1
|
Abdallah SB, Olfson E, Cappi C, Greenspun S, Zai G, Rosário MC, Willsey AJ, Shavitt RG, Miguel EC, Kennedy JL, Richter MA, Fernandez TV. Characterizing Rare DNA Copy-Number Variants in Pediatric Obsessive-Compulsive Disorder. J Am Acad Child Adolesc Psychiatry 2025:S0890-8567(25)00160-1. [PMID: 40122455 DOI: 10.1016/j.jaac.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE Pediatric obsessive-compulsive disorder (OCD) is a common neuropsychiatric disorder for which genetic factors play an important role. Recent studies have demonstrated an enrichment of rare de novo DNA single nucleotide variants in OCD cases compared to controls, and larger studies have examined copy-number variants (CNVs) using microarray data. Our study examines rare de novo CNVs using whole-exome sequencing (WES) data to provide additional insight into genetic factors and biological processes underlying OCD. METHOD We detected CNVs using whole-exome DNA sequencing (WES) data from 183 OCD trio families (unaffected parents and children with OCD) and 771 control families to test the hypothesis that rare de novo CNVs are enriched in OCD cases compared to controls. Our primary analysis used the eXome-Hidden Markov Model (XHMM) to identify CNVs in silico. We performed burden analyses comparing individuals with OCD vs. controls and downstream biological systems analyses of CNVs in probands with OCD. We then used a second algorithm (GATK-gCNV) to confirm our primary analysis. RESULTS Our findings demonstrate a higher rate of rare de novo CNVs detected by WES in individuals with OCD (0.07 CNVs per proband) compared to controls (0.005) (corrected rate ratio = 11.7 95% CI, 3.6-50.0, p = 4.00x10-6). We confirmed this enrichment using GATK-gCNV. The majority of these rare de novo CNVs in OCD cases are predicted to be pathogenic or likely pathogenic, and an examination of genes disrupted by rare de novo CNVs in OCD cases finds enrichment of several gene-ontology sets. CONCLUSION This study shows for the first time an enrichment of rare de novo CNVs detected by WES in OCD, complementing previous larger CNV studies and providing additional insight into genetic factors underlying OCD risk.
Collapse
Affiliation(s)
| | - Emily Olfson
- Yale University School of Medicine, New Haven, Connecticut
| | - Carolina Cappi
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Gwyneth Zai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Instituteof Medical Science and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - A Jeremy Willsey
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Roseli G Shavitt
- Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo,Brazil
| | | | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Instituteof Medical Science and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margaret A Richter
- Instituteof Medical Science and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Pham K, Malachowski T, Zhou L, Kim JH, Su C, Phillips-Cremins JE. Mosaic H3K9me3 at BREACHes predicts synaptic gene expression associated with fragile X syndrome cognitive severity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644148. [PMID: 40166285 PMCID: PMC11957133 DOI: 10.1101/2025.03.19.644148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Diseases vary in clinical presentation across individuals despite the same molecular diagnosis. In fragile X syndrome (FXS), mutation-length expansion of a CGG short tandem repeat (STR) in FMR1 causes reduced gene expression and FMRP loss. Nevertheless, FMR1 and FMRP are limited predictors of adaptive functioning and cognition in FXS patients, suggesting that molecular correlates of clinical measures would add diagnostic value. We recently uncovered Megabase-scale domains of heterochromatin (BREACHes) in FXS patient-derived iPSCs. Here, we identify BREACHes in FXS brain tissue (N=4) and absent from sex/age-matched neurotypical controls (N=4). BREACHes span >250 genes and exhibit patient-specific H3K9me3 variation. Using N=4 FXS iPSC lines and N=7 single-cell isogenic FXS iPSC subclones, we observe a strong correlation between inter-sample H3K9me3 variation and heterogeneous BREACH gene repression. We demonstrate improved prediction of cognitive metrics in FXS patients with an additive model of blood FMRP and mRNA levels of H3K9me3-mosaic, but not H3K9me3-invariant, BREACH genes. Our results highlight the utility of H3K9me3 variation at BREACHes for identifying genes associated with FXS clinical metrics.
Collapse
|
3
|
Romanovsky E, Choudhary A, Peles D, Abu-Akel A, Stern S. Uncovering convergence and divergence between autism and schizophrenia using genomic tools and patients' neurons. Mol Psychiatry 2025; 30:1019-1028. [PMID: 39237719 PMCID: PMC11835745 DOI: 10.1038/s41380-024-02740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorders (ASDs) are highly heritable and result in abnormal repetitive behaviors and impairment in communication and cognitive skills. Previous studies have focused on the genetic correlation between ASDs and other neuropsychiatric disorders, but an in-depth understanding of the correlation to other disorders is required. We conducted an extensive meta-analysis of common variants identified in ASDs by genome-wide association studies (GWAS) and compared it to the consensus genes and single nucleotide polymorphisms (SNPs) of Schizophrenia (SCZ). We found approximately 75% of the GWAS genes that are associated with ASD are also associated with SCZ. We further investigated the cellular phenotypes of neurons derived from induced pluripotent stem cell (iPSC) models in ASD and SCZ. Our findings revealed that ASD and SCZ neurons initially follow divergent developmental trajectories compared to control neurons. However, despite these early diametrical differences, both ASD and SCZ neurons ultimately display similar deficits in synaptic activity as they mature. This significant genetic overlap between ASD and SCZ, coupled with the convergence towards similar synaptic deficits, highlights the intricate interplay of genetic and developmental factors in shaping the shared underlying mechanisms of these complex neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eva Romanovsky
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Martin H, Choi JE, Rodrigues AR, Eshel N. Review: Dopamine, Serotonin, and the Translational Neuroscience of Aggression in Autism Spectrum Disorder. JAACAP OPEN 2025; 3:29-41. [PMID: 40109493 PMCID: PMC11914923 DOI: 10.1016/j.jaacop.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/22/2025]
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a 1% to 2% prevalence in children. In addition to social communication deficits and restricted or repetitive behavior, ASD is often characterized by a heightened propensity for aggression. In fact, aggressive behavior is the primary reason for hospitalization in children with ASD, and current treatment options, despite some efficacy, are often associated with prominent side effects. Despite such high clinical toll, the neurobiology of aggression in ASD remains poorly understood. Method The neural circuits linked to both ASD and aggression were reviewed, with the goal of identifying overlapping components to help guide future treatment development. In discussing the clinical phenotype of aggression in ASD, some of the triggers and risk factors were noted to differ from those that cause aggression in neurotypical children. Preclinical and clinical studies on the neurobiology of aggression and ASD were synthesized to combine evidence from genetics, neuroimaging, pharmacology, and circuit manipulations. Dopamine and serotonin, 2 neuromodulators that contribute to development and behavioral control, were specifically studied. Results The literature indicates that the intricate interplay of the dopamine and serotonin systems has a pivotal role in shaping behavior, including the expression of aggression. Conclusion Understanding the balance between dopamine as an accelerator and serotonin as a brake may provide insights into the mechanisms of aggression in children with ASD. Although much work remains to be done, new perspectives promise to bridge the gap between human and animal studies and pinpoint the neurobiology of aggression in ASD. Diversity & Inclusion Statement One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. We actively worked to promote sex and gender balance in our author group.
Collapse
Affiliation(s)
| | | | | | - Neir Eshel
- Stanford University, Stanford, California
| |
Collapse
|
5
|
Aspromonte MC, Del Conte A, Polli R, Baldo D, Benedicenti F, Bettella E, Bigoni S, Boni S, Ciaccio C, D'Arrigo S, Donati I, Granocchio E, Mammi I, Milani D, Negrin S, Nosadini M, Soli F, Stanzial F, Turolla L, Piovesan D, Tosatto SCE, Murgia A, Leonardi E. Genetic variants and phenotypic data curated for the CAGI6 intellectual disability panel challenge. Hum Genet 2025:10.1007/s00439-025-02733-1. [PMID: 40019509 DOI: 10.1007/s00439-025-02733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Neurodevelopmental disorders (NDDs) are common conditions including clinically diverse and genetically heterogeneous diseases, such as intellectual disability, autism spectrum disorders, and epilepsy. The intricate genetic underpinnings of NDDs pose a formidable challenge, given their multifaceted genetic architecture and heterogeneous clinical presentations. This work delves into the intricate interplay between genetic variants and phenotypic manifestations in neurodevelopmental disorders, presenting a dataset curated for the Critical Assessment of Genome Interpretation (CAGI6) ID Panel Challenge. The CAGI6 competition serves as a platform for evaluating the efficacy of computational methods in predicting phenotypic outcomes from genetic data. In this study, a targeted gene panel sequencing has been used to investigate the genetic causes of NDDs in a cohort of 415 paediatric patients. We identified 60 pathogenic and 49 likely pathogenic variants in 102 individuals that accounted for 25% of NDD cases in the cohort. The most mutated genes were ANKRD11, MECP2, ARID1B, ASH1L, CHD8, KDM5C, MED12 and PTCHD1 The majority of pathogenic variants were de novo, with some inherited from mildly affected parents. Loss-of-function variants were the most common type of pathogenic variant. In silico analysis tools were used to assess the potential impact of variants on splicing and structural/functional effects of missense variants. The study highlights the challenges in variant interpretation especially in cases with atypical phenotypic manifestations. Overall, this study provides valuable insights into the genetic causes of NDDs and emphasises the importance of understanding the underlying genetic factors for accurate diagnosis, and intervention development in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Maria Cristina Aspromonte
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | | | | | - Elisa Bettella
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Stefania Bigoni
- Medical Genetics Unit, Ferrara University Hospital, Ferrara, Italy
| | - Stefania Boni
- Medical Genetics Unit, S. Martino Hospital, Belluno, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Ilaria Donati
- Unit of Medical Genetics, AUSL Romagna, Cesena, Italy
| | - Elisa Granocchio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | | | - Donatella Milani
- Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Negrin
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Fiorenza Soli
- Genetic Unit, UOM Patologia Clinica, S. Chiara Hospital of Trento, Trento, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Licia Turolla
- Medical Genetics Unit, Treviso Hospital, Treviso, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- CNR IBIOM, Bari, Italy
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Emanuela Leonardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.
| |
Collapse
|
6
|
Xu C, Xiang Y, Lin X, Ma Q, Xu Y, Li H, Tang S, Xu X. Saliva Sample-Based Non-Invasive Carrier Screening for Spinal Muscular Atrophy, Hereditary Hearing Loss, and Thalassemia in 13,926 Women of Reproductive Age From South Zhejiang. Mol Genet Genomic Med 2025; 13:e70064. [PMID: 39988971 PMCID: PMC11847965 DOI: 10.1002/mgg3.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/17/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Although spinal muscular atrophy (SMA), hereditary hearing loss (HL), and thalassemia are common monogenic genetic diseases, the carrier frequencies and variant spectrums of these diseases show regional differences, even within China. Their carrier frequencies and variant spectrums in Southern Zhejiang, China are unclear. METHODS Saliva was collected for carrier screening and amniotic fluid, villi, and peripheral blood were collected for prenatal diagnosis. Real-time quantitative polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) were used to detect the copy number of SMN1 exon 7. PCR coupled with flow-through hybridization, MLPA, and Sanger sequencing were used to detect common genes for HL and thalassemia. RESULTS Common variants were detected in 15.14% (2109/13926) of the 13,926 women of reproductive age from South Zhejiang who participated in this study. The carrier frequencies of SMA, HL, and thalassemia were 2.11% (294/13926), 4.87% (678/13926), and 8.82% (1228/13926), respectively. In total, 56.47% (1117/1978) of husbands were successfully recalled. The total number of at-risk couples was 111 (111/13926, 0.80%). Further, 47 families underwent prenatal diagnosis. A total of 13 (13/13926; 0.93‰) affected pregnancies were identified. CONCLUSION Our findings confirm that SMA, HL, and thalassemia are highly prevalent in Southern Zhejiang, with some regional specificity, as compared with recent large population-based surveys in China. Further, a rapid saliva sample-based non-invasive screening method was established, and its feasibility was demonstrated.
Collapse
Affiliation(s)
- Chenyang Xu
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Yanbao Xiang
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Xiaoling Lin
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Qifan Ma
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Yunzhi Xu
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Huanzheng Li
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Shaohua Tang
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| | - Xueqin Xu
- Key Laboratory of Birth Defects, Department of GeneticsWenzhou Central HospitalWenzhouChina
| |
Collapse
|
7
|
Mouat JS, Krigbaum NY, Hakam S, Thrall E, Kuodza GE, Mellis J, Yasui DH, Cirillo PM, Ludena Y, Schmidt RJ, La Merrill MA, Hertz-Picciotto I, Cohn BA, LaSalle JM. Sex-specific DNA methylation signatures of autism spectrum disorder in newborn blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603098. [PMID: 39026708 PMCID: PMC11257592 DOI: 10.1101/2024.07.11.603098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background Autism spectrum disorder (ASD) comprises a group of neurodevelopmental conditions currently diagnosed by behavioral assessment in childhood, although neuropathology begins during gestation. A poorly understood male bias for ASD diagnosis is thought to be due to both biological sex differences and cultural biases against female diagnosis of ASD. Identification of molecular biomarkers of ASD likelihood in newborns would provide more objective screening and early intervention. Epigenetic dysregulation has been reported in multiple tissues from newborns who are later diagnosed with ASD, but this is the first study to investigate sex-specific DNA methylation signatures for ASD in newborn blood, an accessible and widely banked tissue. Methods DNA methylation was assayed from ASD and typically developing (TD) newborn blood (discovery set n = 196, replication set n = 90) using whole genome bisulfite sequencing (WGBS). Sex-stratified differentially methylated regions (DMRs) were assessed for replication, comparisons by sex, overlaps with DMRs from other tissues, and enrichment for biological processes and SFARI ASD-risk genes. Results We found that newborn blood ASD DMRs from both sexes significantly replicated in an independent cohort and were enriched for hypomethylation in ASD compared to TD samples, as well as location in promoters, CpG islands and CpG shores. Comparing females and males, we found that most DMRs with sex differences amongst TD individuals were also found in ASD individuals, plus many additional DMRs with sex differences that were only found in those with ASD. Newborn blood DMRs from females were enriched for the X chromosome and both sexes showed significant overlap with DMRs from umbilical cord blood and placenta but not post-mortem cortex. DMRs from all tissues were enriched for neurodevelopmental processes (females) and SFARI ASD-risk genes (females and males). Limitations This study is primarily limited by sample sizes, particularly amongst females. Conclusions Overall, we found a highly replicated sex-specific DNA methylation signature of ASD in newborn blood that showed support for the female protective effect and convergence with epigenetic and genetic signatures of ASD in newborns. These results demonstrate the utility of newborn blood in ASD screening and emphasizes the importance of sex-stratification in future studies.
Collapse
Affiliation(s)
- Julia S. Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | | | - Sophia Hakam
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Emily Thrall
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - George E. Kuodza
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Julia Mellis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Dag H. Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Piera M. Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, CA USA
| | - Yunin Ludena
- MIND Institute, University of California, Davis, CA USA
- Department of Public Health Sciences, University of California, Davis, CA USA
| | - Rebecca J. Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
- Department of Public Health Sciences, University of California, Davis, CA USA
| | - Michele A. La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- Department of Environmental Toxicology, University of California, Davis, CA USA
- Environmental Health Sciences Center, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
- Department of Public Health Sciences, University of California, Davis, CA USA
- Environmental Health Sciences Center, University of California, Davis, CA USA
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| |
Collapse
|
8
|
Miyake N, Tsurusaki Y, Fukai R, Kushima I, Okamoto N, Ohashi K, Nakamura K, Hashimoto R, Hiraki Y, Son S, Kato M, Sakai Y, Osaka H, Deguchi K, Matsuishi T, Takeshita S, Fattal-Valevski A, Ekhilevitch N, Tohyama J, Yap P, Keng WT, Kobayashi H, Takubo K, Okada T, Saitoh S, Yasuda Y, Murai T, Nakamura K, Ohga S, Matsumoto A, Inoue K, Saikusa T, Hershkovitz T, Kobayashi Y, Morikawa M, Ito A, Hara T, Uno Y, Seiwa C, Ishizuka K, Shirahata E, Fujita A, Koshimizu E, Miyatake S, Takata A, Mizuguchi T, Ozaki N, Matsumoto N. Molecular diagnosis of 405 individuals with autism spectrum disorder. Eur J Hum Genet 2024; 32:1551-1558. [PMID: 36973392 PMCID: PMC11606949 DOI: 10.1038/s41431-023-01335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Japan
| | - Ryoko Fukai
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kei Ohashi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Shuraku Son
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | | | - Toyojiro Matsuishi
- Departments of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics, St. Mary's Hospital, Kurume, Japan
| | - Saoko Takeshita
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Center & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Patrick Yap
- Genetic Health Service New Zealand, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Wee Teik Keng
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Ken Inoue
- Deguchi Pediatric Clinic, Omura, Japan
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomoko Saikusa
- Departments of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics, St. Mary's Hospital, Kurume, Japan
| | - Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Yu Kobayashi
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aiko Ito
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | | | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chizuru Seiwa
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emi Shirahata
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
9
|
Co M, O'Brien GK, Wright KM, O'Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. Autism Res 2024. [PMID: 39548698 DOI: 10.1002/aur.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Cre recombinase knock-in mouse lines have served as invaluable genetic tools for understanding key developmental processes altered in autism. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame before the stop codon of the transcription factor gene Tbr1. Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure (AC). Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the AC, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1-null mice to Tbr1-null complementation crosses showed reductions of TBR1 dosage ranging from 20% to 100%. Using six combinatorial genotypes, we found that moderate to severe TBR1 reductions (≥44%) were associated with cortical layer 5 expansion, while only the complete absence of TBR1 was associated with reeler-like "inverted" cortical layering. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Grace K O'Brien
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Manghi P, Filosi M, Zolfo M, Casten LG, Garcia-Valiente A, Mattevi S, Heidrich V, Golzato D, Perini S, Thomas AM, Montalbano S, Cancellieri S, Waldron L, Hall JB, Xu S, Volfovsky N, Green Snyder L, Feliciano P, Asnicar F, Valles-Colomer M, Michaelson JJ, Segata N, Domenici E. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders. Nat Commun 2024; 15:9743. [PMID: 39528484 PMCID: PMC11555315 DOI: 10.1038/s41467-024-53934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The link between the oral microbiome and neurodevelopmental disorders remains a compelling hypothesis, still requiring confirmation in large-scale datasets. Leveraging over 7000 whole-genome sequenced salivary samples from 2025 US families with children diagnosed with autism spectrum disorders (ASD), our cross-sectional study shows that the oral microbiome composition can discriminate ASD subjects from neurotypical siblings (NTs, AUC = 0.66), with 108 differentiating species (q < 0.005). The relative abundance of these species is highly correlated with cognitive impairment as measured by Full-Scale Intelligence Quotient (IQ). ASD children with IQ < 70 also exhibit lower microbiome strain sharing with parents (p < 10-6) with respect to NTs. A two-pronged functional enrichment analysis suggests the contribution of enzymes from the serotonin, GABA, and dopamine degradation pathways to the distinct microbial community compositions observed between ASD and NT samples. Although measures of restrictive eating diet and proxies of oral hygiene show relatively minor effects on the microbiome composition, the observed associations with ASD and IQ may still represent unaccounted-for underlying differences in lifestyle among groups. While causal relationships could not be established, our study provides substantial support to the investigation of oral microbiome biomarkers in ASD.
Collapse
Affiliation(s)
- Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy.
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098, San Michele all'Adige, Italy.
| | - Michele Filosi
- Department CIBIO, University of Trento, Trento, Italy
- EURAC Research Institute for Biomedicine BIO, Bolzano, Italy
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
- Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - Lucas G Casten
- Department of Psychiatry, University of Iowa, Iowa city, IA, USA
| | | | - Stefania Mattevi
- Department CIBIO, University of Trento, Trento, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Samuel Perini
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Simone Montalbano
- Department CIBIO, University of Trento, Trento, Italy
- Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Samuele Cancellieri
- Department CIBIO, University of Trento, Trento, Italy
- Norwegian Center of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | | | - Simon Xu
- Simons Foundation, New York, NY, USA
| | | | - LeeAnne Green Snyder
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Pamela Feliciano
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | | |
Collapse
|
11
|
Wu Q, Morrow EM, Gamsiz Uzun ED. A deep learning model for prediction of autism status using whole-exome sequencing data. PLoS Comput Biol 2024; 20:e1012468. [PMID: 39514604 DOI: 10.1371/journal.pcbi.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/20/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), including deep learning (DL), has been evaluated in phenotype prediction, but this method has been limited in its application to autism. We developed a DL model, the Separate Translated Autism Research Neural Network (STAR-NN) model to predict autism status. The model was trained and tested using whole exome sequencing data from 43,203 individuals (16,809 individuals with autism and 26,394 non-autistic controls). Polygenic scores from common variants and the aggregated count of rare variants on genes were used as input. In STAR-NN, protein truncating variants, possibly damaging missense variants and mild effect missense variants on the same gene were separated at the input level and merged to one gene node. In this way, rare variants with different level of pathogenic effects were treated separately. We further validated the performance of STAR-NN using an independent dataset, including 13,827 individuals with autism and 14,052 non-autistic controls. STAR-NN achieved a modest ROC-AUC of 0.7319 on the testing dataset and 0.7302 on the independent dataset. STAR-NN outperformed other traditional ML models. Gene Ontology analysis on the selected gene features showed an enrichment for potentially informative pathways including calcium ion transport.
Collapse
Affiliation(s)
- Qing Wu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, Rhode Island, United States of America
| | - Ece D Gamsiz Uzun
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, United States of America
| |
Collapse
|
12
|
Gora C, Dudas A, Vaugrente O, Drobecq L, Pecnard E, Lefort G, Pellissier LP. Deciphering autism heterogeneity: a molecular stratification approach in four mouse models. Transl Psychiatry 2024; 14:416. [PMID: 39366951 PMCID: PMC11452541 DOI: 10.1038/s41398-024-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
Collapse
Affiliation(s)
- Caroline Gora
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ana Dudas
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Lucile Drobecq
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Gaëlle Lefort
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | |
Collapse
|
13
|
Wright JR, Astrovskaya I, Barns SD, Goler A, Zhou X, Shu C, Snyder LG, Han B, Shen Y, Volfovsky N, Hall JB, Feliciano P, Chung WK. Return of genetic research results in 21,532 individuals with autism. Genet Med 2024; 26:101202. [PMID: 38958063 DOI: 10.1016/j.gim.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE The aim of this study is to identify likely pathogenic (LP) and pathogenic (P) genetic results for autism that can be returned to participants in SPARK (SPARKforAutism.org): a large recontactable cohort of people with autism in the United States. We also describe the process to return these clinically confirmed genetic findings. METHODS We present results from microarray genotyping and exome sequencing of 21,532 individuals with autism and 17,785 of their parents. We returned LP and P (American College of Medical Genetics criteria) copy-number variants, chromosomal aneuploidies, and variants in genes with strong evidence of association with autism and intellectual disability. RESULTS We identified 1903 returnable LP/P variants in 1861 individuals with autism (8.6%). 89.5% of these variants were not known to participants. The diagnostic genetic result was returned to 589 participants (53% of those contacted). Features associated with a higher probability of having a returnable result include cognitive and medically complex features, being female, being White (versus non-White) and being diagnosed more than 20 years ago. We also find results among autistics across the spectrum, as well as in transmitting parents with neuropsychiatric features but no autism diagnosis. CONCLUSION SPARK offers an opportunity to assess returnable results among autistic people who have not been ascertained clinically. SPARK also provides practical experience returning genetic results for a behavioral condition at a large scale.
Collapse
Affiliation(s)
- Jessica R Wright
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | | | - Sarah D Barns
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Alexandra Goler
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Xueya Zhou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - Chang Shu
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
| | | | | | - Pamela Feliciano
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Wendy K Chung
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA.
| |
Collapse
|
14
|
Tafolla M, Amador R, Oyeyemi MJ, Algaze Z, Pandey J, Goin-Kochel RP, Sarver DE, Gulsrud A. Barriers, motivators and strategies to increase participation in genetic research among Asian and Black families of autistic individuals. J Community Genet 2024; 15:559-572. [PMID: 39136857 PMCID: PMC11549258 DOI: 10.1007/s12687-024-00724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/21/2024] [Indexed: 11/09/2024] Open
Abstract
Genetic research can help advance our knowledge of autism and positively impact the progress of care for individuals with autism. Asian American and Pacific Islander (AAPI) and Black participants remain significantly underrepresented in genetic research in autism in the United States, including nationwide, multisite, genetic consortiums like Simons Foundation Powering Autism Research for Knowledge (SPARK). Few studies have explored the unique motivators and barriers that influence participation in genetics research across underrepresented groups with autism and strategies to increase participation. Therefore, the aim of this study was to understand the perspectives of AAPI and Black parents of individuals with autism about participating in genetic research, specifically motivators (e.g., desire to know more about the relationship between autism and genetics) and/or barriers (e.g., mistrust of research staff) that may impact their decision to participate in genetic research. Using a mixed-methods approach, we collected surveys (n = 134) across the United States and conducted three focus groups with parents of individuals with autism (n = 16) who identified as AAPI and Black from two large metropolitan cities. No significant differences were observed in the survey data but findings from the focus groups elucidate shared motivators for participation (e.g., to help advance the autism field for future generations) and nuanced differences in barriers that influence Black and AAPI parents' decision to participate (e.g., different beliefs about the source of autism). Practical suggestions to improve outreach and study engagement in genetic research in autism were identified and discussed.
Collapse
Affiliation(s)
- Maira Tafolla
- Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Raquel Amador
- Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Motunrayo J Oyeyemi
- Roberts Center for Pediatric Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, USA
| | - Zach Algaze
- Roberts Center for Pediatric Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, USA
| | - Juhi Pandey
- Roberts Center for Pediatric Research, Children's Hospital of Philadelphia, 2716 South St, Philadelphia, PA, USA
| | - Robin P Goin-Kochel
- Autism Program, Texas Children's Hospital, 8080 N. Stadium Drive, Suite 100, Houston, TX, 77030, USA
| | - Dustin E Sarver
- Center for Advancement of Youth, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Amanda Gulsrud
- Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| |
Collapse
|
15
|
Yang K, Zhang T, Niu R, Zhao L, Cheng Z, Li J, Wang L. Unveiling the role of IGF1R in autism spectrum disorder: a multi-omics approach to decipher common pathogenic mechanisms in the IGF signaling pathway. Front Genet 2024; 15:1483574. [PMID: 39376742 PMCID: PMC11456441 DOI: 10.3389/fgene.2024.1483574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition marked by impairments in social interaction, communication, and repetitive behaviors. Emerging evidence suggests that the insulin-like growth factor (IGF) signaling pathway plays a critical role in ASD pathogenesis; however, the precise pathogenic mechanisms remain elusive. This study utilizes multi-omics approaches to investigate the pathogenic mechanisms of ASD susceptibility genes within the IGF pathway. Whole-exome sequencing (WES) revealed a significant enrichment of rare variants in key IGF signaling components, particularly the IGF receptor 1 (IGF1R), in a cohort of Chinese Han individuals diagnosed with ASD, as well as in ASD patients from the SFARI SPARK WES database. Subsequent single-cell RNA sequencing (scRNA-seq) of cortical tissues from children with ASD demonstrated elevated expression of IGF receptors in parvalbumin (PV) interneurons, suggesting a substantial impact on their development. Notably, IGF1R appears to mediate the effects of IGF2R on these neurons. Additionally, transcriptomic analysis of brain organoids derived from ASD patients indicated a significant association between IGF1R and ASD. Protein-protein interaction (PPI) and gene regulatory network (GRN) analyses further identified ASD susceptibility genes that interact with and regulate IGF1R expression. In conclusion, IGF1R emerges as a central node within the IGF signaling pathway, representing a potential common pathogenic mechanism and therapeutic target for ASD. These findings highlight the need for further investigation into the modulation of this pathway as a strategy for ASD intervention.
Collapse
Affiliation(s)
- Kang Yang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Tian Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruize Niu
- Affiliated Mental Health Center of Kuming Medical University, Yunnan Psychiatric Hospital, Kunming, China
| | - Liyang Zhao
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Zhonghe Cheng
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| |
Collapse
|
16
|
Zahiri J, Mirzaie M, Duan K, Xiao Y, Aamodt C, Yang X, Nazari S, Andreason C, Lopez L, Barnes CC, Arias S, Nalabolu S, Garmire L, Wang T, Hoekzema K, Eichler EE, Pierce K, Lewis NE, Courchesne E. Beyond the Spectrum: Subtype-Specific Molecular Insights into Autism Spectrum Disorder Via Multimodal Data Integration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.17.24313857. [PMID: 39399028 PMCID: PMC11469458 DOI: 10.1101/2024.09.17.24313857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Some toddlers with autism spectrum disorder (ASD) have mild social symptoms and developmental improvement in skills, but for others, symptoms and abilities are moderately or even severely affected. Those with profound autism have the most severe social, language, and cognitive symptoms and are at the greatest risk of having a poor developmental outcome. The little that is known about the underlying biology of this important profound autism subtype, points clearly to embryonic dysregulation of proliferation, differentiation and neurogenesis. Because it is essential to gain foundational knowledge of the molecular biology associated with profound, moderate, and mild autism clinical subtypes, we used well-validated, data-driven patient subtyping methods to integrate clinical and molecular data at 1 to 3 years of age in a cohort of 363 ASD and controls representative of the general pediatric population in San Diego County. Clinical data were diagnostic, language, cognitive and adaptive ability scores. Molecular measures were 50 MSigDB Hallmark gene pathway activity scores derived from RNAseq gene expression. Subtyping identified four ASD, typical and mixed diagnostic clusters. 93% of subjects in one cluster were profound autism and 93% in a different cluster were control toddlers; a third cluster was 76% moderate ability ASD; and the last cluster was a mix of mild ASD and control toddlers. Among the four clusters, the profound autism subtype had the most severe social symptoms, language, cognitive, adaptive, social attention eye tracking, social fMRI activation, and age-related decline in abilities, while mild autism toddlers mixed within typical and delayed clusters had mild social symptoms, and neurotypical language, cognitive and adaptive scores that improved with age compared with profound and moderate autism toddlers in other clusters. In profound autism, 7 subtype-specific dysregulated gene pathways were found; they control embryonic proliferation, differentiation, neurogenesis, and DNA repair. To find subtype-common dysregulated pathways, we compared all ASD vs TD and found 17 ASD subtype-common dysregulated pathways. These common pathways showed a severity gradient with the greatest dysregulation in profound and least in mild. Collectively, results raise the new hypothesis that the continuum of ASD heterogeneity is moderated by subtype-common pathways and the distinctive nature of profound autism is driven by the differentially added profound subtype-specific embryonic pathways.
Collapse
Affiliation(s)
- Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mehdi Mirzaie
- Translational Neuroscience, Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, 00014 University of Helsinki, Finland
| | - Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Caitlin Aamodt
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Xiaotong Yang
- Department of Computation Medicine and Bioinformatics, University of Michigan, MI, USA
| | - Sanaz Nazari
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Charlene Andreason
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Lana Garmire
- Department of Computation Medicine and Bioinformatics, University of Michigan, MI, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Blackburn PR, Ebstein F, Hsieh TC, Motta M, Radio FC, Herkert JC, Rinne T, Thiffault I, Rapp M, Alders M, Maas S, Gerard B, Smol T, Vincent-Delorme C, Cogné B, Isidor B, Vincent M, Bachmann-Gagescu R, Rauch A, Joset P, Ferrero GB, Ciolfi A, Husson T, Guerrot AM, Bacino C, Macmurdo C, Thompson SS, Rosenfeld JA, Faivre L, Mau-Them FT, Deb W, Vignard V, Agrawal PB, Madden JA, Goldenberg A, Lecoquierre F, Zech M, Prokisch H, Necpál J, Jech R, Winkelmann J, Koprušáková MT, Konstantopoulou V, Younce JR, Shinawi M, Mighton C, Fung C, Morel CF, Lerner-Ellis J, DiTroia S, Barth M, Bonneau D, Krapels I, Stegmann APA, van der Schoot V, Brunet T, Bußmann C, Mignot C, Zampino G, Wortmann SB, Mayr JA, Feichtinger RG, Courtin T, Ravelli C, Keren B, Ziegler A, Hasadsri L, Pichurin PN, Klee EW, Grand K, Sanchez-Lara PA, Krüger E, Bézieau S, Klinkhammer H, Krawitz PM, Eichler EE, Tartaglia M, Küry S, Wang T. Loss-of-Function Variants in CUL3 Cause a Syndromic Neurodevelopmental Disorder. Ann Neurol 2024; 97:76-89. [PMID: 39301775 PMCID: PMC11922793 DOI: 10.1002/ana.27077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
| | - Tzung-Chien Hsieh
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Marialetizia Motta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Michele Rapp
- Department of Pediatrics-Clinical Genetics and Metabolism, Children's Hospital Colorado, Aurora, CO, USA
| | - Mariel Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Saskia Maas
- Amsterdam University Medical Center, University of Amsterdam, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Bénédicte Gerard
- Unité de Biologie et de Génétique Moléculaire, Center Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Thomas Smol
- Univ Lille, CHU Lille, RADEME Team, Institut de Génétique Médicale, Lille, France
| | | | - Benjamin Cogné
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Marie Vincent
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Thomas Husson
- Department of Research, Center Hospitalier du Rouvray, Rouen, France
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Anne-Marie Guerrot
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Colleen Macmurdo
- Division of Medical Genetics, Department of Internal Medicine, Baylor Scott and White Medical Center, Temple, TX, USA
| | - Stephanie S Thompson
- Division of Medical Genetics, Department of Internal Medicine, Baylor Scott and White Medical Center, Temple, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD CHU, Dijon, France
- INSERM UMR1231, équipe GAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Frederic Tran Mau-Them
- INSERM UMR1231, équipe GAD, Université de Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Jill A Madden
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
- Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- Neurogenetics, Technische Universitaet Muenchen, Munich, Germany
- Institute of Human Genetics, Klinikum rechts der Isar der TUM, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | - John R Younce
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chloe Mighton
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Genomics Health Services and Policy Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Charlotte Fung
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Chantal F Morel
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Jordan Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Magalie Barth
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France
| | - Dominique Bonneau
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Vyne van der Schoot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU-University of Munich, Munich, Germany
| | - Cornelia Bußmann
- Department of Neuropediatrics, ATOS Klinik Heidelberg, Heidelberg, Germany
| | - Cyril Mignot
- Département de Génétique, AP-HP-Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Thomas Courtin
- Center for Molecular and Chromosomal Genetics, AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - Claudia Ravelli
- Department of Pediatric Neurology and Neurogenetic Referral Center, AP-HP-Sorbonne Université, Armand Trousseau Hospital, Paris, France
| | - Boris Keren
- Département de Génétique, AP-HP-Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alban Ziegler
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France
- Department of Biochemistry and Genetics, Angers University Hospital and UMR CNRS, Angers, France
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Katheryn Grand
- Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pedro A Sanchez-Lara
- Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Hannah Klinkhammer
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Brauer B, Ancatén-González C, Ahumada-Marchant C, Meza RC, Merino-Veliz N, Nardocci G, Varela-Nallar L, Arriagada G, Chávez AE, Bustos FJ. Impact of KDM6B mosaic brain knockout on synaptic function and behavior. Sci Rep 2024; 14:20416. [PMID: 39223259 PMCID: PMC11369245 DOI: 10.1038/s41598-024-70728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Bastian Brauer
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carlos Ancatén-González
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Constanza Ahumada-Marchant
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo C Meza
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Nicolas Merino-Veliz
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Lorena Varela-Nallar
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Gloria Arriagada
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile.
| | - Fernando J Bustos
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
19
|
Shiota Y, Nishiyama T, Yokoyama S, Yoshimura Y, Hasegawa C, Tanaka S, Iwasaki S, Kikuchi M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front Genet 2024; 15:1352480. [PMID: 39280100 PMCID: PMC11395840 DOI: 10.3389/fgene.2024.1352480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Autism spectrum disorders (ASD) represent a heterogeneous group of neurodevelopmental disorders with strong genetic predispositions. Although an increasing number of genetic variants have been implicated in the pathogenesis of ASD, little is known about the relationship between ASD-associated genetic variants and individual ASD traits. Therefore, we aimed to investigate these relationships. Methods Here, we report a case-control association study of 32 Japanese children with ASD (mainly with high-functioning autism [HFA]) and 36 with typical development (TD). We explored previously established ASD-associated genes using a next-generation sequencing panel and determined the association between Social Responsiveness Scale (SRS) T-scores and intelligence quotient (IQ) scores. Results In the genotype-phenotype analyses, 40 variants of five genes (SCN1A, SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false discovery rate <0.05). In the quantitative association analyses, 49 variants of 12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B, SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A, SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8) were associated with SRS T- and IQ-scores, respectively. Conclusion Our data suggest that these identified variants are essential for the genetic architecture of HFA.
Collapse
Affiliation(s)
- Yuka Shiota
- Japan Society for the Promotion of Science, Tokyo, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Zare A, Salehi S, Bader J, Schneider C, Fischer U, Veh A, Arampatzi P, Mann M, Briese M, Sendtner M. hnRNP R promotes O-GlcNAcylation of eIF4G and facilitates axonal protein synthesis. Nat Commun 2024; 15:7430. [PMID: 39198412 PMCID: PMC11358521 DOI: 10.1038/s41467-024-51678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Motoneurons critically depend on precise spatial and temporal control of translation for axon growth and the establishment and maintenance of neuromuscular connections. While defects in local translation have been implicated in the pathogenesis of motoneuron disorders, little is known about the mechanisms regulating axonal protein synthesis. Here, we report that motoneurons derived from Hnrnpr knockout mice show reduced axon growth accompanied by lowered synthesis of cytoskeletal and synaptic components in axons. Mutant mice display denervated neuromuscular junctions and impaired motor behavior. In axons, hnRNP R is a component of translation initiation complexes and, through interaction with O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (Ogt), modulates O-GlcNAcylation of eIF4G. Restoring axonal O-GlcNAc levels rescued local protein synthesis and axon growth defects of hnRNP R knockout motoneurons. Together, these findings demonstrate a function of hnRNP R in controlling the local production of key factors required for axon growth and formation of neuromuscular innervations.
Collapse
Affiliation(s)
- Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
21
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
van der Westhuizen ET. Single nucleotide variations encoding missense mutations in G protein-coupled receptors may contribute to autism. Br J Pharmacol 2024; 181:2158-2181. [PMID: 36787962 DOI: 10.1111/bph.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Autism is a neurodevelopmental condition with a range of symptoms that vary in intensity and severity from person to person. Genetic sequencing has identified thousands of genes containing mutations in autistic individuals, which may contribute to the development of autistic symptoms. Several of these genes encode G protein-coupled receptors (GPCRs), which are cell surface expressed proteins that transduce extracellular messages to the intracellular space. Mutations in GPCRs can impact their function, resulting in aberrant signalling within cells and across neurotransmitter systems in the brain. This review summarises the current knowledge on autism-associated single nucleotide variations encoding missense mutations in GPCRs and the impact of these genetic mutations on GPCR function. For some autism-associated mutations, changes in GPCR expression levels, ligand affinity, potency and efficacy have been observed. However, for many the functional consequences remain unknown. Thus, further work to characterise the functional impacts of the genetically identified mutations is required. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
|
23
|
Garber A, Weingarten LS, Abreu NJ, Elloumi HZ, Haack T, Hildebrant C, Martínez-Gil N, Mathews J, Müller AJ, Valenzuela Palafoll I, Steigerwald C, Chung WK. Rare predicted deleterious FEZF2 variants are associated with a neurodevelopmental phenotype. Am J Med Genet A 2024; 194:e63578. [PMID: 38425142 PMCID: PMC11161304 DOI: 10.1002/ajmg.a.63578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
FEZF2 encodes a transcription factor critical to neurodevelopment that regulates other neurodevelopment genes. Rare variants in FEZF2 have previously been suggested to play a role in autism, and cases of 3p14 microdeletions that include FEZF2 share a neurodevelopmental phenotype including mild dysmorphic features and intellectual disability. We identified seven heterozygous predicted deleterious variants in FEZF2 (three frameshifts, one recurrent missense in two independent cases, one nonsense, and one complete gene deletion) in unrelated individuals with neurodevelopmental disorders including developmental delay/intellectual disability, autism, and/or attention-deficit/hyperactivity. Variants were confirmed to be de novo in five of seven cases and paternally inherited from an affected father in one. Predicted deleterious variants in FEZF2 may affect the expression of genes that are involved in fate choice pathways in developing neurons, and thus contribute to the neurodevelopmental phenotype. Future studies are needed to clarify the mechanism by which FEZF2 leads to this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Alison Garber
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Lisa S Weingarten
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Nicolas J Abreu
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Clara Hildebrant
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Núria Martínez-Gil
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Jennifer Mathews
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amelie Johanna Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Irene Valenzuela Palafoll
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Connolly Steigerwald
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| | - Wendy K Chung
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Nóbrega IDS, Teles e Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci 2024; 25:5816. [PMID: 38892002 PMCID: PMC11172008 DOI: 10.3390/ijms25115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.
Collapse
Affiliation(s)
| | | | | | - Andréa Laurato Sertié
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Rua Comendador Elias Jafet, 755. Morumbi, São Paulo 05653-000, Brazil; (I.d.S.N.); (A.L.T.e.S.); (B.Y.Y.-M.)
| |
Collapse
|
25
|
Gabaldon-Albero A, Mayo S, Martinez F. NR4A2 as a Novel Target Gene for Developmental and Epileptic Encephalopathy: A Systematic Review of Related Disorders and Therapeutic Strategies. Int J Mol Sci 2024; 25:5198. [PMID: 38791237 PMCID: PMC11120677 DOI: 10.3390/ijms25105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The NR4A2 gene encodes an orphan transcription factor of the steroid-thyroid hormone-retinoid receptor superfamily. This review focuses on the clinical findings associated with the pathogenic variants so far reported, including three unreported cases. Also, its role in neurodegenerative diseases, such as Parkinson's or Alzheimer's disease, is examined, as well as a brief exploration on recent proposals to develop novel therapies for these neurological diseases based on small molecules that could modulate NR4A2 transcriptional activity. The main characteristic shared by all patients is mild to severe developmental delay/intellectual disability. Moderate to severe disorder of the expressive and receptive language is present in at least 42%, while neuro-psychiatric issues were reported in 53% of patients. Movement disorders, including dystonia, chorea or ataxia, are described in 37% patients, although probably underestimated because of its frequent onset in late adolescence-young adulthood. Finally, epilepsy was surprisingly present in 42% of patients, being drug-resistant in three of them. The age at onset varied widely, from five months to twenty-six years, as did the classification of epilepsy, which ranged from focal epilepsy to infantile spasms or Lennox-Gastaut syndrome. Accordingly, we propose that NR4A2 should be considered as a first-tier target gene for the genetic diagnosis of developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Alba Gabaldon-Albero
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Martinez
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
26
|
Co M, O'Brien GK, Wright KM, O'Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588147. [PMID: 38617321 PMCID: PMC11014564 DOI: 10.1101/2024.04.04.588147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Spatiotemporal control of Cre-mediated recombination has been an invaluable tool for understanding key developmental processes. For example, knock-in of Cre into cell type marker gene loci drives Cre expression under endogenous promoter and enhancer sequences, greatly facilitating the study of diverse neuronal subtypes in the cerebral cortex. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame just before the stop codon of the transcription factor gene Tbr1 . Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure. Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the anterior commissure, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1 -null heterozygous and homozygous mice to Tbr1 -null complementation crosses showed reductions of TBR1 dosage ranging from 28.4% to 95.9%. Using these combinatorial genotypes, we found that low levels of TBR1 protein (∼16%) are sufficient to establish cortical layer positioning, while greater levels (>50%) are required for normal suppression of layer 5 identity. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, such as transcriptomic studies, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
|
27
|
Rao S, Sadybekov A, DeWitt DC, Lipka J, Katritch V, Herring BE. Detection of autism spectrum disorder-related pathogenic trio variants by a novel structure-based approach. Mol Autism 2024; 15:12. [PMID: 38566250 PMCID: PMC10988830 DOI: 10.1186/s13229-024-00590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glutamatergic synapse dysfunction is believed to underlie the development of Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) in many individuals. However, identification of genetic markers that contribute to synaptic dysfunction in these individuals is notoriously difficult. Based on genomic analysis, structural modeling, and functional data, we recently established the involvement of the TRIO-RAC1 pathway in ASD and ID. Furthermore, we identified a pathological de novo missense mutation hotspot in TRIO's GEF1 domain. ASD/ID-related missense mutations within this domain compromise glutamatergic synapse function and likely contribute to the development of ASD/ID. The number of ASD/ID cases with mutations identified within TRIO's GEF1 domain is increasing. However, tools for accurately predicting whether such mutations are detrimental to protein function are lacking. METHODS Here we deployed advanced protein structural modeling techniques to predict potential de novo pathogenic and benign mutations within TRIO's GEF1 domain. Mutant TRIO-9 constructs were generated and expressed in CA1 pyramidal neurons of organotypic cultured hippocampal slices. AMPA receptor-mediated postsynaptic currents were examined in these neurons using dual whole-cell patch clamp electrophysiology. We also validated these findings using orthogonal co-immunoprecipitation and fluorescence lifetime imaging (FLIM-FRET) experiments to assay TRIO mutant overexpression effects on TRIO-RAC1 binding and on RAC1 activity in HEK293/T cells. RESULTS Missense mutations in TRIO's GEF1 domain that were predicted to disrupt TRIO-RAC1 binding or stability were tested experimentally and found to greatly impair TRIO-9's influence on glutamatergic synapse function. In contrast, missense mutations in TRIO's GEF1 domain that were predicted to have minimal effect on TRIO-RAC1 binding or stability did not impair TRIO-9's influence on glutamatergic synapse function in our experimental assays. In orthogonal assays, we find most of the mutations predicted to disrupt binding display loss of function but mutants predicted to disrupt stability do not reflect our results from neuronal electrophysiological data. LIMITATIONS We present a method to predict missense mutations in TRIO's GEF1 domain that may compromise TRIO function and test for effects in a limited number of assays. Possible limitations arising from the model systems employed here can be addressed in future studies. Our method does not provide evidence for whether these mutations confer ASD/ID risk or the likelihood that such mutations will result in the development of ASD/ID. CONCLUSIONS Here we show that a combination of structure-based computational predictions and experimental validation can be employed to reliably predict whether missense mutations in the human TRIO gene impede TRIO protein function and compromise TRIO's role in glutamatergic synapse regulation. With the growing accessibility of genome sequencing, the use of such tools in the accurate identification of pathological mutations will be instrumental in diagnostics of ASD/ID.
Collapse
Affiliation(s)
- Sadhna Rao
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Anastasiia Sadybekov
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - David C DeWitt
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joanna Lipka
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Vsevolod Katritch
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Bruce E Herring
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
28
|
Viggiano M, Ceroni F, Visconti P, Posar A, Scaduto MC, Sandoni L, Baravelli I, Cameli C, Rochat MJ, Maresca A, Vaisfeld A, Gentilini D, Calzari L, Carelli V, Zody MC, Maestrini E, Bacchelli E. Genomic analysis of 116 autism families strengthens known risk genes and highlights promising candidates. NPJ Genom Med 2024; 9:21. [PMID: 38519481 PMCID: PMC10959942 DOI: 10.1038/s41525-024-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
Collapse
Affiliation(s)
- Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Laura Sandoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Irene Baravelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessandro Vaisfeld
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | | | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
29
|
Li R, Ernst J. Identifying associations of de novo noncoding variants with autism through integration of gene expression, sequence and sex information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585624. [PMID: 38562739 PMCID: PMC10983996 DOI: 10.1101/2024.03.20.585624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Whole-genome sequencing (WGS) data is facilitating genome-wide identification of rare noncoding variants, while elucidating their roles in disease remains challenging. Towards this end, we first revisit a reported significant brain-related association signal of autism spectrum disorder (ASD) detected from de novo noncoding variants attributed to deep-learning and show that local GC content can capture similar association signals. We further show that the association signal appears driven by variants from male proband-female sibling pairs that are upstream of assigned genes. We then develop Expression Neighborhood Sequence Association Study (ENSAS), which utilizes gene expression correlations and sequence information, to more systematically identify phenotype-associated variant sets. Applying ENSAS to the same set of de novo variants, we identify gene expression-based neighborhoods showing significant ASD association signal, enriched for synapse-related gene ontology terms. For these top neighborhoods, we also identify chromatin states annotations of variants that are predictive of the proband-sibling local GC content differences. Our work provides new insights into associations of non-coding de novo mutations in ASD and presents an analytical framework applicable to other phenotypes.
Collapse
Affiliation(s)
- Runjia Li
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, CA, USA
- Computer Science Department, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
30
|
García-Solorio J, Martínez-Villegas O, Rodríguez-Corona U, Molina-Garay C, Jiménez-Olivares M, Carrillo-Sanchez K, Mendoza-Caamal EC, Muñoz-Rivas A, Villegas-Torres BE, Cervera A, Flores-Lagunes LL, Alaez-Verson C. Case report: A familial B-acute lymphoblastic leukemia associated with a new germline pathogenic variant in PAX5. The first report in Mexico. Front Oncol 2024; 14:1355335. [PMID: 38571503 PMCID: PMC10987763 DOI: 10.3389/fonc.2024.1355335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common childhood cancers worldwide. Although most cases are sporadic, some familial forms, inherited as autosomal dominant traits with incomplete penetrance, have been described over the last few years. Germline pathogenic variants in transcription factors such as PAX5, IKZF1, and ETV6 have been identified as causal in familial forms. The proband was a 7-year-old Mexican girl diagnosed with high-risk B-ALL at five years and 11 months of age. Family history showed that the proband's mother had high-risk B-ALL at 16 months of age. She received chemotherapy and was discharged at nine years of age without any evidence of recurrence of leukemia. The proband's father was outside the family nucleus, but no history of leukemia or cancer was present up to the last contact with the mother. We performed exome sequencing on the proband and the proband's mother and identified the PAX5 variant NM_016734.3:c.963del: p.(Ala322LeufsTer11), located in the transactivation domain of the PAX5 protein. The variant was classified as probably pathogenic according to the ACMG criteria. To the best of our knowledge, this is the first Mexican family with an inherited increased risk of childhood B-ALL caused by a novel germline pathogenic variant of PAX5. Identifying individuals with a hereditary predisposition to cancer is essential for modern oncological practice. Individuals at high risk of leukemia would benefit from hematopoietic stem cell transplantation, but family members carrying the pathogenic variant should be excluded as hematopoietic stem cell donors.
Collapse
Affiliation(s)
- Joaquín García-Solorio
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Octavio Martínez-Villegas
- Departamento de hemato-oncología pediátrica, Unidad Médicade Alta Especialidad Hospital de Ginecología Pediatría No 48, Centro Médico del Bajío, León, Guanajuato, Mexico
| | - Ulises Rodríguez-Corona
- Ribonucleo Protein Biochemistry Research Unit, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Carolina Molina-Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Marco Jiménez-Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Karol Carrillo-Sanchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elvia C. Mendoza-Caamal
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Anallely Muñoz-Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Beatriz E. Villegas-Torres
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alejandra Cervera
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Luis L. Flores-Lagunes
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carmen Alaez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
31
|
Nakamura T, Ueda J, Mizuno S, Honda K, Kazuno AA, Yamamoto H, Hara T, Takata A. Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk. CELL GENOMICS 2024; 4:100488. [PMID: 38280381 PMCID: PMC10879036 DOI: 10.1016/j.xgen.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Whole-genome sequencing (WGS) studies of autism spectrum disorder (ASD) have demonstrated the roles of rare promoter de novo variants (DNVs). However, most promoter DNVs in ASD are not located immediately upstream of known ASD genes. In this study analyzing WGS data of 5,044 ASD probands, 4,095 unaffected siblings, and their parents, we show that promoter DNVs within topologically associating domains (TADs) containing ASD genes are significantly and specifically associated with ASD. An analysis considering TADs as functional units identified specific TADs enriched for promoter DNVs in ASD and indicated that common variants in these regions also confer ASD heritability. Experimental validation using human induced pluripotent stem cells (iPSCs) showed that likely deleterious promoter DNVs in ASD can influence multiple genes within the same TAD, resulting in overall dysregulation of ASD-associated genes. These results highlight the importance of TADs and gene-regulatory mechanisms in better understanding the genetic architecture of ASD.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Junko Ueda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shota Mizuno
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kurara Honda
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - An-A Kazuno
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirona Yamamoto
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tomonori Hara
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
32
|
Chorbadjiev L, Cokol M, Weinstein Z, Shi K, Fleisch C, Dimitrov N, Mladenov S, Xu S, Hall J, Ford S, Lee YH, Yamrom B, Marks S, Munoz A, Lash A, Volfovsky N, Iossifov I. The Genotype and Phenotypes in Families (GPF) platform manages the large and complex data at SFARI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579330. [PMID: 38370639 PMCID: PMC10871337 DOI: 10.1101/2024.02.08.579330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The exploration of genotypic variants impacting phenotypes is a cornerstone in genetics research. The emergence of vast collections containing deeply genotyped and phenotyped families has made it possible to pursue the search for variants associated with complex diseases. However, managing these large-scale datasets requires specialized computational tools tailored to organize and analyze the extensive data. GPF (Genotypes and Phenotypes in Families) is an open-source platform ( https://github.com/iossifovlab/gpf ) that manages genotypes and phenotypes derived from collections of families. The GPF interface allows interactive exploration of genetic variants, enrichment analysis for de novo mutations, and phenotype/genotype association tools. In addition, GPF allows researchers to share their data securely with the broader scientific community. GPF is used to disseminate two large-scale family collection datasets (SSC, SPARK) for the study of autism funded by the SFARI foundation. However, GPF is versatile and can manage genotypic data from other small or large family collections. Our GPF-SFARI GPF instance ( https://gpf.sfari.org/ ) provides protected access to comprehensive genotypic and phenotypic data for the SSC and SPARK. In addition, GPF-SFARI provides public access to an extensive collection of de novo mutations identified in individuals with autism and related disorders and to gene-level statistics of the protected datasets characterizing the genes' roles in autism. Here, we highlight the primary features of GPF within the context of GPF-SFARI.
Collapse
|
33
|
Abreu NJ, Chiujdea M, Liu S, Zhang B, Spence SJ. Factors Associated With Underutilization of Genetic Testing in Autism Spectrum Disorders. Pediatr Neurol 2024; 150:17-23. [PMID: 37939453 DOI: 10.1016/j.pediatrneurol.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND We sought to identify patient and provider factors associated with low completion of genetic testing, specifically chromosomal microarray (CMA), for autism spectrum disorder (ASD). METHODS Medical record review was conducted of children newly diagnosed with ASD without prior genetic testing at a single academic medical center from February 2015 through January 2016. RESULTS Only 41.9% of individuals with ASD completed CMA testing over at least 18 months from diagnosis (n = 140 of 334). Time to CMA completion varied, with a median of 86.5 days (interquartile range 2 to 214.5 days). Provider recommendation of genetic testing at the diagnostic visit and greater number of follow-up visits were associated with CMA completion. On multivariate regression, CMA completion was inversely associated with age (odds ratio [OR] = 0.8 for each year older, 95% confidence interval [CI] 0.7, 0.9; P = 0.001) and directly associated with intellectual disability or global developmental delay (OR = 2.2, 95% CI 1.3, 3.8; P = 0.004), first-degree relative with ASD (OR = 2.5, 95% CI 1.0, 6.0; P = 0.044), and public insurance (OR = 1.7, 95% CI 1.0, 2.9; P = 0.037). Parental concern and cost/insurance coverage were the most frequently documented barriers. CONCLUSIONS Workflows to support early genetic testing recommendation and ordering soon after diagnosis may increase utilization, incorporating both family and provider perspectives. Genetic counseling highlighting the utility of genetic testing across the life span, phenotypic variability of genetic disorders, and possibility of de novo variants in ASD may also improve utilization.
Collapse
Affiliation(s)
- Nicolas J Abreu
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Madeline Chiujdea
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shanshan Liu
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah J Spence
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Koc E, Kalkan H, Bilgen S. Autism Spectrum Disorder Detection by Hybrid Convolutional Recurrent Neural Networks from Structural and Resting State Functional MRI Images. AUTISM RESEARCH AND TREATMENT 2023; 2023:4136087. [PMID: 38152612 PMCID: PMC10752691 DOI: 10.1155/2023/4136087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
This study aims to increase the accuracy of autism spectrum disorder (ASD) diagnosis based on cognitive and behavioral phenotypes through multiple neuroimaging modalities. We apply machine learning (ML) algorithms to classify ASD patients and healthy control (HC) participants using structural magnetic resonance imaging (s-MRI) together with resting state functional MRI (rs-f-MRI and f-MRI) data from the large multisite data repository ABIDE (autism brain imaging data exchange) and identify important brain connectivity features. The 2D f-MRI images were converted into 3D s-MRI images, and datasets were preprocessed using the Montreal Neurological Institute (MNI) atlas. The data were then denoised to remove any confounding factors. We show, by using three fusion strategies such as early fusion, late fusion, and cross fusion, that, in this implementation, hybrid convolutional recurrent neural networks achieve better performance in comparison to either convolutional neural networks (CNNs) or recurrent neural networks (RNNs). The proposed model classifies subjects as autistic or not according to how functional and anatomical connectivity metrics provide an overall diagnosis based on the autism diagnostic observation schedule (ADOS) standard. Our hybrid network achieved an accuracy of 96% by fusing s-MRI and f-MRI together, which outperforms the methods used in previous studies.
Collapse
Affiliation(s)
- Emel Koc
- Istanbul Okan University, Istanbul, Türkiye
| | | | | |
Collapse
|
35
|
Frazier TW, Khaliq I, Scullin K, Uljarevic M, Shih A, Karpur A. Development and Psychometric Evaluation of the Open-Source Challenging Behavior Scale (OS-CBS). J Autism Dev Disord 2023; 53:4655-4670. [PMID: 36112303 DOI: 10.1007/s10803-022-05750-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/28/2022]
Abstract
At present, there are no brief, freely-available, informant-report measures that evaluate key challenging behaviors relevant to youth with autism spectrum disorder (ASD) or other developmental disabilities (DD). This paper describes the development, refinement, and initial psychometric evaluation of a new 18-item measure, the Open-Source Challenging Behavior Scale (OS-CBS). In a large sample (n = 2004, 169 with ASD, ages 2-17), results of psychometric analyses indicated a clear factor structure (property destruction, aggression, elopement, conduct problems, and self-injury and a general factor with high loadings from all items) based on exploratory structural equation modeling, good scale reliability (α = .66-.83 for subscales, α = .91 total scale), measurement invariance across demographics, and good construct validity. The OS-CBS is a psychometrically-sound instrument for screening and monitoring intervention progress.
Collapse
Affiliation(s)
- Thomas W Frazier
- Department of Psychology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA.
| | - Izma Khaliq
- Department of Psychology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA
| | - Keeley Scullin
- Department of Psychology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH, 44118, USA
| | | | | | | |
Collapse
|
36
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
37
|
Deng J, Liu C, Hu M, Hu C, Lin J, Li Q, Xu X. Dynamic Regulation of brsk2 in the Social and Motor Development of Zebrafish: A Developmental Behavior Analysis. Int J Mol Sci 2023; 24:16506. [PMID: 38003696 PMCID: PMC10671324 DOI: 10.3390/ijms242216506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Both social and motor development play an essential role in an individual's physical, psychological, and social well-being. It is essential to conduct a dynamic analysis at multiple time points during the developmental process as it helps us better understand and evaluate the trajectory and changes in individual development. Recently, some studies found that mutations in the BRSK2 gene may contribute to motor impairments, delays in achieving motor milestones, and deficits in social behavior and communication skills in patients. However, little is known about the dynamic analysis of social and motor development at multiple time points during the development of the brsk2 gene. We generated a novel brsk2-deficient (brsk2ab-/-) zebrafish model through CRISPR/Cas9 editing and conducted comprehensive morphological and neurobehavioral evaluations, including that of locomotor behaviors, social behaviors, and anxiety behaviors from the larval to adult stages of development. Compared to wild-type zebrafish, brsk2ab-/- zebrafish exhibited a catch-up growth pattern of body length and gradually improved locomotor activities during the developmental process. In contrast, multimodal behavior tests showed that the brsk2ab-/- zebrafish displayed escalating social deficiency and anxiety-like behaviors over time. We reported for the first time that the brsk2 gene had dynamic regulatory effects on motor and social development. It helps us understand developmental trends, capture changes, facilitate early interventions, and provide personalized support and development opportunities for individuals.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Chunxue Liu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Meixin Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Chunchun Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| | - Jia Lin
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.L.); (Q.L.)
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.L.); (Q.L.)
| | - Xiu Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (J.D.); (M.H.); (C.H.)
| |
Collapse
|
38
|
Sandoval-Talamantes AK, Tenorio-Castaño JA, Santos-Simarro F, Adán C, Fernández-Elvira M, García-Fernández L, Muñoz Y, Lapunzina P, Nevado J. NGS Custom Panel Implementation in Patients with Non-Syndromic Autism Spectrum Disorders in the Clinical Routine of a Tertiary Hospital. Genes (Basel) 2023; 14:2091. [PMID: 38003033 PMCID: PMC10671584 DOI: 10.3390/genes14112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by deficiencies in communication, social interaction, and repetitive and restrictive behaviors. The discovery of genetic involvement in the etiology of ASD has made this condition a strong candidate for genome-based diagnostic tests. Next-generation sequencing (NGS) is useful for the detection of variants in the sequence of different genes in ASD patients. Herein, we present the implementation of a personalized NGS panel for autism (AutismSeq) for patients with essential ASD over a prospective period of four years in the clinical routine of a tertiary hospital. The cohort is composed of 48 individuals, older than 3 years, who met the DSM-5 (The Diagnostic and Statistical Manual of Mental Disorders) diagnostic criteria for ASD. The NGS customized panel (AutismSeq) turned out to be a tool with good diagnostic efficacy in routine clinical care, where we detected 12 "pathogenic" (including pathogenic, likely pathogenic, and VUS (variant of uncertain significance) possibly pathogenic variations) in 11 individuals, and 11 VUS in 10 individuals, which had previously been negative for chromosomal microarray analysis and other previous genetic studies, such as karyotype, fragile-X, or MLPA/FISH (Multiplex Ligation dependent Probe Amplification/Fluorescence in situ hybridization) analysis. Our results demonstrate the high genetic and clinical heterogeneity of individuals with ASD and the current difficulty of molecular diagnosis. Our study also shows that an NGS-customized panel might be useful for diagnosing patients with essential/primary autism and that it is cost-effective for most genetic laboratories.
Collapse
Affiliation(s)
- Ana Karen Sandoval-Talamantes
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Jair Antonio Tenorio-Castaño
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Fernando Santos-Simarro
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Carmen Adán
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - María Fernández-Elvira
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Laura García-Fernández
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Yolanda Muñoz
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
| | - Pablo Lapunzina
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Julián Nevado
- INGEMM (Institute of Medical and Molecular Genetics), La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (A.K.S.-T.); (J.A.T.-C.); (F.S.-S.); (C.A.); (M.F.-E.); (L.G.-F.); (Y.M.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- CIBERER (Network for Biomedical Research on Rare Diseases), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| |
Collapse
|
39
|
Ding Z, Huang G, Wang T, Duan W, Li H, Wang Y, Jia H, Yang Z, Wang K, Chu X, Kurtz-Nelson EC, Ahlers K, Earl RK, Han Y, Feliciano P, Chung WK, Eichler EE, Jiang M, Xiong B. Genetic Ablation of GIGYF1, Associated With Autism, Causes Behavioral and Neurodevelopmental Defects in Zebrafish and Mice. Biol Psychiatry 2023; 94:769-779. [PMID: 36924980 PMCID: PMC10502190 DOI: 10.1016/j.biopsych.2023.02.993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Autism spectrum disorder is characterized by deficits in social communication and restricted or repetitive behaviors. Due to the extremely high genetic and phenotypic heterogeneity, it is critical to pinpoint the genetic factors for understanding the pathology of these disorders. METHODS We analyzed the exomes generated by the SPARK (Simons Powering Autism Research) project and performed a meta-analysis with previous data. We then generated 1 zebrafish knockout model and 3 mouse knockout models to examine the function of GIGYF1 in neurodevelopment and behavior. Finally, we performed whole tissue and single-nucleus transcriptome analysis to explore the molecular and cellular function of GIGYF1. RESULTS GIGYF1 variants are significantly associated with various neurodevelopmental disorder phenotypes, including autism, global developmental delay, intellectual disability, and sleep disturbance. Loss of GIGYF1 causes similar behavioral effects in zebrafish and mice, including elevated levels of anxiety and reduced social engagement, which is reminiscent of the behavioral deficits in human patients carrying GIGYF1 variants. Moreover, excitatory neuron-specific Gigyf1 knockout mice recapitulate the increased repetitive behaviors and impaired social memory, suggesting a crucial role of Gigyf1 in excitatory neurons, which correlates with the observations in single-nucleus RNA sequencing. We also identified a series of downstream target genes of GIGYF1 that affect many aspects of the nervous system, especially synaptic transmission. CONCLUSIONS De novo variants of GIGYF1 are associated with neurodevelopmental disorders, including autism spectrum disorder. GIGYF1 is involved in neurodevelopment and animal behavior, potentially through regulating hippocampal CA2 neuronal numbers and disturbing synaptic transmission.
Collapse
Affiliation(s)
- Zijiao Ding
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Guiyang Huang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yirong Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiting Jia
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziqian Yang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Kaitlyn Ahlers
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, Washington
| | - Rachel K Earl
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, Washington
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Wendy K Chung
- Simons Foundation, New York; Department of Pediatrics, Columbia University, New York
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington; Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Man Jiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Bacchelli E, Viggiano M, Ceroni F, Visconti P, Posar A, Scaduto M, Sandoni L, Baravelli I, Cameli C, Rochat M, Maresca A, Vaisfeld A, Gentilini D, Calzari L, Carelli V, Zody M, Maestrini E. Whole genome analysis of rare deleterious variants adds further evidence to BRSK2 and other risk genes in Autism Spectrum Disorder. RESEARCH SQUARE 2023:rs.3.rs-3468592. [PMID: 37961520 PMCID: PMC10635364 DOI: 10.21203/rs.3.rs-3468592/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We have performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 9 severe de novo pdSNVs in genes not previously implicated in ASD (RASAL2, RAP1A, IRX5, SLC9A1, AGPAT3, MGAT3, RAB8B, MGAT5B, YME1L1), highlighted novel candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, but this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in new ASD/NDD candidates. In conclusion, our study strengthens the role of BRSK2 and other neurodevelopmental genes in ASD risk, highlights novel candidates and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.
Collapse
Affiliation(s)
| | | | | | | | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | - Maria Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | | | | - Magali Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yuan B, Wang M, Wu X, Cheng P, Zhang R, Zhang R, Yu S, Zhang J, Du Y, Wang X, Qiu Z. Identification of de novo Mutations in the Chinese Autism Spectrum Disorder Cohort via Whole-Exome Sequencing Unveils Brain Regions Implicated in Autism. Neurosci Bull 2023; 39:1469-1480. [PMID: 36881370 PMCID: PMC10533446 DOI: 10.1007/s12264-023-01037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/30/2022] [Indexed: 03/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and repetitive behaviors. Although hundreds of ASD risk genes, implicated in synaptic formation and transcriptional regulation, have been identified through human genetic studies, the East Asian ASD cohorts are still under-represented in genome-wide genetic studies. Here, we applied whole-exome sequencing to 369 ASD trios including probands and unaffected parents of Chinese origin. Using a joint-calling analytical pipeline based on GATK toolkits, we identified numerous de novo mutations including 55 high-impact variants and 165 moderate-impact variants, as well as de novo copy number variations containing known ASD-related genes. Importantly, combined with single-cell sequencing data from the developing human brain, we found that the expression of genes with de novo mutations was specifically enriched in the pre-, post-central gyrus (PRC, PC) and banks of the superior temporal (BST) regions in the human brain. By further analyzing the brain imaging data with ASD and healthy controls, we found that the gray volume of the right BST in ASD patients was significantly decreased compared to healthy controls, suggesting the potential structural deficits associated with ASD. Finally, we found a decrease in the seed-based functional connectivity between BST/PC/PRC and sensory areas, the insula, as well as the frontal lobes in ASD patients. This work indicated that combinatorial analysis with genome-wide screening, single-cell sequencing, and brain imaging data reveal the brain regions contributing to the etiology of ASD.
Collapse
Affiliation(s)
- Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Mengdi Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Ran Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ran Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| | - Xiaoqun Wang
- Beijing Normal University, Beijing, 100875 China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600 China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
42
|
Hu Y, Li M, Shen Y, Wang T, Liu Q, Lu Z, Wang H, Luo X, Yang L. Case report: A novel frameshift mutation in BRSK2 causes autism in a 16-year old Chinese boy. Front Psychiatry 2023; 14:1205204. [PMID: 37671287 PMCID: PMC10476520 DOI: 10.3389/fpsyt.2023.1205204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/26/2023] [Indexed: 09/07/2023] Open
Abstract
Serine/threonine protein kinases are involved in axon formation and neuronal polarization and have recently been implicated in autism spectrum disorder (ASD) and neurodevelopmental disorders (NDD). Here, we focus on BRSK2, which encodes brain-specific serine/threonine protein kinase 2. Although previous studies have reported 19 unrelated patients with BRSK2 pathogenic variation, only 15 of 19 patients have detailed clinical data. Therefore, more case reports are needed to enrich the phenotype associated with BRSK2 mutations. In this study, we report a novel de novo frameshift variant (c.442del, p.L148Cfs*39) identified by exome sequencing in a 16 year-old Chinese boy with ASD. The proband presented with attention-deficit, auditory hallucinations, limb tremor, and abnormal brain electrical activity mapping. This study expands the phenotypic spectrum of BRSK2-related cases and reveals the highly variable severity of disorders associated with BRSK2.
Collapse
Affiliation(s)
- Yu Hu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Miao Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yanmei Shen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| | - Qiwei Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhonghua Lu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Hong Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xuerong Luo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lixin Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
43
|
Cirnigliaro M, Chang TS, Arteaga SA, Pérez-Cano L, Ruzzo EK, Gordon A, Bicks LK, Jung JY, Lowe JK, Wall DP, Geschwind DH. The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc Natl Acad Sci U S A 2023; 120:e2215632120. [PMID: 37506195 PMCID: PMC10400943 DOI: 10.1073/pnas.2215632120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Stephanie A. Arteaga
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Barcelona08039, Spain
| | - Elizabeth K. Ruzzo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Lucy K. Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Jae-Yoon Jung
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Jennifer K. Lowe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Dennis P. Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
44
|
Rolland T, Cliquet F, Anney RJL, Moreau C, Traut N, Mathieu A, Huguet G, Duan J, Warrier V, Portalier S, Dry L, Leblond CS, Douard E, Amsellem F, Malesys S, Maruani A, Toro R, Børglum AD, Grove J, Baron-Cohen S, Packer A, Chung WK, Jacquemont S, Delorme R, Bourgeron T. Phenotypic effects of genetic variants associated with autism. Nat Med 2023; 29:1671-1680. [PMID: 37365347 PMCID: PMC10353945 DOI: 10.1038/s41591-023-02408-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.
Collapse
Affiliation(s)
- Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Richard J L Anney
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Clara Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Nicolas Traut
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Guillaume Huguet
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Jinjie Duan
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Swan Portalier
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Louise Dry
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Elise Douard
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Frédérique Amsellem
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Wendy K Chung
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Sébastien Jacquemont
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| |
Collapse
|
45
|
Spirito G, Filosi M, Domenici E, Mangoni D, Gustincich S, Sanges R. Exploratory analysis of L1 retrotransposons expression in autism. Mol Autism 2023; 14:22. [PMID: 37381037 DOI: 10.1186/s13229-023-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a set of highly heterogeneous neurodevelopmental diseases whose genetic etiology is not completely understood. Several investigations have relied on transcriptome analysis from peripheral tissues to dissect ASD into homogenous molecular phenotypes. Recently, analysis of changes in gene expression from postmortem brain tissues has identified sets of genes that are involved in pathways previously associated with ASD etiology. In addition to protein-coding transcripts, the human transcriptome is composed by a large set of non-coding RNAs and transposable elements (TEs). Advancements in sequencing technologies have proven that TEs can be transcribed in a regulated fashion, and their dysregulation might have a role in brain diseases. METHODS We exploited published datasets comprising RNA-seq data from (1) postmortem brain of ASD subjects, (2) in vitro cell cultures where ten different ASD-relevant genes were knocked out and (3) blood of discordant siblings. We measured the expression levels of evolutionarily young full-length transposable L1 elements and characterized the genomic location of deregulated L1s assessing their potential impact on the transcription of ASD-relevant genes. We analyzed every sample independently, avoiding to pool together the disease subjects to unmask the heterogeneity of the molecular phenotypes. RESULTS We detected a strong upregulation of intronic full-length L1s in a subset of postmortem brain samples and in in vitro differentiated neurons from iPSC knocked out for ATRX. L1 upregulation correlated with an high number of deregulated genes and retained introns. In the anterior cingulate cortex of one subject, a small number of significantly upregulated L1s overlapped with ASD-relevant genes that were significantly downregulated, suggesting the possible existence of a negative effect of L1 transcription on host transcripts. LIMITATIONS Our analyses must be considered exploratory and will need to be validated in bigger cohorts. The main limitation is given by the small sample size and by the lack of replicates for postmortem brain samples. Measuring the transcription of locus-specific TEs is complicated by the repetitive nature of their sequence, which reduces the accuracy in mapping sequencing reads to the correct genomic locus. CONCLUSIONS L1 upregulation in ASD appears to be limited to a subset of subjects that are also characterized by a general deregulation of the expression of canonical genes and an increase in intron retention. In some samples from the anterior cingulate cortex, L1s upregulation seems to directly impair the expression of some ASD-relevant genes by a still unknown mechanism. L1s upregulation may therefore identify a group of ASD subjects with common molecular features and helps stratifying individuals for novel strategies of therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Spirito
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
- CMP3vda, Via Lavoratori Vittime del Col Du Mont 28, Aosta, Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy
- Eurac Research, Institute for Biomedicine, Bolzano, BZ, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, TN, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
- CMP3vda, Via Lavoratori Vittime del Col Du Mont 28, Aosta, Italy.
| | - Remo Sanges
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience, Via Bonomea 265, 34136, Trieste, Italy.
- Central RNA Laboratory, Istituto Italiano di Tecnologia - IIT, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
| |
Collapse
|
46
|
Blackburn PR, Ebstein F, Hsieh TC, Motta M, Radio FC, Herkert JC, Rinne T, Thiffault I, Rapp M, Alders M, Maas S, Gerard B, Smol T, Vincent-Delorme C, Cogné B, Isidor B, Vincent M, Bachmann-Gagescu R, Rauch A, Joset P, Ferrero GB, Ciolfi A, Husson T, Guerrot AM, Bacino C, Macmurdo C, Thompson SS, Rosenfeld JA, Faivre L, Mau-Them FT, Deb W, Vignard V, Agrawal PB, Madden JA, Goldenberg A, Lecoquierre F, Zech M, Prokisch H, Necpál J, Jech R, Winkelmann J, Koprušáková MT, Konstantopoulou V, Younce JR, Shinawi M, Mighton C, Fung C, Morel C, Ellis JL, DiTroia S, Barth M, Bonneau D, Krapels I, Stegmann S, van der Schoot V, Brunet T, Bußmann C, Mignot C, Courtin T, Ravelli C, Keren B, Ziegler A, Hasadsri L, Pichurin PN, Klee EW, Grand K, Sanchez-Lara PA, Krüger E, Bézieau S, Klinkhammer H, Krawitz PM, Eichler EE, Tartaglia M, Küry S, Wang T. Loss-of-function variants in CUL3 cause a syndromic neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.13.23290941. [PMID: 37398376 PMCID: PMC10312857 DOI: 10.1101/2023.06.13.23290941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. Methods Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. Results We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells. Conclusion Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.
Collapse
|
47
|
Dimachkie Nunnally A, Factor RS, Sturm A, Valluripalli Soorya L, Wainer A, Taylor S, Ponzini M, Abbeduto L, Gulsrud AC. Examining indicators of psychosocial risk and resilience in parents of autistic children. Front Behav Neurosci 2023; 17:1102516. [PMID: 37255619 PMCID: PMC10226532 DOI: 10.3389/fnbeh.2023.1102516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Parents of autistic children experience increased levels of caregiver strain and adverse mental health outcomes, even in comparison to parents of children with other neurodevelopmental disabilities. Previous studies have largely attributed these increased levels of mental health concerns to their child behavioral concerns and autism symptomatology, but less attention has been given to other potential child factors, such as child adaptive functioning. Additionally, little is known about potential protective factors, such as parents' emotion regulation (ER) abilities, that may ameliorate the experience of caregiver strain, anxiety, and depression. Objective The current study examined the impact of child characteristics (restricted and repetitive behaviors, adaptive functioning and behavioral concerns) on parent mental health outcomes (caregiver strain, anxiety, depression and wellbeing). Additionally, we explore parents' ER abilities as a moderator of the impact of child characteristic on parents' mental health outcomes. Results Results of linear mixed effect models indicated a significant relationship between parents' ER abilities and all four parent outcomes. Additionally, children's adaptive functioning abilities and repetitive behaviors (RRBs) were significant predictors of caregiving strain. Parents' ER abilities were a significant moderator of the effect of children's repetitive behaviors and adaptive functioning challenges on caregiver strain, such that better ER abilities mitigated the impact of child clinical factors on caregiver strain. Finally, a significant difference was detected for mothers' and fathers' mental health, with mothers reporting higher caregiver strain, and more symptoms of anxiety and depression than did fathers. Conclusion This study leveraged a large sample of autistic children and their biological parents to examine the relationship between children's clinical characteristics and parents' psychological wellbeing. Results indicate that, although parents of autistic children do experience high rates of internalizing mental health concerns that relate to child adaptive functioning and RRBs, parent ER abilities act as a protective factor against parents' adverse mental health outcomes. Further, mothers in our sample reported significantly higher rates of depression, anxiety, and caregiver strain, as compared with fathers.
Collapse
Affiliation(s)
- Amanda Dimachkie Nunnally
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Reina S. Factor
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexandra Sturm
- Department of Psychological Science, Loyola Marymount University, Los Angeles, CA, United States
| | - Latha Valluripalli Soorya
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Allison Wainer
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Sandra Taylor
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Matthew Ponzini
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Amanda C. Gulsrud
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Hu C, Wang Y, Li C, Mei L, Zhou B, Li D, Li H, Xu Q, Xu X. Targeted sequencing and clinical strategies in children with autism spectrum disorder: A cohort study. Front Genet 2023; 14:1083779. [PMID: 37007974 PMCID: PMC10064793 DOI: 10.3389/fgene.2023.1083779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 03/19/2023] Open
Abstract
Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with genetic and clinical heterogeneity. Owing to the advancement of sequencing technologies, an increasing number of ASD-related genes have been reported. We designed a targeted sequencing panel (TSP) for ASD based on next-generation sequencing (NGS) to provide clinical strategies for genetic testing of ASD and its subgroups.Methods: TSP comprised 568 ASD-related genes and analyzed both single nucleotide variations (SNVs) and copy number variations (CNVs). The Autism Diagnostic Observation Schedule (ADOS) and the Griffiths Mental Development Scales (GMDS) were performed with the consent of ASD parents. Additional medical information of the selected cases was recorded.Results: A total of 160 ASD children were enrolled in the cohort (male to female ratio 3.6:1). The total detection yield was 51.3% for TSP (82/160), among which SNVs and CNVs accounted for 45.6% (73/160) and 8.1% (13/160), respectively, with 4 children having both SNVs and CNV variants (2.5%). The detection rate of disease-associated variants in females (71.4%) was significantly higher than that in males (45.6%, p = 0.007). Pathogenic and likely pathogenic variants were detected in 16.9% (27/160) of the cases. SHANK3, KMT2A, and DLGAP2 were the most frequent variants among these patients. Eleven children had de novo SNVs, 2 of whom had de novo ASXL3 variants with mild global developmental delay (DD) and minor dysmorphic facial features besides autistic symptoms. Seventy-one children completed both ADOS and GMDS, of whom 51 had DD/intellectual disability (ID). In this subgroup of ASD children with DD/ID, we found that children with genetic abnormalities had lower language competence than those without positive genetic findings (p = 0.028). There was no correlation between the severity of ASD and positive genetic findings.Conclusion: Our study revealed the potential of TSP, with lower cost and more efficient genetic diagnosis. We recommended that ASD children with DD or ID, especially those with lower language competence, undergo genetic testing. More precise clinical phenotypes may help in the decision-making of patients with genetic testing.
Collapse
Affiliation(s)
- Chunchun Hu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Chunyang Li
- Department of Child Health Care, Xi’an Children’s Hospital, Xi’an, China
| | - Lianni Mei
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingrui Zhou
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Dongyun Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
| | - Qiong Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiu Xu, ; Qiong Xu,
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiu Xu, ; Qiong Xu,
| |
Collapse
|
49
|
Bao B, Zahiri J, Gazestani VH, Lopez L, Xiao Y, Kim R, Wen TH, Chiang AWT, Nalabolu S, Pierce K, Robasky K, Wang T, Hoekzema K, Eichler EE, Lewis NE, Courchesne E. A predictive ensemble classifier for the gene expression diagnosis of ASD at ages 1 to 4 years. Mol Psychiatry 2023; 28:822-833. [PMID: 36266569 PMCID: PMC9908553 DOI: 10.1038/s41380-022-01826-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Autism Spectrum Disorder (ASD) diagnosis remains behavior-based and the median age of diagnosis is ~52 months, nearly 5 years after its first-trimester origin. Accurate and clinically-translatable early-age diagnostics do not exist due to ASD genetic and clinical heterogeneity. Here we collected clinical, diagnostic, and leukocyte RNA data from 240 ASD and typically developing (TD) toddlers (175 toddlers for training and 65 for test). To identify gene expression ASD diagnostic classifiers, we developed 42,840 models composed of 3570 gene expression feature selection sets and 12 classification methods. We found that 742 models had AUC-ROC ≥ 0.8 on both Training and Test sets. Weighted Bayesian model averaging of these 742 models yielded an ensemble classifier model with accurate performance in Training and Test gene expression datasets with ASD diagnostic classification AUC-ROC scores of 85-89% and AUC-PR scores of 84-92%. ASD toddlers with ensemble scores above and below the overall ASD ensemble mean of 0.723 (on a scale of 0 to 1) had similar diagnostic and psychometric scores, but those below this ASD ensemble mean had more prenatal risk events than TD toddlers. Ensemble model feature genes were involved in cell cycle, inflammation/immune response, transcriptional gene regulation, cytokine response, and PI3K-AKT, RAS and Wnt signaling pathways. We additionally collected targeted DNA sequencing smMIPs data on a subset of ASD risk genes from 217 of the 240 ASD and TD toddlers. This DNA sequencing found about the same percentage of SFARI Level 1 and 2 ASD risk gene mutations in TD (12 of 105) as in ASD (13 of 112) toddlers, and classification based only on the presence of mutation in these risk genes performed at a chance level of 49%. By contrast, the leukocyte ensemble gene expression classifier correctly diagnostically classified 88% of TD and ASD toddlers with ASD risk gene mutations. Our ensemble ASD gene expression classifier is diagnostically predictive and replicable across different toddler ages, races, and ethnicities; out-performs a risk gene mutation classifier; and has potential for clinical translation.
Collapse
Affiliation(s)
- Bokan Bao
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Vahid H Gazestani
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Yaqiong Xiao
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Raphael Kim
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa H Wen
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Austin W T Chiang
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Kimberly Robasky
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, US
- School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Health and Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, 100191, Beijing, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neuroscience, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Fan X, Pan H, Tian A, Chung WK, Shen Y. SHINE: protein language model-based pathogenicity prediction for short inframe insertion and deletion variants. Brief Bioinform 2023; 24:bbac584. [PMID: 36575831 PMCID: PMC9851320 DOI: 10.1093/bib/bbac584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Accurate variant pathogenicity predictions are important in genetic studies of human diseases. Inframe insertion and deletion variants (indels) alter protein sequence and length, but not as deleterious as frameshift indels. Inframe indel Interpretation is challenging due to limitations in the available number of known pathogenic variants for training. Existing prediction methods largely use manually encoded features including conservation, protein structure and function, and allele frequency to infer variant pathogenicity. Recent advances in deep learning modeling of protein sequences and structures provide an opportunity to improve the representation of salient features based on large numbers of protein sequences. We developed a new pathogenicity predictor for SHort Inframe iNsertion and dEletion (SHINE). SHINE uses pretrained protein language models to construct a latent representation of an indel and its protein context from protein sequences and multiple protein sequence alignments, and feeds the latent representation into supervised machine learning models for pathogenicity prediction. We curated training data from ClinVar and gnomAD, and created two test datasets from different sources. SHINE achieved better prediction performance than existing methods for both deletion and insertion variants in these two test datasets. Our work suggests that unsupervised protein language models can provide valuable information about proteins, and new methods based on these models can improve variant interpretation in genetic analyses.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Hongbing Pan
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Alan Tian
- Lynbrook High School, San Jose, CA, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| |
Collapse
|