1
|
Zhang X, Li R, Chen MY, Ye WQ, Liang JZ, Yang WJ, Yang F, Ji HM. Investigating the potential mechanism of Pioglitazone in Sepsis-Related brain injury through transcriptomics. Gene 2024; 931:148892. [PMID: 39187138 DOI: 10.1016/j.gene.2024.148892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Sepsis-related brain injury (SRBI) refers to brain dysfunction and structural damage caused by sepsis, which is characterized by inflammation, oxidative stress, and destruction of the blood-brain barrier. Pioglitazone is a PPAR-γ agonist in which PPAR-γ acts as an inflammatory modulator, determining the relationship between PPAR-γ and SRBI and inflammatory state is critical for the disease. This study aimed to construct a drug-target-disease network for SRBI and Pioglitazone based on network pharmacology, and to investigate the therapeutic effect and potential mechanism of Pioglitazone in SRBI induced by lipopolysaccharide (LPS) in rats through transcriptomics. To establish a rat Model of SRBI by intraperitoneal injection of LPS (10 mg/kg): SD rats were divided into Control, Model (LPS), Pioglitazone, (LPS + Pioglitazone) and GW9662 group (LPS+GW9662). The effects and potential mechanisms of Pioglitazone in the treatment of SRBI were studied using biochemical indexes, pathological changes and transcriptome-sequencing (RNA-seq). RNA-seq results showed 620 DEGs between the Model and the Pioglitazone groups. Enrichment analysis involved multiple inflammatory response processes and chemokine receptor binding functions. TLR4 and CXCL10 in the Toll signaling pathway may play an important role in SRBI as important targets. Pioglitazone may ameliorate SRBI through the PPAR-γ/TLR4/CXCL10 pathway.
Collapse
Affiliation(s)
- Xuan Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, China.
| | - Rui Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Ming-Yuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Wen-Qian Ye
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Jing-Zhen Liang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Wen-Jing Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Hong-Ming Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
2
|
Zhang N, Ma Y, Li Y, Wang Y, Zhang L, Zheng M, Tian Y, Zhang R, Yang K, Li J, Yan F, Liu H, Zhang Y, Xu J, Yu C, Xu J. Paeonol prevents sepsis-associated encephalopathy via regulating the HIF1A pathway in microglia. Int Immunopharmacol 2024; 143:113287. [PMID: 39362015 DOI: 10.1016/j.intimp.2024.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Paeonol, a phenolic acid compound extracted from the Cortex Moutan, exhibits significant anti-inflammatory, antioxidant, and anti-apoptotic properties. This study aimed to investigate the effects of paeonol on neuroinflammation and depressive-like symptoms, and the underlying mechanisms in a mouse model of sepsis-associated encephalopathy (SAE) induced by lipopolysaccharide (LPS). To assess the therapeutic potential of paeonol in mice treated with LPS, behavioral assessments were conducted using the open-field test (OFT), tail suspension test (TST), and forced swimming test (FST), and quantitative PCR (qPCR), Western blot, and immunofluorescent staining were utilized to determine the expression levels of inflammatory molecules in the hippocampus in vivo and microglial cells in vitro. Our results revealed that paeonol significantly alleviated anxiety and depressive-like symptoms, as evidenced by improved activity in OFT, reduced immobility time in TST and FST, and decreased levels of inflammatory markers such as IL6, TNFα, and PFKFB3. Further in vitro experiments confirmed that paeonol downregulated the expression of pro-inflammatory molecules. A network pharmacology-based strategy combined with molecular docking and cellular thermal shift assay highlighted HIF1A as a potential target for paeonol. Similar anti-inflammatory effects of a HIF1A inhibitor were also observed in microglia treated with LPS. Furthermore, these effects were reversed by CoCl2, a HIF1A agonist, indicating the critical role of the HIF1A signaling pathway in mediating the therapeutic effects of paeonol. These findings highlight the potential of paeonol in modulating the HIF1A pathway, offering a promising therapeutic strategy for neuroinflammation in SAE.
Collapse
Affiliation(s)
- Ning Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yongjie Ma
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yuqing Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yiqi Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Lisheng Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Mincheng Zheng
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yu Tian
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Ruiying Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Kanlin Yang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jieyuan Li
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Haimei Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Yaxing Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jinwen Xu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China.
| | - Cong Yu
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, China.
| | - Jiean Xu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China.
| |
Collapse
|
3
|
Wang P, Liang L, Ge Q, Liu S, Yang Z, Jiang L. Dichloroacetate attenuates brain injury through inhibiting neuroinflammation and mitochondrial fission in a rat model of sepsis-associated encephalopathy. Int Immunopharmacol 2024; 140:112840. [PMID: 39106713 DOI: 10.1016/j.intimp.2024.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, characterized by neuroinflammation, mitochondrial dysfunction, and oxidative stress, leading to cognitive decline and high mortality. The effectiveness of dichloroacetate (DCA) in modulating mitochondrial function provides a novel therapeutic strategy for SAE. In this study, we evaluated the neuroprotective effects of DCA in a rat model of SAE induced by cecal ligation and puncture (CLP). Rats treated with DCA exhibited significant improvements in neurological function and survival, as evidenced by less neuron loss from histopathologic analysis, restored neurologic deficit scores, improved Y-maze alternation percentages, and enhanced recognition index performance. Biochemical analyses showed that DCA administration at 25 mg/kg and 100 mg/kg reduced astrocyte and microglial activation, indicating reduced neuroinflammation. Furthermore, DCA simultaneously reduced the production of circulating and cerebral inflammatory cytokines (including TNF-α, IL-1β, and IL-10), concomitant with mitigating oxidative stress through down-regulating expression of 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) in the brain. Mechanistically, DCA modulated mitochondrial dynamics by suppressing Drp1 and pDrp1 expression, which are indicators of mitochondrial fission. This was corroborated by transmission electron microscopy, quantification of mitochondrial area, and Western blot analyses. Furthermore, DCA treatment improved ATP levels, mitochondrial complex I activity, and NAD+/NADH ratio, indicating a significant attenuation of brain mitochondrial dysfunction. In conclusion, our findings suggest that DCA confers neuroprotection in SAE by curtailing neuroinflammation and mitochondrial fission, outlining a promising therapeutic strategy for treating SAE in critically ill patients.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Lian Liang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China
| | - Siqi Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
4
|
Cury P, Passos RDH, Alves F, Brasil S, Frigieri G, Taccone FS, Panerai RB, Caldas J. Impact of different blood pressure targets on cerebral hemodynamics in septic shock: A prospective pilot study protocol-SEPSIS-BRAIN. PLoS One 2024; 19:e0304412. [PMID: 39401208 PMCID: PMC11472940 DOI: 10.1371/journal.pone.0304412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/11/2024] [Indexed: 10/17/2024] Open
Abstract
INTRODUCTION Septic shock, a life-threatening condition, can result in cerebral dysfunction and heightened mortality rates. In these patients, disturbances in cerebral hemodynamics, as reflected by impairment of myogenic cerebral autoregulation (CA), metabolic regulation, expressed by critical closing pressure (CrCP) and reductions in intracranial compliance (ICC), can adversely impact septic shock outcomes. The general recommendation is to maintain a target mean arterial pressure (MAP) of 65 mmHg but the effect of different MAP targets on cerebral hemodynamics in these patients is not clear and optimal targets might be dependent on the status of CA. This protocol aims to assess the cerebral hemodynamics profile at different pressure targets in septic shock patients. METHODS Prospective, non-randomized, single-center trial, which will study cerebral hemodynamics in patients with septic shock within 48 hours of its onset. Patients will be studied at their baseline MAP and at three MAP targets (T1: 65, T2: 75, T3: 85 mmHg). Cerebral hemodynamics will be assessed by transcranial Doppler (TCD) and a skull micro-deformation sensor (B4C). Dynamic CA will be expressed by the autoregulation index (ARI), calculated by transfer function analysis, using fluctuations of MAP as input and corresponding oscillations in cerebral blood velocity (CBv). The instantaneous relationship between arterial blood pressure and CBv will be used to estimate CrCP and resistance-area product (RAP) for each cardiac cycle using the first harmonic method. The B4C will access ICC by intracranial pressure waveforms (P2/P1). The primary aim is to assess cerebral hemodynamics (ARI, CrCP, RAP, and P2/P1) at different targets of MAP in septic shock patients. Our secondary objective is to assess cerebral hemodynamics at 65mmHg (target recommended by guidelines). In addition, we will assess the correlation between markers of organ dysfunction (such as lactate levels, vasoactive drugs usage, SOFA score, and delirium) and CA. ETHICS AND DISSEMINATION The results of this study may help to understand the effect of the recommended MAP and variations in blood pressure in patients with septic shock and impaired CA and ICC. Furthermore, the results can assist large trials in establishing new hypotheses about neurological management in this group of patients. Approval was obtained from the local Ethics Committee (28134720.1.0000.0048). It is anticipated that the results of this study will be presented at national and international conferences and will be published in peer-reviewed journals in 2024 and 2025. TRIAL REGISTRATION Trial registration number: NCT05833607. https://clinicaltrials.gov/study/NCT05833607.
Collapse
Affiliation(s)
- Pedro Cury
- Critical Care Unit, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
- Bahiana—School of Medicine and Public Health, Salvador, Brazil
| | | | - Fernanda Alves
- Critical Care Unit, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
| | | | - Gustavo Frigieri
- Medical Investigation Laboratory 62, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fabio S. Taccone
- Department of Intensive Care, Hospital Erasme, Brussels, Belgium
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Juliana Caldas
- Critical Care Unit, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
- Hospital São Rafael, Salvador, Brazil
- Bahiana—School of Medicine and Public Health, Salvador, Brazil
| |
Collapse
|
5
|
Park C, Lei Z, Li Y, Ren B, He J, Huang H, Chen F, Li H, Brunner K, Zhu J, Jay SM, Williams B, Chao W, Wu J, Zou L. Extracellular vesicles in sepsis plasma mediate neuronal inflammation in the brain through miRNAs and innate immune signaling. J Neuroinflammation 2024; 21:252. [PMID: 39375720 PMCID: PMC11460013 DOI: 10.1186/s12974-024-03250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Neuroinflammation reportedly plays a critical role in the pathogenesis of sepsis-associated encephalopathy (SAE). We previously reported that circulating plasma extracellular vesicles (EVs) from septic mice are proinflammatory. In the current study, we tested the role of sepsis plasma EVs in neuroinflammation. METHODS To track EVs in cells and tissues, HEK293T cell-derived EVs were labeled with the fluorescent dye PKH26. Cecal ligation and puncture (CLP) was conducted to model polymicrobial sepsis in mice. Plasma EVs were isolated by ultracentrifugation and their role in promoting neuronal inflammation was tested following intracerebroventricular (ICV) injection. miRNA inhibitors (anti-miR-146a, -122, -34a, and -145a) were applied to determine the effects of EV cargo miRNAs in the brain. A cytokine array was performed to profile microglia-released protein mediators. TLR7- or MyD88-knockout (KO) mice were utilized to determine the underlying mechanism of EVs-mediated neuroinflammation. RESULTS We observed the uptake of fluorescent PKH26-EVs inside the cell bodies of both microglia and neurons. Sepsis plasma EVs led to a dose-dependent cytokine release in cultured microglia, which was partially attenuated by miRNA inhibitors against the target miRNAs and in TLR7-KO cells. When administered via the ICV, sepsis plasma EVs resulted in a marked increase in the accumulation of innate immune cells, including monocyte and neutrophil and cytokine gene expression, in the brain. Although sepsis plasma EVs had no direct effect on cytokine production or neuronal injury in vitro, the conditioned media (CM) of microglia treated with sepsis plasma EVs induced neuronal cell death as evidenced by increased caspase-3 cleavage and Annexin-V staining. Cytokine arrays and bioinformatics analysis of the microglial CM revealed multiple cytokines/chemokines and other factors functionally linked to leukocyte chemotaxis and migration, TLR signaling, and neuronal death. Moreover, sepsis plasma EV-induced brain inflammation in vivo was significantly dependent on MyD88. CONCLUSIONS Circulating plasma EVs in septic mice cause a microglial proinflammatory response in vitro and a brain innate immune response in vivo, some of which are in part mediated by TLR7 in vitro and MyD88 signaling in vivo. These findings highlight the importance of circulating EVs in brain inflammation during sepsis.
Collapse
Affiliation(s)
- Chanhee Park
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhuofan Lei
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Li
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Boyang Ren
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junyun He
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Huang Huang
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Fengqian Chen
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hui Li
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kavitha Brunner
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jing Zhu
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20740, USA
| | - Brittney Williams
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wei Chao
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Junfang Wu
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center to Advanced Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA.
| | - Lin Zou
- Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Nguyen DN, Huyghens L, Nguyen TM, Diltoer M, Jonckheer J, Cools W, Segers L, Schiettecatte J, Vincent JL. Alterations in Regional Brain Microcirculation in Patients with Sepsis: A Prospective Study Using Contrast-Enhanced Brain Ultrasound. Neurocrit Care 2024:10.1007/s12028-024-02117-9. [PMID: 39313698 DOI: 10.1007/s12028-024-02117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Alterations in regional brain microcirculation have not been well studied in patients with sepsis. Regional brain microcirculation can be studied using contrast-enhanced brain ultrasound (CEUS) with microbubble administration. METHODS CEUS was used to assess alterations in regional brain microcirculation on 3 consecutive days in 58 patients with sepsis and within 24 h of intensive care unit admission in 10 aged-matched nonseptic postoperative patients. Time-intensity perfusion curve variables (time-to-peak and peak intensity) were measured in different regions of interest of the brain parenchyma. The mean arterial pressure, cardiac index (using transthoracic echocardiography), global cerebral blood flow (using echo-color Doppler of the carotid and vertebral arteries), mean flow velocities of the middle cerebral arteries, and brain autoregulation (using transcranial echo-color Doppler) were measured simultaneously. The presence of structural brain injury in patients with sepsis was confirmed on computed tomography imaging, and encephalopathy, including coma and delirium, was evaluated using the Glasgow Coma Scale and the Confusion Assessment Method in the Intensive Care Unit. RESULTS Of the 58 patients with sepsis, 42 (72%) developed acute encephalopathy and 11 (19%) had some form of structural brain injury. Brain autoregulation was impaired in 23 (40%) of the patients with sepsis. Brain microcirculation alterations were observed in the left lentiform nucleus and left white matter of the temporoparietal region of the middle cerebral artery in the sepsis nonsurvivors but not in the survivors or postoperative patients. The alterations were characterized by prolonged time-to-peak (p < 0.01) and decreased peak intensity (p < 0.01) on the time-intensity perfusion curve. Prolonged time-to-peak but not decreased peak intensity was independently associated with worse outcome (p = 0.03) but not with the development of encephalopathy (p = 0.77). CONCLUSIONS Alterations in regional brain microcirculation are present in critically ill patients with sepsis and are associated with poor outcome. Trial registration Registered retrospectively on December 19, 2019.
Collapse
Affiliation(s)
- Duc Nam Nguyen
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Luc Huyghens
- Brain Resuscitation in Neurosciences Research Group, Faculty of Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Truc Mai Nguyen
- Department of Geriatrics, University Hospital Vaudois, Lausanne, Switzerland
| | - Marc Diltoer
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Joop Jonckheer
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Wilfried Cools
- Department of Biostatistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lotte Segers
- Department of Critical Care Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Johan Schiettecatte
- Department of Immunochemistry, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Talley S, Nguyen T, Van Ye L, Valiauga R, DeCarlo J, Mustafa J, Cook B, White FA, Campbell EM. Characterization of age-associated inflammasome activation reveals tissue specific differences in transcriptional and post-translational inflammatory responses. Immun Ageing 2024; 21:60. [PMID: 39256821 PMCID: PMC11384696 DOI: 10.1186/s12979-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Aging is associated with systemic chronic, low-grade inflammation, termed 'inflammaging'. This pattern of inflammation is multifactorial and is driven by numerous inflammatory pathways, including the inflammasome. However, most studies to date have examined changes in the transcriptomes that are associated with aging and inflammaging, despite the fact that inflammasome activation is driven by a series of post-translational activation steps, culminating in the cleavage and activation of caspase-1. Here, we utilized transgenic mice expressing a caspase-1 biosensor to examine age-associated inflammasome activation in various organs and tissues to define these post-translational manifestations of inflammaging. Consistent with other studies, we observe increased inflammation, including inflammasome activation, in aged mice and specific tissues. However, we note that the degree of inflammasome activation is not uniformly associated with transcriptional changes commonly used as a surrogate for inflammasome activation in tissues. Furthermore, we used a skull thinning technique to monitor central nervous system inflammasome activation in vivo in aged mice and found that neuroinflammation is significantly amplified in aged mice in response to endotoxin challenge. Together, these data reveal that inflammaging is associated with both transcriptional and post-translational inflammatory pathways that are not uniform between tissues and establish new methodologies for measuring age-associated inflammasome activation in vivo and ex vivo.
Collapse
Affiliation(s)
- Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Lily Van Ye
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jake DeCarlo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Jabra Mustafa
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Benjamin Cook
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
8
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024:S1359-6101(24)00068-6. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Gao S, Shen R, Li J, Jiang Y, Sun H, Wu X, Li X, Miao C, He M, Wang J, Chen W. N-acetyltransferase 10 mediates cognitive dysfunction through the acetylation of GABA BR1 mRNA in sepsis-associated encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2410564121. [PMID: 39190359 PMCID: PMC11388286 DOI: 10.1073/pnas.2410564121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Jie Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai 200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Xiya Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Shanghai 200032, China
- Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai 201104, China
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai 201799, China
| |
Collapse
|
10
|
Xu K, Huang Q, Lyu Y, Wang S, Lu Y, Qian G. Phosphatidylserine improves aging sepsis survival, modulates gut microbiome, and prevents sepsis-associated encephalopathy. Biomed Pharmacother 2024; 178:117200. [PMID: 39053420 DOI: 10.1016/j.biopha.2024.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Aged adults are prone to both short- and long-term complications following sepsis due to ineffective therapy. Phosphatidylserine (PS) is a membrane nutrient supplement known to enhance cognition and brain function, but its potential effects in treating sepsis are not well-documented. Our study aimed to explore the potential of PS in improving outcomes in sepsis and sepsis-associated encephalopathy (SAE). Middle-aged mice were administered PS for two months following induction of sepsis by lipopolysaccharides. The results indicated a significant increase in the survival rate of mice treated with PS after sepsis. Surviving mice underwent open field and shuttle box tests 45 days post-sepsis, revealing potential alleviation of neurobehavioral impairments due to PS pretreatment. Analysis at 60 days post-sepsis euthanasia showed reduced cleaved-caspase 3 in neurons and glial cell markers in the PS-treated group compared to the untreated sepsis group. Furthermore, PS administration effectively reduced proinflammatory cytokine gene expression in the hippocampus of mice with SAE, potentially inhibiting the TBK1/NLRP3/ASC signaling pathway. In the gut, PS pretreatment modulated β-diversity while maintaining jejunal morphology and colon ZO-1 expression, without significantly affecting α-diversity indices. Our findings suggest that PS administration improves survival rates, modulates the gut microbiome, preserves gut integrity, and ameliorates brain pathology in survived mice after sepsis. Importantly, these findings have significant implications for sepsis treatment and cognitive function preservation in aging individuals, providing new insights and sparking further interest and investigation into the potential of PS in sepsis treatment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ying Lyu
- Department of Traditional Chinese Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyan Wang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Gang Qian
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200050, China.
| |
Collapse
|
11
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
12
|
Cui Q, Qin N, Zhang Y, Miao Y, Xie L, Ma X, Zhang Z, Xie P. Neuroprotective effects of annexin A1 tripeptide in rats with sepsis-associated encephalopathy. Biotechnol Appl Biochem 2024; 71:701-711. [PMID: 38409880 DOI: 10.1002/bab.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.
Collapse
Affiliation(s)
- Qiao Cui
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Nannan Qin
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yonghan Zhang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| |
Collapse
|
13
|
Guo Q, Gobbo D, Zhao N, Zhang H, Awuku NO, Liu Q, Fang LP, Gampfer TM, Meyer MR, Zhao R, Bai X, Bian S, Scheller A, Kirchhoff F, Huang W. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice. Nat Commun 2024; 15:6340. [PMID: 39068155 PMCID: PMC11283516 DOI: 10.1038/s41467-024-50466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Molecular pathways mediating systemic inflammation entering the brain parenchyma to induce sepsis-associated encephalopathy (SAE) remain elusive. Here, we report that in mice during the first 6 hours of peripheral lipopolysaccharide (LPS)-evoked systemic inflammation (6 hpi), the plasma level of adenosine quickly increased and enhanced the tone of central extracellular adenosine which then provoked neuroinflammation by triggering early astrocyte reactivity. Specific ablation of astrocytic Gi protein-coupled A1 adenosine receptors (A1ARs) prevented this early reactivity and reduced the levels of inflammatory factors (e.g., CCL2, CCL5, and CXCL1) in astrocytes, thereby alleviating microglial reaction, ameliorating blood-brain barrier disruption, peripheral immune cell infiltration, neuronal dysfunction, and depression-like behaviour in the mice. Chemogenetic stimulation of Gi signaling in A1AR-deficent astrocytes at 2 and 4 hpi of LPS injection could restore neuroinflammation and depression-like behaviour, highlighting astrocytes rather than microglia as early drivers of neuroinflammation. Our results identify early astrocyte reactivity towards peripheral and central levels of adenosine as an important pathway driving SAE and highlight the potential of targeting A1ARs for therapeutic intervention.
Collapse
Affiliation(s)
- Qilin Guo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Na Zhao
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, University of Saarland, 66421, Homburg, Germany
| | - Hong Zhang
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Nana-Oye Awuku
- Molecular Neurophysiology, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Qing Liu
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Renping Zhao
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| |
Collapse
|
14
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
15
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
16
|
Kumar DR, Banaś A, Krukiewicz K. Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach. BIOSENSORS 2024; 14:309. [PMID: 38920613 PMCID: PMC11202072 DOI: 10.3390/bios14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Sepsis is a life-threatening condition with high mortality rates due to delayed treatment of patients. The conventional methodology for blood diagnosis takes several hours, which suspends treatment, limits early drug administration, and affects the patient's recovery. Thus, rapid, accurate, bedside (onsite), economical, and reliable sepsis biomarker reading of the clinical sample is an emergent need for patient lifesaving. Electrochemical label-free biosensors are specific and rapid devices that are able to perform analysis at the patient's bedside; thus, they are considered an attractive methodology in a clinical setting. To reveal their full diagnostic potential, electrode architecture strategies of fabrication are highly desirable, particularly those able to preserve specific antibody-antigen attraction, restrict non-specific adsorption, and exhibit high sensitivity with a low detection limit for a target biomarker. The aim of this review is to provide state-of-the-art methodologies allowing the fabrication of ultrasensitive and highly selective electrochemical sensors for sepsis biomarkers. This review focuses on different methods of label-free biomarker sensors and discusses their advantages and disadvantages. Then, it highlights effective ways of avoiding false results and the role of molecular labels and functionalization. Recent literature on electrode materials and antibody grafting strategies is discussed, and the most efficient methodology for overcoming the non-specific attraction issues is listed. Finally, we discuss the existing electrode architecture for specific biomarker readers and promising tactics for achieving quick and low detection limits for sepsis biomarkers.
Collapse
Affiliation(s)
- Deivasigamani Ranjith Kumar
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
| | - Angelika Banaś
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Katarzyna Krukiewicz
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| |
Collapse
|
17
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
18
|
Wu H, Li N, Peng S, Fu H, Hu Z, Su L. Maresin1 improves hippocampal neuroinflammation and cognitive function in septic rats by activating the SLC7A11 / GPX4 ferroptosis signaling pathway. Int Immunopharmacol 2024; 131:111792. [PMID: 38484667 DOI: 10.1016/j.intimp.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a prevalent complication of sepsis, with hippocampal neuroinflammation playing a crucial role in SAE-induced cognitive impairment. Maresin1 (MaR1), a bioactive docosahexaenoic acid (DHA) metabolite, demonstrates comprehensive anti-inflammatory and neuroprotective attributes. Yet, its protective efficacy against SAE-induced cognitive decline remains unexplored. In this investigation, we implemented a rat SAE model via cecal ligation and puncture (CLP), while lipopolysaccharide (LPS) stimulation of HT22 cells simulated an in vitro SAE model; both models were pre-treated with MaR1. We evaluated rat learning and memory using a water maze, assessed hippocampal neuron damage via Nissl and FJC staining, and observed mitochondrial alterations through TEM. In vivo and in vitro assays gauged levels of Fe2+, MDA, GSH, and SOD. Additionally, Iba1 expression in the hippocampus was examined via immunofluorescence, while SLC7A11 and GPX4 protein expression levels were determined using western blot. Our findings indicated CLP-induced learning and memory impairment in rats, along with heightened ROS, Fe2+, and MDA levels in hippocampal neurons, diminished GSH and SOD levels, and down-regulated ferroptosis-related proteins (GPX4 and SLC7A11). Remarkably, MaR1 treatment attenuated these adverse effects. In LPS-stimulated HT22 cells, MaR1 lowered lipid ROS and bolstered mitochondrial membrane potential. Nonetheless, the ferroptosis inducer Erastin reversed MaR1's protective effects. Transwell experiments further showed MaR1's potential to inhibit microglia activation triggered by ferroptosis in HT22 cells. Consequently, MaR1 may mitigate hippocampal neuroinflammation via activating the SLC7A11/GPX4 ferroptosis signaling pathway, thus ameliorating SAE-related cognitive impairment.
Collapse
Affiliation(s)
- Huiping Wu
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Shuang Peng
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Zhansheng Hu
- Intensive Care Unit, The First Affiliated Hospital of JinZhou Medical University, Jinzhou 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1st Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
19
|
Pei M, Yang Y, Zhang C, Huang Q, Fang Y, Xu L, Lin S, He H. Role of serum neuron-specific enolase levels in the early diagnosis and prognosis of sepsis-associated encephalopathy: a systematic review and meta-analysis. Front Neurol 2024; 15:1353063. [PMID: 38685952 PMCID: PMC11057363 DOI: 10.3389/fneur.2024.1353063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 05/02/2024] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is one of the most ubiquitous complications of sepsis and is characterized by cognitive impairment, poor prognosis, and a lack of uniform clinical diagnostic criteria. Therefore, this study investigated the early diagnostic and prognostic value of serum neuron-specific enolase (NSE) in SAE. Methods This systematic review and meta-analysis systematically searched for clinical trials with serum NSE information in patients with sepsis in the PubMed, Web of Science, Embase, and Cochrane databases from their inception to April 10, 2023. Included studies were assessed for quality and risk of bias using The Quality Assessment of Diagnostic Accuracy-2 tool. The meta-analysis of the included studies was performed using Stata 17.0 and Review Manager version 5.4. Findings Eleven studies were included in this meta-analysis involving 1259 serum samples from 947 patients with sepsis. Our results showed that the serum NSE levels of patients with SAE were higher than those of the non-encephalopathy sepsis group (mean deviation, MD,12.39[95% CI 8.27-16.50, Z = 5.9, p < 0.00001]), and the serum NSE levels of patients with sepsis who died were higher than those of survivors (MD,4.17[95% CI 2.66-5.68, Z = 5.41, p < 0.00001]). Conclusion Elevated serum NSE levels in patients with sepsis are associated with the early diagnosis of SAE and mortality; therefore, serum NSE probably is a valid biomarker for the early diagnosis and prognosis of patients with SAE. Systematic review registration This study was registered in PROSPERO, CRD42023433111.
Collapse
Affiliation(s)
- MengQin Pei
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuShen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - ChunYan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - QiaoMei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuMing Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - LiMing Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - HeFan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
20
|
Jin J, Yu L, Zhou Q, Zeng M. Improved prediction of sepsis-associated encephalopathy in intensive care unit sepsis patients with an innovative nomogram tool. Front Neurol 2024; 15:1344004. [PMID: 38445262 PMCID: PMC10912324 DOI: 10.3389/fneur.2024.1344004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) occurs as a result of systemic inflammation caused by sepsis. It has been observed that the majority of sepsis patients experience SAE while being treated in the intensive care unit (ICU), and a significant number of survivors continue suffering from cognitive impairment even after recovering from the illness. The objective of this study was to create a predictive nomogram that could be used to identify SAE risk factors in patients with ICU sepsis. Methods We conducted a retrospective cohort study using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. We defined SAE as a Glasgow Coma Scale (GCS) score of 15 or less, or delirium. The patients were randomly divided into training and validation cohorts. We used least absolute shrinkage and selection operator (LASSO) regression modeling to optimize feature selection. Independent risk factors were determined through a multivariable logistic regression analysis, and a prediction model was built. The performance of the nomogram was evaluated using various metrics including the area under the receiver operating characteristic curve (AUC), calibration plots, Hosmer-Lemeshow test, decision curve analysis (DCA), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results Among the 4,476 sepsis patients screened, 2,781 (62.1%) developed SAE. In-hospital mortality was higher in the SAE group compared to the non-SAE group (9.5% vs. 3.7%, p < 0.001). Several variables were analyzed, including the patient's age, gender, BMI on admission, mean arterial pressure, body temperature, platelet count, sodium level, and use of midazolam. These variables were used to create and validate a nomogram. The nomogram's performance, assessed by AUC, NRI, IDI, and DCA, was found to be superior to the conventional SOFA score combined with delirium. Calibration plots and the Hosmer-Lemeshow test confirmed the accuracy of the nomogram. The enhanced NRI and IDI values demonstrated that our scoring system outperformed traditional diagnostic approaches. Additionally, the DCA curve indicated the practicality of the nomogram in clinical settings. Conclusion This study successfully identified autonomous risk factors associated with the emergence of SAE in sepsis patients and utilized them to formulate a predictive model. The outcomes of this investigation have the potential to serve as a valuable clinical resource for the timely detection of SAE in patients.
Collapse
Affiliation(s)
- Jun Jin
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lei Yu
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qingshan Zhou
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Pulmonary Diseases Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Yang Y, Yao Z, Wang H, Jia S, Wang M, Wang S, Yun D. Severe inflammation in C57/BL6 mice leads to prolonged cognitive impairment by initiating the IL-1β/TRPM2 pathway. Int Immunopharmacol 2024; 128:111380. [PMID: 38176340 DOI: 10.1016/j.intimp.2023.111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Sepsis could lead to chronic cognitive impairment by unclear molecular mechanisms. Transient receptor potential melastatin-2 (TRPM2) is essential against immunity-related activities and inflammation. Our study attempted to decipher the relationship between cognitive impairment caused by severe inflammation and TRPM2 expression levels. METHODS Severe inflammation was induced by intraperitoneally injecting C57/BL6 mice with a high dosage (5 mg kg-1) of Lipopolysaccharide (LPS). Fear conditioning and a Morris water maze test were performed to examine the cognitive abilities of the mice. Moreover, the signaling and expression of pro-inflammatory cytokines and TRPM2 were measured using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry and immunofluorescence staining helped to determine the astrocyte apoptosis rate. RESULTS Severe inflammation can lead to long-term cognitive impairment in C57/BL6 mice. The interleukin-1 beta (IL-1β) levels intra-hippocampus were significantly elevated until P14 post-LPS introduction. At both P7 and P14, there is an up-regulation of TRPM2 expression within hippocampus. Administration of recombinant IL-1β to astrocytes results in a significant up-regulation of TRPM2 expression. IL-1β or TRPM2 level knockdown helped counter the cognitive impairment caused by significant inflammation. CONCLUSIONS A continuous increase in IL-1β levels within the hippocampus can lead to cognitive impairment by enhancing TRPM2 levels caused by severe inflammation.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China; Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhihua Yao
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hushan Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shuaiying Jia
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mingfei Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shan Wang
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Debo Yun
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, Sichuan, China.
| |
Collapse
|
22
|
Dong H, Dai X, Zhou Y, Shi C, Bhuiyan P, Sun Z, Li N, Jin W. Enhanced meningeal lymphatic drainage ameliorates lipopolysaccharide-induced brain injury in aged mice. J Neuroinflammation 2024; 21:36. [PMID: 38287311 PMCID: PMC10826026 DOI: 10.1186/s12974-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction caused by sepsis. Neuroinflammation induced by sepsis is considered a potential mechanism of SAE; however, very little is known about the role of the meningeal lymphatic system in SAE. METHODS Sepsis was established in male C57BL/6J mice by intraperitoneal injection of 5 mg/kg lipopolysaccharide, and the function of meningeal lymphatic drainage was assessed. Adeno-associated virus 1-vascular endothelial growth factor C (AAV1-VEGF-C) was injected into the cisterna magna to induce meningeal lymphangiogenesis. Ligation of deep cervical lymph nodes (dCLNs) was performed to induce pre-existing meningeal lymphatic dysfunction. Cognitive function was evaluated by a fear conditioning test, and inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS The aged mice with SAE showed a significant decrease in the drainage of OVA-647 into the dCLNs and the coverage of the Lyve-1 in the meningeal lymphatic, indicating that sepsis impaired meningeal lymphatic drainage and morphology. The meningeal lymphatic function of aged mice was more vulnerable to sepsis in comparison to young mice. Sepsis also decreased the protein levels of caspase-3 and PSD95, which was accompanied by reductions in the activity of hippocampal neurons. Microglia were significantly activated in the hippocampus of SAE mice, which was accompanied by an increase in neuroinflammation, as indicated by increases in interleukin-1 beta, interleukin-6 and Iba1 expression. Cognitive function was impaired in aged mice with SAE. However, the injection of AAV1-VEGF-C significantly increased coverage in the lymphatic system and tracer dye uptake in dCLNs, suggesting that AAV1-VEGF-C promotes meningeal lymphangiogenesis and drainage. Furthermore, AAV1-VEGF-C reduced microglial activation and neuroinflammation and improved cognitive dysfunction. Improvement of meningeal lymphatics also reduced sepsis-induced expression of disease-associated genes in aged mice. Pre-existing lymphatic dysfunction by ligating bilateral dCLNs aggravated sepsis-induced neuroinflammation and cognitive impairment. CONCLUSION The meningeal lymphatic drainage is damaged in sepsis, and pre-existing defects in this drainage system exacerbate SAE-induced neuroinflammation and cognitive dysfunction. Promoting meningeal lymphatic drainage improves SAE. Manipulation of meningeal lymphangiogenesis could be a new strategy for the treatment of SAE.
Collapse
Affiliation(s)
- Hongquan Dong
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaonan Dai
- Department of Obstetrics, Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yin Zhou
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chonglong Shi
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Piplu Bhuiyan
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhaochu Sun
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nana Li
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjie Jin
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
23
|
Scardua-Silva L, Amorim da Costa B, Karmann Aventurato Í, Batista Joao R, Machado de Campos B, Rabelo de Brito M, Bechelli JF, Santos Silva LC, Ferreira Dos Santos A, Koutsodontis Machado Alvim M, Vieira Nunes Ludwig G, Rocha C, Kaue Alves Silva Souza T, Mendes MJ, Waku T, de Oliveira Boldrini V, Silva Brunetti N, Nora Baptista S, da Silva Schmitt G, Duarte de Sousa JG, Marchiori de Oliveira Cardoso TA, Schwambach Vieira A, Barbosa Santos LM, Dos Santos Farias A, Nogueira MH, Cendes F, Lin Yasuda C. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci Rep 2024; 14:1758. [PMID: 38242927 PMCID: PMC10798999 DOI: 10.1038/s41598-024-52005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals. We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI). The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls. Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI). Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.
Collapse
Affiliation(s)
- Lucas Scardua-Silva
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Beatriz Amorim da Costa
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Ítalo Karmann Aventurato
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Rafael Batista Joao
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Brunno Machado de Campos
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
| | - Mariana Rabelo de Brito
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - José Flávio Bechelli
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Leila Camila Santos Silva
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Alan Ferreira Dos Santos
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Marina Koutsodontis Machado Alvim
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Guilherme Vieira Nunes Ludwig
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas, Brazil
| | - Cristiane Rocha
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Molecular Genetics Laboratory, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Thierry Kaue Alves Silva Souza
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Maria Julia Mendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil
| | - Takeshi Waku
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil
| | | | | | - Sophia Nora Baptista
- Autoimmune Research Lab, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | | | - André Schwambach Vieira
- Molecular Genetics Laboratory, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
- Autoimmune Research Lab, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | - Mateus Henrique Nogueira
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil.
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil.
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil.
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil.
| | - Clarissa Lin Yasuda
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas, Campinas, Brazil.
- Department of Neurology, Clinics Hospital, University of Campinas, Campinas, Brazil.
| |
Collapse
|
24
|
Chaudhary R, Khanna J, Rohilla M, Gupta S, Bansal S. Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing. Endocr Metab Immune Disord Drug Targets 2024; 24:348-362. [PMID: 37608675 DOI: 10.2174/1871530323666230822095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease. OBJECTIVES The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance. METHODS Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose". RESULTS In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration. CONCLUSION Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Janvi Khanna
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Manni Rohilla
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
25
|
Meinhardt J, Streit S, Dittmayer C, Manitius RV, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci 2024; 25:30-42. [PMID: 38049610 DOI: 10.1038/s41583-023-00769-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.
Collapse
Affiliation(s)
- Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Regina V Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Wang X, Wang S, Cui Y. Protective effects of the salt -induced kinase inhibitor HG -9 -91 -01 on sepsis -associated cognitive dysfunction in mice and the underlying mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1793-1803. [PMID: 38448372 PMCID: PMC10930753 DOI: 10.11817/j.issn.1672-7347.2023.230208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Sepsis-associated cognitive dysfunction is a common complication in patients with sepsis and lack of effective treatment. Its pathological mechanisms remain unclear. Salt-induced kinase (SIK) is an important molecule in the regulation of metabolism, immunity, and inflammatory response. It is associated with the development of many neurological diseases. This study aims to investigate the expression of SIK in the hippocampus of septic mice, and to evaluate the role and mechanism of the SIK inhibitor HG-9-91-01 in sepsis-associated cognitive dysfunction. METHODS Firstly, C57BL/6 mice were randomly divided into a control group (Con group) and a sepsis model group [lipopolysaccharide (LPS) group]. The model group was injected intraperitoneally with LPS at a dose of 8 mg/kg and the Con group was injected with an equal volume of normal saline. Hippocampal tissues were harvested at 1, 3, and 6 days after injection and the expressions of SIK1, SIK2, and SIK3 were detected by real-time fluorescence quantitative PCR (qPCR) and Western blotting. Secondly, C57BL/6 mice were randomly divided into a Con group, a LPS group, and a SIK inhibitor group (HG group). The LPS and HG groups were injected with LPS to establish a sepsis model; in the HG group, HG-9-91-01 (10 mg/kg) was injected intraperitoneally at 3-6 days after LPS injection, and the LPS group was injected with the same volume of vehicle. Cognitive function was assessed at 7-11 days after LPS injection using the Morris water maze (MWM). Hippocampal tissues were harvested after the behavioral tests, and the mRNA levels of inflammatory factors and microglial markers were assessed by qPCR. The protein levels of inducible nitric oxide synthase (iNOS), CD68, ionized calcium binding adaptor molecule 1 (Iba-1), N-methyl-D-aspartate (NMDA) receptor (NR) subunit, cAMP response element-binding protein (CREB)-regulated transcription coactivator 1 (CRTC1), and insulin-like growth factor 1 (IGF-1) were detected by Western blotting. Immunohistochemistry (IHC) was used to detect the expression of Iba-1 positive cells in the CA1, CA3 and dentate gyrus (DG) of the hippocampus, followed by Sholl analysis. RESULTS Compared with the Con group, the mRNA and protein levels of SIK1, SIK2, and SIK3 in the hippocampus were increased in the LPS group (all P<0.05). Compared with the Con group, mice in the LPS group had a significantly longer escape latency, a lower percentage of target quadrant dwell time and a reduced locomotor speed (all P<0.05); the HG group had a decreased escape latency and an increased percentage of time spent in the target quadrant in comparison with the LPS group (both P<0.05). The mRNA levels of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], and the M1-type microglial markers iNOS and CD68 in the hippocampus of the LPS group were increased in comparison with the Con group, while the M2-type microglial markers CD206 and arginase-1 (Arg-1) were decreased. Compared with the LPS group, the mRNA levels of TNF-α, IL-1β, IL-6, and iNOS were downregulated, while the levels of CD206 and Arg-1 were upregulated in the HG group (all P<0.05). The protein levels of iNOS, CD68, and Iba-1 in the hippocampus of the LPS group were increased in comparison with the Con group, but they were downregulated in the HG group in comparison with the LPS group (all P<0.05). The number of Iba-1 positive cells in CA1, CA3, and DG of the hippocampus was increased in the LPS group in comparison with the Con group, but they were decreased in the HG group in comparison with the LPS group (all P<0.05). Sholl analysis showed that the number of intersections at all radii between 8-38 µm from the microglial soma was decreased in the LPS group in comparison with the Con group (all P<0.05). Compared with the LPS group, the number of intersections at all radii between 14-20 µm was significantly increased in the HG group (all P<0.05). The protein levels of NR subunit NR1, NR2A, NR2B, and IGF-1 were downregulated in the hippocampus of the LPS group in comparison with the Con group, while the expression of phosphorylated CRTC1 (p-CRTC1) was increased. Compared with the LPS group, the levels of NR1, NR2A, NR2B, and IGF-1 were upregulated, while p-CRTC1 was downregulated in the HG group (all P<0.05). CONCLUSIONS SIK expression is upregulated in the hippocampus of septic mice. The SIK inhibitor HG-9-91-01 ameliorates sepsis-associated cognitive dysfunction in mice, and the mechanism may involve in the activation of the CRTC1/IGF-1 pathway, inhibition of neuroinflammation, and enhancement of synaptic plasticity.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219.
| | - Shuang Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanhui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013.
| |
Collapse
|
27
|
Qiu F, Liu Y, Liu Y, Zhao Z, Zhou L, Chen P, Du Y, Wang Y, Sun H, Zeng C, Wang X, Liu Y, Pan H, Ke C. CD137L Inhibition Ameliorates Hippocampal Neuroinflammation and Behavioral Deficits in a Mouse Model of Sepsis-Associated Encephalopathy. Neuromolecular Med 2023; 25:616-631. [PMID: 37796401 PMCID: PMC10721669 DOI: 10.1007/s12017-023-08764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Anxiety manifestations and cognitive dysfunction are common sequelae in patients with sepsis-associated encephalopathy (SAE). Microglia-mediated inflammatory signaling is involved in anxiety, depression, and cognitive dysfunction during acute infection with bacterial lipopolysaccharide (LPS). However, the molecular mechanisms underlying microglia activation and behavioral and cognitive deficits in sepsis have not been in fully elucidated. Based on previous research, we speculated that the CD137 receptor/ligand system modulates microglia function during sepsis to mediate classical neurological SAE symptoms. A murine model of SAE was established by injecting male C57BL/6 mice with LPS, and cultured mouse BV2 microglia were used for in vitro assays. RT-qPCR, immunofluorescence staining, flow cytometry, and ELISA were used to assess microglial activation and the expression of CD137L and inflammation-related cytokines in the mouse hippocampus and in cultured BV2 cells. In addition, behavioral tests were conducted in assess cognitive performance and behavioral distress. Immunofluorescence and RT-qPCR analyses showed that hippocampal expression of CD137L was upregulated in activated microglia following LPS treatment. Pre-treatment with the CD137L neutralizing antibody TKS-1 significantly reduced CD137L levels, attenuated the expression of M1 polarization markers in microglia, and inhibited the production of TNF-α, IL-1β, and IL-6 in both LPS-treated mice and BV2 cells. Conversely, stimulation of CD137L signaling by recombinant CD137-Fc fusion protein activated the synthesis and release of pro-inflammatory cytokines in cultures BV2 microglia. Importantly, open field, elevated plus maze, and Y-maze spontaneous alternation test results indicated that TKS-1 administration alleviated anxiety-like behavior and spatial memory decline in mice with LPS-induced SAE. These findings suggest that CD137L upregulation in activated microglia critically contributes to neuroinflammation, anxiety-like behavior, and cognitive dysfunction in the mouse model of LPS-induced sepsis. Therefore, therapeutic modulation of the CD137L/CD137 signaling pathway may represent an effective way to minimize brain damage and prevent cognitive and emotional deficits associated with SAE.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Zhuyun Zhao
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yunbo Du
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yanmei Wang
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
28
|
Jiang J, Zou Y, Xie C, Yang M, Tong Q, Yuan M, Pei X, Deng S, Tian M, Xiao L, Gong Y. Oxytocin alleviates cognitive and memory impairments by decreasing hippocampal microglial activation and synaptic defects via OXTR/ERK/STAT3 pathway in a mouse model of sepsis-associated encephalopathy. Brain Behav Immun 2023; 114:195-213. [PMID: 37648002 DOI: 10.1016/j.bbi.2023.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction, characterized by cognitive and memory impairments closely linked to hippocampal dysfunction. Though it is well-known that SAE is a diffuse brain dysfunction with microglial activation, the pathological mechanisms of SAE are not well established and effective clinical interventions are lacking. Oxytocin (OXT) is reported to have anti-inflammatory and neuroprotective roles. However, the effects of OXT on SAE and the underlying mechanisms are not clear. METHODS SAE was induced in adult C57BL/6J male mice by cecal ligation and perforation (CLP) surgery. Exogenous OXT was intranasally applied after surgery. Clinical score, survivor rate, cognitive and memory behaviors, and hippocampal neuronal and non-neuronal functions were evaluated. Cultured microglia challenged with lipopolysaccharide (LPS) were used to investigate the effects of OXT on microglial functions, including inflammatory cytokines release and phagocytosis. The possible intracellular signal pathways involved in the OXT-induced neuroprotection were explored with RNA sequencing. RESULTS Hippocampal OXT level decreases, while the expression of OXT receptor (OXTR) increases around 24 h after CLP surgery. Intranasal OXT application at a proper dose increases mouse survival rate, alleviates cognitive and memory dysfunction, and restores hippocampal synaptic function and neuronal activity via OXTR in the SAE model. Intraperitoneal or local administration of the OXTR antagonist L-368,899 in hippocampal CA1 region inhibited the protective effects of OXT. Moreover, during the early stages of sepsis, hippocampal microglia are activated, while OXT application reduces microglial phagocytosis and the release of inflammatory cytokines, thereby exerting a neuroprotective effect. OXT may improve the SAE outcomes via the OXTR-ERK-STAT3 signaling pathway. CONCLUSION Our study uncovers the dysfunction of the OXT signal in SAE and shows that intranasal OXT application at a proper dose can alleviate SAE outcomes by reducing microglial overactivation, suggests that OXT may be a promising therapeutic approach in managing SAE patients.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yue Zou
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Chuantong Xie
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mimi Yuan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Hong Y, Chen P, Gao J, Lin Y, Chen L, Shang X. Sepsis-associated encephalopathy: From pathophysiology to clinical management. Int Immunopharmacol 2023; 124:110800. [PMID: 37619410 DOI: 10.1016/j.intimp.2023.110800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Sepsis-associated encephalopathy, which presents as delirium and coma, is a significant complication of sepsis characterized by acute brain dysfunction. The presence of inflammatory pathological changes in the brain of sepsis patients and animal models has been recognized since the 1920 s, initially attributed to the entry of microbial toxins into the brain. In the early 2000 s, attention shifted towards the impact of oxidative stress, the cholinergic system, and cytokines on brain function following sepsis onset. More recently, sepsis-associated encephalopathy has been defined as a diffuse brain dysfunction not directly caused by pathogenic infection of the brain. Currently, there is no evidence-based standard for diagnosing sepsis-associated encephalopathy, and clinical management is primarily focused on symptomatic and supportive measures. This review aims to explore the pathophysiology of sepsis-associated encephalopathy and establish the connection between pathophysiological mechanisms and clinical characteristics. We hope that this work will spark the interest of researchers from various fields and contribute to the advancement of sepsis-associated encephalopathy research.
Collapse
Affiliation(s)
- Yixiao Hong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Peiling Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Jingqi Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Yingying Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Linfang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Xiuling Shang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China.
| |
Collapse
|
30
|
Luo H, Li G, Yang B, Huang X, Chen Y, Shen W. Association between the first 24 hours PaCO2 and all-cause mortality of patients suffering from sepsis-associated encephalopathy after ICU admission: A retrospective study. PLoS One 2023; 18:e0293256. [PMID: 37874838 PMCID: PMC10597528 DOI: 10.1371/journal.pone.0293256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The relationship between the levels of the first 24-h PaCO2 and the prognosis of sepsis-associated encephalopathy (SAE) remains unclear, and the first 24-h optimal target for PaCO2 is currently inconclusive. This study was performed to investigate the correlation between PaCO2 and all-cause mortality for SAE patients, establish a reference range of the initial 24-hour PaCO2 for clinicians in critical care, and explain the possible pathophysiological mechanisms of abnormal PaCO2 levels as a higher mortality risk factor for SAE. METHODS The baseline information and clinical data of patients were extracted from the fourth edition Medical Information Mart for Intensive Care database (MIMIC-IV 2.0). Multivariate logistic regressions were performed to assess the relationship between PaCO2 and all-cause mortality of SAE. Additionally, restricted cubic splines, Kaplan-Meier Survival analyses, propensity score matching (PSM) analyses, and subgroup analyses were conducted. RESULTS A total of 5471 patients were included in our cohort. In the original and matched cohort, multivariate logistic regression analysis showed that normocapnia and mild hypercapnia may be associated with a more favorable prognosis of SAE patients, and survival analysis supported the findings. In addition, a U-shaped association emerged when examining the initial 24-hour PaCO2 levels in relation to 30-day, 60-day, and 90-day mortality using restricted cubic splines, with an average cut-off value of 36.3mmHg (P for nonlinearity<0.05). Below the cut-off value, higher PaCO2 was associated with lower all-cause mortality, while above the cut-off value, higher PaCO2 was associated with higher all-cause mortality. Subsequent subgroup analyses revealed similar results for the subcohort of GCS≤8 compared to the original cohort. Additionally, when examining the subcohort of GCS>8, a L-shaped relationship between PaCO2 and the three clinical endpoints emerged, in contrast to the previously observed U-shaped pattern. The findings from the subcohort of GCS>8 suggested that patients experiencing hypocapnia had a more unfavorable prognosis, which aligns with the results obtained from corresponding multivariate logistic regression analyses. CONCLUSION The retrospective study revealed the association between the first 24-h PaCO2 and all-cause mortality risk (30-day, 60-day, and 90-day) for patients with SAE in ICU. The range (35mmHg-50mmHg) of PaCO2 may be the optimal target for patients with SAE in clinical practice.
Collapse
Affiliation(s)
- Honglian Luo
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Gang Li
- Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Bingxin Yang
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Yan Chen
- Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Wei Shen
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
31
|
Ling J, Yu S, Xiong F, Li S. HSPB8 up-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy. Int Immunopharmacol 2023; 122:110448. [PMID: 37399610 DOI: 10.1016/j.intimp.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is associated with a higher risk of cognitive deficits; however, its potential mechanisms are still unknow. Recently, researches show that HSPB8, a family of small heat shock proteins, affects cognitive function and ameliorates sepsis-induced dysfunction. However, the role of HSPB8 in SAE-associated cognitive impairment has not been elucidated. In this study, we found that HSPB8 expression was up-regulated in the brain of mice with lipopolysaccharide-induced sepsis. HSPB8 overexpression alleviated cognitive decline in SAE mice. In addition, exogenous HSPB8 exerts neuroprotective effects and salvages synaptic function via regulating NRF1/TFAM-induced mitochondrial biogenesis and DRP1-mediate mitochondrial fission in a lipopolysaccharide-induced mouse model. Furthermore, HSPB8 overexpression inhibits IBA1 and NLRP3 activation in the SAE model. Overexpression of HSPB8 may be an efficient treatment for relieving SAE-related cognitive decline.
Collapse
Affiliation(s)
- Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Feng Xiong
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
32
|
Ji MH, Gao YZ, Shi CN, Wu XM, Yang JJ. Acute and long-term cognitive impairment following sepsis: mechanism and prevention. Expert Rev Neurother 2023; 23:931-943. [PMID: 37615511 DOI: 10.1080/14737175.2023.2250917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Sepsis is a severe host response to infection, which induces both acute and long-term cognitive impairment. Despite its high incidence following sepsis, the underlying mechanisms remain elusive and effective treatments are not available clinically. AREA COVERED This review focuses on elucidating the pathological mechanisms underlying cognitive impairment following sepsis. Specifically, the authors discuss the role of systemic inflammation response, blood-brain barrier disruption, neuroinflammation, mitochondrial dysfunction, neuronal dysfunction, and Aβ accumulation and tau phosphorylation in cognitive impairment after sepsis. Additionally, they review current strategies to ameliorate cognitive impairment. EXPERT OPINION Potential interventions to reduce cognitive impairment after sepsis include earlier diagnosis and effective infection control, hemodynamic homeostasis, and adequate brain perfusion. Furthermore, interventions to reduce inflammatory response, reactive oxygen species, blood-brain barrier disruption, mitochondrial dysfunction, neuronal injury or death could be beneficial. Implementing strategies to minimize delirium, sleep disturbance, stress factors, and immobility are also recommended. Furthermore, avoiding neurotoxins and implementing early rehabilitation may also be important for preventing cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Zhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Na Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Miao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Shen L, Chen DY, Lou QQ, Cao P, Hu R, Jin Y, Wang D, Hu SS. Angiotensin Type 2 Receptor Pharmacological Agonist Relieves Neurocognitive Deficits via Reducing Neuroinflammation and Microglial Engulfment of Dendritic Spines. J Neuroimmune Pharmacol 2023; 18:41-57. [PMID: 36464726 PMCID: PMC9734469 DOI: 10.1007/s11481-022-10054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Mechanically ventilated patients suffering critical illness are at high risk of developing neurocognitive impairments. Angiotensin type 2 receptor (AGTR2) has been demonstrated to be anti-inflammatory and neuroprotective. The present study thus aimed to investigate whether AGTR2 can alleviate cerebral dysfunction in mice subjected to cochallenge with lipopolysaccharide (LPS) and mechanical ventilation (MV), and to reveal the underlying mechanism. We utilized a mice model that received a single injection of LPS (1 mg/kg, intraperitoneally) followed 2 h later by MV (10 ml/kg, lasting for 2 h). Pretreatment with the AGTR2 pharmacological agonist C21 (0.03, 0.3, and 3 mg/kg, intraperitoneally, once daily, lasting for 10 days). Locomotor activity and behavioral deficits were evaluated 24 h post-MV by open-field and fear-condition tests. Brain hippocampus and prefrontal cortex tissues were collected for immunofluorescence staining and western blotting to evaluate the resulting impacts on microglia, including morphological traits, functional markers, synaptic engulfment, superoxide production, and signaling molecules. Compared with vehicle-control, pre-administrated C21 reduced the branch endpoints and length of microglia processes in a dose-dependent manner in mice subjected to LPS/MV. The neuroprotective effect of AGTR2 was behaviorally confirmed by the improvement of memory decline in LPS/MV-treated mice following C21 pretreatment. In addition to morphological alterations, C21 reduced microglial functional markers and reduced microglial-dendrite contact and microglial engulfment of synaptic protein markers. In terms of the underlying molecular mechanism, AGTR2 stimulation by C21 leads to activation of protein phosphatase 2A, which subsequently mitigates microglial PKCδ and NF-κB activation, and inhibites NOX2-derived ROS production. The AGTR2 agonist C21 alleviates behavioral deficits in those mice subjected to LPS/MV, via mechanisms that involve reactive microglia and abnormal synaptic plasticity in NOX2-derived ROS and the PKCδ-NFκB pathway.
Collapse
Affiliation(s)
- Liang Shen
- Anhui Provincial Hospita, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Medical University, Hefei, 230036, China
| | - Dan-Yang Chen
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qian-Qian Lou
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Peng Cao
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Rui Hu
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yan Jin
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Di Wang
- Anhui Provincial Hospita, Anhui Provincial Hospital Affiliated to Anhui Medical University, Anhui Medical University, Hefei, 230036, China
- Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospita), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Shan-Shan Hu
- Department of Clinical Laboratory, First Affiliated Hospital of USTC (Anhui Provincial Hospita), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China.
| |
Collapse
|
34
|
Chung HY, Wickel J, Hahn N, Mein N, Schwarzbrunn M, Koch P, Ceanga M, Haselmann H, Baade-Büttner C, von Stackelberg N, Hempel N, Schmidl L, Groth M, Andreas N, Götze J, Coldewey SM, Bauer M, Mawrin C, Dargvainiene J, Leypoldt F, Steinke S, Wang ZQ, Hust M, Geis C. Microglia mediate neurocognitive deficits by eliminating C1q-tagged synapses in sepsis-associated encephalopathy. SCIENCE ADVANCES 2023; 9:eabq7806. [PMID: 37235660 DOI: 10.1126/sciadv.abq7806] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| | - Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Meike Schwarzbrunn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Holger Haselmann
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Nina Hempel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Lars Schmidl
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena 07743, Germany
| | - Juliane Götze
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Sina M Coldewey
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Septomics Research Center, Jena University Hospital, Jena 07745, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07749, Germany
| | | | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, UKSH, Kiel/Lübeck, Germany
- Department of Neurology, Christian-Albrechts University, Kiel 24105, Germany
| | - Stephan Steinke
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena 07745, Germany
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Michael Hust
- Department Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
35
|
Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu CM, Li P, Deng XM, Wang JF. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol 2023; 63:102745. [PMID: 37201414 DOI: 10.1016/j.redox.2023.102745] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the common serious complications in sepsis, and the pathogenesis of SAE remains unclear. Sirtuin 1 (SIRT1) has been reported to be downregulated in the hippocampus and SIRT1 agonists can attenuated the cognitive dysfunction in septic mice. Nicotinamide adenine dinucleotide (NAD+) is a key substrate to maintain the deacetylation activity of SIRT1. As an intermediate of NAD+, β-Nicotinamide Mononucleotide (NMN) has been reported to be promising in treating neurodegenerative diseases and cerebral ischemic injury. Thus we sought to investigate the potential role of NMN in SAE treatment. The SAE model was established by cecal ligation and puncture (CLP) in vivo, and neuroinflammation model was established with LPS-treated BV-2 cells in vitro. Memory impairment was assessed by Morris water maze and fear conditioning tests. As a result, the levels of NAD+, SIRT1 and PGC-1α were significantly reduced in the hippocampus of septic mice, while the acetylation of total lysine, phosphorylation of P38 and P65 were enhanced. All these changes induced by sepsis were inverted by NMN. Treating with NMN resulted in improved behavior performance in the fear conditioning tests and Morris water maze. Apoptosis, inflammatory and oxidative responses in the hippocampus of septic mice were attenuated significantly after NMN administration. These protective effect of NMN against memory dysfunction, inflammatory and oxidative injuries were reversed by the SIRT1 inhibitor, EX-527. Similarly, LPS-induced activation of BV-2 cells were attenuated by NMN, EX-527 or SIRT1 knockdown could reverse such effect of NMN in vitro. In conclusion, NMN is protective against sepsis-induced memory dysfunction, and the inflammatory and oxidative injuries in the hippocampus region of septic mice. The NAD+/SIRT1 pathway might be involved in one of the mechanisms of the protective effect.
Collapse
Affiliation(s)
- Hui-Ru Li
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng-Long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Yang Sun
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-Yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chang-Meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
36
|
Rakuša E, Fink A, Tamgüney G, Heneka MT, Doblhammer G. Sporadic Use of Antibiotics in Older Adults and the Risk of Dementia: A Nested Case-Control Study Based on German Health Claims Data. J Alzheimers Dis 2023:JAD221153. [PMID: 37182873 DOI: 10.3233/jad-221153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Antibiotics for systemic use may increase the risk of neurodegeneration, yet antibiotic therapy may be able to halt or mitigate an episode of neurodegenerative decline. OBJECTIVE To investigate the association of sporadic use of antibiotics and subsequent dementia risk (including Alzheimer's disease). METHODS We used data from the largest public health insurance fund in Germany, the Allgemeine Ortskrankenkasse (AOK). Each of the 35,072 dementia cases aged 60 years and older with a new dementia diagnosis during the observation period from 2006 to 2018 was matched with two control-patients by age, sex, and time since 2006. We ran conditional logistic regression models for dementia risk in terms of odds ratios (OR) as a function of antibiotic use for the entire antibiotic group and for each antibiotic subgroup. We controlled for comorbidities, need for long-term care, hospitalizations, and nursing home placement. RESULTS Antibiotic use was positively associated with dementia (OR = 1.18, 95% confidence interval (95% CI):1.14-1.22), which became negative after adjustment for comorbidities, at least one diagnosis of bacterial infection or disease, and covariates (OR = 0.93, 95% CI:0.90-0.96). Subgroups of antibiotics were also negatively associated with dementia after controlling for covariates: tetracyclines (OR = 0.94, 95% CI:0.90-0.98), beta-lactam antibacterials, penicillins (OR = 0.93, 95% CI:0.90-0.97), other beta-lactam antibacterials (OR = 0.92, 95% CI:0.88-0.95), macrolides, lincosamides, and streptogramins (OR = 0.88, 95% CI:0.85-0.92), and quinolone antibacterials (OR = 0.96, 95% CI:0.92-0.99). CONCLUSION Our results suggest that there was a decreased likelihood of dementia for preceding antibiotic use. The benefits of antibiotics in reducing inflammation and thus the risk of dementia need to be carefully weighed against the increase in antibiotic resistance.
Collapse
Affiliation(s)
- Elena Rakuša
- German Center for Neurodegenerative Diseases, Demographic Studies, Bonn, Germany
| | - Anne Fink
- German Center for Neurodegenerative Diseases, Demographic Studies, Bonn, Germany
| | - Gültekin Tamgüney
- Institut für Biologische Informationsprozesse, Strukturbiochemie (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Gabriele Doblhammer
- German Center for Neurodegenerative Diseases, Demographic Studies, Bonn, Germany
- University Rostock, Institute for Sociology and Demography, Rostock, Germany
| |
Collapse
|
37
|
Vasunilashorn SM, Lunardi N, Newman JC, Crosby G, Acker L, Abel T, Bhatnagar S, Cunningham C, de Cabo R, Dugan L, Hippensteel JA, Ishizawa Y, Lahiri S, Marcantonio ER, Xie Z, Inouye SK, Terrando N, Eckenhoff RG. Preclinical and translational models for delirium: Recommendations for future research from the NIDUS delirium network. Alzheimers Dement 2023; 19:2150-2174. [PMID: 36799408 PMCID: PMC10576242 DOI: 10.1002/alz.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Delirium is a common, morbid, and costly syndrome that is closely linked to Alzheimer's disease (AD) and AD-related dementias (ADRD) as a risk factor and outcome. Human studies of delirium have advanced our knowledge of delirium incidence and prevalence, risk factors, biomarkers, outcomes, prevention, and management. However, understanding of delirium neurobiology remains limited. Preclinical and translational models for delirium, while challenging to develop, could advance our knowledge of delirium neurobiology and inform the development of new prevention and treatment approaches. We discuss the use of preclinical and translational animal models in delirium, focusing on (1) a review of current animal models, (2) challenges and strategies for replicating elements of human delirium in animals, and (3) the utility of biofluid, neurophysiology, and neuroimaging translational markers in animals. We conclude with recommendations for the development and validation of preclinical and translational models for delirium, with the goal of advancing awareness in this important field.
Collapse
Affiliation(s)
- Sarinnapha M. Vasunilashorn
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | - John C. Newman
- Department of Medicine, University of California, San Francisco, California, USA
- Buck Institute for Research on Aging, Novato, California, USA
| | - Gregory Crosby
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leah Acker
- Department of Anesthesiology, Duke University, Durham, Massachusetts, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Laura Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, Tennessee, USA
| | - Joseph A. Hippensteel
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yumiko Ishizawa
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shouri Lahiri
- Department of Neurology, Neurosurgery, and Biomedical Sciences, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Edward R. Marcantonio
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Zhongcong Xie
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K. Inouye
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, USA
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
38
|
Zhou Z, Zhou Y, Huang Z, Wang M, Jiang J, Yan M, Xiang W, Li S, Yu Y, Chen L, Zhou J, Dong W. Notopterol improves cognitive dysfunction and depression-like behavior via inhibiting STAT3/NF-ĸB pathway mediated inflammation in glioma-bearing mice. Int Immunopharmacol 2023; 118:110041. [PMID: 37004346 DOI: 10.1016/j.intimp.2023.110041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
Over the past few decades, clinicians and experts applied kinds of therapies for patients with malignant gliomas such as chemotherapy, radiation or surgical extraction. However, they used to ignore the real seriousness of neuropsychiatric symptoms after glioma, including cognitive dysfunction, anxiety, and depression, which severely impeded patients' recovery and prognosis. Interestingly, one of our previous clinical studies have found some behavioral symptoms in glioma patients were associated with systemic inflammation. Notopterol is one of the principal extracts of the traditional Chinese medicinal herb Notopterygium incisum having anti-tumour and anti-inflammatory activity. However, whether notopterol is beneficial to the treatment of glioma has not been reported. In this study, we found that notopterol inhibited growth and increased apoptosis of glioma via inhibiting STAT3 activity. In addition, notopterol treatment improved cognitive impairment and depression-like behavior in GL261 cell-based glioma mice via preventing the loss of dendritic spines and the reduction of synapse related proteins (PSD95 and Synapsin-1) in hippocampal neurons. Notopterol significantly reduced the levels of cytokines (iNOS, TNF-α, IL-6, and IL-β) and the activity of STAT3/NF-kB signalling pathway in peritumoural brain tissues and GL261 conditioned medium (GCM) treated microglial cell line (BV2 cells). These results demonstrated that notopterol not only exerted anti-glioma effects via inhibiting STAT3 activity, but improved neuropsychiatric symptoms via inhibiting tumour associated inflammation through modulation of the STAT3/NF-kB pathway in glioma-bearing mice.
Collapse
|
39
|
Budamagunta V, Kumar A, Rani A, Bean L, Manohar‐Sindhu S, Yang Y, Zhou D, Foster TC. Effect of peripheral cellular senescence on brain aging and cognitive decline. Aging Cell 2023; 22:e13817. [PMID: 36959691 PMCID: PMC10186609 DOI: 10.1111/acel.13817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
We examine similar and differential effects of two senolytic treatments, ABT-263 and dasatinib + quercetin (D + Q), in preserving cognition, markers of peripheral senescence, and markers of brain aging thought to underlie cognitive decline. Male F344 rats were treated from 12 to 18 months of age with D + Q, ABT-263, or vehicle, and were compared to young (6 months). Both senolytic treatments rescued memory, preserved the blood-brain barrier (BBB) integrity, and prevented the age-related decline in hippocampal N-methyl-D-aspartate receptor (NMDAR) function associated with impaired cognition. Senolytic treatments decreased senescence-associated secretory phenotype (SASP) and inflammatory cytokines/chemokines in the plasma (IL-1β, IP-10, and RANTES), with some markers more responsive to D + Q (TNFα) or ABT-263 (IFNγ, leptin, EGF). ABT-263 was more effective in decreasing senescence genes in the spleen. Both senolytic treatments decreased the expression of immune response and oxidative stress genes and increased the expression of synaptic genes in the dentate gyrus (DG). However, D + Q influenced twice as many genes as ABT-263. Relative to D + Q, the ABT-263 group exhibited increased expression of DG genes linked to cell death and negative regulation of apoptosis and microglial cell activation. Furthermore, D + Q was more effective at decreasing morphological markers of microglial activation. The results indicate that preserved cognition was associated with the removal of peripheral senescent cells, decreasing systemic inflammation that normally drives neuroinflammation, BBB breakdown, and impaired synaptic function. Dissimilarities associated with brain transcription indicate divergence in central mechanisms, possibly due to differential access.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Linda Bean
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Sahana Manohar‐Sindhu
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Yang Yang
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Daohong Zhou
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
40
|
Jiang S, Shi D, Bai L, Niu T, Kang R, Liu Y. Inhibition of interleukin-6 trans-signaling improves survival and prevents cognitive impairment in a mouse model of sepsis. Int Immunopharmacol 2023; 119:110169. [PMID: 37058750 DOI: 10.1016/j.intimp.2023.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Sepsis-associated encephalopathy (SAE) manifests clinically as acute and chronic cognitive impairments, which is associated with increased morbidity and mortality. Interleukin-6 (IL-6), a pro-inflammatory cytokine, is consistently up-regulated in sepsis. IL-6 initiates proinflammatory effects after binding to soluble IL-6 receptor (IL-6R) through trans-signalling, which requires the transducer gp130. In this study, we investigated whether inhibition of IL-6 trans-signalling is a putative therapeutic target for sepsis and SAE. Twenty-five patients (12 septic and 13 non-septic patients) were recruited for the study. A significant increase of IL-6, IL-1β, IL-10, and IL-8 was observed in the septic patients 24 h after ICU admission. In animal study, cecal ligation and puncture (CLP) was used to induce sepsis in male C57BL/6J mice. One hour before or after inducing sepsis, mice were treated with sgp130, a selective IL-6 trans-signaling inhibitor, respectively. Survival rate, cognition, levels of inflammatory cytokines, integrity of blood-brain barrier (BBB), and oxidative stress were assessed. In addition, immune cells activation and transmigration were evaluated in peripheral blood and brains. Sgp130 improved survival rate and cognitive functions, reduced levels of inflammatory cytokines, including IL-6, TNF-α, IL-10, and MCP-1, in plasma and hippocampus (hipp), mitigated BBB disruption, and ameliorated sepsis-induced oxidative stress. Sgp130 also affected monocytes/macrophages and lymphocytes transmigration and activation in septic mice. Our results indicate that selective inhibition of IL-6 trans-signaling by sgp130 exerts protective effects against SAE in a mouse model of sepsis, suggesting a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Dandan Shi
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Long Bai
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Tianfu Niu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
41
|
Lu X, Qin M, Walline JH, Gao Y, Yu S, Ge Z, Gong C, Zhu H, Annane D, Li Y. CLINICAL PHENOTYPES OF SEPSIS-ASSOCIATED ENCEPHALOPATHY: A RETROSPECTIVE COHORT STUDY. Shock 2023; 59:583-590. [PMID: 36821412 PMCID: PMC10082059 DOI: 10.1097/shk.0000000000002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
ABSTRACT Background: Sepsis-associated encephalopathy (SAE) is a dysfunction of the central nervous system experienced during sepsis with variable clinical and pathophysiologic features. We sought to identify distinct SAE phenotypes in relation to clinical outcomes. Methods: The Medical Information Mart for Intensive Care IV (MIMIC-IV) database and the eICU database were used to conduct a retrospective cohort study. Adult sepsis patients were included and SAE was defined as having a Glasgow Coma Scale (GCS) score ˂15 or delirium. The following our clinical phenotypes were defined as: ischemic-hypoxic, metabolic, mixed (ischemic-hypoxic and metabolic), and unclassified. The primary outcome was in-hospital mortality. Results: The study enrolled 4,120 sepsis patients, 2,239 from MIMIC-IV (including 1,489 patients with SAE, 67%), and 1,881 from eICU (1,291, 69%). For the SAE cohort, 2,780 patients in total were enrolled (median age, 67 years; interquartile range, 56-76.8; 1,589 (57%) were male; median GCS score was 12 [8-14]; median Sequential Organ Failure Assessment score was 6 [4-9]). The SAE phenotype distributions between the MIMIC-IV and eICU cohorts were as follows (39% vs. 35% ischemic-hypoxic, P = 0.043; 38% vs. 40% metabolic, P = 0.239; 15% vs. 15% mixed, P = 0.972; 38% vs. 40% unclassified, P = 0.471). For the overall cohort, the in-hospital mortality for patients with ischemic-hypoxic, metabolic, mixed, or unclassified phenotypes was 33.9% (95% confidence interval, 0.3-0.37), 28.4% (0.26-0.31), 41.5% (0.37-0.46), and 14.2% (0.12-0.16), respectively. In the multivariable logistic analysis, the mixed phenotype was associated with the highest risk of in-hospital mortality after adjusting for age, sex, GCS, and modified Sequential Organ Failure Assessment score (adjusted odds ratio, 2.11; 95% confidence interval, 1.67-2.67; P < 0.001). Conclusions: Four SAE phenotypes had different clinical outcomes. The mixed phenotype had the worst outcomes. Further understanding of these phenotypes in sepsis may improve trial design and targeted SAE management.
Collapse
Affiliation(s)
- Xin Lu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mubing Qin
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Joseph Harold Walline
- Department of Emergency Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyuan Yu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chao Gong
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Djillali Annane
- General intensive care unit, Raymond Poincaré hospital (APHP), Garches, France
- School of medicine Simone Veil, University Paris Saclay–campus UVSQ, Gif-sur-Yvette, France
- FHU SEPSIS, U1173, University Paris Saclay, INSERM, Gif-sur-Yvette, France
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Xu Y, Wang Y, Ji X. Immune and inflammatory mechanism of remote ischemic conditioning: A narrative review. Brain Circ 2023; 9:77-87. [PMID: 37576576 PMCID: PMC10419737 DOI: 10.4103/bc.bc_57_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 08/15/2023] Open
Abstract
The benefits of remote ischemic conditioning (RIC) on multiple organs have been extensively investigated. According to existing research, suppressing the immune inflammatory response is an essential mechanism of RIC. Based on the extensive effects of RIC on cardiovascular and cerebrovascular diseases, this article reviews the immune and inflammatory mechanisms of RIC and summarizes the effects of RIC on immunity and inflammation from three perspectives: (1) the mechanisms of the impact of RIC on inflammation and immunity; (2) evidence of the effects of RIC on immune and inflammatory processes in ischaemic stroke; and (3) possible future applications of this effect, especially in systemic infectious diseases such as sepsis and sepsis-associated encephalopathy. This review explores the possibility of using RIC as a treatment in more inflammation-related diseases, which will provide new ideas for the treatment of this kind of disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Barichello T, Giridharan VV, Catalão CHR, Ritter C, Dal-Pizzol F. Neurochemical effects of sepsis on the brain. Clin Sci (Lond) 2023; 137:401-414. [PMID: 36942500 PMCID: PMC11315270 DOI: 10.1042/cs20220549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Sepsis is a life-threatening organ dysfunction triggered by a dysregulated host immune response to eliminate an infection. After the host immune response is activated, a complex, dynamic, and time-dependent process is triggered. This process promotes the production of inflammatory mediators, including acute-phase proteins, complement system proteins, cytokines, chemokines, and antimicrobial peptides, which are required to initiate an inflammatory environment for eliminating the invading pathogen. The physiological response of this sepsis-induced systemic inflammation can affect blood-brain barrier (BBB) function; subsequently, endothelial cells produce inflammatory mediators, including cytokines, chemokines, and matrix metalloproteinases (MMPs) that degrade tight junction (TJ) proteins and decrease BBB function. The resulting BBB permeability allows peripheral immune cells from the bloodstream to enter the brain, which then release a range of inflammatory mediators and activate glial cells. The activated microglia and astrocytes release reactive oxygen species (ROS), cytokines, chemokines, and neurochemicals, initiate mitochondrial dysfunction and neuronal damage, and exacerbate the inflammatory milieu in the brain. These changes trigger sepsis-associated encephalopathy (SAE), which has the potential to increase cognitive deterioration and susceptibility to cognitive decline later in life.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
| | - Carlos Henrique R Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Cristiane Ritter
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Graduate Program in Health Sciences, Department of Medicine, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
44
|
Yin XY, Tang XH, Wang SX, Zhao YC, Jia M, Yang JJ, Ji MH, Shen JC. HMGB1 mediates synaptic loss and cognitive impairment in an animal model of sepsis-associated encephalopathy. J Neuroinflammation 2023; 20:69. [PMID: 36906561 PMCID: PMC10007818 DOI: 10.1186/s12974-023-02756-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Microglial activation-mediated neuroinflammation is one of the essential pathogenic mechanisms of sepsis-associated encephalopathy (SAE). Mounting evidence suggests that high mobility group box-1 protein (HMGB1) plays a pivotal role in neuroinflammation and SAE, yet the mechanism by which HMGB1 induces cognitive impairment in SAE remains unclear. Therefore, this study aimed to investigate the mechanism of HMGB1 underlying cognitive impairment in SAE. METHODS An SAE model was established by cecal ligation and puncture (CLP); animals in the sham group underwent cecum exposure alone without ligation and perforation. Mice in the inflachromene (ICM) group were continuously injected with ICM intraperitoneally at a daily dose of 10 mg/kg for 9 days starting 1 h before the CLP operation. The open field, novel object recognition, and Y maze tests were performed on days 14-18 after surgery to assess locomotor activity and cognitive function. HMGB1 secretion, the state of microglia, and neuronal activity were measured by immunofluorescence. Golgi staining was performed to detect changes in neuronal morphology and dendritic spine density. In vitro electrophysiology was performed to detect changes in long-term potentiation (LTP) in the CA1 of the hippocampus. In vivo electrophysiology was performed to detect the changes in neural oscillation of the hippocampus. RESULTS CLP-induced cognitive impairment was accompanied by increased HMGB1 secretion and microglial activation. The phagocytic capacity of microglia was enhanced, resulting in aberrant pruning of excitatory synapses in the hippocampus. The loss of excitatory synapses reduced neuronal activity, impaired LTP, and decreased theta oscillation in the hippocampus. Inhibiting HMGB1 secretion by ICM treatment reversed these changes. CONCLUSIONS HMGB1 induces microglial activation, aberrant synaptic pruning, and neuron dysfunction in an animal model of SAE, leading to cognitive impairment. These results suggest that HMGB1 might be a target for SAE treatment.
Collapse
Affiliation(s)
- Xiao-Yu Yin
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiao-Hui Tang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xu Wang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yong-Chang Zhao
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
45
|
Dumbuya JS, Li S, Liang L, Zeng Q. Paediatric sepsis-associated encephalopathy (SAE): a comprehensive review. Mol Med 2023; 29:27. [PMID: 36823611 PMCID: PMC9951490 DOI: 10.1186/s10020-023-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the most common types of organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae, its mortality in patients diagnosed with sepsis, progressing to SAE, is 9% to 76%. The pathophysiology of SAE is still unknown, but its mechanisms are well elaborated, including oxidative stress, increased cytokines and proinflammatory factors levels, disturbances in the cerebral circulation, changes in blood-brain barrier permeability, injury to the brain's vascular endothelium, altered levels of neurotransmitters, changes in amino acid levels, dysfunction of cerebral microvascular cells, mitochondria dysfunction, activation of microglia and astrocytes, and neuronal death. The diagnosis of SAE involves excluding direct CNS infection or other types of encephalopathies, which might hinder its early detection and appropriate implementation of management protocols, especially in paediatric patients where only a few cases have been reported in the literature. The most commonly applied diagnostic tools include electroencephalography, neurological imaging, and biomarker detection. SAE treatment mainly focuses on managing underlying conditions and using antibiotics and supportive therapy. In contrast, sedative medication is used judiciously to treat those showing features such as agitation. The most widely used medication is dexmedetomidine which is neuroprotective by inhibiting neuronal apoptosis and reducing a sepsis-associated inflammatory response, resulting in improved short-term mortality and shorter time on a ventilator. Other agents, such as dexamethasone, melatonin, and magnesium, are also being explored in vivo and ex vivo with encouraging results. Managing modifiable factors associated with SAE is crucial in improving generalised neurological outcomes. From those mentioned above, there are still only a few experimentation models of paediatric SAE and its treatment strategies. Extrapolation of adult SAE models is challenging because of the evolving brain and technical complexity of the model being investigated. Here, we reviewed the current understanding of paediatric SAE, its pathophysiological mechanisms, diagnostic methods, therapeutic interventions, and potential emerging neuroprotective agents.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Siqi Li
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lili Liang
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qiyi Zeng
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
46
|
Chen X, He J, Xie Y, Zhang T, Li S, Zhao Y, Hu N, Cai X. Tetrahedral framework nucleic acid nanomaterials reduce the inflammatory damage in sepsis by inhibiting pyroptosis. Cell Prolif 2023:e13424. [PMID: 36802079 PMCID: PMC10392044 DOI: 10.1111/cpr.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/20/2023] Open
Abstract
Sepsis is a highly lethal condition and is caused by the dysregulation of the body's immune response to infection. Indeed, sepsis remains the leading cause of death in severely ill patients, and currently, no effective treatment is available. Pyroptosis, which is mainly activated by cytoplasmic danger signals and eventually promote the release of the pro-inflammatory factors, is a newly discovered programmed cell death procedure that clears infected cells while simultaneously triggering an inflammatory response. Increasing evidence indicates that pyroptosis participates in the development of sepsis. As a novel DNA nanomaterial, tetrahedral framework nucleic acids (tFNAs) characterized by its unique spatial structure, possess an excellent biosafety profile and can quickly enter the cell to impart anti-inflammatory and anti-oxidation effects. In this study, the roles of tFNAs in the in vitro model of macrophage cell pyroptosis and in the in vivo model of septic mice were examined, and it was found that tFNAs could mitigate organ inflammatory damage in septic mice, wherein they reduced inflammatory factor levels by inhibiting pyroptosis. These results provide possible new strategies for the future treatment of sepsis.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajun He
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xie
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianxu Zhang
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songhang Li
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxuan Zhao
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Hu
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijng, China
| | - Xiaoxiao Cai
- State Key laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Qiao H, Chiu Y, Liang X, Xia S, Ayrapetyan M, Liu S, He C, Song R, Zeng J, Deng X, Yuan W, Zhao Z. Microglia innate immune response contributes to the antiviral defense and blood-CSF barrier function in human choroid plexus organoids during HSV-1 infection. J Med Virol 2023; 95:e28472. [PMID: 36606611 PMCID: PMC10107173 DOI: 10.1002/jmv.28472] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
The choroid plexus (ChP) is the source of cerebrospinal fluid (CSF). The ChP-CSF system not only provides the necessary cushion for the brain but also works as a sink for waste clearance. During sepsis, pathogens and host immune cells can weaken the ChP barrier and enter the brain, causing cerebral dysfunctions known as sepsis-associated encephalophagy. Here, we used human ChP organoid (ChPO) to model herpes simplex virus type 1 (HSV-1) infection and found ChP epithelial cells were highly susceptible to HSV-1. Since the current ChPO model lacks a functional innate immune component, particularly microglia, we next developed a new microglia-containing ChPO model, and found microglia could effectively limit HSV-1 infection and protect epithelial barrier in ChPOs. Furthermore, we found the innate immune cyclic GMP-AMP synthase (cGAS)-STING pathway and its downstream interferon response were essential, as cGAS inhibitor RU.512 or STING inhibitor H-151 abolished microglia antiviral function and worsened ChP barrier in organoids. These results together indicated that cGAS-STING pathway coordinates antiviral response in ChP and contributes to treating sepsis or related neurological conditions.
Collapse
Affiliation(s)
- Haowen Qiao
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yuanpu Chiu
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xinyan Liang
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Shangzhou Xia
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mariam Ayrapetyan
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Siqi Liu
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Cuiling He
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ruocen Song
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jianxiong Zeng
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhen Zhao
- Department of Physiology and Biophysics, Keck School of Medicine, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
48
|
Yang M, He Y, Xin Y, Jiang J, Tian M, Tan J, Deng S, Gong Y. Identification of biomarkers and therapeutic targets related to Sepsis-associated encephalopathy in rats by quantitative proteomics. BMC Genomics 2023; 24:4. [PMID: 36600206 DOI: 10.1186/s12864-022-09101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a common and severe complication of sepsis. While several studies have reported the proteomic alteration in plasma, urine, heart, etc. of sepsis, few research focused on the brain tissue. This study aims at discovering the differentially abundant proteins in the brains of septic rats to identify biomarkers of SAE. METHODS The Prague-Dawley rats were randomly divided into sepsis (n = 6) or sham (n = 6) groups, and then the whole brain tissue was dissected at 24 h after surgery for further protein identification by Quantitative iTRAQ LC-MS/MS Proteomics. Ingenuity pathway analysis, Gene ontology knowledgebase, and STRING database are used to explore the biological significance of proteins with altered concentration. RESULTS Among the total of 3163 proteins identified in the brain tissue, 57 were increased while 38 were decreased in the sepsis group compared to the sham group. Bioinformatic analyses suggest that the differentially abundant proteins are highly related to cellular microtubule metabolism, energy production, nucleic acid metabolism, neurological disease, etc. Additionally, acute phase response signaling was possibly activated and PI3K/AKT signaling was suppressed during sepsis. An interaction network established by IPA revealed that Akt1, Gc-globulin, and ApoA1 were the core proteins. The increase of Gc-globulin and the decrease of Akt1 and ApoA1 were confirmed by Western blot. CONCLUSION Based on the multifunction of these proteins in several brain diseases, we first propose that Gc-globulin, ApoA1, PI3K/AKT pathway, and acute phase response proteins (hemopexin and cluster of alpha-2-macroglobulin) could be potential candidates for the diagnosis and treatment of SAE. These results may provide new insights into the pathologic mechanism of SAE, yet further research is required to explore the functional implications and clinical applications of the differentially abundant proteins in the brains of sepsis group.
Collapse
Affiliation(s)
- Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Junliang Jiang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China. .,Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, 200040, Shanghai, China.
| |
Collapse
|
49
|
Hu J, Xie S, Li W, Zhang L. Diagnostic and prognostic value of serum S100B in sepsis-associated encephalopathy: A systematic review and meta-analysis. Front Immunol 2023; 14:1102126. [PMID: 36776893 PMCID: PMC9911439 DOI: 10.3389/fimmu.2023.1102126] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Background In sepsis, brain dysfunction is known as Sepsis-associated encephalopathy (SAE), which often results in severe cognitive and neurological sequelae and increases the risk of death. Our systematic review and meta-analysis aimed to explore the diagnostic and prognostic value of serum S100 calcium-binding protein B (S100B) in SAE patients. Methods We conducted a systematic search of the databases PubMed, Web of Science, Embase, Cochrane databases, CNKI, VIP, and WFSD from their inception dates until August 20, 2022. A Meta-analysis of the included studies was also performed using Review Manager version 5.4 and Stata16.0. Results This meta-analysis included 28 studies with 1401 serum samples from SAE patients and 1591 serum samples from no-encephalopathy septic (NE) patients. The Meta-Analysis showed that individuals with SAE had higher serum S100B level than NE controls (MD, 0.49 [95% CI (0.37)-(0.60), Z =8.29, P < 0.00001]), and the baseline level of serum S100B in septic patients with burn was significantly higher than average (1.96 [95% CI (0.92)-(2.99), Z =3.71, P < 0.0002]) In addition, septic patients with favorable outcomes had lower serum S100B levels than those with unfavorable outcomes (MD, -0.35 [95% CI (-0.50)-(-0.20), Z =4.60, P < 0.00001]). Conclusion Our Meta-Analysis indicates that higher serum S100B level in septic patients are moderately associated with SAE and unfavorable outcomes (The outcomes here mainly refer to the mortality). The serum S100B level may be a useful diagnostic and prognostic biomarker of SAE.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Kikutani K, Hosokawa K, Giga H, Ota K, Matsumata M, Zhu M, Takemoto H, Ji B, Ohshimo S, Shime N, Aizawa H. GENETIC DELETION OF TRANSLOCATOR PROTEIN EXACERBATES POST-SEPSIS SYNDROME WITH ACTIVATION OF THE C1Q PATHWAY IN SEPTIC MOUSE MODEL. Shock 2023; 59:82-90. [PMID: 36703279 DOI: 10.1097/shk.0000000000002030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Significant numbers of patients who survive sepsis exhibit psychiatric and cognitive impairments, termed post-sepsis syndrome. Understanding the underlying pathophysiology is essential to develop effective therapies. Translocator protein 18 kDa (TSPO) is a multifaceted mitochondrial protein implicated in inflammation, oxidative stress, and steroidogenesis in the central nervous system. Despite accumulated evidence demonstrating TSPO is a biomarker in psychiatric and neurodegenerative disorders, the role of this protein in post-sepsis syndrome remains elusive. The aim of this study was to investigate the role of TSPO in the long-term impairment of mouse behavior associated with psychiatric and cognitive impairments following sepsis induced by cecal ligation and puncture (CLP) surgery. Animals were divided into three groups: (i) wild type (WT) + sham, (ii) WT + CLP, and (iii) TSPO knock out + CLP. Survival rate and body weight change were assessed up to 17 days after surgeries. Then, we also assessed anxiety-like behavior, depression-like behavior, cognitive function, locomotor activity, and forelimb muscle strength in surviving mice by elevated plus maze, tail suspension test, y-maze, open field test, and grip strength test, respectively. Deletion of the TSPO gene led to high mortality and prolonged weight loss and exacerbated anxiety-like and depressive-like behavior with cognitive impairment 17 days after, but not before, CLP surgery. RNA-seq analysis of the hippocampus revealed the upregulation of genes (C1qb, C1qc, and Tyrobp) in C1q complement pathways correlated significantly with anxiety-like behavior that appeared long after CLP surgery. The expressions of these genes predicted other behavioral traits, including depressive-like behavior in the tail suspension test and grip power impairment, supporting the role of the C1q pathway in post-sepsis syndrome. Because the C1q pathway has recently attracted interest as a tag for pathological synaptic elimination, the current study suggests the C1q pathway is involved in the psychiatric and cognitive impairments observed in post-sepsis syndrome.
Collapse
Affiliation(s)
| | - Koji Hosokawa
- Department of Anesthesiology and Reanimatology, Faculty of Medicine Sciences, University of Fukui, Japan
| | | | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Miho Matsumata
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Meina Zhu
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | | | | | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|