1
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Alcover‐Sanchez B, Garcia‐Martin G, Paleo‐García V, Quintas A, Dopazo A, Gruart A, Delgado‐García JM, de la Villa P, Wandosell F, Pereira MP, Cubelos B. R-Ras1 and R-Ras2 regulate mature oligodendrocyte subpopulations. Glia 2025; 73:701-719. [PMID: 39558879 PMCID: PMC11845848 DOI: 10.1002/glia.24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
In the mammalian central nervous system, axonal myelination, executed by mature oligodendrocytes (MOLs), enables rapid neural transmission. Conversely, myelin deficiencies are hallmark features of multiple sclerosis, optic neuromyelitis, and some leukodystrophies. Recent studies have highlighted that MOLs are heterogeneous; however, how MOL subpopulations are specified and balanced in physiological settings is poorly understood. Previous works have demonstrated an essential role of the small GTPases R-Ras1 and R-Ras2 in the survival and myelination of oligodendrocytes. In this study, we aimed to determine how R-Ras1 and R-Ras2 contribute to the heterogeneity of MOL subpopulations. Our results evidence that R-Ras1 and R-Ras2 affect specification into the distinct subpopulations MOL1, MOL2, and MOL5/6, which in turn vary in their dependence of these GTPases. In R-Ras1 and/or R-Ras2 mutant mice, we observed an increase in the MOL1 subpopulation and a decrease in the MOL2 and MOL5/6 subpopulations. We identified R-Ras1 and R-Ras2 as key elements in balancing the heterogeneity of MOLs. Our results contribute to the understanding of the molecular mechanisms underlying the heterogeneity of MOLs and the myelination processes, which is crucial for innovating regenerative therapies for nervous system disorders.
Collapse
Affiliation(s)
- Berta Alcover‐Sanchez
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
| | - Gonzalo Garcia‐Martin
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
| | - Víctor Paleo‐García
- Departamento de Biología de SistemasUniversidad de AlcaláMadridSpain
- Grupo de Neurofisiología VisualInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Ana Quintas
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Ana Dopazo
- Genomics UnitCentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Agnès Gruart
- Division of NeurosciencesPablo de Olavide UniversitySevilleSpain
| | | | - Pedro de la Villa
- Departamento de Biología de SistemasUniversidad de AlcaláMadridSpain
- Grupo de Neurofisiología VisualInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Francisco Wandosell
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
- Alzheimer's Disease and Other Degenerative DementiasCentro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Marta P. Pereira
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
- Instituto Universitario de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| | - Beatriz Cubelos
- Centro de Biologia Molecular Severo Ochoa (CBM) CSICUniversidad Autonoma de MadridMadridSpain
- Instituto Universitario de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
3
|
Bergner CG, van der Meer F, Franz J, Vakrakou A, Würfel T, Nessler S, Schäfer L, Nau-Gietz C, Winkler A, Lagumersindez-Denis N, Wrzos C, Damkou IA, Sergiou C, Schultz V, Knauer C, Metz I, Bahn E, Garea Rodriguez E, Merkler D, Simons M, Stadelmann C. BCAS1-positive oligodendrocytes enable efficient cortical remyelination in multiple sclerosis. Brain 2025; 148:908-920. [PMID: 39319704 PMCID: PMC11884765 DOI: 10.1093/brain/awae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 09/26/2024] Open
Abstract
Remyelination is a crucial regenerative process in demyelinating diseases, limiting persisting damage to the CNS. It restores saltatory nerve conduction and ensures trophic support of axons. In patients with multiple sclerosis, remyelination has been observed in both white and grey matter and found to be more efficient in the cortex. Brain-enriched myelin-associated protein 1 (BCAS1) identifies oligodendrocyte lineage cells in the stage of active myelin formation in development and regeneration. Other than in the white matter, BCAS1+ oligodendrocytes are maintained at high densities in the cortex throughout life. Here, we investigated cortical lesions in human biopsy and autopsy tissue from patients with multiple sclerosis in direct comparison to demyelinating mouse models and demonstrate that following a demyelinating insult BCAS1+ oligodendrocytes in remyelinating cortical lesions shift from a quiescent to an activated, internode-forming morphology co-expressing myelin-associated glycoprotein (MAG), necessary for axonal contact formation. Of note, activated BCAS1+ oligodendrocytes are found at early time points of experimental demyelination amidst ongoing inflammation. In human tissue, activated BCAS1+ oligodendrocytes correlate with the density of myeloid cells, further supporting their involvement in an immediate regenerative response. Furthermore, studying the microscopically normal appearing non demyelinated cortex in patients with chronic multiple sclerosis, we find a shift from quiescent BCAS1+ oligodendrocytes to mature, myelin-maintaining oligodendrocytes, suggesting oligodendrocyte differentiation and limited replenishment of BCAS1+ oligodendrocytes in long-standing disease. We also demonstrate that part of perineuronal satellite oligodendrocytes are BCAS1+ and contribute to remyelination in human and experimental cortical demyelination. In summary, our results provide evidence from human tissue and experimental models that BCAS1+ cells in the adult cortex represent a population of pre-differentiated oligodendrocytes that rapidly react after a demyelinating insult thus enabling immediate myelin regeneration. In addition, our data suggest that limited replenishment of BCAS1+ oligodendrocytes may contribute to the remyelination failure observed in the cortex in chronic multiple sclerosis.
Collapse
Affiliation(s)
- Caroline Gertrud Bergner
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Franziska van der Meer
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Aigli Vakrakou
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Thea Würfel
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Stefan Nessler
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Lisa Schäfer
- Department of Neurology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Cora Nau-Gietz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Anne Winkler
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | | | - Claudia Wrzos
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ioanna Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 81377, Germany
| | - Christina Sergiou
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Verena Schultz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Carolin Knauer
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Erik Bahn
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva 4 1211, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva 1205, Switzerland
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Network of Excitable Cells”(MBExC), University of Göttingen, Göttingen 37073, Germany
| |
Collapse
|
4
|
Motyer A, Jackson S, Yang B, Harliwong I, Tian W, Shiu WIA, Shao Y, Wang B, McLean C, Barnett M, Kilpatrick TJ, Leslie S, Rubio JP. Neuronal somatic mutations are increased in multiple sclerosis lesions. Nat Neurosci 2025:10.1038/s41593-025-01895-5. [PMID: 40038527 DOI: 10.1038/s41593-025-01895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Neuroinflammation underpins neurodegeneration and clinical progression in multiple sclerosis (MS), but knowledge of processes linking these disease mechanisms remains incomplete. Here we investigated somatic single-nucleotide variants (sSNVs) in the genomes of 106 single neurons from post-mortem brain tissue of ten MS cases and 16 controls to determine whether somatic mutagenesis is involved. We observed an increase of 43.9 sSNVs per year in neurons from chronic MS lesions, a 2.5 times faster rate than in neurons from normal-appearing MS and control tissues. This difference was equivalent to 1,291 excess sSNVs in lesion neurons at 70 years of age compared to controls. We performed mutational signature analysis to investigate mechanisms underlying neuronal sSNVs and identified a signature characteristic of lesions with a strong, age-associated contribution to sSNV counts. This research suggests that neuroinflammation is mutagenic in the MS brain, potentially contributing to disease progression.
Collapse
Affiliation(s)
- Allan Motyer
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | | | - Wei Tian
- BGI-Australia, Herston, Queensland, Australia
| | | | | | - Bo Wang
- China National GeneBank, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin P Rubio
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
6
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
8
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Mayfield RD. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. Biol Psychiatry 2025:S0006-3223(25)00994-1. [PMID: 40024496 DOI: 10.1016/j.biopsych.2025.02.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Therefore, we sought to conduct the largest-to-date single-nuclei RNAseq (snRNA-seq) postmortem brain study in AUD to elucidate transcriptomic pathology with cell type-specific resolution. METHODS Here we performed snRNA-seq and high dimensional network analysis of 73 post-mortem samples from individuals with AUD (N=36, Nnuclei= 248,873) and neurotypical controls (N=37, Nnuclei= 210,573) in the dorsolateral prefrontal cortex from both male and female donors. Additionally, we performed analysis for cell type-specific enrichment of aggregate genetic risk for AUD as well as integration of the AUD proteome for secondary validation. RESULTS We identified 32 distinct cell clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glial populations. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Differential gene expression was secondarily validated by integration of a publicly available AUD proteome. Finally, analysis for aggregate genetic risk for AUD identified subtypes of glia as potential key players not only affected by but causally linked to the progression of AUD. CONCLUSIONS These results highlight the importance of cell type-specific molecular changes in AUD and offer opportunities to identify novel targets for treatment on the single-nuclei level.
Collapse
Affiliation(s)
- Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nihal A Salem
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric Brenner
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Julia Stevens
- New South Wales Brain Tissue Resource Centre, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave, New York, NY, 10029, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mt. Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Shi XY, He YX, Ge MY, Liu P, Zheng P, Li ZH. Gastrodin promotes CNS myelinogenesis and alleviates demyelinating injury by activating the PI3K/AKT/mTOR signaling. Acta Pharmacol Sin 2025:10.1038/s41401-025-01492-z. [PMID: 40011630 DOI: 10.1038/s41401-025-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Demyelination is a common feature of numerous neurological disorders including multiple sclerosis and leukodystrophies. Although myelin can be regenerated spontaneously following injury, this process is often inadequate, potentially resulting in neurodegeneration and exacerbating neurological dysfunction. Several drugs aimed at promoting the differentiation of oligodendrocyte precursor cells (OPCs) have yielded unsatisfactory clinical effects. A recent study has shifted the strategy of pro-OPC differentiation towards enhancing myelinogenesis. In this study we identified the pro-myelinating drug using a zebrafish model. Five traditional Chinese medicine monomers including gastrodin, paeoniflorin, puerarin, salidroside and scutellarin were assessed by bath-application in Tg (MBP:eGFP-CAAX) transgenic line at 1-5 dpf. Among the 5 monomers, only gastrodin exhibited significant pro-myelination activity. We showed that gastrodin (10 µM) enhanced myelin sheath formation and oligodendrocyte (OL) maturation without affecting the number of OLs. Gastrodin markedly increased the phosphorylation levels of PI3K, AKT, and mTOR in primary cultured OLs via direct interaction with PI3K. Co-treatment with the PI3K inhibitor LY294002 (5 µM) mitigated gastrodin-induced OL maturation. Furthermore, injection of gastrodin (100 mg·kg-1·d-1, i.p.) effectively facilitated remyelination in a lysophosphatidylcholine-induced demyelinating mouse model and alleviated demyelination in the experimental autoimmune encephalomyelitis mice. These results identify gastrodin as a promising therapeutic agent for demyelinating diseases and highlight the potential of the zebrafish model for screening pro-myelinogenic pharmacotherapy.
Collapse
Affiliation(s)
- Xiao-Yu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Yi-Xi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Man-Yue Ge
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China
| | - Peng Liu
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Zheng-Hao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
LaBarre BA, King D, Ploumakis A, Pinzon AM, Guttmann CR, Patsopoulos N, Chitnis T. Sex differences in progressive multiple sclerosis brain gene expression in oligodendrocytes and OPCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636293. [PMID: 39974896 PMCID: PMC11838590 DOI: 10.1101/2025.02.05.636293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Multiple sclerosis is a neurological autoimmune disease with sex-imbalanced incidence; in the USA, the disease is more likely to effect females at a ratio of 3:1. In addition, males are more likely to have a more severe disease course at time of diagnosis. Questions about both causes and downstream effects of this disparity remain. We aim to investigate gene expression differences at a cellular level while considering sex to discover fine-scale sex disparities. These investigations could provide new avenues for treatment targeting, or treatment planning based on sex. Public single-nuclei RNA-sequencing data from three publications of progressive MS including control brains were analysed using the Seurat R package. Differential gene and pathway expression was looked at both within a specific data set which has sub-lesion level sample dissection and across all studies to provide a broader lens. This allowed for the consideration of cell types and spatial positioning in relation to the interrogated lesion in some of the calculations. Our analysis showed expression changes in the female MS oligodendrocytes and oligodendrocyte progenitor cells compared to healthy controls, which were not observed in the corresponding male affected cells. Differentially up-regulated genes in females include increased HLA-A in the oligodendrocytes, and increased clusterin in the oligodendrocyte progenitor cells. There are also several mitochondrial genes in both the oligodendrocytes and oligodendrocyte progenitors which are up-regulated in females, including several directly involved in electron transport and which have previously been associated with neurodegenerative diseases. These results point to altered states in oligodendrocyte progenitors and oligodendrocytes that in combination with known physiological dissimilarities between sexes may denote different programming in males and females in response to the onset of demyelinating lesions. The potential for increased debris clearance mediated by clusterin and availability of oligodendrocyte progenitors in females may indicate an environment more primed for repair, potentially including remyelination. This could contribute to the disparity in etiology in females versus males.
Collapse
Affiliation(s)
- Brenna A. LaBarre
- Translational Neuroimmunology Research Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Devin King
- Translational Neuroimmunology Research Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Athanasios Ploumakis
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
- Spatial Technologies Unit, Beth Israel Deaconess Hospital, Boston, MA, USA 02115
| | - Alfredo Morales Pinzon
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Charles R.G. Guttmann
- Center for Neurological Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Nikolaos Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Tanuja Chitnis
- Translational Neuroimmunology Research Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
11
|
Macnair W, Calini D, Agirre E, Bryois J, Jäkel S, Smith RS, Kukanja P, Stokar-Regenscheit N, Ott V, Foo LC, Collin L, Schippling S, Urich E, Nutma E, Marzin M, Ansaloni F, Amor S, Magliozzi R, Heidari E, Robinson MD, Ffrench-Constant C, Castelo-Branco G, Williams A, Malhotra D. snRNA-seq stratifies multiple sclerosis patients into distinct white matter glial responses. Neuron 2025; 113:396-410.e9. [PMID: 39708806 DOI: 10.1016/j.neuron.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Poor understanding of the cellular and molecular basis of clinical and genetic heterogeneity in progressive multiple sclerosis (MS) has hindered the search for new effective therapies. To address this gap, we analyzed 632,000 single-nucleus RNA sequencing profiles from 156 brain tissue samples of MS and control donors to examine inter- and intra-donor heterogeneity. We found distinct cell type-specific gene expression changes between MS gray and white matter, highlighting clear pathology differences. MS lesion subtypes had different cellular compositions but surprisingly similar cell-type gene expression patterns both within and across patients, suggesting global changes. Most gene expression variability was instead explained by patient effects, allowing us to stratify patients and describe the different pathological processes occurring between patient subgroups. Future mapping of these brain molecular profiles with blood and/or CSF profiles from living MS patients will allow precision medicine approaches anchored in patient-specific pathological processes.
Collapse
Affiliation(s)
- Will Macnair
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland.
| | - Daniela Calini
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Bryois
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians Universität, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Rebecca Sherrard Smith
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, MS Society Edinburgh Centre for MS Research, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nadine Stokar-Regenscheit
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Pathology and Applied Safety Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Virginie Ott
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Pathology and Applied Safety Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Lynette C Foo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Sven Schippling
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Eduard Urich
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Erik Nutma
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Manuel Marzin
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Federico Ansaloni
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sandra Amor
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Roberta Magliozzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elyas Heidari
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Charles Ffrench-Constant
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, MS Society Edinburgh Centre for MS Research, The University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Dheeraj Malhotra
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
12
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assessed the reproducibility of differentially expressed genes (DEGs) in previously published Alzheimer's (AD), Parkinson's (PD), Schizophrenia (SCZ), and COVID-19 scRNA-seq studies. While transcriptional scores from DEGs of individual PD and COVID-19 datasets had moderate predictive power for case-control status of other datasets (AUC=0.77 and 0.75), genes from individual AD and SCZ datasets had poor predictive power (AUC=0.68 and 0.55). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets, and found DEGs with improved predictive power (AUC=0.88, 0.91, 0.78, and 0.62). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate BCAT1 as down-regulated in AD mouse oligodendrocytes. Lastly, we evaluate factors influencing reproducibility of individual studies as a prospective guide for experimental design.
Collapse
|
13
|
Xiong LL, Niu RZ, Chen L, Huangfu LR, Li J, Xue LL, Sun YF, Wang LM, Li YP, Liu J, Wang TH. Cross-Species Insights from Single-Nucleus Sequencing Highlight Aging-Related Hippocampal Features in Tree Shrew. Mol Biol Evol 2025; 42:msaf020. [PMID: 40036868 PMCID: PMC11879083 DOI: 10.1093/molbev/msaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
The tree shrew brain has garnered considerable attention due to its remarkable similarities to human brain. However, the cellular composition and genetic signatures of tree shrew hippocampus across postnatal life remain poorly characterized. Here, we establish the first single-nucleus transcriptomic atlas of tree shrew hippocampus spanning postnatal life, detailing the dynamics and diversity of the neurogenic lineage, oligodendrocytes, microglia, and endothelial cells. Notably, cross-species transcriptomic comparison among humans, macaques, tree shrews, and mice reveals that the tree shrew transcriptome resembles that of macaques, making it a promising model for simulating human neurological diseases. More interestingly, we identified a unique class of tree shrew-specific neural stem cells and established SOX6, ADAMTS19, and MAP2 as their markers. Furthermore, aberrant gene expression and cellular dysfunction in the tree shrew hippocampus are linked to neuroinflammation and cognitive impairment during tree shrew aging. Our study provides extensive resources on cell composition and transcriptomic profiles, serving as a foundation for future research on neurodevelopmental and neurological disorders in tree shrews.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Neurosurgery, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Anesthesiology, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, Guizhou, China
- Translational Neuromedicine Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Rui-Ze Niu
- Science and Education Department, Mental Health Center of Kunming Medical University, Kunming 650034, Yunnan, China
| | - Li Chen
- Department of Neurosurgery, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lu-Lu Xue
- State Key Lab of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li-Mei Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yong-Ping Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ting-Hua Wang
- Department of Neurosurgery, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Martins-Ferreira R, Calafell-Segura J, Leal B, Rodríguez-Ubreva J, Martínez-Saez E, Mereu E, Pinho E Costa P, Laguna A, Ballestar E. The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions. Nat Commun 2025; 16:739. [PMID: 39820004 PMCID: PMC11739505 DOI: 10.1038/s41467-025-56124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Dysregulated microglia activation, leading to neuroinflammation, is crucial in neurodegenerative disease development and progression. We constructed an atlas of human brain immune cells by integrating nineteen single-nucleus RNA-seq and single-cell RNA-seq datasets from multiple neurodegenerative conditions, comprising 241 samples from patients with Alzheimer's disease, autism spectrum disorder, epilepsy, multiple sclerosis, Lewy body diseases, COVID-19, and healthy controls. The integrated Human Microglia Atlas (HuMicA) included 90,716 nuclei/cells and revealed nine populations distributed across all conditions. We identified four subtypes of disease-associated microglia and disease-inflammatory macrophages, recently described in mice, and shown here to be prevalent in human tissue. The high versatility of microglia is evident through changes in subset distribution across various pathologies, suggesting their contribution in shaping pathological phenotypes. A GPNMB-high subpopulation was expanded in AD and MS. In situ hybridization corroborated this increase in AD, opening the question on the relevance of this population in other pathologies.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Bárbara Leal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Elena Martínez-Saez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabetta Mereu
- Cellular Systems Genomics Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Paulo Pinho E Costa
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-055, Porto, Portugal
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), Cerdanyola del Vallès, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
15
|
Chen JQA, Wever DD, McNamara NB, Bourik M, Smolders J, Hamann J, Huitinga I. Inflammatory microglia correlate with impaired oligodendrocyte maturation in multiple sclerosis. Front Immunol 2025; 15:1522381. [PMID: 39877374 PMCID: PMC11772157 DOI: 10.3389/fimmu.2024.1522381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS. Methods We correlated regenerative (CD163+) and inflammatory (iNOS+) microglia with BCAS1+ oligodendrocytes, subdivided into early-stage (<3 processes) and late-stage (≥3 processes) cells in brain donors with high or low remyelinating potential in remyelinated lesions and active lesions with ramified/amoeboid (non-foamy) or foamy microglia. A cohort of MS donors categorized as efficiently remyelinating donors (ERDs; n=25) or poorly remyelinating donors (PRDs; n=17) was included, based on their proportion of remyelinated lesions at autopsy. Results and discussion We hypothesized more CD163+ microglia and BCAS1+ oligodendrocytes in remyelinated and active non-foamy lesions from ERDs and more iNOS+ microglia with fewer BCAS1+ oligodendrocytes in active foamy lesions from PRDs. For CD163+ microglia, however, no differences were observed between MS lesions and MS donor groups. In line with our hypothesis, we found that INOS+ microglia were significantly increased in PRDs compared to ERDs within remyelinated lesions. MS lesions, more late-stage BCAS1+ oligodendrocytes were detected in active lesions with non-foamy or foamy microglia in comparison with remyelinated lesions. Although no differences were found for early-stage BCAS1+ oligodendrocytes between MS lesions, we did find significantly more early-stage BCAS1+ oligodendrocytes in PRDs vs ERDs in remyelinated lesions. Interestingly, a positive correlation was identified between iNOS+ microglia and the presence of early-stage BCAS1+ oligodendrocytes. These findings suggest that impaired maturation of early-stage BCAS1+ oligodendrocytes, encountering inflammatory microglia, may underlie remyelination deficits and unsuccessful lesion repair in MS.
Collapse
Affiliation(s)
- J. Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dennis D. Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Niamh B. McNamara
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Morjana Bourik
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Joost Smolders
- Departments of Neurology and Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Zhang L, Xu Z, Jia Z, Cai S, Wu Q, Liu X, Hu X, Bai T, Chen Y, Li T, Liu Z, Wu B, Zhu J, Zhou H. Modulating mTOR-dependent astrocyte substate transitions to alleviate neurodegeneration. NATURE AGING 2025:10.1038/s43587-024-00792-z. [PMID: 39779911 DOI: 10.1038/s43587-024-00792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Traditional approaches to studying astrocyte heterogeneity have mostly focused on analyzing static properties, failing to identify whether subtypes represent intermediate or final states of reactive astrocytes. Here we show that previously proposed neuroprotective and neurotoxic astrocytes are transitional states rather than distinct subtypes, as revealed through time-series multiomic sequencing. Neuroprotective astrocytes are an intermediate state of the transition from a nonreactive to a neurotoxic state in response to neuroinflammation, a process regulated by the mTOR signaling pathway. In Alzheimer's disease (AD) and aging, we observed an imbalance in neurotoxic and neuroprotective astrocytes in animal models and human patients. Moreover, targeting mTOR in astrocytes with rapamycin or shRNA mitigated astrocyte neurotoxic effects in neurodegenerative mouse models. Overall, our study uncovers a mechanism through which astrocytes exhibit neuroprotective functions before becoming neurotoxic under neuroinflammatory conditions and highlights mTOR modulation specifically in astrocytes as a potential therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Zhengzheng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiheng Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shicheng Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinde Hu
- Genemagic Biosciences Co., Ltd., Shanghai, China
| | - Tao Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yongyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianwen Li
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Library for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Bin Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Library for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
17
|
De Jager P, Zeng L, Khan A, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. RESEARCH SQUARE 2025:rs.3.rs-5644532. [PMID: 39866869 PMCID: PMC11760239 DOI: 10.21203/rs.3.rs-5644532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type. The expression of IL7 and STAT3 are affected only in inhibitory neurons, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
| | - Lu Zeng
- Columbia University Irving Medical Center
| | | | | | | | | | | | | | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology
| | | |
Collapse
|
18
|
Altunay ZM, Biswas J, Cheung HW, Pijewski RS, Papile LE, Akinlaja YO, Tang A, Kresic LC, Schouw AD, Ugrak MV, Caro K, Peña Palomino PA, Ressl S, Nishiyama A, Crocker SJ, Martinelli DC. C1ql1 expression in oligodendrocyte progenitor cells promotes oligodendrocyte differentiation. FEBS J 2025; 292:52-74. [PMID: 39257292 PMCID: PMC11706710 DOI: 10.1111/febs.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Myelinating oligodendrocytes arise from the stepwise differentiation of oligodendrocyte progenitor cells (OPCs). Approximately 5% of all adult brain cells are OPCs. Why would a mature brain need such a large number of OPCs? New myelination is possibly required for higher-order functions such as cognition and learning. Additionally, this pool of OPCs represents a source of new oligodendrocytes to replace those lost during injury, inflammation, or in diseases such as multiple sclerosis (MS). How OPCs are instructed to differentiate into oligodendrocytes is poorly understood, and for reasons presently unclear, resident pools of OPCs are progressively less utilized in MS. The complement component 1, q subcomponent-like (C1QL) protein family has been studied for their functions at neuron-neuron synapses, but we show that OPCs express C1ql1. We created OPC-specific conditional knockout mice and show that C1QL1 deficiency reduces the differentiation of OPCs into oligodendrocytes and reduces myelin production during both development and recovery from cuprizone-induced demyelination. In vivo over-expression of C1QL1 causes the opposite phenotype: increased oligodendrocyte density and myelination during recovery from demyelination. We further used primary cultured OPCs to show that C1QL1 levels can bidirectionally regulate the extent of OPC differentiation in vitro. Our results suggest that C1QL1 may initiate a previously unrecognized signaling pathway to promote differentiation of OPCs into oligodendrocytes. This study has relevance for possible novel therapies for demyelinating diseases and may illuminate a previously undescribed mechanism to regulate the function of myelination in cognition and learning.
Collapse
Affiliation(s)
- Zeynep M. Altunay
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Joyshree Biswas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Hiu W. Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Robert S. Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- Department of Biology, Anna Maria College, Paxton, MA, USA
| | - Lucille E. Papile
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Yetunde O. Akinlaja
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Andrew Tang
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Lyndsay C. Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Alexander D. Schouw
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Maksym V. Ugrak
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Keaven Caro
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | | | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| |
Collapse
|
19
|
Salazar Campos JM, Burbulla LF, Jäkel S. Are oligodendrocytes bystanders or drivers of Parkinson's disease pathology? PLoS Biol 2025; 23:e3002977. [PMID: 39777410 PMCID: PMC11709285 DOI: 10.1371/journal.pbio.3002977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The major pathological feature of Parkinson 's disease (PD), the second most common neurodegenerative disease and most common movement disorder, is the predominant degeneration of dopaminergic neurons in the substantia nigra, a part of the midbrain. Despite decades of research, the molecular mechanisms of the origin of the disease remain unknown. While the disease was initially viewed as a purely neuronal disorder, results from single-cell transcriptomics have suggested that oligodendrocytes may play an important role in the early stages of Parkinson's. Although these findings are of high relevance, particularly to the search for effective disease-modifying therapies, the actual functional role of oligodendrocytes in Parkinson's disease remains highly speculative and requires a concerted scientific effort to be better understood. This Unsolved Mystery discusses the limited understanding of oligodendrocytes in PD, highlighting unresolved questions regarding functional changes in oligodendroglia, the role of myelin in nigral dopaminergic neurons, the impact of the toxic environment, and the aggregation of alpha-synuclein within oligodendrocytes.
Collapse
Affiliation(s)
| | - Lena F. Burbulla
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sarah Jäkel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Siems SB, Gargareta V, Schadt LC, Daguano Gastaldi V, Jung RB, Piepkorn L, Casaccia P, Sun T, Jahn O, Werner HB. Developmental maturation and regional heterogeneity but no sexual dimorphism of the murine CNS myelin proteome. Glia 2025; 73:38-56. [PMID: 39344832 PMCID: PMC11660532 DOI: 10.1002/glia.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
Collapse
Affiliation(s)
- Sophie B. Siems
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Vasiliki‐Ilya Gargareta
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Leonie C. Schadt
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ramona B. Jung
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular NeurobiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational Neuroproteomics Group, Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research CenterThe City University of New YorkNew YorkNew YorkUSA
| | - Ting Sun
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular NeurobiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational Neuroproteomics Group, Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Hauke B. Werner
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Faculty for Biology and PsychologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
21
|
Desu HL, Thougaard E, Carney BN, Illiano P, Plastini MJ, Florimon Y, Mini A, Guastucci C, Kang B, Lee JK, Lambertsen KL, Brambilla R. TNFR2 signaling in oligodendrocyte precursor cells suppresses their immune-inflammatory function and detrimental microglia activation in CNS demyelinating disease. Brain Behav Immun 2025; 123:81-98. [PMID: 39243989 PMCID: PMC11624083 DOI: 10.1016/j.bbi.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and progressive neurodegeneration. These processes, combined with the failure of reparative remyelination initiated by oligodendrocyte precursor cells (OPCs), lead to irreversible neurological impairment. The cytokine tumor necrosis factor (TNF) has been implicated in CNS repair via activation of its cognate receptor TNFR2 in glia. Here, we demonstrate the important role of TNFR2 in regulating OPC function in vivo during demyelinating disease, and that TNFR2 expressed in OPCs modulates OPC-microglia interactions. In PdgfrαCreERT:Tnfrsf1bfl/fl:Eyfp mice with selective TNFR2 ablation in OPCs, we observed an earlier onset and disease peak in experimental autoimmune encephalomyelitis (EAE). This was associated with accelerated immune cell infiltration and increased microglia activation in the spinal cord. Similarly, PdgfrαCreERT:Tnfrsf1bfl/fl:Eyfp mice showed rapid and increased microglia reactivity compared to control mice in the corpus callosum after cuprizone-induced demyelination, followed by chronic reduction in the number of mature myelinating oligodendrocytes (OLs). With EAE and cuprizone models combined, we uncovered that TNFR2 does not have a cell autonomous role in OPC differentiation, but may be important for survival of newly formed mature OLs. Finally, using an in vitro approach, we demonstrated that factors released by Tnfrsf1b ablated OPCs drove microglia to develop an exacerbated "foamy" phenotype when incubated with myelin-rich spinal cord homogenate, aberrantly increasing lysosomal lipid accumulation. Together, our data indicate that TNFR2 signaling in OPCs is protective by dampening their immune-inflammatory activation and by suppressing neurotoxic microglia reactivity. This suggests that boosting TNFR2 activation or its downstream cascades could be an effective strategy to restore OPC reparative capacity in neuroimmune and demyelinating disease.
Collapse
MESH Headings
- Oligodendrocyte Precursor Cells/immunology
- Oligodendrocyte Precursor Cells/metabolism
- Animals
- Mice
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Mice, Transgenic
- Multiple Sclerosis/chemically induced
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Microglia/immunology
- Microglia/metabolism
- Microglia/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Cell Survival/genetics
- Cell Survival/immunology
- Cuprizone/toxicity
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- Male
- Female
- Corpus Callosum/cytology
- Corpus Callosum/immunology
- Corpus Callosum/pathology
Collapse
Affiliation(s)
- Haritha L Desu
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Estrid Thougaard
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brianna N Carney
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Placido Illiano
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melanie J Plastini
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yoleinny Florimon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonella Mini
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chelsea Guastucci
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jae K Lee
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
22
|
Yokoyama K, Hiraoka Y, Abe Y, Tanaka KF. Visualization of myelin-forming oligodendrocytes in the adult mouse brain. J Neurochem 2025; 169:e16218. [PMID: 39233334 PMCID: PMC11657928 DOI: 10.1111/jnc.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs) is considered to result in two populations: premyelinating and myelinating OLs. Recent single-cell RNA sequence data subdivided these populations into newly formed (NFOLs), myelin-forming (MFOLs), and mature (MOLs) oligodendrocytes. However, which newly proposed population corresponds to premyelinating or myelinating OLs is unknown. We focused on the NFOL-specific long non-coding oligodendrocyte 1 gene (LncOL1) and sought to label NFOLs under the control of the LncOL1 promoter using a tetracycline-controllable gene induction system. We demonstrated that LncOL1 was expressed by premyelinating OLs and that the MFOL-specific gene, Ctps, was not, indicating that NFOLs correspond to premyelinating OLs and that MFOLs and MOLs correspond to myelinating OLs. We then generated a LncOL1-tTA mouse in which a tetracycline transactivator (tTA) cassette was inserted downstream from the LncOL1 transcription initiation site. By crossing the LncOL1-tTA mice with tetO reporter mice, we generated LncOL1-tTA::tetO-yellow fluorescent protein (YFP) double-transgenic (LncOL1-YFP) mice. Although LncOL1 is non-coding, YFP was detected in LncOL1-YFP mice, indicating successful tTA translation. Unexpectedly, we found that the morphology of LncOL1-tTA-driven YFP+ cells was distinct from that of LncOL1+ premyelinating OLs and that the labeled cells instead appeared as myelinating OLs. We demonstrated from their RNA expression that YFP-labeled OLs were MFOLs, but not MOLs. Using the unique property of delayed YFP induction, we sought to determine whether MFOLs are constantly supplied from OPCs and differentiate into MOLs, or whether MFOLs pause their differentiation and sustain this stage in the adult brain. To achieve this objective, we irradiated adult LncOL1-YFP brains with X-rays to deplete dividing OPCs and their progeny. The irradiation extinguished YFP-labeled OLs, indicating that adult OPCs differentiated into MOLs during a single period. We established a new transgenic mouse line that genetically labels MFOLs, providing a reliable tool for investigating the dynamics of adult oligodendrogenesis.
Collapse
Affiliation(s)
- Kiichi Yokoyama
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Yuichi Hiraoka
- Laboratory of Molecular NeuroscienceMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Genome Editing for Biomedical ResearchMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yoshifumi Abe
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| | - Kenji F. Tanaka
- Division of Brain SciencesInstitute for Advanced Medical Research, Keio University School of MedicineTokyoJapan
| |
Collapse
|
23
|
Wang Y, Ghimire S, Mangalam A, Kang Z. RiboTag-based RNA-Seq uncovers oligodendroglial lineage-specific inflammation in autoimmune encephalomyelitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630168. [PMID: 39764033 PMCID: PMC11703255 DOI: 10.1101/2024.12.24.630168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Oligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model. Using RiboTag-based RNA sequencing in genetically modified Olig2-Cre RiboTag mice, we identified 1,556 upregulated and 683 downregulated genes in EAE OLCs. Enrichment analysis indicated heightened immune-related pathways, such as cytokine signaling, interferon responses, and antigen presentation, while downregulated genes were linked to neuronal development and myelination. Notably, OLCs expressed cytokines/chemokines, and their receptor, highlighting their active involvement in neuroinflammatory signaling. Functional studies demonstrated that interferon-gamma (IFN-γ) signaling in OLCs exacerbates EAE pathology by enhancing antigen presentation and chemokine production, whereas interferon-beta (IFN-β) signaling showed minimal impact. These findings provide novel insights into the inflammatory role of OLCs in EAE and suggest therapeutic potential in targeting OLC-mediated neuroinflammation for MS and related disorders.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Madeira MM, Hage Z, Kokkosis AG, Nnah K, Guzman R, Schappell LE, Koliatsis D, Resutov E, Nadkarni NA, Rahme GJ, Tsirka SE. Oligodendroglia Are Primed for Antigen Presentation in Response to Chronic Stress-Induced Microglial-Derived Inflammation. Glia 2024. [PMID: 39719686 DOI: 10.1002/glia.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
Chronic stress is a major contributor to the development of major depressive disorder, one of the leading causes of disability worldwide. Using a model of repeated social defeat stress in mice, we and others have reported that neuroinflammation plays a dynamic role in the development of behavioral deficits consistent with social avoidance and impaired reward responses. Animals susceptible to the model also exhibit hypomyelination in the medial prefrontal cortex, indicative of changes in the differentiation pathway of cells of the oligodendroglial lineage (OLN). We computationally confirmed the presence of immune oligodendrocytes, a population of OLN cells, which express immune markers and myelination deficits. In the current study, we report that microglia are necessary to induce expression of antigen presentation markers (and other immune markers) on oligodendroglia. We further associate the appearance of these markers with changes in the OLN and confirm that microglial changes precede OLN changes. Using co-cultures of microglia and OLN, we show that under inflammatory conditions the processes of phagocytosis and expression of MHCII are linked, suggesting potential priming for antigen presentation by OLN cells. Our findings provide insights into the nature of these OLN cells with immune capabilities, their obligatory interaction with microglia, and identify them as a potential cellular contributor to the pathological manifestations of psychosocial stress.
Collapse
Affiliation(s)
- Miguel M Madeira
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Scholars in Biomedical Sciences Program, Stony Brook, New York, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Zachary Hage
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Scholars in Biomedical Sciences Program, Stony Brook, New York, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Alexandros G Kokkosis
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Scholars in Biomedical Sciences Program, Stony Brook, New York, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Kimberly Nnah
- Scholars in Biomedical Sciences Program, Stony Brook, New York, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Program in Neuroscience, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ryan Guzman
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Laurel E Schappell
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Neil A Nadkarni
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Gilbert J Rahme
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Program, Stony Brook, New York, USA
- Scholars in Biomedical Sciences Program, Stony Brook, New York, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Program in Neuroscience, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
25
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
26
|
Matsuzaki Y, Fukai Y, Konno A, Hirai H. Optimal different adeno-associated virus capsid/promoter combinations to target specific cell types in the common marmoset cerebral cortex. Mol Ther Methods Clin Dev 2024; 32:101337. [PMID: 39391837 PMCID: PMC11466621 DOI: 10.1016/j.omtm.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
To achieve cell-type-specific gene expression, using target cell-type-tropic different adeno-associated virus (AAV) capsids is advantageous. However, their tropism across brain cell types in nonhuman primates has not been fully elucidated. We assessed the tropism of nine AAV serotype capsids (AAV1, 2, 5, 6, 7, 8, 9, rh10, and DJ) expressing EGFP by chicken β-actin hybrid (CBh) promoter in marmoset cerebral cortical cells. All nine AAV capsid vectors, especially AAV9 and AAVrh10, caused highly neuron-selective EGFP expression. Some AAV capsids, including AAV5, induced EGFP expression to a lesser extent in oligodendrocytes. Different ubiquitous cytomegalovirus (CMV) and CMV early enhancer/chicken β-actin (CAG) promoters exhibited similar neuron-predominant transgene expression. Conversely, all nine AAV capsid vectors with the astrocyte-specific hGFA(ABC1D) promoter selectively expressed EGFP in astrocytes, except AAV5, which modestly expressed EGFP in oligodendrocytes. Oligodendrocyte-specific mouse myelin basic protein (mMBP) promoter in AAV5 vectors expressed EGFP in oligodendrocytes specifically and efficiently. The following are optimal combinations of capsids and promoters for cell-type-specific expression: AAV9 or AAVrh10 and ubiquitous CBh or CMV promoter for neuron-specific transgene expression, AAV2 or AAV7 and hGFA(ABC1D) promoters for astrocyte-specific transgene expression, and AAV5 and mMBP promoters for oligodendrocyte-specific transgene expression.
Collapse
Affiliation(s)
- Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Yuuki Fukai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
27
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Zeng L, Atlas K, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K, De Jager PL. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318500. [PMID: 39677438 PMCID: PMC11643295 DOI: 10.1101/2024.12.04.24318500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
- Lu Zeng
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Khan Atlas
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Tsering Lama
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanuja Chitnis
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Howard Weiner
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Gao Wang
- The Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Frauke Zipp
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
29
|
Smith S, Swan ER, Furber KL. Establishing validated RT-qPCR workflow for the analysis of oligodendrocyte gene expression in the developing murine brain. Biochem Cell Biol 2024; 102:492-505. [PMID: 39116457 DOI: 10.1139/bcb-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Myelination is essential for the proper conduction of impulses across neuronal networks. Mature, myelinating glia differentiate from progenitor cells through distinct stages that correspond to oligodendrocyte-specific gene expression markers. Reverse transcription quantiatative PCR (RT-qPCR) is a common technique used to quantify gene expression across cell development; however, a lack of standardization and transparency in methodology may lead to irreproducible data. Here, we have designed and validated RT-qPCR assays for oligodendrocyte genes and reference genes in the developing C57BL6/J mouse brain that align with the MIQE guidelines, including quality controls for primer specificity, temperature dependence, and efficiency. A panel of eight commonly used reference genes was ranked using a series of reference gene stability methods that consistently identified Gapdh, Sdha, Hmbs, Hprt1, and Pgk1 as the top candidates for normalization across brain regions. In the cerebrum, myelin genes peaked in expression at postnatal day 21, which corresponds to the peak of developmental myelination. The gene expression patterns from the brain homogenate were in agreement with previously reported RNA-seq and microarray profiles from oligodendrocyte lineage cells. The validated RT-qPCR assays begin to build a framework for future investigation into the molecular mechanisms that regulate myelination in mouse models of brain development, aging, and disease.
Collapse
Affiliation(s)
- Samantha Smith
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada
| | - Emma R Swan
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada
| | - Kendra L Furber
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
30
|
Alsema AM, Wijering MHC, Miedema A, Kotah JM, Koster M, Rijnsburger M, van Weering HRJ, de Vries HE, Baron W, Kooistra SM, Eggen BJL. Spatially resolved gene signatures of white matter lesion progression in multiple sclerosis. Nat Neurosci 2024; 27:2341-2353. [PMID: 39501035 DOI: 10.1038/s41593-024-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and progressive neurodegeneration. To understand MS lesion initiation and progression, we generate spatial gene expression maps of white matter (WM) and grey matter (GM) MS lesions. In different MS lesion types, we detect domains characterized by a distinct gene signature, including an identifiable rim around active WM lesions. Expression changes in astrocyte-specific, oligodendrocyte-specific and microglia-specific gene sets characterize the active lesion rims. Furthermore, we identify three WM lesion progression trajectories, predicting how normal-appearing WM can develop into WM active or mixed active-inactive lesions. Our data shed light on the dynamic progression of MS lesions.
Collapse
Affiliation(s)
- Astrid M Alsema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Marion H C Wijering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Anneke Miedema
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC, Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Susanne M Kooistra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- MS Centrum Noord Nederland, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- MS Centrum Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
31
|
Horan K, Williams AC. Mapping out multiple sclerosis with spatial transcriptomics. Nat Neurosci 2024; 27:2270-2272. [PMID: 39501034 DOI: 10.1038/s41593-024-01798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Affiliation(s)
- Kellie Horan
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, MS Society Edinburgh Centre for MS Research, The University of Edinburgh, Edinburgh, UK
| | - Anna C Williams
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, MS Society Edinburgh Centre for MS Research, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Lerma-Martin C, Badia-I-Mompel P, Ramirez Flores RO, Sekol P, Schäfer PSL, Riedl CJ, Hofmann A, Thäwel T, Wünnemann F, Ibarra-Arellano MA, Trobisch T, Eisele P, Schapiro D, Haeussler M, Hametner S, Saez-Rodriguez J, Schirmer L. Cell type mapping reveals tissue niches and interactions in subcortical multiple sclerosis lesions. Nat Neurosci 2024; 27:2354-2365. [PMID: 39501036 PMCID: PMC11614744 DOI: 10.1038/s41593-024-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Inflammation is gradually compartmentalized and restricted to specific tissue niches such as the lesion rim. However, the precise cell type composition of such niches, their interactions and changes between chronic active and inactive stages are incompletely understood. We used single-nucleus and spatial transcriptomics from subcortical MS and corresponding control tissues to map cell types and associated pathways to lesion and nonlesion areas. We identified niches such as perivascular spaces, the inflamed lesion rim or the lesion core that are associated with the glial scar and a cilia-forming astrocyte subtype. Focusing on the inflamed rim of chronic active lesions, we uncovered cell-cell communication events between myeloid, endothelial and glial cell types. Our results provide insight into the cellular composition, multicellular programs and intercellular communication in tissue niches along the conversion from a homeostatic to a dysfunctional state underlying lesion progression in MS.
Collapse
Affiliation(s)
- Celia Lerma-Martin
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Patricia Sekol
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp S L Schäfer
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Christian J Riedl
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Annika Hofmann
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Trobisch
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Eisele
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany
| | | | - Simon Hametner
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| | - Lucas Schirmer
- Department of Neurology, Division of Neuroimmunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty, Mannheim Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
33
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
34
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. Acta Neuropathol 2024; 148:72. [PMID: 39585417 PMCID: PMC11588930 DOI: 10.1007/s00401-024-02819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
Affiliation(s)
- Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Caitlin Johnston
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Margaret Sunde
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
35
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
36
|
Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. FRONT BIOSCI-LANDMRK 2024; 29:386. [PMID: 39614433 DOI: 10.31083/j.fbl2911386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Collapse
Affiliation(s)
- Eiman M A Mohammed
- Kuwait Cancer Control Centre, Department of Medical Laboratory, Molecular Genetics Laboratory, Ministry of Health, 13001 Shuwaikh, Kuwait
| |
Collapse
|
37
|
Huré JB, Foucault L, Ghayad LM, Marie C, Vachoud N, Baudouin L, Azmani R, Ivljanin N, Arevalo-Nuevo A, Pigache M, Bouslama-Oueghlani L, Chemelle JA, Dronne MA, Terreux R, Hassan B, Gueyffier F, Raineteau O, Parras C. Pharmacogenomic screening identifies and repurposes leucovorin and dyclonine as pro-oligodendrogenic compounds in brain repair. Nat Commun 2024; 15:9837. [PMID: 39537633 PMCID: PMC11561360 DOI: 10.1038/s41467-024-54003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Oligodendrocytes are critical for CNS myelin formation and are involved in preterm-birth brain injury (PBI) and multiple sclerosis (MS), both of which lack effective treatments. We present a pharmacogenomic approach that identifies compounds with potent pro-oligodendrogenic activity, selected through a scoring strategy (OligoScore) based on their modulation of oligodendrogenic and (re)myelination-related transcriptional programs. Through in vitro neural and oligodendrocyte progenitor cell (OPC) cultures, ex vivo cerebellar explants, and in vivo mouse models of PBI and MS, we identify FDA-approved leucovorin and dyclonine as promising candidates. In a neonatal chronic hypoxia mouse model mimicking PBI, both compounds promote neural progenitor cell proliferation and oligodendroglial fate acquisition, with leucovorin further enhancing differentiation. In an adult MS model of focal de/remyelination, they improve lesion repair by promoting OPC differentiation while preserving the OPC pool. Additionally, they shift microglia from a pro-inflammatory to a pro-regenerative profile and enhance myelin debris clearance. These findings support the repurposing of leucovorin and dyclonine for clinical trials targeting myelin disorders, offering potential therapeutic avenues for PBI and MS.
Collapse
Affiliation(s)
- Jean-Baptiste Huré
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Litsa Maria Ghayad
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Corentine Marie
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Vachoud
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Lucas Baudouin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rihab Azmani
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Natalija Ivljanin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alvaro Arevalo-Nuevo
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Morgane Pigache
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julie-Anne Chemelle
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Marie-Aimée Dronne
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Raphaël Terreux
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Bassem Hassan
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Gueyffier
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
38
|
Clayton BLL, Barbar L, Sapar M, Kalpana K, Rao C, Migliori B, Rusielewicz T, Paull D, Brenner K, Moroziewicz D, Sand IK, Casaccia P, Tesar PJ, Fossati V. Patient iPSC models reveal glia-intrinsic phenotypes in multiple sclerosis. Cell Stem Cell 2024; 31:1701-1713.e8. [PMID: 39191254 PMCID: PMC11560525 DOI: 10.1016/j.stem.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS), resulting in neurological disability that worsens over time. While progress has been made in defining the immune system's role in MS pathophysiology, the contribution of intrinsic CNS cell dysfunction remains unclear. Here, we generated a collection of induced pluripotent stem cell (iPSC) lines from people with MS spanning diverse clinical subtypes and differentiated them into glia-enriched cultures. Using single-cell transcriptomic profiling and orthogonal analyses, we observed several distinguishing characteristics of MS cultures pointing to glia-intrinsic disease mechanisms. We found that primary progressive MS-derived cultures contained fewer oligodendrocytes. Moreover, MS-derived oligodendrocyte lineage cells and astrocytes showed increased expression of immune and inflammatory genes, matching those of glia from MS postmortem brains. Thus, iPSC-derived MS models provide a unique platform for dissecting glial contributions to disease phenotypes independent of the peripheral immune system and identify potential glia-specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lilianne Barbar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Kriti Kalpana
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Bianca Migliori
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Tomasz Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Katie Brenner
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center at CUNY, New York, NY 10031, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA.
| |
Collapse
|
39
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
40
|
Russo M, Zahaf A, Kassoussi A, Sharif A, Faure H, Traiffort E, Ruat M. Sonic Hedgehog Is an Early Oligodendrocyte Marker During Remyelination. Cells 2024; 13:1808. [PMID: 39513915 PMCID: PMC11545011 DOI: 10.3390/cells13211808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Failure of myelin regeneration by oligodendrocytes contributes to progressive decline in many neurological diseases. Here, using in vitro and in vivo rodent models, functional blockade, and mouse brain demyelination, we demonstrate that Sonic hedgehog (Shh) expression in a subset of oligodendrocyte progenitor cells precedes the expression of myelin basic protein (MBP), a major myelin sheath protein. Primary cultures of rodent cortical oligodendrocytes show that Shh mRNA and protein are upregulated during oligodendrocyte maturation before the upregulation of MBP expression. Importantly, almost all MBP-positive cells are Shh positive during differentiation. During remyelination, we identify a rapid induction of Shh mRNA and peptide in oligodendroglial cells present in the demyelinated corpus callosum of mice, including a population of PDGFRα-expressing cells. Shh invalidation by an adeno-associated virus strategy demonstrates that the downregulation of Shh impairs the differentiation of oligodendrocytes in vitro and decreases MBP and myelin proteolipid protein expression in the demyelinated mouse brain at late stages of remyelination. We also report a parallel expression of Shh and MBP in oligodendroglial cells during early post-natal myelination of the mouse brain. Thus, we identify a crucial Shh signal involved in oligodendroglial cell differentiation and remyelination, with potential interest in the design of better-targeted remyelinating therapeutic strategies.
Collapse
Affiliation(s)
- Mariagiovanna Russo
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
| | - Amina Zahaf
- Paris-Saclay University, INSERM, Diseases and Hormones of the Nervous System-U1195, 94276 Le Kremlin-Bicêtre, France; (A.Z.); (E.T.)
| | - Abdelmoumen Kassoussi
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
- Paris-Saclay University, INSERM, Diseases and Hormones of the Nervous System-U1195, 94276 Le Kremlin-Bicêtre, France; (A.Z.); (E.T.)
| | - Ariane Sharif
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, FHU 1000 Days for Health, INSERM, Université de Lille, CHU Lille, 59000 Lille, France;
| | - Hélène Faure
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
| | - Elisabeth Traiffort
- Paris-Saclay University, INSERM, Diseases and Hormones of the Nervous System-U1195, 94276 Le Kremlin-Bicêtre, France; (A.Z.); (E.T.)
| | - Martial Ruat
- Paris-Saclay University, CNRS, Neuroscience Paris-Saclay Institute, 91400 Saclay, France (A.K.); (H.F.)
| |
Collapse
|
41
|
Huang G, Li Z, Liu X, Guan M, Zhou S, Zhong X, Zheng T, Xin D, Gu X, Mu D, Guo Y, Zhang L, Zhang L, Lu QR, He X. DOR activation in mature oligodendrocytes regulates α-ketoglutarate metabolism leading to enhanced remyelination in aged mice. Nat Neurosci 2024; 27:2073-2085. [PMID: 39266660 DOI: 10.1038/s41593-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
The decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes- and obesity-related gene (DOR)/tumor protein p53-inducible nuclear protein 2 (TP53INP2), downregulated in demyelinated lesions of donors with multiple sclerosis and in aged oligodendrocyte-lineage cells. Dor ablation in mice of both sexes results in defective myelinogenesis and remyelination. Genomic occupancy in oligodendrocytes and transcriptome profiling of the optic nerves of wild-type and Dor conditional knockout mice reveal that DOR and SOX10 co-occupy enhancers of critical myelinogenesis-associated genes including Prr18, encoding an oligodendrocyte-enriched, proline-rich factor. We show that DOR targets regulatory elements of genes responsible for α-ketoglutarate biosynthesis in mature oligodendrocytes and is essential for α-ketoglutarate production and lipid biosynthesis. Supplementation with α-ketoglutarate restores oligodendrocyte-maturation defects in Dor-deficient adult mice and improves remyelination after lysolecithin-induced demyelination and cognitive function in 17-month-old wild-type mice. Our data suggest that activation of α-ketoglutarate metabolism in mature oligodendrocytes can promote myelin production during demyelination and aging.
Collapse
Affiliation(s)
- Guojiao Huang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Menglong Guan
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tao Zheng
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dazhuan Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dezhi Mu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liguo Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
43
|
Gadani SP, Singh S, Kim S, Hu J, Smith MD, Calabresi PA, Bhargava P. Spatial transcriptomics of meningeal inflammation reveals inflammatory gene signatures in adjacent brain parenchyma. eLife 2024; 12:RP88414. [PMID: 39475792 PMCID: PMC11524578 DOI: 10.7554/elife.88414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
While modern high efficacy disease modifying therapies have revolutionized the treatment of relapsing-remitting multiple sclerosis, they are less effective at controlling progressive forms of the disease. Meningeal inflammation is a recognized risk factor for cortical gray matter pathology which can result in disabling symptoms such as cognitive impairment and depression, but the mechanisms linking meningeal inflammation and gray matter pathology remain unclear. Here, we performed magnetic resonance imaging (MRI)-guided spatial transcriptomics in a mouse model of autoimmune meningeal inflammation to characterize the transcriptional signature in areas of meningeal inflammation and the underlying brain parenchyma. We found broadly increased activity of inflammatory signaling pathways at sites of meningeal inflammation, but only a subset of these pathways active in the adjacent brain parenchyma. Subclustering of regions adjacent to meningeal inflammation revealed the subset of immune programs induced in brain parenchyma, notably complement signaling and antigen processing/presentation. Trajectory gene and gene set modeling analysis confirmed variable penetration of immune signatures originating from meningeal inflammation into the adjacent brain tissue. This work contributes a valuable data resource to the field, provides the first detailed spatial transcriptomic characterization in a model of meningeal inflammation, and highlights several candidate pathways in the pathogenesis of gray matter pathology.
Collapse
Affiliation(s)
- Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, University of PittsburghPittsburghUnited States
| | - Saumitra Singh
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sophia Kim
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jingwen Hu
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew D Smith
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Solomon Snyder, Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pavan Bhargava
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
44
|
Heo D, Kim AA, Neumann B, Doze VN, Xu YKT, Mironova YA, Slosberg J, Goff LA, Franklin RJM, Bergles DE. Transcriptional profiles of murine oligodendrocyte precursor cells across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620502. [PMID: 39554158 PMCID: PMC11565715 DOI: 10.1101/2024.10.27.620502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Oligodendrocyte progenitor cells (OPCs) are highly dynamic, widely distributed glial cells of the central nervous system (CNS) that are responsible for generating myelinating oligodendrocytes during development. By also generating new oligodendrocytes in the adult CNS, OPCs allow formation of new myelin sheaths in response to environmental and behavioral changes and play a crucial role in regenerating myelin following demyelination (remyelination). However, the rates of OPC proliferation and differentiation decline dramatically with aging, which may impair homeostasis, remyelination, and adaptive myelination during learning. To determine how aging influences OPCs, we generated a novel transgenic mouse line that expresses membrane-anchored EGFP under the endogenous promoter/enhancer of Matrilin-4 (Matn4-mEGFP) and performed high-throughput single-cell RNA sequencing, providing enhanced resolution of transcriptional changes during key transitions from quiescence to proliferation and differentiation across the lifespan. Comparative analysis of OPCs isolated from mice aged 30 to 720 days, revealed that aging induces distinct inflammatory transcriptomic changes in OPCs in different states, including enhanced activation of HIF-1α and Wnt pathways. Inhibition of these pathways in acutely isolated OPCs from aged animals restored their ability to differentiate, suggesting that this enhanced signaling may contribute to the decreased regenerative potential of OPCs with aging. This Matn4-mEGFP mouse line and single-cell mRNA datasets of cortical OPCs across ages help to define the molecular changes guiding their behavior in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anya A. Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Björn Neumann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valerie N. Doze
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yu Kang T. Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yevgeniya A. Mironova
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Loyal A. Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Bøstrand SMK, Seeker LA, Bestard-Cuche N, Kazakou NL, Jäkel S, Kenkhuis B, Henderson NC, de Bot ST, van Roon-Mom WMC, Priller J, Williams A. Mapping the glial transcriptome in Huntington's disease using snRNAseq: selective disruption of glial signatures across brain regions. Acta Neuropathol Commun 2024; 12:165. [PMID: 39428482 PMCID: PMC11492505 DOI: 10.1186/s40478-024-01871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with a fatal outcome. There is accumulating evidence of a prominent role of glia in the pathology of HD, and we investigated this by conducting single nuclear RNA sequencing (snRNAseq) of human post mortem brain in four differentially affected regions; caudate nucleus, frontal cortex, hippocampus and cerebellum. Across 127,205 nuclei from donors with HD and age/sex matched controls, we found heterogeneity of glia which is altered in HD. We describe prominent changes in the abundance of certain subtypes of astrocytes, microglia, oligodendrocyte precursor cells and oligodendrocytes between HD and control samples, and these differences are widespread across brain regions. Furthermore, we highlight possible mechanisms that characterise the glial contribution to HD pathology including depletion of myelinating oligodendrocytes, an oligodendrocyte-specific upregulation of the calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1 A (PDE1A) and an upregulation of molecular chaperones as a cross-glial signature and a potential adaptive response to the accumulation of mutant huntingtin (mHTT). Our results support the hypothesis that glia have an important role in the pathology of HD, and show that all types of glia are affected in the disease.
Collapse
Affiliation(s)
- Sunniva M K Bøstrand
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Luise A Seeker
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nina-Lydia Kazakou
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, LMU Hospital, Munich, Germany
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josef Priller
- CCBS and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, TU Munich, Munich, Germany.
- Neuropsychiatry and DZNE, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Anna Williams
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- CCBS and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
46
|
Fang M, Wang X, Chen L, Li F, Wang S, Shen L, Yang H, Sun L, Wang X, Yang J, Qiu M, Xu X. Hyperactivation of Hedgehog signaling impedes myelin development and repair via cholesterol dysregulation in oligodendrocytes. iScience 2024; 27:111016. [PMID: 39635117 PMCID: PMC11615242 DOI: 10.1016/j.isci.2024.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024] Open
Abstract
The failure to remyelinate demyelinated axons poses a significant challenge in the treatment of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system. Here, we investigated the role of Hedgehog (Hh) signaling in myelin formation during development and under pathological conditions. Using conditional gain-of-function analyses, we found that hyperactivation of Hh signaling in oligodendrocyte precursor cells (OPCs) inhibits oligodendrocyte (OL) differentiation and myelination. Notably, sustained activation of Hh signaling in adult OPCs hinders myelin repair following LPC-induced focal demyelination. Through RNA sequencing, we discovered that genes associated with cholesterol synthesis were upregulated, and observed intracellular cholesterol accumulation in Hh-activated OPCs. Importantly, pharmacological stimulation of cholesterol transport was able to rescue the OL differentiation and myelination defects in mice. These findings establish a functional connection between Hh signaling, cholesterol homeostasis, and remyelination, providing insights for the strategic design of employing Hh signaling modulators in treating demyelinating neurodegenerative diseases.
Collapse
Affiliation(s)
- Minxi Fang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Sitong Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Leyi Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huanyi Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lifen Sun
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
47
|
Warden AS, Salem NA, Brenner E, Sutherland GT, Stevens J, Kapoor M, Goate AM, Dayne Mayfield R. Integrative genomics approach identifies glial transcriptomic dysregulation and risk in the cortex of individuals with Alcohol Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607185. [PMID: 39211266 PMCID: PMC11360965 DOI: 10.1101/2024.08.16.607185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder that is a major global health concern, affecting millions of people worldwide. Past molecular studies of AUD used underpowered single cell analysis or bulk homogenates of postmortem brain tissue, which obscures gene expression changes in specific cell types. Here we performed single nuclei RNA-sequencing analysis of 73 post-mortem samples from individuals with AUD (N=36, N nuclei = 248,873) and neurotypical controls (N=37, N nuclei = 210,573) in both sexes across two institutional sites. We identified 32 clusters and found widespread cell type-specific transcriptomic changes across the cortex in AUD, particularly affecting glia. We found the greatest dysregulation in novel microglial and astrocytic subtypes that accounted for the majority of differential gene expression and co-expression modules linked to AUD. Analysis for cell type-specific enrichment of aggregate genetic risk for AUD identified subtypes of microglia and astrocytes as potential key players not only affected by but causally linked to the progression of AUD. These results highlight the importance of cell-type specific molecular changes in AUD and offer opportunities to identify novel targets for treatment.
Collapse
|
48
|
Zhang Y, Li T, Wang G, Ma Y. Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:65. [PMID: 39387975 PMCID: PMC11467076 DOI: 10.1007/s10571-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
The incidence of central nervous system (CNS) disease has persistently increased over the last several years. There is an urgent need for effective methods to improve the cure rates of CNS disease. However, the precise molecular basis underlying the development and progression of major CNS diseases remains elusive. A complete molecular map will contribute to research on CNS disease treatment strategies. Emerging technologies such as single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) are potent tools for exploring the molecular complexity, cell heterogeneity, and functional specificity of CNS disease. scRNA-seq and ST can provide insights into the disease at cellular and spatial transcription levels. This review presents a survey of scRNA-seq and ST studies on CNS diseases, such as chronic neurodegenerative diseases, acute CNS injuries, and others. These studies offer novel perspectives in treating and diagnosing CNS diseases by discovering new cell types or subtypes associated with the disease, proposing new pathophysiological mechanisms, uncovering novel therapeutic targets, and identifying putative biomarkers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Teng Li
- Department of Laboratory Medicine, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Yabin Ma
- Department of Pharmacy, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
49
|
Wagstaff LJ, Bestard-Cuche N, Kaczmarek M, Fidanza A, McNeil L, Franklin RJM, Williams AC. CRISPR-edited human ES-derived oligodendrocyte progenitor cells improve remyelination in rodents. Nat Commun 2024; 15:8570. [PMID: 39384784 PMCID: PMC11464782 DOI: 10.1038/s41467-024-52444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/16/2024] [Indexed: 10/11/2024] Open
Abstract
In Multiple Sclerosis (MS), inflammatory demyelinated lesions in the brain and spinal cord lead to neurodegeneration and progressive disability. Remyelination can restore fast saltatory conduction and neuroprotection but is inefficient in MS especially with increasing age, and is not yet treatable with therapies. Intrinsic and extrinsic inhibition of oligodendrocyte progenitor cell (OPC) function contributes to remyelination failure, and we hypothesised that the transplantation of 'improved' OPCs, genetically edited to overcome these obstacles, could improve remyelination. Here, we edit human(h) embryonic stem cell-derived OPCs to be unresponsive to a chemorepellent released from chronic MS lesions, and transplant them into rodent models of chronic lesions. Edited hOPCs display enhanced migration and remyelination compared to controls, regardless of the host age and length of time post-transplant. We show that genetic manipulation and transplantation of hOPCs overcomes the negative environment inhibiting remyelination, with translational implications for therapeutic strategies for people with progressive MS.
Collapse
Affiliation(s)
- Laura J Wagstaff
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Maja Kaczmarek
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Lorraine McNeil
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Robin J M Franklin
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Anna C Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
50
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|