1
|
Cong B, Dong X, Yang Z, Yu P, Chai Y, Liu J, Zhang M, Zang Y, Kang J, Feng Y, Liu Y, Feng W, Wang D, Deng W, Li F, Song Z, Wang Z, Chen X, Qin H, Yu Q, Li Z, Liu S, Xu X, Zhong N, Ren X, Qin C, Liu L, Wang J, Cao X. Single-cell spatiotemporal analysis of the lungs reveals Slamf9 + macrophages involved in viral clearance and inflammation resolution. Cell Discov 2024; 10:104. [PMID: 39414783 PMCID: PMC11484945 DOI: 10.1038/s41421-024-00734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/18/2024] Open
Abstract
How the lung achieves immune homeostasis after a pulmonary infection is not fully understood. Here, we analyzed the spatiotemporal changes in the lungs over a 2-week natural recovery from severe pneumonia in a Syrian hamster model of SARS-CoV-2 infection. We find that SARS-CoV-2 infects multiple cell types and causes massive cell death at the early stage, including alveolar macrophages. We identify a group of monocyte-derived Slamf9+ macrophages, which are induced after SARS-CoV-2 infection and resistant to impairment caused by SARS-CoV-2. Slamf9+ macrophages contain SARS-CoV-2, recruit and interact with Isg12+Cst7+ neutrophils to clear the viruses. After viral clearance, Slamf9+ macrophages differentiate into Trem2+ and Fbp1+ macrophages, contributing to inflammation resolution at the late stage, and finally replenish alveolar macrophages. These findings are validated in a SARS-CoV-2-infected hACE2 mouse model and confirmed with publicly available human autopsy single-cell RNA-seq data, demonstrating the potential role of Slamf9+ macrophages and their coordination with neutrophils in post-injury tissue repair and inflammation resolution.
Collapse
Affiliation(s)
- Boyi Cong
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meihan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | - Yu Feng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Dehe Wang
- Changping Laboratory, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiqi Song
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosu Chen
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Qin
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinyi Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Xuetao Cao
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Cong B, Dong X, Yang Z, Yu P, Chai Y, Liu J, Zhang M, Zang Y, Kang J, Feng Y, Liu Y, Feng W, Wang D, Deng W, Li F, Song Z, Wang Z, Chen X, Qin H, Yu Q, Li Z, Liu S, Xu X, Zhong N, Ren X, Qin C, Liu L, Wang J, Cao X. Single-cell spatiotemporal analysis reveals alveolar dendritic cell-T cell immunity hubs defending against pulmonary infection. Cell Discov 2024; 10:103. [PMID: 39414763 PMCID: PMC11484931 DOI: 10.1038/s41421-024-00733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/18/2024] Open
Abstract
How immune cells are spatiotemporally coordinated in the lung to effectively monitor, respond to, and resolve infection and inflammation in primed form needs to be fully illustrated. Here we apply immunocartography, a high-resolution technique that integrates spatial and single-cell RNA sequencing (scRNA-seq) through deconvolution and co-localization analyses, to the SARS-CoV-2-infected Syrian hamster model. We generate a comprehensive transcriptome map of the whole process of pulmonary infection from physiological condition, infection initiation, severe pneumonia to natural recovery at organ scale and single-cell resolution, with 142,965 cells and 45 lung lobes from 25 hamsters at 5 time points. Integrative analysis identifies that alveolar dendritic cell-T cell immunity hubs, where Ccr7+Ido1+ dendritic cells, Cd160+Cd8+ T cells, and Tnfrsf4+Cd4+ T cells physiologically co-localize, rapidly expand during SARS-CoV-2 infection, eliminate SARS-CoV-2 with the aid of Slamf9+ macrophages, and then restore to physiological levels after viral clearance. We verify the presence of these cell subpopulations in the immunity hubs in normal and SARS-CoV-2-infected hACE2 mouse models, as well as in publicly available human scRNA-seq datasets, demonstrating the potential broad relevance of our findings in lung immunity.
Collapse
Affiliation(s)
- Boyi Cong
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meihan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | - Yu Feng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Dehe Wang
- Changping Laboratory, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiqi Song
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosu Chen
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Qin
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinyi Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Xuetao Cao
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Schlomann BH, Pai TW, Sandhu J, Imbert GF, Graham TG, Garcia HG. Spatial microenvironments tune immune response dynamics in the Drosophila larval fat body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612587. [PMID: 39345471 PMCID: PMC11429692 DOI: 10.1101/2024.09.12.612587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immune responses in tissues display intricate patterns of gene expression that vary across space and time. While such patterns have been increasingly linked to disease outcomes, the mechanisms that generate them and the logic behind them remain poorly understood. As a tractable model of spatial immune responses, we investigated heterogeneous expression of antimicrobial peptides in the larval fly fat body, an organ functionally analogous to the liver. To capture the dynamics of immune response across the full tissue at single-cell resolution, we established live light sheet fluorescence microscopy of whole larvae. We discovered that expression of antimicrobial peptides occurs in a reproducible spatial pattern, with enhanced expression in the anterior and posterior lobes of the fat body. This pattern correlates with microbial localization via blood flow but is not caused by it: loss of heartbeat suppresses microbial transport but leaves the expression pattern unchanged. This result suggests that regions of the tissue most likely to encounter microbes via blood flow are primed to produce antimicrobials. Spatial transcriptomics revealed that these immune microenvironments are defined by genes spanning multiple biological processes, including lipid-binding proteins that regulate host cell death by the immune system. In sum, the larval fly fat body exhibits spatial compartmentalization of immune activity that resembles the strategic positioning of immune cells in mammals, such as in the liver, gut, and lymph nodes. This finding suggests that tissues may share a conserved spatial organization that optimizes immune responses for antimicrobial efficacy while preventing excessive self-damage.
Collapse
Affiliation(s)
- Brandon H. Schlomann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Ting-Wei Pai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jazmin Sandhu
- Department of Physics, University of California, Berkeley, CA, USA
| | - Genesis Ferrer Imbert
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Benhamouda N, Besbes A, Bauer R, Mabrouk N, Gadouas G, Desaint C, Chevrier L, Lefebvre M, Radenne A, Roelens M, Parfait B, Weiskopf D, Sette A, Gruel N, Courbebaisse M, Appay V, Paul S, Gorochov G, Ropers J, Lebbah S, Lelievre JD, Johannes L, Ulmer J, Lebeaux D, Friedlander G, De Lamballerie X, Ravel P, Kieny MP, Batteux F, Durier C, Launay O, Tartour E. Cytokine profile of anti-spike CD4 +T cells predicts humoral and CD8 +T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024; 27:110441. [PMID: 39104410 PMCID: PMC11298648 DOI: 10.1016/j.isci.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Coordinating immune responses - humoral and cellular - is vital for protection against severe Covid-19. Our study evaluates a multicytokine CD4+T cell signature's predictive for post-vaccinal serological and CD8+T cell responses. A cytokine signature composed of four cytokines (IL-2, TNF-α, IP10, IL-9) excluding IFN-γ, and generated through machine learning, effectively predicted the CD8+T cell response following mRNA-1273 or BNT162b2 vaccine administration. Its applicability extends to murine vaccination models, encompassing diverse immunization routes (such as intranasal) and vaccine platforms (including adjuvanted proteins). Notably, we found correlation between CD4+T lymphocyte-produced IL-21 and the humoral response. Consequently, we propose a test that offers a rapid overview of integrated immune responses. This approach holds particular relevance for scenarios involving immunocompromised patients because they often have low cell counts (lymphopenia) or pandemics. This study also underscores the pivotal role of CD4+T cells during a vaccine response and highlights their value in vaccine immunomonitoring.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Anissa Besbes
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | | | - Nesrine Mabrouk
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Gauthier Gadouas
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Corinne Desaint
- INSERM SC10-US019, Villejuif, France
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Lucie Chevrier
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes, Nantes, France
| | - Anne Radenne
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière-Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, APHP, Paris, France
| | - Marie Roelens
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, APHP, Paris, France
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, School of Medicine in Health Sciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Centre de Recherche, Institut Curie, Université PSL, Paris, France
- Department of Translational Research, Centre de Recherche, Institut Curie, Université PSL, Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, CIC 1408 INSERM Vaccinology, Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Said Lebbah
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Jean-Daniel Lelievre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, APHP, Créteil, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - David Lebeaux
- Université Paris Cité, Service de maladies infectieuses Hôpital Saint Louis/Lariboisère APHP, INSERM, Paris, France
| | - Gerard Friedlander
- Department of « Croissance et Signalisation », Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents, UVE: Aix-Marseille Université, IRD 190, INSERM 1207 Marseille, France
| | - Patrice Ravel
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Marie Paule Kieny
- Institut National de la Santé et de la Recherche Médicale, INSERM, Paris, France
| | - Fréderic Batteux
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | | | - Odile Launay
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Eric Tartour
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| |
Collapse
|
5
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Li P, Liu M, He WM. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life (Basel) 2024; 14:960. [PMID: 39202702 PMCID: PMC11355357 DOI: 10.3390/life14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.
Collapse
Affiliation(s)
- Pai Li
- Capricorn Partner, 3000 Leuven, Belgium
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Wei-Ming He
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
7
|
Xu X, Nielsen BF, Sneppen K. Self-inhibiting percolation and viral spreading in epithelial tissue. eLife 2024; 13:RP94056. [PMID: 38941138 PMCID: PMC11213566 DOI: 10.7554/elife.94056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.
Collapse
Affiliation(s)
- Xiaochan Xu
- Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of CopenhagenCopenhagenDenmark
| | - Bjarke Frost Nielsen
- PandemiX Center, Department of Science and Environment, Roskilde UniversityRoskildeDenmark
- High Meadows Environmental Institute, Princeton UniversityPrincetonUnited States
| | - Kim Sneppen
- Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Kim J, Steinegger M. Metabuli: sensitive and specific metagenomic classification via joint analysis of amino acid and DNA. Nat Methods 2024; 21:971-973. [PMID: 38769467 DOI: 10.1038/s41592-024-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Metagenomic taxonomic classifiers analyze either DNA or amino acid (AA) sequences. Metabuli ( https://metabuli.steineggerlab.com ), however, jointly analyzes both DNA and AA to leverage AA conservation for sensitive homology detection and DNA mutations for specific differentiation of closely related taxa. In the Critical Assessment of Metagenome Interpretation 2 plant-associated dataset, Metabuli covered 99% and 98% of classifications of state-of-the-art DNA- and AA-based classifiers, respectively.
Collapse
Affiliation(s)
- Jaebeom Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Martin Steinegger
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
- Artificial Intelligence Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Luebbert L, Sullivan DK, Carilli M, Hjörleifsson KE, Winnett AV, Chari T, Pachter L. Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.571168. [PMID: 38168363 PMCID: PMC10760059 DOI: 10.1101/2023.12.11.571168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
There are an estimated 300,000 mammalian viruses from which infectious diseases in humans may arise. They inhabit human tissues such as the lungs, blood, and brain and often remain undetected. Efficient and accurate detection of viral infection is vital to understanding its impact on human health and to make accurate predictions to limit adverse effects, such as future epidemics. The increasing use of high-throughput sequencing methods in research, agriculture, and healthcare provides an opportunity for the cost-effective surveillance of viral diversity and investigation of virus-disease correlation. However, existing methods for identifying viruses in sequencing data rely on and are limited to reference genomes or cannot retain single-cell resolution through cell barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk and single-cell transcriptomics data based on highly conserved amino acid domains, which enables the detection of RNA viruses covering up to 1012 virus species. The analysis of viral presence and host gene expression in parallel at single-cell resolution allows for the characterization of host viromes and the identification of viral tropism and host responses. We applied our method to identify putative novel viruses in rhesus macaque PBMC data that display cell type specificity and whose presence correlates with altered host gene expression.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Delaney K. Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Maria Carilli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | | | - Alexander Viloria Winnett
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
10
|
Cadore NA, Lord VO, Recamonde-Mendoza M, Kowalski TW, Vianna FSL. Meta-analysis of Transcriptomic Data from Lung Autopsy and Cellular Models of SARS-CoV-2 Infection. Biochem Genet 2024; 62:892-914. [PMID: 37486510 DOI: 10.1007/s10528-023-10453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Collapse
Affiliation(s)
- Nathan Araujo Cadore
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vinicius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
11
|
Kashima Y, Reteng P, Haga Y, Yamagishi J, Suzuki Y. Single-cell analytical technologies: uncovering the mechanisms behind variations in immune responses. FEBS J 2024; 291:819-831. [PMID: 36082537 DOI: 10.1111/febs.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.
Collapse
Affiliation(s)
- Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Patrick Reteng
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Haga
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
12
|
Mao Y, Chen Y, Li Y, Ma L, Wang X, Wang Q, He A, Liu X, Dong T, Gao W, Xu Y, Liu L, Ren L, Liu Q, Zhou P, Hu B, Zhou Y, Tian R, Shi ZL. Deep spatial proteomics reveals region-specific features of severe COVID-19-related pulmonary injury. Cell Rep 2024; 43:113689. [PMID: 38241149 DOI: 10.1016/j.celrep.2024.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
As a primary target of severe acute respiratory syndrome coronavirus 2, lung exhibits heterogeneous histopathological changes following infection. However, comprehensive insight into their protein basis with spatial resolution remains deficient, which hinders further understanding of coronavirus disease 2019 (COVID-19)-related pulmonary injury. Here, we generate a region-resolved proteomic atlas of hallmark pathological pulmonary structures by integrating histological examination, laser microdissection, and ultrasensitive proteomics. Over 10,000 proteins are quantified across 71 post-mortem specimens. We identify a spectrum of pathway dysregulations in alveolar epithelium, bronchial epithelium, and blood vessels compared with non-COVID-19 controls, providing evidence for transitional-state pneumocyte hyperplasia. Additionally, our data reveal the region-specific enrichment of functional markers in bronchiole mucus plugs, pulmonary fibrosis, airspace inflammation, and alveolar type 2 cells, uncovering their distinctive features. Furthermore, we detect increased protein expression associated with viral entry and inflammatory response across multiple regions, suggesting potential therapeutic targets. Collectively, this study provides a distinct perspective for deciphering COVID-19-caused pulmonary dysfunction by spatial proteomics.
Collapse
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanfen Xu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ben Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zheng-Li Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China.
| |
Collapse
|
13
|
Cummings MJ, Bakamutumaho B, Lutwama JJ, Owor N, Che X, Astorkia M, Postler TS, Kayiwa J, Kiconco J, Muwanga M, Nsereko C, Rwamutwe E, Nayiga I, Kyebambe S, Haumba M, Bosa HK, Ocom F, Watyaba B, Kikaire B, Tomoiaga AS, Kisaka S, Kiwanuka N, Lipkin WI, O'Donnell MR. COVID-19 immune signatures in Uganda persist in HIV co-infection and diverge by pandemic phase. Nat Commun 2024; 15:1475. [PMID: 38368384 PMCID: PMC10874401 DOI: 10.1038/s41467-024-45204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024] Open
Abstract
Little is known about the pathobiology of SARS-CoV-2 infection in sub-Saharan Africa, where severe COVID-19 fatality rates are among the highest in the world and the immunological landscape is unique. In a prospective cohort study of 306 adults encompassing the entire clinical spectrum of SARS-CoV-2 infection in Uganda, we profile the peripheral blood proteome and transcriptome to characterize the immunopathology of COVID-19 across multiple phases of the pandemic. Beyond the prognostic importance of myeloid cell-driven immune activation and lymphopenia, we show that multifaceted impairment of host protein synthesis and redox imbalance define core biological signatures of severe COVID-19, with central roles for IL-7, IL-15, and lymphotoxin-α in COVID-19 respiratory failure. While prognostic signatures are generally consistent in SARS-CoV-2/HIV-coinfection, type I interferon responses uniquely scale with COVID-19 severity in persons living with HIV. Throughout the pandemic, COVID-19 severity peaked during phases dominated by A.23/A.23.1 and Delta B.1.617.2/AY variants. Independent of clinical severity, Delta phase COVID-19 is distinguished by exaggerated pro-inflammatory myeloid cell and inflammasome activation, NK and CD8+ T cell depletion, and impaired host protein synthesis. Combining these analyses with a contemporary Ugandan cohort of adults hospitalized with influenza and other severe acute respiratory infections, we show that activation of epidermal and platelet-derived growth factor pathways are distinct features of COVID-19, deepening translational understanding of mechanisms potentially underlying SARS-CoV-2-associated pulmonary fibrosis. Collectively, our findings provide biological rationale for use of broad and targeted immunotherapies for severe COVID-19 in sub-Saharan Africa, illustrate the relevance of local viral and host factors to SARS-CoV-2 immunopathology, and highlight underemphasized yet therapeutically exploitable immune pathways driving COVID-19 severity.
Collapse
Affiliation(s)
- Matthew J Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maider Astorkia
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jocelyn Kiconco
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | | | - Irene Nayiga
- Entebbe Regional Referral Hospital, Entebbe, Uganda
| | | | - Mercy Haumba
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Henry Kyobe Bosa
- Uganda Peoples' Defence Forces, Kampala, Uganda
- Ministry of Health, Kampala, Uganda
| | | | - Benjamin Watyaba
- European and Developing Countries Clinical Trials Partnership-Eastern Africa Consortium for Clinical Research, Uganda Virus Research Institute, Entebbe, Uganda
| | - Bernard Kikaire
- European and Developing Countries Clinical Trials Partnership-Eastern Africa Consortium for Clinical Research, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Pediatrics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Alin S Tomoiaga
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Accounting, Business Analytics, Computer Information Systems, and Law, Manhattan College, New York, NY, USA
| | - Stevens Kisaka
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Noah Kiwanuka
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Max R O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Fernández-Soto D, García-Jiménez ÁF, Casasnovas JM, Valés-Gómez M, Reyburn HT. Elevated levels of cell-free NKG2D-ligands modulate NKG2D surface expression and compromise NK cell function in severe COVID-19 disease. Front Immunol 2024; 15:1273942. [PMID: 38410511 PMCID: PMC10895954 DOI: 10.3389/fimmu.2024.1273942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.
Collapse
Affiliation(s)
- Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
15
|
Chang LY, Lee MZ, Wu Y, Lee WK, Ma CL, Chang JM, Chen CW, Huang TC, Lee CH, Lee JC, Tseng YY, Lin CY. Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles. Nucleic Acids Res 2024; 52:e17. [PMID: 38096046 PMCID: PMC10853793 DOI: 10.1093/nar/gkad1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Pathway analysis, including nontopology-based (non-TB) and topology-based (TB) methods, is widely used to interpret the biological phenomena underlying differences in expression data between two phenotypes. By considering dependencies and interactions between genes, TB methods usually perform better than non-TB methods in identifying pathways that include closely relevant or directly causative genes for a given phenotype. However, most TB methods may be limited by incomplete pathway data used as the reference network or by difficulties in selecting appropriate reference networks for different research topics. Here, we propose a gene set correlation enrichment analysis method, Gscore, based on an expression dataset-derived coexpression network to examine whether a differentially expressed gene (DEG) list (or each of its DEGs) is associated with a known gene set. Gscore is better able to identify target pathways in 89 human disease expression datasets than eight other state-of-the-art methods and offers insight into how disease-wide and pathway-wide associations reflect clinical outcomes. When applied to RNA-seq data from COVID-19-related cells and patient samples, Gscore provided a means for studying how DEGs are implicated in COVID-19-related pathways. In summary, Gscore offers a powerful analytical approach for annotating individual DEGs, DEG lists, and genome-wide expression profiles based on existing biological knowledge.
Collapse
Affiliation(s)
- Lan-Yun Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Zhan Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yujia Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Kai Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Liang Ma
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jun-Mao Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ciao-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chun Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 110, Taiwan
| | - Yu-Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Yang D, Chan JFW, Yoon C, Luk TY, Shuai H, Hou Y, Huang X, Hu B, Chai Y, Yuen TTT, Liu Y, Zhu T, Liu H, Shi J, Wang Y, He Y, Sit KY, Au WK, Zhang AJ, Yuan S, Zhang BZ, Huang YW, Chu H. Type-II IFN inhibits SARS-CoV-2 replication in human lung epithelial cells and ex vivo human lung tissues through indoleamine 2,3-dioxygenase-mediated pathways. J Med Virol 2024; 96:e29472. [PMID: 38373201 DOI: 10.1002/jmv.29472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNβ treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.
Collapse
Affiliation(s)
- Dong Yang
- Xianghu Laboratory, Hangzhou, Zhejiang, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- The University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
- Guangzhou Laboratory, Guangdong Province, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz-Yat Luk
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ko-Yung Sit
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Kuk Au
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | | | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
17
|
Sun Y, Saito K, Ushiki A, Abe M, Saito Y, Kashiwada T, Horimasu Y, Gemma A, Tatsumi K, Hattori N, Tsushima K, Takemoto K, Ishikawa R, Momiyama T, Matsuyama SI, Arakawa N, Akane H, Toyoda T, Ogawa K, Sato M, Takamatsu K, Mori K, Nishiya T, Izumi T, Ohno Y, Saito Y, Hanaoka M. Identification of kynurenine and quinolinic acid as promising serum biomarkers for drug-induced interstitial lung diseases. Respir Res 2024; 25:31. [PMID: 38221627 PMCID: PMC10788992 DOI: 10.1186/s12931-023-02653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Drug-induced interstitial lung disease (DILD) is a lung injury caused by various types of drugs and is a serious problem in both clinical practice and drug development. Clinical management of the condition would be improved if there were DILD-specific biomarkers available; this study aimed to meet that need. METHODS Biomarker candidates were identified by non-targeted metabolomics focusing on hydrophilic molecules, and further validated by targeted approaches using the serum of acute DILD patients, DILD recovery patients, DILD-tolerant patients, patients with other related lung diseases, and healthy controls. RESULTS Serum levels of kynurenine and quinolinic acid (and kynurenine/tryptophan ratio) were elevated significantly and specifically in acute DILD patients. The diagnostic potentials of these biomarkers were superior to those of conventional lung injury biomarkers, Krebs von den Lungen-6 and surfactant protein-D, in discriminating between acute DILD patients and patients with other lung diseases, including idiopathic interstitial pneumonia and lung diseases associated with connective tissue diseases. In addition to identifying and evaluating the biomarkers, our data showed that kynurenine/tryptophan ratios (an indicator of kynurenine pathway activation) were positively correlated with serum C-reactive protein concentrations in patients with DILD, suggesting the potential association between the generation of these biomarkers and inflammation. Our in vitro experiments demonstrated that macrophage differentiation and inflammatory stimulations typified by interferon gamma could activate the kynurenine pathway, resulting in enhanced kynurenine levels in the extracellular space in macrophage-like cell lines or lung endothelial cells. Extracellular quinolinic acid levels were elevated only in macrophage-like cells but not endothelial cells owing to the lower expression levels of metabolic enzymes converting kynurenine to quinolinic acid. These findings provide clues about the molecular mechanisms behind their specific elevation in the serum of acute DILD patients. CONCLUSIONS The serum concentrations of kynurenine and quinolinic acid as well as kynurenine/tryptophan ratios are promising and specific biomarkers for detecting and monitoring DILD and its recovery, which could facilitate accurate decisions for appropriate clinical management of patients with DILD.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Atsuhito Ushiki
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Mitsuhiro Abe
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yasushi Horimasu
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichiro Tatsumi
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Noboru Hattori
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Kenji Tsushima
- Division of General Internal Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kazuhisa Takemoto
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Rika Ishikawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Toshiko Momiyama
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Shin-Ichiro Matsuyama
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Motonobu Sato
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kazuhiko Takamatsu
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kazuhiko Mori
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Takayoshi Nishiya
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Takashi Izumi
- Kihara Memorial Yokohama Foundation, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuo Ohno
- Kihara Memorial Yokohama Foundation, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
18
|
Milross L, Hunter B, McDonald D, Merces G, Thomson A, Hilkens CMU, Wills J, Rees P, Jiwa K, Cooper N, Majo J, Ashwin H, Duncan CJA, Kaye PM, Bayraktar OA, Filby A, Fisher AJ. Distinct lung cell signatures define the temporal evolution of diffuse alveolar damage in fatal COVID-19. EBioMedicine 2024; 99:104945. [PMID: 38142637 PMCID: PMC10788437 DOI: 10.1016/j.ebiom.2023.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.
Collapse
Affiliation(s)
- Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Bethany Hunter
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - George Merces
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amanda Thomson
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Catharien M U Hilkens
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - John Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Paul Rees
- Department of Biomedical Engineering, Swansea University, Wales, UK; Imaging Platform, Broad Institute of MIT and Harvard, 415 Main Street, Boston, Cambridge, MA, USA
| | - Kasim Jiwa
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nigel Cooper
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joaquim Majo
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Christopher J A Duncan
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | | | - Andrew Filby
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK; Innovation Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
19
|
Werid GM, Miller D, Hemmatzadeh F, Messele YE, Petrovski K. An overview of the detection of bovine respiratory disease complex pathogens using immunohistochemistry: emerging trends and opportunities. J Vet Diagn Invest 2024; 36:12-23. [PMID: 37982437 PMCID: PMC10734592 DOI: 10.1177/10406387231210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) is caused by a variety of pathogens, as well as contributing environmental and host-related risk factors. BRDC is the costliest disease for feedlot cattle globally. Immunohistochemistry (IHC) is a valuable tool for enhancing our understanding of BRDC given its specificity, sensitivity, cost-effectiveness, and capacity to provide information on antigen localization and immune response. Emerging trends in IHC include the use of multiplex IHC for the detection of coinfections, the use of digital imaging and automation, improved detection systems using enhanced fluorescent dyes, and the integration of IHC with spatial transcriptomics. Overall, identifying biomarkers for early detection, utilizing high-throughput IHC for large-scale studies, developing standardized protocols and reagents, and integrating IHC with other technologies are some of the opportunities to enhance the accuracy and applicability of IHC. We summarize here the various techniques and protocols used in IHC and highlight their current and potential role in BRDC research.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
20
|
Fraga-Silva TF, Cipriano UG, Fumagalli MJ, Correa GF, Fuzo CA, dos-Santos D, Mestriner FL, Becari C, Teixeira-Carvalho A, Coelho-dos-Reis J, Menegueti MG, Figueiredo LT, Cunha LD, Martins-Filho OA, Dias-Baruffi M, Auxiliadora-Martins M, Tostes RC, Bonato VL. Airway epithelial cells and macrophages trigger IL-6-CD95/CD95L axis and mediate initial immunopathology of COVID-19. iScience 2023; 26:108366. [PMID: 38047070 PMCID: PMC10692667 DOI: 10.1016/j.isci.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Airway epithelial cells (AEC) infected with SARS-CoV-2 may drive the dysfunction of macrophages during COVID-19. We hypothesized that the direct interaction of AEC with macrophages mediated by CD95/CD95L or indirect interaction mediated by IL-6 signaling are key steps for the COVID-19 severe acute inflammation. The interaction of macrophages with apoptotic and infected AEC increased CD95 and CD163 expression, and induced macrophage death. Macrophages exposed to tracheal aspirate with high IL-6 levels from intubated patients with COVID-19 or to recombinant human IL-6 exhibited decreased HLA-DR expression, increased CD95 and CD163 expression and IL-1β production. IL-6 effects on macrophages were prevented by both CD95/CD95L antagonist and by IL-6 receptor antagonist and IL-6 or CD95 deficient mice showed significant reduction of acute pulmonary inflammation post-infection. Our findings show a non-canonical CD95L-CD95 pathway that simultaneously drives both macrophage activation and dysfunction and point to CD95/CD95L axis as therapeutic target.
Collapse
Affiliation(s)
- Thais F.C. Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Ualter G. Cipriano
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Marcilio J. Fumagalli
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Giseli F. Correa
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Carlos A. Fuzo
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Douglas dos-Santos
- Department of Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Fabiola L.A.C. Mestriner
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Christiane Becari
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Andrea Teixeira-Carvalho
- René Rachou Institute, Oswaldo Cruz Foundation, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Jordana Coelho-dos-Reis
- Department of Microbiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mayra G. Menegueti
- Department of General and Specialized Nursing, Ribeirao Preto Nurse School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Luiz T.M. Figueiredo
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
- Virology Research Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Larissa Dias Cunha
- Department of Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Olindo A. Martins-Filho
- René Rachou Institute, Oswaldo Cruz Foundation, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Maria Auxiliadora-Martins
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Vania L.D. Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| |
Collapse
|
21
|
Magalhães VG, Lukassen S, Drechsler M, Loske J, Burkart SS, Wüst S, Jacobsen EM, Röhmel J, Mall MA, Debatin KM, Eils R, Autenrieth S, Janda A, Lehmann I, Binder M. Immune-epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep 2023; 24:e57912. [PMID: 37818799 DOI: 10.15252/embr.202357912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.
Collapse
Affiliation(s)
- Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Drechsler
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stella Autenrieth
- Research Group "Dendritic Cells in Infection and Cancer" (F171), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Potamias G, Gkoublia P, Kanterakis A. The two-stage molecular scenery of SARS-CoV-2 infection with implications to disease severity: An in-silico quest. Front Immunol 2023; 14:1251067. [PMID: 38077337 PMCID: PMC10699200 DOI: 10.3389/fimmu.2023.1251067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction The two-stage molecular profile of the progression of SARS-CoV-2 (SCOV2) infection is explored in terms of five key biological/clinical questions: (a) does SCOV2 exhibits a two-stage infection profile? (b) SARS-CoV-1 (SCOV1) vs. SCOV2: do they differ? (c) does and how SCOV2 differs from Influenza/INFL infection? (d) does low viral-load and (e) does COVID-19 early host response relate to the two-stage SCOV2 infection profile? We provide positive answers to the above questions by analyzing the time-series gene-expression profiles of preserved cell-lines infected with SCOV1/2 or, the gene-expression profiles of infected individuals with different viral-loads levels and different host-response phenotypes. Methods Our analytical methodology follows an in-silico quest organized around an elaborate multi-step analysis pipeline including: (a) utilization of fifteen gene-expression datasets from NCBI's gene expression omnibus/GEO repository; (b) thorough designation of SCOV1/2 and INFL progression stages and COVID-19 phenotypes; (c) identification of differentially expressed genes (DEGs) and enriched biological processes and pathways that contrast and differentiate between different infection stages and phenotypes; (d) employment of a graph-based clustering process for the induction of coherent groups of networked genes as the representative core molecular fingerprints that characterize the different SCOV2 progression stages and the different COVID-19 phenotypes. In addition, relying on a sensibly selected set of induced fingerprint genes and following a Machine Learning approach, we devised and assessed the performance of different classifier models for the differentiation of acute respiratory illness/ARI caused by SCOV2 or other infections (diagnostic classifiers), as well as for the prediction of COVID-19 disease severity (prognostic classifiers), with quite encouraging results. Results The central finding of our experiments demonstrates the down-regulation of type-I interferon genes (IFN-1), interferon induced genes (ISGs) and fundamental innate immune and defense biological processes and molecular pathways during the early SCOV2 infection stages, with the inverse to hold during the later ones. It is highlighted that upregulation of these genes and pathways early after infection may prove beneficial in preventing subsequent uncontrolled hyperinflammatory and potentially lethal events. Discussion The basic aim of our study was to utilize in an intuitive, efficient and productive way the most relevant and state-of-the-art bioinformatics methods to reveal the core molecular mechanisms which govern the progression of SCOV2 infection and the different COVID-19 phenotypes.
Collapse
Affiliation(s)
- George Potamias
- Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Polymnia Gkoublia
- Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
- Graduate Bioinformatics Program, School of Medicine, University of Crete, Heraklion, Greece
| | - Alexandros Kanterakis
- Computational Biomedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
23
|
Potashnikova DM, Tvorogova AV, Saidova AA, Sotnikova TN, Arifulin EA, Lipina TV, Shirokova OM, Melnikov ES, Rodina TA, Valyaeva AA, Zharikova AA, Zayratyants GO, Zayratyants OV, Sheval EV, Vasilieva EJ. Lung inflammation is associated with lipid deposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.30.522299. [PMID: 36789445 PMCID: PMC9928036 DOI: 10.1101/2022.12.30.522299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lung inflammation, pneumonia, is an acute respiratory disease of varying etiology that has recently drawn much attention during the COVID-19 pandemic as lungs are among the main targets for SARS-CoV-2. Multiple other etiological agents are associated with pneumonias. Here, we describe a newly-recognized pathology, namely abnormal lipid depositions in the lungs of patients who died from COVID-19 as well as from non-COVID-19 pneumonias. Our analysis of both semi-thin and Sudan III-stained lung specimens revealed extracellular and intracellular lipid depositions irrespective of the pneumonia etiology. Most notably, lipid depositions were located within vessels adjacent to inflamed regions, where they apparently interfere with the blood flow. Structurally, the lipid droplets in the inflamed lung tissue were homogeneous and lacked outer membranes as assessed by electron microscopy. Morphometric analysis of lipid droplet deposition area allowed us to distinguish the non-pneumonia control lung specimens from the macroscopically intact area of the pneumonia lung and from the inflamed area of the pneumonia lung. Our measurements revealed a gradient of lipid deposition towards the inflamed region. The pattern of lipid distribution proved universal for all pneumonias. Finally, lipid metabolism in the lung tissue was assessed by the fatty acid analysis and by expression of genes involved in lipid turnover. Chromato-mass spectrometry revealed that unsaturated fatty acid content was elevated at inflammation sites compared to that in control non-inflamed lung tissue from the same individual. The expression of genes involved in lipid metabolism was altered in pneumonia, as shown by qPCR and in silico RNA-seq analysis. Thus, pneumonias of various etiologies are associated with specific lipid abnormalities; therefore, lipid metabolism can be considered to be a target for new therapeutic strategies.
Collapse
|
24
|
Ng AHC, Hu H, Wang K, Scherler K, Warren SE, Zollinger DR, McKay-Fleisch J, Sorg K, Beechem JM, Ragaglia E, Lacy JM, Smith KD, Marshall DA, Bundesmann MM, López de Castilla D, Corwin D, Yarid N, Knudsen BS, Lu Y, Goldman JD, Heath JR. Organ-specific immunity: A tissue analysis framework for investigating local immune responses to SARS-CoV-2. Cell Rep 2023; 42:113212. [PMID: 37792533 DOI: 10.1016/j.celrep.2023.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Local immune activation at mucosal surfaces, mediated by mucosal lymphoid tissues, is vital for effective immune responses against pathogens. While pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread to multiple organs, patients with coronavirus disease 2019 (COVID-19) primarily experience inflammation and damage in their lungs. To investigate this apparent organ-specific immune response, we develop an analytical framework that recognizes the significance of mucosal lymphoid tissues. This framework combines histology, immunofluorescence, spatial transcript profiling, and mathematical modeling to identify cellular and gene expression differences between the lymphoid tissues of the lung and the gut and predict the determinants of those differences. Our findings indicate that mucosal lymphoid tissues are pivotal in organ-specific immune response to SARS-CoV-2, mediating local inflammation and tissue damage and contributing to immune dysfunction. The framework developed here has potential utility in the study of long COVID and may streamline biomarker discovery and treatment design for diseases with differential pathologies at the organ level.
Collapse
Affiliation(s)
- Alphonsus H C Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Huiqian Hu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | | | | | | | | | - Emily Ragaglia
- CellNetix Pathology and Laboratories, Seattle, WA 98168, USA
| | - J Matthew Lacy
- Snohomish County Medical Examiner's Office, Everett, WA 98204, USA
| | - Kelly D Smith
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Desiree A Marshall
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Michael M Bundesmann
- Division of Pulmonary and Critical Care, Evergreen Health, Kirkland, WA 98034, USA
| | | | - David Corwin
- CellNetix Pathology and Laboratories, Seattle, WA 98168, USA
| | - Nicole Yarid
- King County Medical Examiner's Office, Harborview Medical Center, Seattle, WA 98104, USA
| | - Beatrice S Knudsen
- Huntsman Cancer Institute BMP Core, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA; Providence St. Joseph Health System, Renton, WA 98057, USA; Division of Infectious Disease, University of Washington, Seattle, WA 98101, USA.
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Sounart H, Lázár E, Masarapu Y, Wu J, Várkonyi T, Glasz T, Kiss A, Borgström E, Hill A, Rezene S, Gupta S, Jurek A, Niesnerová A, Druid H, Bergmann O, Giacomello S. Dual spatially resolved transcriptomics for human host-pathogen colocalization studies in FFPE tissue sections. Genome Biol 2023; 24:237. [PMID: 37858234 PMCID: PMC10588020 DOI: 10.1186/s13059-023-03080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Technologies to study localized host-pathogen interactions are urgently needed. Here, we present a spatial transcriptomics approach to simultaneously capture host and pathogen transcriptome-wide spatial gene expression information from human formalin-fixed paraffin-embedded (FFPE) tissue sections at a near single-cell resolution. We demonstrate this methodology in lung samples from COVID-19 patients and validate our spatial detection of SARS-CoV-2 against RNAScope and in situ sequencing. Host-pathogen colocalization analysis identified putative modulators of SARS-CoV-2 infection in human lung cells. Our approach provides new insights into host response to pathogen infection through the simultaneous, unbiased detection of two transcriptomes in FFPE samples.
Collapse
Affiliation(s)
- Hailey Sounart
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Enikő Lázár
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Jian Wu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Tibor Várkonyi
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Tibor Glasz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | | | | | - Sefanit Rezene
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Soham Gupta
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- Universitätsmedizin Göttingen, Institute of Pharmacology and Toxicology, Göttingen, Germany
| | - Stefania Giacomello
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
26
|
Tedesco I, Zito Marino F, Ronchi A, Duarte Neto AN, Dolhnikoff M, Municinò M, Campobasso CP, Pannone G, Franco R. COVID-19: detection methods in post-mortem samples. Pathologica 2023; 115:263-274. [PMID: 38054901 DOI: 10.32074/1591-951x-933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/07/2023] Open
Abstract
COVID-19 identification is routinely performed on fresh samples, such as nasopharyngeal and oropharyngeal swabs, even if, the detection of the virus in formalin-fixed paraffin-embedded (FFPE) autopsy tissues could help to underlie mechanisms of the pathogenesis that are not well understood. The gold standard for COVID-19 detection in FFPE samples remains the qRT-PCR as in swab samples, contextually other methods have been developed, including immunohistochemistry (IHC), and in situ hybridization (ISH). In this manuscript, we summarize the main data regarding the methods of COVID-19 detection in pulmonary and extra-pulmonary post-mortem samples, and especially the sensitivity and specificity of these assays will be discussed.
Collapse
Affiliation(s)
- Ilaria Tedesco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Amaro Nunes Duarte Neto
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, Brazil
| | - Maurizio Municinò
- Forensic Medicine Unit, "S. Giuliano" Hospital, Giugliano in Campania, Italy
| | - Carlo Pietro Campobasso
- Department of Experimental Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
27
|
Oh T, Kim G, Baek SH, Woo Y, Koo BS, Hwang EH, Shim K, An YJ, Kim Y, Won J, Lee Y, Lim KS, Park JH, Hong JJ. Spatial transcriptome atlas reveals pulmonary microstructure-specific COVID-19 gene signatures in cynomolgus macaques. Commun Biol 2023; 6:879. [PMID: 37640792 PMCID: PMC10462721 DOI: 10.1038/s42003-023-05253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Characterizing the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the molecular level is necessary to understand viral pathogenesis and identify clinically relevant biomarkers. However, in humans, the pulmonary host response during disease onset remains poorly understood. Herein, we utilized a spatial transcriptome atlas to identify pulmonary microstructure-specific COVID-19 gene signatures during the acute phase of lung infection in cynomolgus macaques. The innate immune response to virus-induced cell death was primarily active in the alveolar regions involving activated macrophage infiltration. Inflamed vascular regions exhibited prominent upregulation of interferon and complement pathway genes that mediate antiviral activity and tissue damage response. Furthermore, known biomarker genes were significantly expressed in specific microstructures, and some of them were universally expressed across all microstructures. These findings underscore the importance of identifying key drivers of disease progression and clinically applicable biomarkers by focusing on pulmonary microstructures appearing during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Taehwan Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - YoungMin Woo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Kyuyoung Shim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Yujin Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Jinyoung Won
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
28
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the persistent inflammation seen in SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2021.04.20.21255677. [PMID: 33907755 PMCID: PMC8077568 DOI: 10.1101/2021.04.20.21255677] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.
Collapse
|
29
|
Wang WJ, Chu LX, He LY, Zhang MJ, Dang KT, Gao C, Ge QY, Wang ZG, Zhao XW. Spatial transcriptomics: recent developments and insights in respiratory research. Mil Med Res 2023; 10:38. [PMID: 37592342 PMCID: PMC10433685 DOI: 10.1186/s40779-023-00471-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.
Collapse
Affiliation(s)
- Wen-Jia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu-Xi Chu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li-Yong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ming-Jing Zhang
- Orthopaedic Bioengineering Research Group, Division of Surgery and Interventional Science, University College London, London, HA7 4LP, UK
| | - Kai-Tong Dang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qin-Yu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhou-Guang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiang-Wei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
30
|
Guo L, Appelman B, Mooij-Kalverda K, Houtkooper RH, van Weeghel M, Vaz FM, Dijkhuis A, Dekker T, Smids BS, Duitman JW, Bugiani M, Brinkman P, Sikkens JJ, Lavell HAA, Wüst RCI, van Vugt M, Lutter R. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine 2023; 94:104729. [PMID: 37506544 PMCID: PMC10406961 DOI: 10.1016/j.ebiom.2023.104729] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology. METHODS Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients. FINDINGS IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist. INTERPRETATION SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology. FUNDING None.
Collapse
Affiliation(s)
- Lihui Guo
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kirsten Mooij-Kalverda
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Annemiek Dijkhuis
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tamara Dekker
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Barbara S Smids
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Willem Duitman
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jonne J Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - H A Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michèle van Vugt
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - René Lutter
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Passi R, Brittan M, Baker AH. The role of the endothelium in severe acute respiratory syndrome coronavirus 2 infection and pathogenesis. CURRENT OPINION IN PHYSIOLOGY 2023; 34:100670. [PMID: 37159613 PMCID: PMC10066588 DOI: 10.1016/j.cophys.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Endothelial cell (EC) dysfunction is a characteristic complication of coronavirus-19 (COVID-19). This review discusses the role of the endothelium during the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a focus on different vascular beds, possible routes of infectivity and the impact of EC dysfunction across multiple organ systems. It is now known that COVID-19 disease elicits a distinct transcriptomic and molecular profile that is different to other viral infections, such as Influenza A (H1N1). Interestingly, there is also a suggested interplay between the heart and lungs that promotes the amplification of inflammatory cascades, leading to an exacerbation in disease severity. Multiomic studies have informed common pathways that may be responsible for endothelial activation while also highlighting key differences in COVID-19 pathogenesis between organ systems. At a pathological level, endothelialitis is an endpoint result regardless of either a direct viral infection or via indirect effects independent of infection. Understanding if ECs are directly targeted by SARS-CoV-2 or are collaterally damaged amid a cytokine storm originating from other cells and organs can provide novel insights into disease progression and may highlight possible new therapeutic opportunities targeted at the damaged endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| |
Collapse
|
32
|
Shi J, Pan Y, Liu X, Cao W, Mu Y, Zhu Q. Spatial Omics Sequencing Based on Microfluidic Array Chips. BIOSENSORS 2023; 13:712. [PMID: 37504111 PMCID: PMC10377411 DOI: 10.3390/bios13070712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Spatial profiling technologies fill the gap left by the loss of spatial information in traditional single-cell sequencing, showing great application prospects. After just a few years of quick development, spatial profiling technologies have made great progress in resolution and simplicity. This review introduces the development of spatial omics sequencing based on microfluidic array chips and describes barcoding strategies using various microfluidic designs with simplicity and efficiency. At the same time, the pros and cons of each strategy are compared. Moreover, commercialized solutions for spatial profiling are also introduced. In the end, the future perspective of spatial omics sequencing and research directions are discussed.
Collapse
Affiliation(s)
- Jianyu Shi
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Yating Pan
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Xudong Liu
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Wenjian Cao
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
33
|
Lou S, Yang M, Li T, Zhao W, Cevasco H, Yang YT, Gerstein M. Constructing a full, multiple-layer interactome for SARS-CoV-2 in the context of lung disease: Linking the virus with human genes and microbes. PLoS Comput Biol 2023; 19:e1011222. [PMID: 37410793 PMCID: PMC10325097 DOI: 10.1371/journal.pcbi.1011222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/28/2023] [Indexed: 07/08/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in millions of deaths worldwide. The disease presents with various manifestations that can vary in severity and long-term outcomes. Previous efforts have contributed to the development of effective strategies for treatment and prevention by uncovering the mechanism of viral infection. We now know all the direct protein-protein interactions that occur during the lifecycle of SARS-CoV-2 infection, but it is critical to move beyond these known interactions to a comprehensive understanding of the "full interactome" of SARS-CoV-2 infection, which incorporates human microRNAs (miRNAs), additional human protein-coding genes, and exogenous microbes. Potentially, this will help in developing new drugs to treat COVID-19, differentiating the nuances of long COVID, and identifying histopathological signatures in SARS-CoV-2-infected organs. To construct the full interactome, we developed a statistical modeling approach called MLCrosstalk (multiple-layer crosstalk) based on latent Dirichlet allocation. MLCrosstalk integrates data from multiple sources, including microbes, human protein-coding genes, miRNAs, and human protein-protein interactions. It constructs "topics" that group SARS-CoV-2 with genes and microbes based on similar patterns of co-occurrence across patient samples. We use these topics to infer linkages between SARS-CoV-2 and protein-coding genes, miRNAs, and microbes. We then refine these initial linkages using network propagation to contextualize them within a larger framework of network and pathway structures. Using MLCrosstalk, we identified genes in the IL1-processing and VEGFA-VEGFR2 pathways that are linked to SARS-CoV-2. We also found that Rothia mucilaginosa and Prevotella melaninogenica are positively and negatively correlated with SARS-CoV-2 abundance, a finding corroborated by analysis of single-cell sequencing data.
Collapse
Affiliation(s)
- Shaoke Lou
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Mingjun Yang
- School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London, United Kingdom
| | - Tianxiao Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Weihao Zhao
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Hannah Cevasco
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Yucheng T. Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mark Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
- Department of Statistics & Data Science Yale University, New Haven, Connecticut, United States of America
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
34
|
Zhou T, Gilliam NJ, Li S, Spandau S, Osborn RM, Connor S, Anderson CS, Mariani TJ, Thakar J, Dewhurst S, Mathews DH, Huang L, Sun Y. Generation and Functional Analysis of Defective Viral Genomes during SARS-CoV-2 Infection. mBio 2023; 14:e0025023. [PMID: 37074178 PMCID: PMC10294654 DOI: 10.1128/mbio.00250-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from transcriptome sequencing (RNA-seq) data sets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hot spots were identified for DVG recombination, and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single-cell RNA-seq analysis indicated the interferon (IFN) stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the next-generation sequencing (NGS) data set from a published cohort study and observed a significantly higher amount and frequency of DVG in symptomatic patients than those in asymptomatic patients. Finally, we observed exceptionally diverse DVG populations in one immunosuppressive patient up to 140 days after the first positive test of COVID-19, suggesting for the first time an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and into how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. IMPORTANCE Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex, and this recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hot spots for nonhomologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide evidence to harness the immunostimulatory potential of DVGs in the development of a vaccine and antivirals for SARS-CoV-2.
Collapse
Affiliation(s)
- Terry Zhou
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nora J. Gilliam
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Simone Spandau
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Raven M. Osborn
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sarah Connor
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Juilee Thakar
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Yan Sun
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
35
|
Chowdhury R, Taguchi AT, Kelbauskas L, Stafford P, Diehnelt C, Zhao ZG, Williamson PC, Green V, Woodbury NW. Modeling the sequence dependence of differential antibody binding in the immune response to infectious disease. PLoS Comput Biol 2023; 19:e1010773. [PMID: 37339137 DOI: 10.1371/journal.pcbi.1010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
Past studies have shown that incubation of human serum samples on high density peptide arrays followed by measurement of total antibody bound to each peptide sequence allows detection and discrimination of humoral immune responses to a variety of infectious diseases. This is true even though these arrays consist of peptides with near-random amino acid sequences that were not designed to mimic biological antigens. This "immunosignature" approach, is based on a statistical evaluation of the binding pattern for each sample but it ignores the information contained in the amino acid sequences that the antibodies are binding to. Here, similar array-based antibody profiles are instead used to train a neural network to model the sequence dependence of molecular recognition involved in the immune response of each sample. The binding profiles used resulted from incubating serum from 5 infectious disease cohorts (Hepatitis B and C, Dengue Fever, West Nile Virus and Chagas disease) and an uninfected cohort with 122,926 peptide sequences on an array. These sequences were selected quasi-randomly to represent an even but sparse sample of the entire possible combinatorial sequence space (~1012). This very sparse sampling of combinatorial sequence space was sufficient to capture a statistically accurate representation of the humoral immune response across the entire space. Processing array data using the neural network not only captures the disease-specific sequence-binding information but aggregates binding information with respect to sequence, removing sequence-independent noise and improving the accuracy of array-based classification of disease compared with the raw binding data. Because the neural network model is trained on all samples simultaneously, a highly condensed representation of the differential information between samples resides in the output layer of the model, and the column vectors from this layer can be used to represent each sample for classification or unsupervised clustering applications.
Collapse
Affiliation(s)
- Robayet Chowdhury
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Laimonas Kelbauskas
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | - Phillip Stafford
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | - Chris Diehnelt
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | - Zhan-Gong Zhao
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
| | | | - Valerie Green
- Creative Testing Solutions, Tempe, Arizona, United States of America
| | - Neal W Woodbury
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, fsupArizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
36
|
Carrau L, Frere JJ, Golynker I, Fajardo A, Rivera CF, Horiuchi S, Roonprapunt T, Minkoff JM, Blanco-Melo D, TenOever B. Delayed engagement of host defenses enables SARS-CoV-2 viremia and productive infection of distal organs in the hamster model of COVID-19. Sci Signal 2023; 16:eadg5470. [PMID: 37311033 DOI: 10.1126/scisignal.adg5470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Clinical presentations that develop in response to infection result from interactions between the pathogen and host defenses. SARS-CoV-2, the etiologic agent of COVID-19, directly antagonizes these defenses, leading to delayed immune engagement in the lungs that materializes only as cells succumb to infection and are phagocytosed. Leveraging the golden hamster model of COVID-19, we sought to understand the dynamics between SARS-CoV-2 infection in the airways and the systemic host response that ensues. We found that early SARS-CoV-2 replication was largely confined to the respiratory tract and olfactory system and, to a lesser extent, the heart and gastrointestinal tract but generated a host antiviral response in every organ as a result of circulating type I and III interferons. Moreover, we showed that diminishing the response in the airways by immunosuppression or administration of SARS-CoV-2 intravenously resulted in decreased immune priming, viremia, and increased viral tropism, including productive infection of the liver, kidney, spleen, and brain. Last, we showed that productive infection of the airways was required for mounting an effective and system-wide antiviral response. Together, these data illustrate how COVID-19 can result in diverse clinical presentations in which disease outcomes can be a by-product of the speed and strength of immune engagement. These studies provide additional evidence for the mechanistic basis of the diverse clinical presentations of COVID-19 and highlight the ability of the respiratory tract to generate a systemic immune defense after pathogen recognition.
Collapse
Affiliation(s)
- Lucia Carrau
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Justin J Frere
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Alvaro Fajardo
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Cristobal F Rivera
- Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shu Horiuchi
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Tyler Roonprapunt
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Judith M Minkoff
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | - Benjamin TenOever
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
37
|
Van Slambrouck J, Khan M, Verbeken E, Choi S, Geudens V, Vanluyten C, Feys S, Vanhulle E, Wollants E, Vermeire K, De Fays C, Aversa L, Kaes J, Van Raemdonck D, Vos R, Vanaudenaerde B, De Hertogh G, Wauters E, Wauters J, Ceulemans LJ, Mombaerts P. Visualising SARS-CoV-2 infection of the lung in deceased COVID-19 patients. EBioMedicine 2023; 92:104608. [PMID: 37224768 PMCID: PMC10202122 DOI: 10.1016/j.ebiom.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Erik Verbeken
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Vincent Geudens
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Cedric Vanluyten
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Emiel Vanhulle
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Elke Wollants
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Kurt Vermeire
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Charlotte De Fays
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Lucia Aversa
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Els Wauters
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany.
| |
Collapse
|
38
|
Cao F, Peng S, An Y, Xu K, Zheng T, Dai L, Ogino K, Ngai T, Xia Y, Ma G. Inside-out assembly of viral antigens for the enhanced vaccination. Signal Transduct Target Ther 2023; 8:189. [PMID: 37221173 DOI: 10.1038/s41392-023-01414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 03/08/2023] [Indexed: 05/25/2023] Open
Abstract
Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.
Collapse
Affiliation(s)
- Fengqiang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Yaling An
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kun Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, 571199, PR China
| | - Tianyi Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 999077, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
39
|
Maffia-Bizzozero S, Cevallos C, Lenicov FR, Freiberger RN, Lopez CAM, Guano Toaquiza A, Sviercz F, Jarmoluk P, Bustos C, D’Addario AC, Quarleri J, Delpino MV. Viable SARS-CoV-2 Omicron sub-variants isolated from autopsy tissues. Front Microbiol 2023; 14:1192832. [PMID: 37283920 PMCID: PMC10240073 DOI: 10.3389/fmicb.2023.1192832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Pulmonary and extrapulmonary manifestations have been described after infection with SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The virus is known to persist in multiple organs due to its tropism for several tissues. However, previous reports were unable to provide definitive information about whether the virus is viable and transmissible. It has been hypothesized that the persisting reservoirs of SARS-CoV-2 in tissues could be one of the multiple potentially overlapping causes of long COVID. Methods In the present study, we investigated autopsy materials obtained from 21 cadaveric donors with documented first infection or reinfection at the time of death. The cases studied included recipients of different formulations of COVID-19 vaccines. The aim was to find the presence of SARS-CoV-2 in the lungs, heart, liver, kidneys, and intestines. We used two technical approaches: the detection and quantification of viral genomic RNA using RT-qPCR, and virus infectivity using permissive in vitro Vero E6 culture. Results All tissues analyzed showed the presence of SARS-CoV-2 genomic RNA but at dissimilar levels ranging from 1.01 × 102 copies/mL to 1.14 × 108 copies/mL, even among those cases who had been COVID-19 vaccinated. Importantly, different amounts of replication-competent virus were detected in the culture media from the studied tissues. The highest viral load were measured in the lung (≈1.4 × 106 copies/mL) and heart (≈1.9 × 106 copies/mL) samples. Additionally, based on partial Spike gene sequences, SARS-CoV-2 characterization revealed the presence of multiple Omicron sub-variants exhibiting a high level of nucleotide and amino acid identity among them. Discussion These findings highlight that SARS-CoV-2 can spread to multiple tissue locations such as the lungs, heart, liver, kidneys, and intestines, both after primary infection and after reinfections with the Omicron variant, contributing to extending knowledge about the pathogenesis of acute infection and understanding the sequelae of clinical manifestations that are observed during post-acute COVID-19.
Collapse
Affiliation(s)
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa Nicole Freiberger
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cinthya Alicia Marcela Lopez
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alex Guano Toaquiza
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Sviercz
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio Jarmoluk
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M. Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Bastos TSB, de Paula AGP, Dos Santos Luz RB, Garnique AMB, Belo MAA, Eto SF, Fernandes DC, Ferraris FK, de Pontes LG, França TT, Barcellos LJG, Veras FP, Bermejo P, Guidelli G, Maneira C, da Silveira Bezerra de Mello F, Teixeira G, Pereira GAG, Fernandes BHV, Sanches PRS, Braz HLB, Jorge RJB, Malafaia G, Cilli EM, Olivier DDS, do Amaral MS, Medeiros RJ, Condino-Neto A, Carvalho LR, Machado-Santelli GM, Charlie-Silva I, Galindo-Villegas J, Braga TT. A novel insight on SARS-CoV-2 S-derived fragments in the control of the host immunity. Sci Rep 2023; 13:8060. [PMID: 37198208 PMCID: PMC10191404 DOI: 10.1038/s41598-023-29588-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/07/2023] [Indexed: 05/19/2023] Open
Abstract
Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.
Collapse
Affiliation(s)
| | | | | | - Anali M B Garnique
- Department of Cell Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Silas Fernandes Eto
- Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Innovation and Development, Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | | | - Fausto Klabund Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Leticia Gomes de Pontes
- Laboratory of Human Immunology, Department Immunology, Institute Biomedical Sciences, University São Paulo, São Paulo, Brazil
| | - Tábata Takahashi França
- Laboratory of Human Immunology, Department Immunology, Institute Biomedical Sciences, University São Paulo, São Paulo, Brazil
| | - Leonardo José Gil Barcellos
- Laboratory of Fish Physiology, Graduate Program of Bioexperimentation, University of Passo Fundo, Santa Maria, Brazil
- Graduate Program of Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Flavio P Veras
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Pamela Bermejo
- Laboratório de Genômica e bioEnergia (LGE), Institute of Biology - Unicamp, Campinas, Brazil
| | - Giovanna Guidelli
- Laboratório de Genômica e bioEnergia (LGE), Institute of Biology - Unicamp, Campinas, Brazil
| | - Carla Maneira
- Laboratório de Genômica e bioEnergia (LGE), Institute of Biology - Unicamp, Campinas, Brazil
| | | | - Gleidson Teixeira
- Laboratório de Genômica e bioEnergia (LGE), Institute of Biology - Unicamp, Campinas, Brazil
| | | | - Bianca H Ventura Fernandes
- Laboratório de Controle Genético e Sanitário, Diretoria Técnica de Apoio ao Ensino e Pesquisa, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Helyson Lucas Bezerra Braz
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutai Campus, Urutaí, GO, Brazil
| | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | - Marcos Serrou do Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Renata J Medeiros
- Laboratory of Physiology, INCQS/Fiocruz Zebrafish Facility, Department of Pharmacology and Toxicology, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
| | - Antonio Condino-Neto
- Laboratory of Human Immunology, Department Immunology, Institute Biomedical Sciences, University São Paulo, São Paulo, Brazil
| | - Luciani R Carvalho
- Laboratório de Controle Genético e Sanitário, Diretoria Técnica de Apoio ao Ensino e Pesquisa, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Glaucia M Machado-Santelli
- Laboratory of Cellular and Molecular Biology, Department of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao Paulo, University of São Paulo, São Paulo, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, University of São Paulo-ICB/USP, São Paulo, Brazil.
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Tárcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.
- Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Brazil.
| |
Collapse
|
41
|
Sperry MM, Oskotsky TT, Marić I, Kaushal S, Takeda T, Horvath V, Powers RK, Rodas M, Furlong B, Soong M, Prabhala P, Goyal G, Carlson KE, Wong RJ, Kosti I, Le BL, Logue J, Hammond H, Frieman M, Stevenson DK, Ingber DE, Sirota M, Novak R. Target-agnostic drug prediction integrated with medical record analysis uncovers differential associations of statins with increased survival in COVID-19 patients. PLoS Comput Biol 2023; 19:e1011050. [PMID: 37146076 PMCID: PMC10191356 DOI: 10.1371/journal.pcbi.1011050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/17/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023] Open
Abstract
Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.
Collapse
Affiliation(s)
- Megan M. Sperry
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Tomiko T. Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Ivana Marić
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
- Center for Academic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shruti Kaushal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Takako Takeda
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Rani K. Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Melissa Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Brooke Furlong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Mercy Soong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Pranav Prabhala
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Kenneth E. Carlson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Ronald J. Wong
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
- Center for Academic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Brian L. Le
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Holly Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David K. Stevenson
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
- Center for Academic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
43
|
Park J, Park MY, Kim Y, Jun Y, Lee U, Oh CM. Apelin as a new therapeutic target for COVID-19 treatment. QJM 2023; 116:197-204. [PMID: 36200913 PMCID: PMC9619586 DOI: 10.1093/qjmed/hcac229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Apelin is an endogenous neuropeptide that binds to the G-protein-coupled receptor (APJ) and participates in a variety of physiological processes in the heart, lungs and other peripheral organs. Intriguingly, [Pyr1]-Apelin-13, a highly potent pyroglutamic form of apelin, has the potential to bind to and be degraded by angiotensin-converting enzyme 2 (ACE2). ACE2 is known to operate as a viral receptor in the early stages of severe acute respiratory coronavirus (SARS-CoV-2) infection. AIM This study aimed to determine if apelin protects against SARS-CoV-2 infection by inhibiting ACE2 binding to SARS-CoV-2 spike protein. DESIGN AND METHODS To determine whether [Pyr1]-Apelin-13 inhibits ACE2 binding to the SARS-CoV-2 spike protein (S protein), we performed a cell-to-cell fusion assay using ACE2-expressing cells and S protein-expressing cells and a pseudovirus-based inhibition assay. We then analyzed publicly available transcriptome data while focusing on the beneficial effects of apelin on the lungs. RESULTS We found that [Pyr1]-Apelin-13 inhibits cell-to-cell fusion mediated by ACE2 binding to the S protein. In this experiment, [Pyr1]-Apelin-13 protected human bronchial epithelial cells, infected with pseudo-typed lentivirus-producing S protein, against viral infection. In the presence of [Pyr1]-Apelin-13, the level of viral spike protein expression was also reduced in a concentration-dependent manner. Transcriptome analysis revealed that apelin may control inflammatory responses to viral infection by inhibiting the nuclear factor kappa B pathway. CONCLUSION Apelin is a potential therapeutic candidate against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- J Park
- From the Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - M -Y Park
- From the Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Y Kim
- From the Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Y Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - U Lee
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
| | - C -M Oh
- Address correspondence to C.-M. Oh, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| |
Collapse
|
44
|
Resnick JD, Beer MA, Pekosz A. Early Transcriptional Responses of Human Nasal Epithelial Cells to Infection with Influenza A and SARS-CoV-2 Virus Differ and Are Influenced by Physiological Temperature. Pathogens 2023; 12:480. [PMID: 36986402 PMCID: PMC10051809 DOI: 10.3390/pathogens12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza A (IAV) and SARS-CoV-2 (SCV2) viruses represent an ongoing threat to public health. Both viruses target the respiratory tract, which consists of a gradient of cell types, receptor expression, and temperature. Environmental temperature has been an understudied contributor to infection susceptibility and understanding its impact on host responses to infection could help uncover new insight into severe disease risk factors. As the nasal passageways are the initial site of respiratory virus infection, in this study we investigated the effect of temperature on host responses in human nasal epithelial cells (hNECs) utilizing IAV and SCV2 in vitro infection models. We demonstrate that temperature affected SCV2, but not IAV, viral replicative fitness and that SCV2-infected cultures were slower to mount an infection-induced response, likely due to suppression by the virus. Additionally, we show that that temperature not only changed the basal transcriptomic landscape of epithelial cells, but that it also impacted the response to infection. The induction of interferon and other innate immune responses was not drastically affected by temperature, suggesting that while the baseline antiviral response at different temperatures remained consistent, there may be metabolic or signaling changes that affect how well the cultures were able to adapt to new pressures, such as infection. Finally, we show that hNECs responded differently to IAV and SCV2 infection in ways that give insight into how the virus is able to manipulate the cell to allow for replication and release. Taken together, these data give new insight into the innate immune response to respiratory infections and can assist in identifying new treatment strategies for respiratory infections.
Collapse
Affiliation(s)
- Jessica D. Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael A. Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Makhijani P, Basso PJ, Chan YT, Chen N, Baechle J, Khan S, Furman D, Tsai S, Winer DA. Regulation of the immune system by the insulin receptor in health and disease. Front Endocrinol (Lausanne) 2023; 14:1128622. [PMID: 36992811 PMCID: PMC10040865 DOI: 10.3389/fendo.2023.1128622] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The signaling pathways downstream of the insulin receptor (InsR) are some of the most evolutionarily conserved pathways that regulate organism longevity and metabolism. InsR signaling is well characterized in metabolic tissues, such as liver, muscle, and fat, actively orchestrating cellular processes, including growth, survival, and nutrient metabolism. However, cells of the immune system also express the InsR and downstream signaling machinery, and there is increasing appreciation for the involvement of InsR signaling in shaping the immune response. Here, we summarize current understanding of InsR signaling pathways in different immune cell subsets and their impact on cellular metabolism, differentiation, and effector versus regulatory function. We also discuss mechanistic links between altered InsR signaling and immune dysfunction in various disease settings and conditions, with a focus on age related conditions, such as type 2 diabetes, cancer and infection vulnerability.
Collapse
Affiliation(s)
- Priya Makhijani
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
| | - Paulo José Basso
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Tao Chan
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nan Chen
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jordan Baechle
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
| | - Saad Khan
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - David Furman
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Stanford 1, 000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, United States
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pilar, Argentina
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel A. Winer
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
46
|
Resnick JD, Beer MA, Pekosz A. Early transcriptional responses of human nasal epithelial cells to infection with Influenza A and SARS-CoV-2 virus differ and are influenced by physiological temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531609. [PMID: 36945583 PMCID: PMC10028862 DOI: 10.1101/2023.03.07.531609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Influenza A (IAV) and SARS-CoV-2 (SCV2) viruses represent an ongoing threat to public health. Both viruses target the respiratory tract, which consists of a gradient of cell types, receptor expression, and temperature. Environmental temperature has been an un-derstudied contributor to infection susceptibility and understanding its impact on host responses to infection could help uncover new insights into severe disease risk factors. As the nasal passageways are the initial site of respiratory virus infection, in this study we investigated the effect of temperature on host responses in human nasal epithelial cells (hNECs) utilizing IAV and SCV2 in vitro infection models. We demonstrate that temperature affects SCV2, but not IAV, viral replicative fitness and that SCV2 infected cultures are slower to mount an infection-induced response, likely due to suppression by the virus. Additionally, we show that that temperature not only changes the basal transcriptomic landscape of epithelial cells, but that it also impacts the response to infection. The induction of interferon and other innate immune responses were not drastically affected by temperature, suggesting that while the baseline antiviral response at different temperatures remains consistent, there may be metabolic or signaling changes that affect how well the cultures are able to adapt to new pressures such as infection. Finally, we show that hNECs respond differently to IAV and SCV2 infection in ways that give insight into how the virus is able to manipulate the cell to allow for replication and release. Taken together, these data give new insight into the innate immune response to respiratory infections and can assist in identifying new treatment strategies for respiratory infections.
Collapse
Affiliation(s)
- Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Beer
- McKusick- Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
|
48
|
Li S, Zhang Y, Guan Z, Ye M, Li H, You M, Zhou Z, Zhang C, Zhang F, Lu B, Zhou P, Peng K. SARS-CoV-2 Z-RNA activates the ZBP1-RIPK3 pathway to promote virus-induced inflammatory responses. Cell Res 2023; 33:201-214. [PMID: 36650286 PMCID: PMC9844202 DOI: 10.1038/s41422-022-00775-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 infection can trigger strong inflammatory responses and cause severe lung damage in COVID-19 patients with critical illness. However, the molecular mechanisms by which the infection induces excessive inflammatory responses are not fully understood. Here, we report that SARS-CoV-2 infection results in the formation of viral Z-RNA in the cytoplasm of infected cells and thereby activates the ZBP1-RIPK3 pathway. Pharmacological inhibition of RIPK3 by GSK872 or genetic deletion of MLKL reduced SARS-CoV-2-induced IL-1β release. ZBP1 or RIPK3 deficiency leads to reduced production of both inflammatory cytokines and chemokines during SARS-CoV-2 infection both in vitro and in vivo. Furthermore, deletion of ZBP1 or RIPK3 alleviated SARS-CoV-2 infection-induced immune cell infiltration and lung damage in infected mouse models. These results suggest that the ZBP1-RIPK3 pathway plays a critical role in SARS-CoV-2-induced inflammatory responses and lung damage. Our study provides novel insights into how SARS-CoV-2 infection triggers inflammatory responses and lung pathology, and implicates the therapeutic potential of targeting ZBP1-RIPK3 axis in treating COVID-19.
Collapse
Affiliation(s)
- Shufen Li
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meidi Ye
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiling Li
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao You
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenxing Zhou
- University of Science and Technology of China, Hefei, Anhui, China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fan Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ben Lu
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
49
|
Kulasinghe A, Liu N, Tan CW, Monkman J, Sinclair JE, Bhuva DD, Godbolt D, Pan L, Nam A, Sadeghirad H, Sato K, Bassi GL, O'Byrne K, Hartmann C, Dos Santos Miggiolaro AFR, Marques GL, Moura LZ, Richard D, Adams M, de Noronha L, Baena CP, Suen JY, Arora R, Belz GT, Short KR, Davis MJ, Guimaraes FSF, Fraser JF. Transcriptomic profiling of cardiac tissues from SARS-CoV-2 patients identifies DNA damage. Immunology 2023; 168:403-419. [PMID: 36107637 PMCID: PMC9537957 DOI: 10.1111/imm.13577] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes that govern this remain unknown. In this study, we investigated the host transcriptome landscape of cardiac tissues collected at rapid autopsy from seven SARS-CoV-2, two pH1N1, and six control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by γ-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of interferon-stimulated genes, in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ning Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - James Monkman
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dharmesh D Bhuva
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - David Godbolt
- Pathology Queensland, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Liuliu Pan
- Nanostring Technologies, Inc, Seattle, Washington, USA
| | - Andy Nam
- Nanostring Technologies, Inc, Seattle, Washington, USA
| | - Habib Sadeghirad
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kei Sato
- Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Ken O'Byrne
- The Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Camila Hartmann
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | | | - Gustavo Lenci Marques
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Lidia Zytynski Moura
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Derek Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mark Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Cristina Pellegrino Baena
- Pontifical Catholic University of Parana, Curitiba, Brazil
- Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Jacky Y Suen
- Critical Care Research Group, Faculty of Medicine, University of Queensland and The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Rakesh Arora
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gabrielle T Belz
- Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsty R Short
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - John F Fraser
- Pathology Queensland, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
50
|
Dillard JA, Martinez SA, Dearing JJ, Montgomery SA, Baxter AK. Animal Models for the Study of SARS-CoV-2-Induced Respiratory Disease and Pathology. Comp Med 2023; 73:72-90. [PMID: 36229170 PMCID: PMC9948904 DOI: 10.30802/aalas-cm-22-000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emergence of the betacoronavirus SARS-CoV-2 has resulted in a historic pandemic, with millions of deaths worldwide. An unprecedented effort has been made by the medical, scientific, and public health communities to rapidly develop and implement vaccines and therapeutics to prevent and reduce hospitalizations and deaths. Although SARS-CoV-2 infection can lead to disease in many organ systems, the respiratory system is its main target, with pneumonia and acute respiratory distress syndrome as the hallmark features of severe disease. The large number of patients who have contracted COVID-19 infections since 2019 has permitted a detailed characterization of the clinical and pathologic features of the disease in humans. However, continued progress in the development of effective preventatives and therapies requires a deeper understanding of the pathogenesis of infection. Studies using animal models are necessary to complement in vitro findings and human clinical data. Multiple animal species have been evaluated as potential models for studying the respiratory disease caused by SARSCoV-2 infection. Knowing the similarities and differences between animal and human responses to infection is critical for effective translation of animal data into human medicine. This review provides a detailed summary of the respiratory disease and associated pathology induced by SARS-CoV-2 infection in humans and compares them with the disease that develops in 3 commonly used models: NHP, hamsters, and mice. The effective use of animals to study SARS-CoV-2-induced respiratory disease will enhance our understanding of SARS-CoV-2 pathogenesis, allow the development of novel preventatives and therapeutics, and aid in the preparation for the next emerging virus with pandemic potential.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- agm, african green monkey
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- balf, bronchoalveolar lavage fluid
- cards, covid-19-associated acute respiratory distress syndrome
- dad, diffuse alveolar damage
- dpi, days postinfection
- ggo, ground glass opacities
- s, spike glycoprotein
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sabian A Martinez
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Justin J Dearing
- Biological and Biomedical Sciences Program, Office of Graduate Education, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andvictoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;,
| |
Collapse
|