F, Drevon CA, Lusis AJ, Hevener AL. Conserved multi-tissue transcriptomic adaptations to exercise training in humans and mice. Cell Rep 2023; 42:112499. [PMID: 37178122 PMCID: PMC11352395 DOI: 10.1016/j.celrep.2023.112499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/04/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development.
Collapse
Affiliation(s)
- Timothy M Moore
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Sindre Lee
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Amanda J Lin
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Aaron Abrishami
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steven M Garcia
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer Bribiesca
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph L Lee
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Rucker
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Q A Nguyen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Akshay T S Anand
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Aidan Yackly
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Lorna Q Mendoza
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Brayden K Leyva
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudia Aliman
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel J Artiga
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonghong Meng
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarada Charugundla
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Vida Jedian
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus M Seldin
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - In Sook Ahn
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Montgomery Blencowe
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 Inserm, Paul Sabatier University, Toulouse, France
| | - Matteo Pellegrini
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Lorraine P Turcotte
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kåre I Birkeland
- Department of Transplantation, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Frode Norheim
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aldons J Lusis
- Division of Cardiology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA; Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA, USA; Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA.
| |
Collapse
|
31
|
Udeochu JC, Amin S, Huang Y, Fan L, Torres ERS, Carling GK, Liu B, McGurran H, Coronas-Samano G, Kauwe G, Mousa GA, Wong MY, Ye P, Nagiri RK, Lo I, Holtzman J, Corona C, Yarahmady A, Gill MT, Raju RM, Mok SA, Gong S, Luo W, Zhao M, Tracy TE, Ratan RR, Tsai LH, Sinha SC, Gan L. Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience. Nat Neurosci 2023; 26:737-750. [PMID: 37095396 PMCID: PMC10166855 DOI: 10.1038/s41593-023-01315-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Pathological hallmarks of Alzheimer's disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP-AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS-IFN-MEF2C axis to improve resilience against AD-related pathological insults.
Collapse
Affiliation(s)
- Joe C Udeochu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Yige Huang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Eileen Ruth S Torres
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hugo McGurran
- The Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Guillermo Coronas-Samano
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Gergey Alzaem Mousa
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ravi Kumar Nagiri
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Iris Lo
- The Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Julia Holtzman
- The Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Carlo Corona
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, USA
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael T Gill
- The Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Ravikiran M Raju
- The Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mingrui Zhao
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tara E Tracy
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Rajiv R Ratan
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, USA
| | - Li-Huei Tsai
- The Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Chen W, Xu D, Liu Q, Wu Y, Wang Y, Yang J. Unraveling the heterogeneity of cholangiocarcinoma and identifying biomarkers and therapeutic strategies with single-cell sequencing technology. Biomed Pharmacother 2023; 162:114697. [PMID: 37060660 DOI: 10.1016/j.biopha.2023.114697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignant tumor of the biliary tract that carries a high burden of morbidity and a poor prognosis. Due to the lack of precise diagnostic methods, many patients are often diagnosed at advanced stages of the disease. The current treatment options available are of varying efficacy, underscoring the urgency for the discovery of more effective biomarkers for early diagnosis and improved treatment. Recently, single-cell sequencing (SCS) technology has gained popularity in cancer research. This technology has the ability to analyze tumor tissues at the single-cell level, thus providing insights into the genomics and epigenetics of tumor cells. It also serves as a practical approach to study the mechanisms of cancer progression and to explore therapeutic strategies. In this review, we aim to assess the heterogeneity of CCA using single-cell sequencing technology, with the ultimate goal of identifying possible biomarkers and potential treatment targets.
Collapse
Affiliation(s)
- Wangyang Chen
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Dongchao Xu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Qiang Liu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China
| | - Yirong Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Yu Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Jianfeng Yang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province 310003, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang Province 310003, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
33
|
Chang C, Zuo H, Li Y. Recent advances in deciphering hippocampus complexity using single-cell transcriptomics. Neurobiol Dis 2023; 179:106062. [PMID: 36878328 DOI: 10.1016/j.nbd.2023.106062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq) technologies have emerged as revolutionary and powerful tools, which have helped in achieving significant progress in biomedical research over the last decade. scRNA-seq and snRNA-seq resolve heterogeneous cell populations from different tissues and help reveal the function and dynamics at the single-cell level. The hippocampus is an essential component for cognitive functions, including learning, memory, and emotion regulation. However, the molecular mechanisms underlying the activity of hippocampus have not been fully elucidated. The development of scRNA-seq and snRNA-seq technologies provides strong support for attaining an in-depth understanding of hippocampal cell types and gene expression regulation from the single-cell transcriptome profiling perspective. This review summarizes the applications of scRNA-seq and snRNA-seq in the hippocampus to further expand our knowledge of the molecular mechanisms related to hippocampal development, health, and diseases.
Collapse
Affiliation(s)
- Chenxu Chang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongyan Zuo
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
34
|
Single cell molecular alterations reveal target cells and pathways of conditioned fear memory. Brain Res 2023; 1807:148309. [PMID: 36870465 DOI: 10.1016/j.brainres.2023.148309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES Recent evidence indicates that hippocampus is important for conditioned fear memory (CFM). Though few studies consider the roles of various cell types' contribution to such a process, as well as the accompanying transcriptome changes during this process. The purpose of this study was to explore the transcriptional regulatory genes and the targeted cells that are altered by CFM reconsolidation. METHODS A fear conditioning experiment was established on adult male C57 mice, after day 3 tone-cued CFM reconsolidation test, hippocampus cells were dissociated. Using single cell RNA sequencing (scRNA-seq) technique, alterations of transcriptional genes expression were detected and cell cluster analysis were performed and compared with those in sham group. RESULTS Seven non-neuronal and eight neuronal cell clusters (including four known neurons and four newly identified neuronal subtypes) has been explored. Among them, CA subtype 1 has characteristic gene markers of Ttr and Ptgds, which is speculated to be the outcome of acute stress and promotes the production of CFM. The results of KEGG pathway enrichment indicate the differences in the expression of certain molecular protein functional subunits in long-term potentiation (LTP) pathway between two types of neurons (DG and CA1) and astrocytes, thus providing a new transcriptional perspective for the role of hippocampus in the CFM reconsolidation. More importantly, the correlation between the reconsolidation of CFM and neurodegenerative diseases-linked genes is substantiated by the results from cell-cell interactions and KEGG pathway enrichment. Further analysis shows that the reconsolidation of CFM inhibits the risk-factor genes App and ApoE in Alzheimer's Disease (AD) and activates the protective gene Lrp1. CONCLUSIONS This study reports the transcriptional genes expression changes of hippocampal cells driven by CFM, which confirm the involvement of LTP pathway and suggest the possibility of CFM-like behavior in preventing AD. However, the current research is limited to normal C57 mice, and further studies on AD model mice are needed to prove this preliminary conclusion.
Collapse
|
35
|
Morrison VE, Bix GJ. The meal Maketh the Microglia: Why studying microglial phagocytosis is critical to stroke research. Neurochem Int 2023; 164:105488. [PMID: 36707032 DOI: 10.1016/j.neuint.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Vivianne E Morrison
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States
| | - Gregory J Bix
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States.
| |
Collapse
|
36
|
Heydari AA, Sindi SS. Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. BIOPHYSICS REVIEWS 2023; 4:011306. [PMID: 38505815 PMCID: PMC10903438 DOI: 10.1063/5.0091135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/19/2022] [Indexed: 03/21/2024]
Abstract
Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.
Collapse
|
37
|
Li M, Chen X, Yang Q, Cao S, Wyler S, Yuan R, Zhang L, Liao M, Lv M, Wang F, Guo Y, Zhou J, Zhang L, Xie X, Liang W. Single-nucleus profiling of adult mice sub-ventricular zone after blast-related traumatic brain injury. Sci Data 2023; 10:13. [PMID: 36604452 PMCID: PMC9814753 DOI: 10.1038/s41597-022-01925-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Explosive blast-related traumatic brain injuries (bTBI) are common in war zones and urban terrorist attacks. These bTBIs often result in complex neuropathologic damage and neurologic complications. However, there is still a lack of specific strategies for diagnosing and/or treating bTBIs. The sub-ventricular zone (SVZ), which undergoes adult neurogenesis, is critical for the neurological maintenance and repair after brain injury. However, the cellular responses and mechanisms that trigger and modulate these activities in the pathophysiological processes following bTBI remain poorly understood. Here we employ single-nucleus RNA-sequencing (snRNA-seq) of the SVZ from mice subjected to a bTBI. This data-set, including 15272 cells (7778 bTBI and 7494 control) representing all SVZ cell types and is ideally suited for exploring the mechanisms underlying the pathogenesis of bTBIs. Additionally, it can serve as a reference for future studies regarding the diagnosis and treatment of bTBIs.
Collapse
Affiliation(s)
- Manrui Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, 200000, China
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Steven Wyler
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, Sichuan University, Chengdu, 610041, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jihong Zhou
- Army Medical University, Chongqing, 404000, China.
| | - Lin Zhang
- Sichuan University, Chengdu, 610041, China.
| | - Xiaoqi Xie
- Department of Critical Care Medicine, Sichuan University, Chengdu, 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun 2022; 4:fcac288. [PMID: 36415662 PMCID: PMC9677497 DOI: 10.1093/braincomms/fcac288] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 08/08/2023] Open
Abstract
Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.
Collapse
Affiliation(s)
- Diana G Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Canada
| | - Lili-Naz Hazrati
- Correspondence to: Dr. Lili-Naz Hazrati 555 University Ave, Toronto ON M5G 1X8, Canada E-mail:
| |
Collapse
|
39
|
Mason HD, McGavern DB. How the immune system shapes neurodegenerative diseases. Trends Neurosci 2022; 45:733-748. [PMID: 36075783 PMCID: PMC9746609 DOI: 10.1016/j.tins.2022.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Neurodegenerative diseases are a major cause of death and disability worldwide and are influenced by many factors including age, genetics, and injuries. While these diseases are often thought to result from the accumulation and spread of aberrant proteins, recent studies have demonstrated that they can be shaped by the innate and adaptive immune system. Resident myeloid cells typically mount a sustained response to the degenerating CNS, but peripheral leukocytes such as T and B cells can also alter disease trajectories. Here, we review the sometimes-dichotomous roles played by immune cells during neurodegenerative diseases and explore how brain trauma can serve as a disease initiator or accelerant. We also offer insights into how failure to properly resolve a CNS injury might promote the development of a neurodegenerative disease.
Collapse
Affiliation(s)
- Hannah D Mason
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Abe K, Li J, Liu YY, Brent GA. Thyroid Hormone-mediated Histone Modification Protects Cortical Neurons From the Toxic Effects of Hypoxic Injury. J Endocr Soc 2022; 6:bvac139. [PMID: 36817622 PMCID: PMC9562813 DOI: 10.1210/jendso/bvac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Context Thyroid hormone has been shown to have a protective role in neuronal injury, although the mechanisms have not been established. The cellular response to stress that promotes adaptation and survival has been shown to involve epigenetic modifications. Objective We hypothesized that the neuroprotective role of thyroid hormone was associated with epigenetic modifications of histone proteins. We used hypoxic neurons as a model system for hypoxia-induced brain injury. Methods Mouse primary cortical neurons were exposed to 0.2% oxygen for 7 hours, with or without, treatment with triiodothyronine (T3). We analyzed the expression of histone-modifying enzymes by RNA-seq and the post-translationally modified histone 3 proteins by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results We found that methylation of H3K27, associated with inactive promoters, was highly induced in hypoxic neurons, and this histone methylation was reduced by T3 treatment. H3K4 methylation is the hallmark of active promoters. The expression of 3 (Set1db, Kmta2c, and Kmt2e) out of 6 H3K4 methyltransferases was downregulated by hypoxia and expression was restored by T3 treatment. H3K4me3 protein, measured by ELISA, was increased 76% in T3-treated hypoxic neurons compared with the levels without T3 treatment. H3K56ac plays a critical role in transcription initiation and was markedly increased in T3-treated hypoxic neurons compared with those without T3 treatment, indicating stimulation of gene transcription. Additionally, T3 treatment restored hypoxia-induced downregulation of histone acetyltransferase, Kat6a, Kat6b, and Crebbp, which function as transcription factors. Conclusion These findings indicate that T3 treatment mitigates hypoxia-induced histone modifications and protects neurons from hypoxia-induced injury.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jianrong Li
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yan Yun Liu
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gregory A Brent
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
41
|
Yang Q, Wu Y, Li M, Cao S, Guo Y, Zhang L, Chen X, Liang W. Single-cell transcriptome study in forensic medicine: prospective applications. Int J Legal Med 2022; 136:1737-1743. [PMID: 36083564 DOI: 10.1007/s00414-022-02889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Next-generation sequencing and single-cell RNA sequencing (scRNA-seq) technologies have advanced rapidly in recent years. scRNA-seq reveals the unique gene expression of each cell type, providing directions for exploring cell heterogeneity, cell type-specific responses to injury/disease, and the mechanisms underlying these processes. The development of sequencing technology and improved sequencing throughput have brought about a revolution in single-cell transcriptome study, bringing great benefits to the fields of medicine and biomedical science. From our perspective, certain issues in forensic medicine may potentially be addressed using single-cell transcriptome studies; however, this powerful technique has not yet attracted sufficient attention in forensic medicine-associated research. Therefore, examining and reviewing the latest developments and applications of single-cell transcriptome studies, we present our views on the future directions of forensic research using this technology, aiming to expand the frontiers of forensic science.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuhang Wu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shuqiang Cao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lin Zhang
- Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Arneson D, Zhang G, Ahn IS, Ying Z, Diamante G, Cely I, Palafox-Sanchez V, Gomez-Pinilla F, Yang X. Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol Life Sci 2022; 79:480. [PMID: 35951114 PMCID: PMC9372016 DOI: 10.1007/s00018-022-04495-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. METHODS We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute (7-day) phases of mTBI at single-cell resolution. RESULTS We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. CONCLUSIONS Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
43
|
Xing J, Ren L, Xu H, Zhao L, Wang ZH, Hu GD, Wei ZL. Single-Cell RNA Sequencing Reveals Cellular and Transcriptional Changes Associated With Traumatic Brain Injury. Front Genet 2022; 13:861428. [PMID: 35846152 PMCID: PMC9282873 DOI: 10.3389/fgene.2022.861428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is currently a substantial public health problem and one of the leading causes of morbidity and mortality worldwide. However, the cellular and transcriptional changes in TBI at single-cell level have not been well characterized. In this study, we reanalyzed a single-cell RNA sequencing (scRNA-seq) dataset of mouse hippocampus to identify the key cellular and transcriptional changes associated with TBI. Specifically, we found that oligodendrocytes were the most abundant cell type in mouse hippocampus, and detected an expanded astrocyte population, which was significantly activated in TBI. The enhanced activity of inflammatory response-related pathways in the astrocytes of TBI samples suggested that the astrocytes, along with microglia, which were the major brain-resident immune cells, were responsible for inflammation in the acute phase of TBI. Hormone secretion, transport, and exocytosis were found upregulated in the excitatory neurons of TBI, which gave us a hint that excitatory neurons might excessively transport and excrete glutamate in response to TBI. Moreover, the ependymal subpopulation C0 was TBI-specific and characterized by downregulated cilium movement, indicating that the attenuated activity of cilium movement following TBI might decrease cerebrospinal fluid flow. Furthermore, we observed that downregulated genes in response to candesartan treatment were preferentially expressed in excitatory neurons and were related to pathways like neuronal systems and neuroactive ligand-receptor interaction, indicating that candesartan might promote recovery of neurons after traumatic brain injury via mediating neuroactive ligand-receptor interactions and reducing excitotoxicity. In conclusion, our study identified key cell types in TBI, which improved our understanding of the cellular and transcriptional changes after TBI and offered an insight into the molecular mechanisms that could serve as therapeutic targets.
Collapse
|
44
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
45
|
Li X, Lee EJ, Lilja S, Loscalzo J, Schäfer S, Smelik M, Strobl MR, Sysoev O, Wang H, Zhang H, Zhao Y, Gawel DR, Bohle B, Benson M. A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets. Genome Med 2022; 14:48. [PMID: 35513850 PMCID: PMC9074288 DOI: 10.1186/s13073-022-01048-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medical digital twins are computational disease models for drug discovery and treatment. Unresolved problems include how to organize and prioritize between disease-associated changes in digital twins, on cellulome- and genome-wide scales. We present a dynamic framework that can be used to model such changes and thereby prioritize upstream regulators (URs) for biomarker- and drug discovery. METHODS We started with seasonal allergic rhinitis (SAR) as a disease model, by analyses of in vitro allergen-stimulated peripheral blood mononuclear cells (PBMC) from SAR patients. Time-series a single-cell RNA-sequencing (scRNA-seq) data of these cells were used to construct multicellular network models (MNMs) at each time point of molecular interactions between cell types. We hypothesized that predicted molecular interactions between cell types in the MNMs could be traced to find an UR gene, at an early time point. We performed bioinformatic and functional studies of the MNMs to develop a scalable framework to prioritize UR genes. This framework was tested on a single-cell and bulk-profiling data from SAR and other inflammatory diseases. RESULTS Our scRNA-seq-based time-series MNMs of SAR showed thousands of differentially expressed genes (DEGs) across multiple cell types, which varied between time points. Instead of a single-UR gene in each MNM, we found multiple URs dispersed across the cell types. Thus, at each time point, the MNMs formed multi-directional networks. The absence of linear hierarchies and time-dependent variations in MNMs complicated the prioritization of URs. For example, the expression and functions of Th2 cytokines, which are approved drug targets in allergies, varied across cell types, and time points. Our analyses of bulk- and single-cell data from other inflammatory diseases also revealed multi-directional networks that showed stage-dependent variations. We therefore developed a quantitative approach to prioritize URs: we ranked the URs based on their predicted effects on downstream target cells. Experimental and bioinformatic analyses supported that this kind of ranking is a tractable approach for prioritizing URs. CONCLUSIONS We present a scalable framework for modeling dynamic changes in digital twins, on cellulome- and genome-wide scales, to prioritize UR genes for biomarker and drug discovery.
Collapse
Affiliation(s)
- Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Martin Smelik
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Maria Regina Strobl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linkoping University, Linköping, Sweden
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Yelin Zhao
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Danuta R Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Linköping, Sweden.
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Liu Z, Gao W, Xu Y. Eleutheroside E alleviates cerebral ischemia-reperfusion injury in a 5-hydroxytryptamine receptor 2C (Htr2c)-dependent manner in rats. Bioengineered 2022; 13:11718-11731. [PMID: 35502892 PMCID: PMC9275941 DOI: 10.1080/21655979.2022.2071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Stroke is the central disorder underlined by ischemia-reperfusion (I/R) injury. Eleutheroside E (EE) is administered as the shield in some ischemia tissues with anti-inflammatory action. However, whether EE defends I/R-induced damage in the brain remains unknown. Here, we demonstrated that EE significantly alleviated the cerebral I/R injury and reduced the apoptosis of hippocampal neuron cells in rats. During the anti-apoptosis process, EE significantly upregulated the expression of 5-hydroxytryptamine receptor 2C (Htr2c) gene. Silencing Htr2c expression dramatically weakened the protective effect of EE on I/R-induced apoptosis of rat hippocampal neuron. EE-regulated Htr2c also remarkably inhibited the expression of caspase-3, −6 and −7, thereby suggesting a plausible anti-apoptosis mechanism associated with Htr2c/caspase axis. These findings elicit the potentially clinical strategy that targets Htr2c to improve outcome of ischemia brain.
Collapse
Affiliation(s)
- Zheng Liu
- Department Of Neurology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Wenwei Gao
- Department Of Neurology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Yuanqin Xu
- Department Of Neurology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
47
|
Mezias C, Torok J, Maia PD, Markley E, Raj A. Matrix Inversion and Subset Selection (MISS): A pipeline for mapping of diverse cell types across the murine brain. Proc Natl Acad Sci U S A 2022; 119:e2111786119. [PMID: 35363567 PMCID: PMC9168512 DOI: 10.1073/pnas.2111786119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
The advent of increasingly sophisticated imaging platforms has allowed for the visualization of the murine nervous system at single-cell resolution. However, current experimental approaches have not yet produced whole-brain maps of a comprehensive set of neuronal and nonneuronal types that approaches the cellular diversity of the mammalian cortex. Here, we aim to fill in this gap in knowledge with an open-source computational pipeline, Matrix Inversion and Subset Selection (MISS), that can infer quantitatively validated distributions of diverse collections of neural cell types at 200-μm resolution using a combination of single-cell RNA sequencing (RNAseq) and in situ hybridization datasets. We rigorously demonstrate the accuracy of MISS against literature expectations. Importantly, we show that gene subset selection, a procedure by which we filter out low-information genes prior to performing deconvolution, is a critical preprocessing step that distinguishes MISS from its predecessors and facilitates the production of cell-type maps with significantly higher accuracy. We also show that MISS is generalizable by generating high-quality cell-type maps from a second independently curated single-cell RNAseq dataset. Together, our results illustrate the viability of computational approaches for determining the spatial distributions of a wide variety of cell types from genetic data alone.
Collapse
Affiliation(s)
- Christopher Mezias
- Department of Radiology, University of California, San Francisco, CA 94143
| | - Justin Torok
- Department of Radiology, University of California, San Francisco, CA 94143
- Department of Radiology, Weill Cornell Medicine of Cornell University, New York, NY 10065
| | - Pedro D. Maia
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019
| | - Eric Markley
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, CA 94143
- Department of Radiology, Weill Cornell Medicine of Cornell University, New York, NY 10065
| |
Collapse
|
48
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
49
|
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci 2022; 14:825086. [PMID: 35401152 PMCID: PMC8990307 DOI: 10.3389/fnagi.2022.825086] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common diseases in the central nervous system (CNS) with high mortality and morbidity. Patients with TBI usually suffer many sequelae in the life time post injury, including neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the pathological mechanisms connecting these two processes have not yet been fully elucidated. It is important to further investigate the pathophysiological mechanisms underlying TBI and TBI-induced neurodegeneration, which will promote the development of precise treatment target for these notorious neurodegenerative consequences after TBI. A growing body of evidence shows that neuroinflammation is a pivotal pathological process underlying chronic neurodegeneration following TBI. Microglia, as the immune cells in the CNS, play crucial roles in neuroinflammation and many other CNS diseases. Of interest, microglial activation and functional alteration has been proposed as key mediators in the evolution of chronic neurodegenerative pathology following TBI. Here, we review the updated studies involving phenotypical and functional alterations of microglia in neurodegeneration after injury, survey key molecules regulating the activities and functional responses of microglia in TBI pathology, and explore their potential implications to chronic neurodegeneration after injury. The work will give us a comprehensive understanding of mechanisms driving TBI-related neurodegeneration and offer novel ideas of developing corresponding prevention and treatment strategies for this disease.
Collapse
Affiliation(s)
- Fangjie Shao
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qun Wu,
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
- Jianmin Zhang,
| |
Collapse
|
50
|
Forensic biomarkers of lethal traumatic brain injury. Int J Legal Med 2022; 136:871-886. [PMID: 35226180 PMCID: PMC9005436 DOI: 10.1007/s00414-022-02785-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
Abstract
AbstractTraumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity for TBIs and only provide limited information with regards to survival time estimations and time since death estimations. Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as metabolomics and mi-RNAs.
Collapse
|