1
|
Xu W, Lin Z, Kim CJ, Wang Z, Wang T, Cortez-Jugo C, Caruso F. Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination. SCIENCE ADVANCES 2024; 10:eads9542. [PMID: 39671490 PMCID: PMC11641004 DOI: 10.1126/sciadv.ads9542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Metal-organic networks have attracted widespread interest owing to their hybrid physicochemical properties. Natural biomolecules represent attractive building blocks for these materials because of their inherent biological function and high biocompatibility; however, assembling them into coordination network materials, especially nanoparticles (NPs), is challenging. Herein, we exploit the coordination between metal ions and phosphonate groups, which are present in many biomolecules, to form metal-biomolecule network (MBN) NPs in aqueous solution at room temperature. Various phosphonate-containing biomolecules, including plant phytate, DNA, and proteins, were used to assemble MBN NPs with tunable physicochemical properties (e.g., size). In addition to excellent biocompatibility and high cargo-loading efficiency (>95%), these two-component MBN NPs have various biological functionalities, including endosomal escape, immune regulation, and molecular recognition, thus offering advantages over nonbiomolecular-based coordination materials. This work expands our understanding of metal-organic chemistry with the emerging class of metal-biomolecule systems and provides a pathway for incorporating biofunctionalities into advanced coordination materials for diverse fields.
Collapse
Affiliation(s)
| | | | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Lim YN, Ryu IS, Jung YJ, Helmlinger G, Kim I, Park HW, Kang H, Lee J, Lee HJ, Lee KS, Jang HN, Ha DI, Park J, Won J, Lim KS, Jeon CY, Cho HJ, Min HS, Ryu JH. l-Type amino acid transporter 1-targeting nanoparticles for antisense oligonucleotide delivery to the CNS. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102340. [PMID: 39411247 PMCID: PMC11474373 DOI: 10.1016/j.omtn.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
l-Type amino acid transporter 1 (LAT1)-specific ligands and polyion complexes are used as brain-specific targets to deliver RNA-based drugs across the blood-brain barrier. We characterized an LAT1-targeting antisense oligonucleotide (ASO)-encapsulated nanoparticle, Phe-NPs/ASO. A 25% density of phenylalanine effectively binds to the surface of LAT1-targeting NPs in the GL261-Luc cells, and Phe-NPs/ASO shows higher binding affinity compared to that without phenylalanine by cellular binding assay. To further characterize the blood-brain barrier-targeting effect and tissue distribution following a single-dose intravenous injection in mice, we performed in vivo biodistribution studies using fluorescence imaging. The Phe-NPs/ASOs were detected in the brain tissue 1 h post-intravenous injection at an approximately 64-fold higher ratio than that of the same ASOs administered in the absence of any NP carrier. The brain tissue delivery of ASO-loaded Phe-NPs was also confirmed in a fluorescence imaging study performed in non-human primates. These results demonstrate that Phe-NPs may successfully deliver an ASO to the brain tissue across brain regions. Phe-NPs loaded with RNA-based drugs have the potential to treat diseases of the CNS, including all forms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Na Lim
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - In Soo Ryu
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Yeon-Joo Jung
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Gabriel Helmlinger
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Insun Kim
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Hye Won Park
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Hansol Kang
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Jina Lee
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Hyo Jin Lee
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Kang Seon Lee
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Ha-Na Jang
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Dae-In Ha
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, South Korea
| | - Hyun Su Min
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co., Ltd, 1, Gukjegwahak 2-ro, Yuseong-gu, Daejeon 34000, South Korea
| |
Collapse
|
3
|
Li S, Cortez-Jugo C, Ju Y, Caruso F. Approaching Two Decades: Biomolecular Coronas and Bio-Nano Interactions. ACS NANO 2024; 18:33257-33263. [PMID: 39602410 DOI: 10.1021/acsnano.4c13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It has been nearly two decades since the term "protein corona" was coined. This term has since evolved to "biomolecular corona" or "biocorona" to capture the diverse biomolecules that spontaneously form on the surface of nanoparticles upon exposure to biological fluids and drive nanoparticle interactions with biological systems. In this Perspective, we highlight the significant progress in this field, including studies on nonprotein corona components, lipid nanoparticles, and the role of the corona in endogenous organ targeting. We also discuss research opportunities in this field, particularly the need for improved characterization and standardization of analysis and how recent advances in artificial intelligence and ex vivo models can improve our understanding of the biomolecular corona in guiding nanomedicine design.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Shan X, Cai Y, Zhu B, Zhou L, Sun X, Xu X, Yin Q, Wang D, Li Y. Rational strategies for improving the efficiency of design and discovery of nanomedicines. Nat Commun 2024; 15:9990. [PMID: 39557860 PMCID: PMC11574076 DOI: 10.1038/s41467-024-54265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The rise of rational strategies in nanomedicine development, such as high-throughput methods and computer-aided techniques, has led to a shift in the design and discovery patterns of nanomedicines from a trial-and-error mode to a rational mode. This transition facilitates the enhancement of efficiency in the preclinical discovery pipeline of nanomaterials, particularly in improving the hit rate of nanomaterials and the optimization efficiency of promising candidates. Herein, we describe a directed evolution mode of nanomedicines driven by data to accelerate the discovery of nanomaterials with high delivery efficiency. Computer-aided design strategies are introduced in detail as one of the cutting-edge directions for the development of nanomedicines. Ultimately, we look forward to expanding the tools for the rational design and discovery of nanomaterials using multidisciplinary approaches. Rational design strategies may potentially boost the delivery efficiency of next-generation nanomedicines.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, China
| | - Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Dangge Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201260, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| |
Collapse
|
5
|
Metternich JT, Patjoshi SK, Kistwal T, Kruss S. High-Throughput Approaches to Engineer Fluorescent Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411067. [PMID: 39533494 DOI: 10.1002/adma.202411067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection-limited and synthesis-limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non-classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.
Collapse
Affiliation(s)
- Justus T Metternich
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Sujit K Patjoshi
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Tanuja Kistwal
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Sebastian Kruss
- Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| |
Collapse
|
6
|
Gu Y, Chen J, Wang Z, Liu C, Wang T, Kim CJ, Durikova H, Fernandes S, Johnson DN, De Rose R, Cortez-Jugo C, Caruso F. mRNA delivery enabled by metal-organic nanoparticles. Nat Commun 2024; 15:9664. [PMID: 39511206 PMCID: PMC11544223 DOI: 10.1038/s41467-024-53969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
mRNA therapeutics are set to revolutionize disease prevention and treatment, inspiring the development of platforms for safe and effective mRNA delivery. However, current mRNA delivery platforms face some challenges, including limited organ tropism for nonvaccine applications and inflammation induced by cationic nanoparticle components. Herein, we address these challenges through a versatile, noncationic nanoparticle platform whereby mRNA is assembled into a poly(ethylene glycol)-polyphenol network stabilized by metal ions. Screening a range of components and relative compositional ratios affords a library of stable, noncationic, and highly biocompatible metal-organic nanoparticles with robust mRNA transfection in vitro and in mice. Intravenous administration of the lead mRNA-containing metal-organic nanoparticles enables predominant protein expression and gene editing in the brain, liver, and kidney, while organ tropism is tuned by varying nanoparticle composition. This study opens an avenue for realizing metal-organic nanoparticle-enabled mRNA delivery, offering a modular approach to assembling mRNA therapeutics for health applications.
Collapse
Affiliation(s)
- Yuang Gu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Chang Liu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Helena Durikova
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Soraia Fernandes
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, The University of Melbourne, Parkville, VIC, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
8
|
Joyce P, Allen CJ, Alonso MJ, Ashford M, Bradbury MS, Germain M, Kavallaris M, Langer R, Lammers T, Peracchia MT, Popat A, Prestidge CA, Rijcken CJF, Sarmento B, Schmid RB, Schroeder A, Subramaniam S, Thorn CR, Whitehead KA, Zhao CX, Santos HA. A translational framework to DELIVER nanomedicines to the clinic. NATURE NANOTECHNOLOGY 2024; 19:1597-1611. [PMID: 39242807 DOI: 10.1038/s41565-024-01754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines' physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines.
Collapse
Affiliation(s)
- Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Christine J Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Michelle S Bradbury
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, Faculty of Medicine and Health UNSW, Sydney, New South Wales, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, Aachen, Germany
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Bruno Sarmento
- IiS - Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, Porto, Portugal
| | - Ruth B Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Santhni Subramaniam
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Chelsea R Thorn
- BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, MA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, South Australia, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, Groningen, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Renzi S, Digiacomo L, Pozzi D, Quagliarini E, Vulpis E, Giuli MV, Mancusi A, Natiello B, Pignataro MG, Canettieri G, Di Magno L, Pesce L, De Lorenzi V, Ghignoli S, Loconte L, Montone CM, Laura Capriotti A, Laganà A, Nicoletti C, Amenitsch H, Rossi M, Mura F, Parisi G, Cardarelli F, Zingoni A, Checquolo S, Caracciolo G. Structuring lipid nanoparticles, DNA, and protein corona into stealth bionanoarchitectures for in vivo gene delivery. Nat Commun 2024; 15:9119. [PMID: 39438484 PMCID: PMC11496629 DOI: 10.1038/s41467-024-53569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Lipid nanoparticles (LNPs) play a crucial role in addressing genetic disorders, and cancer, and combating pandemics such as COVID-19 and its variants. Yet, the ability of LNPs to effectively encapsulate large-size DNA molecules remains elusive. This is a significant limitation, as the successful delivery of large-size DNA holds immense potential for gene therapy. To address this gap, the present study focuses on the design of PEGylated LNPs, incorporating large-sized DNA, departing from traditional RNA and ionizable lipids. The resultant LNPs demonstrate a unique particle morphology. These particles were further engineered with a DNA coating and plasma proteins. This multicomponent bionanoconstruct exhibits enhanced transfection efficiency and safety in controlled laboratory settings and improved immune system evasion in in vivo tests. These findings provide valuable insights for the design and development of bionanoarchitectures for large-size DNA delivery, opening new avenues for transformative gene therapies.
Collapse
Affiliation(s)
- Serena Renzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Valeria Giuli
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Latina, Italy
| | - Angelica Mancusi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Bianca Natiello
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Pesce
- NEST, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Luisa Loconte
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | - Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering and Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Latina, Italy.
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Fernandes S, Quattrociocchi M, Cassani M, Savazzi G, Johnson D, Forte G, Caruso F, Cavalieri F. Antibody-Free Glycogen Nanoparticles Engage Human Immune T Cells for Intracellular Delivery of Small Drugs or mRNA. ACS NANO 2024; 18:28910-28923. [PMID: 39392742 DOI: 10.1021/acsnano.4c09156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
T cells play a major role in immune defense against viral infections and diseases such as cancer. Accordingly, developing nanoparticle (NP) systems to effectively deliver therapeutics to T cells is of interest. However, NP-mediated delivery of drugs to T cells is challenging because of the nonphagocytic nature of T cells. To engage T cells and induce cellular internalization, NPs are typically decorated with specific receptor-targeting antibodies, often using laborious and costly procedures. Herein, we report that natural glycogen NPs (i.e., nanosugars) with different sizes (20-80 nm) and surface charges (neutral and positively charged) engage Jurkat T cells, undergo intracellular trafficking, and release encapsulated drug without the use of receptor-targeting antibodies. Specifically, glycogen-resveratrol constructs are employed to reactivate HIV-1 latently infected Jurkat T cells (J-Lat A2) and trigger proviral expression. Both neutral and positively charged glycogen NPs engage with J-Lat A2 cells. Large (84 ± 29 nm) and positively charged (23 ± 5 mV) NPs, denoted phytoglycogen-ethylenediamine (PGEDA) NPs, readily associate with the cell membrane and are internalized (60%) in J-Lat A2 cells but remain confined in the endocytic vesicles, with moderate reactivation of latent HIV-1 (4.7 ± 0.5%). Conversely, small (21 ± 5 nm) and positively charged (10 ± 6 mV) NPs, bovine glycogen-EDA (BGEDA) NPs, associate slowly with T cells but show nearly 100% internalization and efficient endosomal escape properties, resulting in 1.5-fold higher reactivation of latent HIV-1 in T cells. PGEDA NPs and BGEDA NPs are also internalized by primary human T cells (>90% cell association) and enable the transfection of mRNA, with BGEDA NPs showing a 2-fold higher transfection than PGEDA NPs. This work highlights the potential of BGEDA NPs for the effective intracellular delivery of small-molecule drugs and mRNA in T cells.
Collapse
Affiliation(s)
- Soraia Fernandes
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
- International Clinical Research Centre, St. Anne Hospital, 656 91 Brno, Czech Republic
| | - Miriam Quattrociocchi
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Marco Cassani
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
- International Clinical Research Centre, St. Anne Hospital, 656 91 Brno, Czech Republic
| | - Giulio Savazzi
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Darryl Johnson
- Materials Characterization and Fabrication Platform, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Giancarlo Forte
- International Clinical Research Centre, St. Anne Hospital, 656 91 Brno, Czech Republic
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE5 9NU, U.K
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne 3000, Victoria, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Kruse B, Dash BS, Kostka K, Wolff N, Prymak O, Loza K, Gumbiowski N, Heggen M, Oliveira CLP, Chen JP, Epple M. Doxorubicin-Loaded Ultrasmall Gold Nanoparticles (1.5 nm) for Brain Tumor Therapy and Assessment of Their Biodistribution. ACS APPLIED BIO MATERIALS 2024; 7:6890-6907. [PMID: 39240877 DOI: 10.1021/acsabm.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Ultrasmall gold nanoparticles (1.5 nm) were covalently conjugated with doxorubicin (AuDox) and AlexaFluor647 (AuAF647) to assess their biodistribution and their efficiency toward brain tumors (glioblastoma). A thorough characterization by transmission electron microscopy, small-angle X-ray scattering, and differential centrifugal sedimentation confirmed their uniform ultrasmall nature which makes them very mobile in the body. Each nanoparticle carried either 13 doxorubicin molecules (AuDox) or 2.7 AlexaFluor-647 molecules (AuAF647). The firm attachment of the ligands to the nanoparticles was demonstrated by their resilience to extensive washing, followed by centrifugation. The particles easily entered mammalian cells (HeLa, T98-G, brain endothelial cells, and human astrocytes) due to their small size. The intravenously delivered fluorescing AuAF647 nanoparticles crossed the blood-brain barrier with ∼23% accumulation in the brain tumor in an orthotopic U87 brain tumor model in nude mice. This was confirmed by elemental analysis (gold; inductively coupled plasma optical emission spectroscopy) in various organs. The doxorubicin-loaded AuDox nanoparticles inhibited brain tumor growth and prolonged animal survival without adverse side effects. Most of the nanoparticles (84%) had been excreted from the animal after 24 h, indicating a high mobility in the body.
Collapse
Affiliation(s)
- Benedikt Kruse
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Kathrin Kostka
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Natalie Wolff
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Matthias Epple
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
12
|
Hashemi E, Giesy JP, Liang Z, Akhavan O, Tayefeh AR, Joupari MD, Sanati MH, Shariati P, Shamsara M, Farmany A. Impacts of graphene oxide contamination on a food web: Threats to somatic and reproductive health of organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117032. [PMID: 39299214 DOI: 10.1016/j.ecoenv.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Contamination of aquatic food webs with nanomaterials poses a significant ecological and human health challenge. Ingestion of nanomaterials alongside food disrupts digestion and impairs physiological processes, with potential consequences for organism fitness and survival. Complex interactions between nanomaterials and biota further exacerbate the issue, influencing life-history strategies and ecosystem dynamics. Accumulation of nanomaterials within autotrophic and detritus-based food webs raises concerns about biomagnification, especially for top-level consumers and seafood-dependent human populations. Understanding the extent and impact of nanomaterial contamination on aquatic biota is crucial for effective mitigation strategies. To address this challenge, we conducted a comprehensive study evaluating the bioaccumulation effects of graphene oxide (GO), a commonly used nanomaterial, within an aquatic food chain. Using a gnotobiotic freshwater microcosm, we investigated the effects of micro- and nano-scale GO sheets on key organisms: green algae (Chlorella vulgaris), brine shrimp (Artemia salina), and zebrafish (Danio rerio). Two feeding regimes, direct ingestion and trophic transfer, were employed to assess GO uptake and transfer within the food web. Direct exposure involved individual organisms being exposed to either nano- or micro-scale GO sheets, while trophic transfer involved a sequential exposure pathway: algae exposed to GO sheets, artemias feeding on the algae, and zebrafish consuming the artemias. Our study provides critical insights into nanomaterial contamination in aquatic ecosystems. Physicochemical properties of GO sheets, including ζ-potential and dispersion, were influenced by salt culture media, resulting in aggregation under salt conditions. Microscopic imaging confirmed the bioaccumulation of GO sheets within organisms, indicating prolonged exposure and potential long-term effects. Notably, biodistribution analysis in zebrafish demonstrated the penetration of nano-sized GO into the intestinal wall, signifying direct interaction with vital organs. Exposure to GO resulted in increased zebrafish mortality and impaired reproductive performance, particularly through trophic transfer. These findings emphasize the urgent need to address nanomaterial contamination in aquatic food webs to protect ecosystem components and human consumers. Our study highlights the importance of developing effective mitigation strategies to preserve the integrity of aquatic ecosystems, ensure resource sustainability, and safeguard human well-being. In conclusion, our study provides crucial insights into the impact of nanomaterial pollution on aquatic biota. By recognizing the challenges posed by nanomaterial contamination and implementing targeted interventions, we can mitigate the adverse effects, preserving the integrity of aquatic ecosystems and safeguarding human health.
Collapse
Affiliation(s)
- Ehsan Hashemi
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran; National Research Centre for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-161, Tehran, Iran; Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| | - John P Giesy
- Department of Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Science, Baylor, University, Waco, TX, USA
| | - Zhuobin Liang
- Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Aidin Rahim Tayefeh
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran; National Research Centre for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-161, Tehran, Iran
| | - Morteza Daliri Joupari
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran; National Research Centre for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-161, Tehran, Iran
| | - Mohammad Hossein Sanati
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran
| | - Parvin Shariati
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran
| | - Mehdi Shamsara
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran; National Research Centre for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-161, Tehran, Iran.
| | - Abbas Farmany
- Dental Implant Research Center, Avicenna Health Research Institute, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
13
|
O'Connell CD, Dalton PD, Hutmacher DW. Why bioprinting in regenerative medicine should adopt a rational technology readiness assessment. Trends Biotechnol 2024; 42:1218-1229. [PMID: 38614839 DOI: 10.1016/j.tibtech.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.
Collapse
Affiliation(s)
- Cathal D O'Connell
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, VIC, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia; Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology, Kelvin Grove, QLD, Australia; Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Wang Z, Cortez-Jugo C, Yang Y, Chen J, Wang T, De Rose R, Cui J, Caruso F. A Metal-Phenolic Network-Enabled Nanoadjuvant to Modulate Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401776. [PMID: 39031853 DOI: 10.1002/smll.202401776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Indexed: 07/22/2024]
Abstract
The presence of hierarchical suppressive pathways in the immune system combined with poor delivery efficiencies of adjuvants and antigens to antigen-presenting cells are major challenges in developing advanced vaccines. The present study reports a nanoadjuvant constructed using aluminosilicate nanoparticles (as particle templates), incorporating cytosine-phosphate-guanosine (CpG) oligonucleotides and small-interfering RNA (siRNA) to counteract immune suppression in antigen-presenting cells. Furthermore, the application of a metal-phenolic network (MPN) coating, which can endow the nanoparticles with protective and bioadhesive properties, is assessed with regard to the stability and immune function of the resulting nanoadjuvant in vitro and in vivo. Combining the adjuvanticity of aluminum and CpG with RNA interference and MPN coating results in a nanoadjuvant that exhibits greater accumulation in lymph nodes and elicits improved maturation of dendritic cells in comparison to a formulation without siRNA or MPN, and with no observable organ toxicity. The incorporation of a model antigen, ovalbumin, within the MPN coating demonstrates the capacity of MPNs to load functional biomolecules as well as the ability of the nanoadjuvant to trigger enhanced antigen-specific responses. The present template-assisted fabrication strategy for engineering nanoadjuvants holds promise in the design of delivery systems for disease prevention, as well as therapeutics.
Collapse
Affiliation(s)
- Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
15
|
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NANOIMPACT 2024; 36:100533. [PMID: 39454678 DOI: 10.1016/j.impact.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The application of nanomaterials in industry and consumer products is growing exponentially, which has pressed the development and use of predictive human in vitro models in pre-clinical analysis to closely extrapolate potential toxic effects in vivo. The conventional cytotoxicity investigation of nanomaterials using cell lines from cancer origin and culturing them two-dimensionally in a monolayer without mimicking the proper pathophysiological microenvironment may affect a precise prediction of in vitro effects at in vivo level. In recent years, complex in vitro models (also belonging to the new approach methodologies, NAMs) have been established in unicellular to multicellular cultures either by using cell lines, primary cells or induced pluripotent stem cells (iPSCs), and reconstituted into relevant biological dimensions mimicking in vivo conditions. These advanced in vitro models retain physiologically reliant exposure scenarios particularly appropriate for oral, dermal, respiratory, and intravenous administration of nanomaterials, which have the potential to improve the in vivo predictability and lead to reliable outcomes. In this perspective, we discuss recent developments and breakthroughs in using advanced human in vitro models for hazard assessment of nanomaterials. We identified fit-for-purpose requirements and remaining challenges for the successful implementation of in vitro data into nanomaterials Safe and Sustainable by Design (SSbD), Risk Assessment (RA), and Life Cycle Assessment (LCA). By addressing the gap between in vitro data generation and the utility of in vitro data for nanomaterial safety assessments, a prerequisite for SSbD approaches, we outlined potential key areas for future development.
Collapse
Affiliation(s)
- Jimeng Wu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Govind Gupta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
16
|
Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun 2024; 15:8172. [PMID: 39289401 PMCID: PMC11408679 DOI: 10.1038/s41467-024-52416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.
Collapse
Affiliation(s)
- Xin Li
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, 20607, Germany.
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany.
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, RD Geleen, 6167, The Netherlands.
| |
Collapse
|
17
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
18
|
Jeliazkova N, Longhin E, El Yamani N, Rundén-Pran E, Moschini E, Serchi T, Vrček IV, Burgum MJ, Doak SH, Cimpan MR, Rios-Mondragon I, Cimpan E, Battistelli CL, Bossa C, Tsekovska R, Drobne D, Novak S, Repar N, Ammar A, Nymark P, Di Battista V, Sosnowska A, Puzyn T, Kochev N, Iliev L, Jeliazkov V, Reilly K, Lynch I, Bakker M, Delpivo C, Sánchez Jiménez A, Fonseca AS, Manier N, Fernandez-Cruz ML, Rashid S, Willighagen E, D Apostolova M, Dusinska M. A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials. Nat Protoc 2024; 19:2642-2684. [PMID: 38755447 DOI: 10.1038/s41596-024-00993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/20/2024] [Indexed: 05/18/2024]
Abstract
Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.
Collapse
Affiliation(s)
| | - Eleonora Longhin
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Elisa Moschini
- Environmental Health group, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Health group, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | | | - Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | | | | | - Emil Cimpan
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Cecilia Bossa
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Rositsa Tsekovska
- Medical and Biological Research Laboratory, Roumen Tsanev Institute of Molecular Biology-Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Repar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ammar Ammar
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, the Netherlands
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Di Battista
- BASF SE, Material Physics, Carl Bosch straße, Ludwigshafen, Germany
- Department of Environmental and Resource Engineering, DTU, Kgs. Lyngby, Denmark
| | - Anita Sosnowska
- QSAR Lab Ltd., Gdańsk, Poland
- University of Gdańsk, Faculty of Chemistry, Gdansk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd., Gdańsk, Poland
- University of Gdańsk, Faculty of Chemistry, Gdansk, Poland
| | - Nikolay Kochev
- Ideaconsult Ltd., Sofia, Bulgaria
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | | | | | - Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Martine Bakker
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Araceli Sánchez Jiménez
- Spanish National Institute of Health and Safety, Centro Nacional de Verificación de Maquinaria, Barakaldo, Spain
| | - Ana Sofia Fonseca
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nicolas Manier
- Ecotoxicology of Substances and Environmental Matrices Unit, French National Institute for Industrial Environment and Risks, Verneuil-en-Halatte, France
| | - María Luisa Fernandez-Cruz
- Department of Environment and Agronomy, National Institute for Agriculture and Food Research and Technology, Spanish National Research Council, Madrid, Spain
| | - Shahzad Rashid
- Institute of Occupational Medicine, Research Avenue North, Edinburgh, UK
| | - Egon Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, the Netherlands
| | - Margarita D Apostolova
- Medical and Biological Research Laboratory, Roumen Tsanev Institute of Molecular Biology-Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway.
| |
Collapse
|
19
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi-Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
21
|
Henderson E, Wilson K, Huynh G, Plebanski M, Corrie S. Bionano Interactions of Organosilica Nanoparticles with Myeloid Derived Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43329-43340. [PMID: 39109853 DOI: 10.1021/acsami.4c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Investigating the interactions between nanomaterials and the cells they are likely to encounter in vivo is a critical aspect of designing nanomedicines for imaging and therapeutic applications. Immune cells such as dendritic cells, macrophages, and myeloid derived suppressor cells have a frontline role in the identification and removal of foreign materials from the body, with interactions shown to be heavily dependent on variables such as nanoparticle size, charge, and surface chemistry. Interactions such as cellular association or uptake of nanoparticles can lead to diminished functionality or rapid clearance from the body, making it critical to consider these interactions when designing and synthesizing nanomaterials for biomedical applications ranging from drug delivery to imaging and biosensing. We investigated the interactions between PEGylated organosilica nanoparticles and naturally endocytic immune cells grown from stem cells in murine bone marrow. Specifically, we varied the particle size from 60 nm up to 1000 nm and investigated the effects of size on immune cell association, activation, and maturation with these critical gatekeeper cells. These results will help inform future design parameters for in vitro and in vivo biomedical applications utilizing organosilica nanoparticles.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
22
|
Ashkarran AA, Gharibi H, Modaresi SM, Saei AA, Mahmoudi M. Standardizing Protein Corona Characterization in Nanomedicine: A Multicenter Study to Enhance Reproducibility and Data Homogeneity. NANO LETTERS 2024; 24:9874-9881. [PMID: 39096192 PMCID: PMC11328176 DOI: 10.1021/acs.nanolett.4c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
24
|
del Giudice G, Serra A, Pavel A, Torres Maia M, Saarimäki LA, Fratello M, Federico A, Alenius H, Fadeel B, Greco D. A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400389. [PMID: 38923832 PMCID: PMC11348149 DOI: 10.1002/advs.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Hazard assessment is the first step in evaluating the potential adverse effects of chemicals. Traditionally, toxicological assessment has focused on the exposure, overlooking the impact of the exposed system on the observed toxicity. However, systems toxicology emphasizes how system properties significantly contribute to the observed response. Hence, systems theory states that interactions store more information than individual elements, leading to the adoption of network based models to represent complex systems in many fields of life sciences. Here, they develop a network-based approach to characterize toxicological responses in the context of a biological system, inferring biological system specific networks. They directly link molecular alterations to the adverse outcome pathway (AOP) framework, establishing direct connections between omics data and toxicologically relevant phenotypic events. They apply this framework to a dataset including 31 engineered nanomaterials with different physicochemical properties in two different in vitro and one in vivo models and demonstrate how the biological system is the driving force of the observed response. This work highlights the potential of network-based methods to significantly improve their understanding of toxicological mechanisms from a systems biology perspective and provides relevant considerations and future data-driven approaches for the hazard assessment of nanomaterials and other advanced materials.
Collapse
Affiliation(s)
- Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Marcella Torres Maia
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
| | - Michele Fratello
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
| | - Harri Alenius
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| |
Collapse
|
25
|
Dai W, Xie C, Xiao Y, Ma Y, Ding Y, Song Z, Wang Y, Jiao C, Zheng L, Zhang Z, He X. Bacterial Susceptibility to Ceria Nanoparticles: The Critical Role of Surrounding Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12390-12399. [PMID: 38963915 DOI: 10.1021/acs.est.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Investigating the ternary relationship among nanoparticles (NPs), their immediate molecular environment, and test organisms rather than the direct interaction between pristine NPs and test organisms has been thrust into the mainstream of nanotoxicological research. Diverging from previous work that predominantly centered on surrounding molecules affecting the toxicity of NPs by modulating their nanoproperties, this study has unveiled a novel dimension: surrounding molecules altering bacterial susceptibility to NPs, consequently impacting the outcomes of nanobio interaction. The study found that adding nitrate as the surrounding molecules could alter bacterial respiratory pathways, resulting in an enhanced reduction of ceria NPs (nanoceria) on the bacterial surfaces. This, in turn, increased the ion-specific toxicity originating from the release of Ce3+ ions at the nanobio interface. Further transcriptome analysis revealed more mechanistic details underlying the nitrate-induced changes in the bacterial energy metabolism and subsequent toxicity patterns. These findings offer a new perspective for the deconstruction of nanobio interactions and contribute to a more comprehensive understanding of NPs' environmental fate and ecotoxicity.
Collapse
Affiliation(s)
- Wanqin Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changjian Xie
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuhui Ma
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuda Song
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Jiao
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
27
|
Rost NCV, Said M, Gharib M, Lévy R, Boem F. Better nanoscience through open, collaborative, and critical discussions. MATERIALS HORIZONS 2024; 11:3005-3010. [PMID: 38578130 PMCID: PMC11216032 DOI: 10.1039/d3mh01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
We aim to foster a discussion of science correction and of how individual researchers can improve the quality and control of scientific production. This is crucial because although the maintenance of rigorous standards and the scrupulous control of research findings and methods are sometimes taken for granted, in practice, we are routinely confronted with articles that contain errors.
Collapse
Affiliation(s)
| | - Maha Said
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, LVTS, F-75018 Paris, France
| | - Mustafa Gharib
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, LVTS, F-75018 Paris, France
| | - Raphaël Lévy
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, LVTS, F-75018 Paris, France
| | - Federico Boem
- University of Twente, Philosophy Section, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
28
|
Caracciolo G. Artificial protein coronas: directing nanoparticles to targets. Trends Pharmacol Sci 2024; 45:602-613. [PMID: 38811308 DOI: 10.1016/j.tips.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
The protein corona surrounding nanoparticles (NPs) offers exciting possibilities for targeted drug delivery. However, realizing this potential requires direct evidence of corona-receptor interactions in vivo; a challenge hampered by the limitations of in vitro settings. This opinion proposes that utilizing engineered protein coronas can address this challenge. Artificial coronas made of selected plasma proteins retain their properties in vivo, enabling manipulation for specific receptor targeting. To directly assess corona-receptor interactions mimicking in vivo complexity, we propose testing artificial coronas with recently adapted quartz crystal microbalance (QCM) setups whose current limitations and potential advancements are critically discussed. Finally, the opinion proposes future experiments to decipher corona-receptor interactions and unlock the full potential of the protein corona for NP-based drug delivery.
Collapse
Affiliation(s)
- Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
29
|
Wu J, Zheng Y, Zhang LN, Gu CL, Chen WL, Chang MQ. Advanced nanomedicines and immunotherapeutics to treat respiratory diseases especially COVID-19 induced thrombosis. World J Clin Cases 2024; 12:2704-2712. [PMID: 38899301 PMCID: PMC11185334 DOI: 10.12998/wjcc.v12.i16.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Immunotherapy and associated immune regulation strategies gained huge attraction in order to be utilized for treatment and prevention of respiratory diseases. Engineering specifically nanomedicines can be used to regulate host immunity in lungs in the case of respiratory diseases including coronavirus disease 2019 (COVID-19) infection. COVID-19 causes pulmonary embolisms, thus new therapeutic options are required to target thrombosis, as conventional treatment options are either not effective due to the complexity of the immune-thrombosis pathophysiology. In this review, we discuss regulation of immune response in respiratory diseases especially COVID-19. We further discuss thrombosis and provide an overview of some antithrombotic nanoparticles, which can be used to develop nanomedicine against thrombo-inflammation induced by COVID-19 and other respiratory infectious diseases. We also elaborate the importance of immunomodulatory nanomedicines that can block pro-inflammatory signalling pathways, and thus can be recommended to treat respiratory infectious diseases.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Ying Zheng
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Li-Na Zhang
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Cai-Li Gu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Wang-Li Chen
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Min-Qiang Chang
- Department of Otorhinolaryngology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
30
|
Anchordoquy T, Artzi N, Balyasnikova IV, Barenholz Y, La-Beck NM, Brenner JS, Chan WCW, Decuzzi P, Exner AA, Gabizon A, Godin B, Lai SK, Lammers T, Mitchell MJ, Moghimi SM, Muzykantov VR, Peer D, Nguyen J, Popovtzer R, Ricco M, Serkova NJ, Singh R, Schroeder A, Schwendeman AA, Straehla JP, Teesalu T, Tilden S, Simberg D. Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions. ACS NANO 2024; 18:13983-13999. [PMID: 38767983 PMCID: PMC11214758 DOI: 10.1021/acsnano.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.
Collapse
Affiliation(s)
- Thomas Anchordoquy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Yechezkel Barenholz
- Membrane and Liposome Research Lab, IMRIC, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| | - Jacob S Brenner
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163 Genova, Italy
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Alberto Gabizon
- The Helmsley Cancer Center, Shaare Zedek Medical Center and The Hebrew University of Jerusalem-Faculty of Medicine, Jerusalem, 9103102, Israel
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College (WCMC), New York, New York 10065, United States
- Department of Biomedical Engineering, Texas A&M, College Station, Texas 7784,3 United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Madison Ricco
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J Serkova
- Department of Radiology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Anna A Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48108; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48108, United States
| | - Joelle P Straehla
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02115 United States
- Koch Institute for Integrative Cancer Research at MIT, Cambridge Massachusetts 02139 United States
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Scott Tilden
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
31
|
Mendes BB, Zhang Z, Conniot J, Sousa DP, Ravasco JMJM, Onweller LA, Lorenc A, Rodrigues T, Reker D, Conde J. A large-scale machine learning analysis of inorganic nanoparticles in preclinical cancer research. NATURE NANOTECHNOLOGY 2024; 19:867-878. [PMID: 38750164 DOI: 10.1038/s41565-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/10/2024] [Indexed: 06/21/2024]
Abstract
Owing to their distinct physical and chemical properties, inorganic nanoparticles (NPs) have shown promising results in preclinical cancer therapy, but designing and engineering them for effective therapeutic purposes remains a challenge. Although a comprehensive database of inorganic NP research is not currently available, it is crucial for developing effective cancer therapies. In this context, machine learning (ML) has emerged as a transformative tool, but its adaptation to nanomedicine is hindered by inexistent or small datasets. Here we assembled a large database of inorganic NPs, comprising experimental datasets from 745 preclinical studies in cancer nanomedicine. Using descriptive statistics and explainable ML models we mined this database to gain knowledge of inorganic NP design patterns and inform future NP research for cancer treatment. Our analyses suggest that NP shape and therapy type are prominent features in determining in vivo efficacy, measured as a percentage of tumour reduction. Moreover, our database provides a large-scale open-access resource for discriminative ML that the broader nanotechnology community can utilize. Our work blueprints data mining for translational cancer research and offers evidence for standardizing NP reporting to accelerate and de-risk inorganic NP-based drug delivery, which may help to improve patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Zilu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - João Conniot
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana P Sousa
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João M J M Ravasco
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Lauren A Onweller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andżelika Lorenc
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Biopharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Tiago Rodrigues
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
32
|
Balog S, de Almeida MS, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Does the surface charge of the nanoparticles drive nanoparticle-cell membrane interactions? Curr Opin Biotechnol 2024; 87:103128. [PMID: 38581743 DOI: 10.1016/j.copbio.2024.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Classical Coulombic interaction, characterized by electrostatic interactions mediated through surface charges, is often regarded as the primary determinant in nanoparticles' (NPs) cellular association and internalization. However, the intricate physicochemical properties of particle surfaces, biomolecular coronas, and cell surfaces defy this oversimplified perspective. Moreover, the nanometrological techniques employed to characterize NPs in complex physiological fluids often exhibit limited accuracy and reproducibility. A more comprehensive understanding of nanoparticle-cell membrane interactions, extending beyond attractive forces between oppositely charged surfaces, necessitates the establishment of databases through rigorous physical, chemical, and biological characterization supported by nanoscale analytics. Additionally, computational approaches, such as in silico modeling and machine learning, play a crucial role in unraveling the complexities of these interactions.
Collapse
Affiliation(s)
- Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
33
|
Ammar A, Evelo C, Willighagen E. FAIR assessment of nanosafety data reusability with community standards. Sci Data 2024; 11:503. [PMID: 38755173 PMCID: PMC11099147 DOI: 10.1038/s41597-024-03324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Nanomaterials hold great promise for improving our society, and it is crucial to understand their effects on biological systems in order to enhance their properties and ensure their safety. However, the lack of consistency in experimental reporting, the absence of universally accepted machine-readable metadata standards, and the challenge of combining such standards hamper the reusability of previously produced data for risk assessment. Fortunately, the research community has responded to these challenges by developing minimum reporting standards that address several of these issues. By converting twelve published minimum reporting standards into a machine-readable representation using FAIR maturity indicators, we have created a machine-friendly approach to annotate and assess datasets' reusability according to those standards. Furthermore, our NanoSafety Data Reusability Assessment (NSDRA) framework includes a metadata generator web application that can be integrated into experimental data management, and a new web application that can summarize the reusability of nanosafety datasets for one or more subsets of maturity indicators, tailored to specific computational risk assessment use cases. This approach enhances the transparency, communication, and reusability of experimental data and metadata. With this improved FAIR approach, we can facilitate the reuse of nanosafety research for exploration, toxicity prediction, and regulation, thereby advancing the field and benefiting society as a whole.
Collapse
Affiliation(s)
- Ammar Ammar
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands.
| | - Chris Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Egon Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Tian Y, Tian D, Peng X, Qiu H. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis. Int J Pharm 2024; 656:124097. [PMID: 38609058 DOI: 10.1016/j.ijpharm.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and ∼ 10 μl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.
Collapse
Affiliation(s)
- Youxi Tian
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Dong Tian
- Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China.
| | - Hong Qiu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
| |
Collapse
|
35
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single Extracellular Vesicle Imaging and Computational Analysis Identifies Inherent Architectural Heterogeneity. ACS NANO 2024; 18:11717-11731. [PMID: 38651873 DOI: 10.1021/acsnano.3c12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.
Collapse
Affiliation(s)
- Kshipra S Kapoor
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Seoyun Kong
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Hikaru Sugimoto
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Wenhua Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Vivek Boominathan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Yi-Lin Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Kathleen M McAndrews
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
36
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
37
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
38
|
Chen J, Cortez-Jugo C, Kim CJ, Lin Z, Wang T, De Rose R, Xu W, Wang Z, Gu Y, Caruso F. Metal-Phenolic-Mediated Assembly of Functional Small Molecules into Nanoparticles: Assembly and Bioapplications. Angew Chem Int Ed Engl 2024; 63:e202319583. [PMID: 38282100 DOI: 10.1002/anie.202319583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Small molecules, including therapeutic drugs and tracer molecules, play a vital role in biological processing, disease treatment and diagnosis, and have inspired various nanobiotechnology approaches to realize their biological function, particularly in drug delivery. Desirable features of a delivery system for functional small molecules (FSMs) include high biocompatibility, high loading capacity, and simple manufacturing processes, without the need for chemical modification of the FSM itself. Herein, we report a simple and versatile approach, based on metal-phenolic-mediated assembly, for assembling FSMs into nanoparticles (i.e., FSM-MPN NPs) under aqueous and ambient conditions. We demonstrate loading of anticancer drugs, latency reversal agents, and fluorophores at up to ~80 % that is mostly facilitated by π and hydrophobic interactions between the FSM and nanoparticle components. Secondary nanoparticle engineering involving coating with a polyphenol-antibody thin film or sequential co-loading of multiple FSMs enables cancer cell targeting and combination delivery, respectively. Incorporating fluorophores into FSM-MPN NPs enables the visualization of biodistribution at different time points, revealing that most of these NPs are retained in the kidney and heart 24 h post intravenous administration. This work provides a viable pathway for the rational design of small molecule nanoparticle delivery platforms for diverse biological applications.
Collapse
Affiliation(s)
- Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yuang Gu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
39
|
Cristian RE, Balta C, Herman H, Trica B, Sbarcea BG, Hermenean A, Dinischiotu A, Stan MS. In Vivo Assessment of Hepatic and Kidney Toxicity Induced by Silicon Quantum Dots in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:457. [PMID: 38470787 DOI: 10.3390/nano14050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
In the last decade, silicon-based quantum dots (SiQDs) have attracted the attention of researchers due to their unique properties for which they are used in medical applications and in vivo imaging. Detection of cytotoxic effects in vivo is essential for understanding the mechanisms of toxicity, a mandatory step before their administration to human subjects. In this context, we aimed to evaluate the in vivo hepatic and renal acute toxicity of SiQDs obtained by laser ablation. The nanoparticles were administrated at different doses (0, 1, 10, and 100 mg of QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanatized, and liver and kidney tissues were used in further toxicity tests. The time- and dose-dependent effects of SiQDs on the antioxidant defense system of mice liver and kidney were investigated by quantifying the activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in correlation with the morphological changes and inflammatory status in the liver and kidneys. The results showed a decrease in the activities of antioxidant enzymes and histopathological changes, except for superoxide dismutase, in which no significant changes were registered compared with the control. Furthermore, the immunohistochemical expression of TNF-α was significant at doses over 10 mg of QDs/kg of body weight and were still evident at 72 h after administration. Our results showed that doses under 10 mg of SiQDs/kg of b.w. did not induce hepatic and renal toxicity, providing useful information for further clinical trials.
Collapse
Affiliation(s)
- Roxana-Elena Cristian
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Beatrice G Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Anca Hermenean
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Anca Dinischiotu
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
40
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
41
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
42
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
43
|
Subramaniam S, Joyce P, Ogunniyi AD, Dube A, Sampson SL, Lehr CM, Prestidge CA. Minimum Information for Conducting and Reporting In Vitro Intracellular Infection Assays. ACS Infect Dis 2024; 10:337-349. [PMID: 38295053 DOI: 10.1021/acsinfecdis.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Bacterial pathogens are constantly evolving to outsmart the host immune system and antibiotics developed to eradicate them. One key strategy involves the ability of bacteria to survive and replicate within host cells, thereby causing intracellular infections. To address this unmet clinical need, researchers are adopting new approaches, such as the development of novel molecules that can penetrate host cells, thus exerting their antimicrobial activity intracellularly, or repurposing existing antibiotics using nanocarriers (i.e., nanoantibiotics) for site-specific delivery. However, inconsistency in information reported across published studies makes it challenging for scientific comparison and judgment of experiments for future direction by researchers. Together with the lack of reproducibility of experiments, these inconsistencies limit the translation of experimental results beyond pre-clinical evaluation. Minimum information guidelines have been instrumental in addressing such challenges in other fields of biomedical research. Guidelines and recommendations provided herein have been designed for researchers as essential parameters to be disclosed when publishing their methodology and results, divided into four main categories: (i) experimental design, (ii) establishing an in vitro model, (iii) assessment of efficacy of novel therapeutics, and (iv) statistical assessment. These guidelines have been designed with the intention to improve the reproducibility and rigor of future studies while enabling quantitative comparisons of published studies, ultimately facilitating translation of emerging antimicrobial technologies into clinically viable therapies that safely and effectively treat intracellular infections.
Collapse
Affiliation(s)
- Santhni Subramaniam
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Abiodun D Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| | - Samantha L Sampson
- South African Medical Research Council Centre for Tuberculosis Research, and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7602 Cape Town, South Africa
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
44
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
45
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
46
|
Shi J, Yang B, Wang H, Wu Y, He F, Dong J, Qin G. The combined contamination of nano-polystyrene and nanoAg: Uptake, translocation and ecotoxicity effects on willow saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167291. [PMID: 37742955 DOI: 10.1016/j.scitotenv.2023.167291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Nanoplastics (NPLs) and nanoAg (AgNPs) are emerging contaminants commonly detected in aquatic and terrestrial environments due to their widespread use in various domains. However, their uptake, translocation, and toxic effects on plants in cooccurrence environments remain largely unexplored. Therefore, a hydroponic experiment was conducted using 100 nm NPLs (1 mg/L and 10 mg/L), AgNPs (100 μg/L and 1000 μg/L) and saplings of willow (Salix matsudana 'J172') to investigate absorption, translocation and the physio-biochemical responses of the plants. The results indicated that NPLs and AgNPs were agglomerated with each other in solutions. NPLs not only penetrated the roots of the saplings but also translocated to the branches and leaves through xylem ducts. However, AgNPs was only detected in the roots, suggesting that the internalization of nanoparticles in plants depends on the properties and types of particles themselves. The combined exposure to NPLs and AgNPs selectively affected the absorption and distribution of K, Ca, Mg and Fe, resulting in inhibited saplings growth and photosynthesis. Furthermore, the presence of NPLs and AgNPs induced oxidative damage and stimulated the antioxidant stress system in the plants. This study provides novel insights into the internalization and ecotoxicological mechanisms of NPLs and AgNPs in woody vascular plants.
Collapse
Affiliation(s)
- Jiaxing Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Yaxin Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250098, China
| | - Jinhao Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Guanghua Qin
- Shandong Academy of Forestry, Jinan 250014, China
| |
Collapse
|
47
|
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen YL, Biswal SL, Terlier T, McAndrews KM, Kalluri R. Single extracellular vesicle imaging and computational analysis identifies inherent architectural heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571132. [PMID: 38168235 PMCID: PMC10760062 DOI: 10.1101/2023.12.11.571132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM) which has an inherent ability to image biological samples without harsh labeling methods and while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources such as cancer cells, normal cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366, and the average equivalent diameter was 132.43 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical (S. Spherical), rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution EV images and offer insights into their potential biological impact.
Collapse
|
48
|
Belliard F, Maineri AM, Plomp E, Ramos Padilla AF, Sun J, Zare Jeddi M. Ten simple rules for starting FAIR discussions in your community. PLoS Comput Biol 2023; 19:e1011668. [PMID: 38096152 PMCID: PMC10721007 DOI: 10.1371/journal.pcbi.1011668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
This work presents 10 rules that provide guidance and recommendations on how to start up discussions around the implementation of the FAIR (Findable, Accessible, Interoperable, Reusable) principles and creation of standardised ways of working. These recommendations will be particularly relevant if you are unsure where to start, who to involve, what the benefits and barriers of standardisation are, and if little work has been done in your discipline to standardise research workflows. When applied, these rules will support a more effective way of engaging the community with discussions on standardisation and practical implementation of the FAIR principles.
Collapse
Affiliation(s)
| | - Angelica Maria Maineri
- Erasmus University Rotterdam—Erasmus School of Social and Behavioral Sciences/ODISSEI, Rotterdam, the Netherlands
| | - Esther Plomp
- Delft University of Technology, Faculty of Applied Sciences, Delft, the Netherlands
| | | | - Junzi Sun
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
49
|
Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New Opportunities and Old Challenges in the Clinical translation of Nanotheranostics. NATURE REVIEWS. MATERIALS 2023; 8:783-798. [PMID: 39022623 PMCID: PMC11251001 DOI: 10.1038/s41578-023-00581-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2024]
Abstract
Nanoparticle-based systems imbued with both diagnostic and therapeutic functions, known as nanotheranostics, have enabled remarkable progress in guiding focal therapy, inducing active responses to endogenous and exogenous biophysical stimuli, and stratifying patients for optimal treatment. However, although in recent years more nanotechnological platforms and techniques have been implemented in the clinic, several important challenges remain that are specific to nanotheranostics. In this Review, we first discuss some of the many ways of 'constructing' nanotheranostics, focusing on the different imaging modalities and therapeutic strategies. We then outline nanotheranostics that are currently used in humans at different stages of clinical development, identifying specific advantages and opportunities. Finally, we define critical steps along the winding road of preclinical and clinical development and suggest actions to overcome technical, manufacturing, regulatory and economical challenges for the safe and effective clinical translation of nanotheranostics.
Collapse
Affiliation(s)
- Peter J. Gawne
- UCL Cancer Institute, University College London, London, UK
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary, University of London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Miguel Ferreira
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Marisa Papaluca
- School of Public Health, Imperial College of London, South Kensington CampusLondon, UK
| | - Jan Grimm
- Molecular Pharmacology Program and Department of Radiology, Memorial Sloan-Kettering Cancer, Center, New York, NY, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via, Morego 30, 16163, Genoa, IT
| |
Collapse
|
50
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|