1
|
Trauer JM, Hughes AE, Shipman DS, Meehan MT, Henderson AS, McBryde ES, Ragonnet R. A data science pipeline applied to Australia's 2022 COVID-19 Omicron waves. Infect Dis Model 2025; 10:99-109. [PMID: 39364337 PMCID: PMC11447346 DOI: 10.1016/j.idm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024] Open
Abstract
The field of software engineering is advancing at astonishing speed, with packages now available to support many stages of data science pipelines. These packages can support infectious disease modelling to be more robust, efficient and transparent, which has been particularly important during the COVID-19 pandemic. We developed a package for the construction of infectious disease models, integrated it with several open-source libraries and applied this composite pipeline to multiple data sources that provided insights into Australia's 2022 COVID-19 epidemic. We aimed to identify the key processes relevant to COVID-19 transmission dynamics and thereby develop a model that could quantify relevant epidemiological parameters. The pipeline's advantages include markedly increased speed, an expressive application programming interface, the transparency of open-source development, easy access to a broad range of calibration and optimisation tools and consideration of the full workflow from input manipulation through to algorithmic generation of the publication materials. Extending the base model to include mobility effects slightly improved model fit to data, with this approach selected as the model configuration for further epidemiological inference. Under our assumption of widespread immunity against severe outcomes from recent vaccination, incorporating an additional effect of the main vaccination programs rolled out during 2022 on transmission did not further improve model fit. Our simulations suggested that one in every two to six COVID-19 episodes were detected, subsequently emerging Omicron subvariants escaped 30-60% of recently acquired natural immunity and that natural immunity lasted only one to eight months on average. We documented our analyses algorithmically and present our methods in conjunction with interactive online code notebooks and plots. We demonstrate the feasibility of integrating a flexible domain-specific syntax library with state-of-the-art packages in high performance computing, calibration, optimisation and visualisation to create an end-to-end pipeline for infectious disease modelling. We used the resulting platform to demonstrate key epidemiological characteristics of the transition from the emergency to the endemic phase of the COVID-19 pandemic.
Collapse
Affiliation(s)
- James M. Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Angus E. Hughes
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David S. Shipman
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael T. Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Alec S. Henderson
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Emma S. McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Romain Ragonnet
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Smirnova A, Ye X. On optimal control at the onset of a new viral outbreak. Infect Dis Model 2024; 9:995-1006. [PMID: 38974898 PMCID: PMC11222799 DOI: 10.1016/j.idm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 07/09/2024] Open
Abstract
We propose a versatile model with a flexible choice of control for an early-pandemic outbreak prevention when vaccine/drug is not yet available. At that stage, control is often limited to non-medical interventions like social distancing and other behavioral changes. For the SIR optimal control problem, we show that the running cost of control satisfying mild, practically justified conditions generates an optimal strategy, u(t), t ∈ [0, T], that is sustainable up until some moment τ ∈ [0, T). However, for any t ∈ [τ, T], the function u(t) will decline as t approaches T, which may cause the number of newly infected people to increase. So, the window from 0 to τ is the time for public health officials to prepare alternative mitigation measures, such as vaccines, testing, antiviral medications, and others. In addition to theoretical study, we develop a fast and stable computational method for solving the proposed optimal control problem. The efficiency of the new method is illustrated with numerical examples of optimal control trajectories for various cost functions and weights. Simulation results provide a comprehensive demonstration of the effects of control on the epidemic spread and mitigation expenses, which can serve as invaluable references for public health officials.
Collapse
Affiliation(s)
- Alexandra Smirnova
- Department of Mathematics & Statistics, Georgia State University, Atlanta, USA
| | - Xiaojing Ye
- Department of Mathematics & Statistics, Georgia State University, Atlanta, USA
| |
Collapse
|
3
|
Garcia-Vilanova A, Allué-Guardia A, Chacon NM, Akhter A, Singh DK, Kaushal D, Restrepo BI, Schlesinger LS, Turner J, Weintraub ST, Torrelles JB. Proteomic analysis of lung responses to SARS-CoV-2 infection in aged non-human primates: clinical and research relevance. GeroScience 2024; 46:6395-6417. [PMID: 38969861 PMCID: PMC11493886 DOI: 10.1007/s11357-024-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
With devastating health and socioeconomic impact worldwide, much work is left to understand the Coronavirus Disease 2019 (COVID-19), with emphasis in the severely affected elderly population. Here, we present a proteomics study of lung tissue obtained from aged vs. young rhesus macaques (Macaca mulatta) and olive baboons (Papio Anubis) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using age as a variable, we identified common proteomic profiles in the lungs of aged infected non-human primates (NHPs), including key regulators of immune function, as well as cell and tissue remodeling, and discuss the potential clinical relevance of such parameters. Further, we identified key differences in proteomic profiles between both NHP species, and compared those to what is known about SARS-CoV-2 in humans. Finally, we explored the translatability of these animal models in the context of aging and the human presentation of the COVID-19.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Anna Allué-Guardia
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Nadine M Chacon
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anwari Akhter
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Dhiraj Kumar Singh
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Deepak Kaushal
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Blanca I Restrepo
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville Campus, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Larry S Schlesinger
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joanne Turner
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jordi B Torrelles
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
4
|
Bennett JM. The post-Cartesian dilemma: Reuniting the mind and body through psychoneuroimmunology. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100265. [PMID: 39391061 PMCID: PMC11465197 DOI: 10.1016/j.cpnec.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
While today, it might seem absurd to hear anyone claim that stress does not alter all aspects of the human experience, including behavioral, cognitive, affective, and physiological processes. Dr. Janice Kiecolt-Glaser started her career at a time when stress was primarily considered a neuroendocrine response with cardiovascular repercussions. She was part of a small group of innovative scientists who began to push the boundaries of stress research - many contemporary immunologists and virologist disputed their early results in 1980s and 90s - and, yet, they persevered by connecting psychological stress to altered immune function via stress-related neuroendocrine changes. As a clinical psychologist, she focused mainly on human research studies to advance the field of psychoneuroimmunology throughout her career. Her research demonstrates how adversity and psychosocial aspects of human experience alter physiological functioning, primarily immune, and health or, in other words, the embodiment of our lived experiences. This short review is a contextualized synthesis of Dr. Kiecolt-Glaser's key contributions to the fields of psychoneuroimmunology and health psychology and her influence on my present day thinking and research approaches, as well as potential steps forward in our post-pandemic world.
Collapse
Affiliation(s)
- Jeanette M. Bennett
- Department of Psychological Science, Health Psychology PhD Program, University of North Caroline at Charlotte, USA
| |
Collapse
|
5
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
7
|
Wu K, Yin L, Han J, Cai Q, Guo Y, Jin X, Wu J, Cheng Y. Case-control study on risk factors for in-hospital mortality in patients with severe COVID-19. Front Public Health 2024; 12:1424720. [PMID: 39440172 PMCID: PMC11493594 DOI: 10.3389/fpubh.2024.1424720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Objective The purpose of this study was to identify independent risk factors affecting patient survival and explore predictors of severe cases of coronavirus disease 2019 (COVID-19). Methods We conducted a retrospective, observational, case-control study on adult patients with severe COVID-19 who were admitted to affiliated hospitals in Tianjin between December 18, 2022, and January 31, 2023. We used univariate and multifactorial logistic regression analyses to analyze demographic indicators, comorbidity profiles, and laboratory parameters in two groups of patients (deceased and surviving) to identify independent risk factors for death in patients with severe COVID-19. Results Patients in the deceased group were older than those in the survival group (p = 0.018), and there were more cases of coexisting respiratory insufficiency in the deceased group (p = 0.002). Additionally, laboratory test results for white blood cell count (WBC) and creatine kinase (CK) showed significantly higher values in the deceased group (p = 0.047 and p = 0.029, respectively), while arterial oxygen partial pressure (PAO2) showed significantly lower values compared to the survival group (p = 0.021). Age, respiratory insufficiency, WBCH (highest WBC value), CKH (highest CK value), and PAO2F (first PAO2 value) had area under curve (AUC) values of 0.698, 0.838, 0.721, 0.744, and 0.633, respectively. Conclusion The main risk factors for mortality in patients with severe COVID-19 that we identified in this study were the advanced age of patients, coexisting respiratory insufficiency, elevated levels of WBC and CK, and decreased levels of PAO2. Elevated WBC and CK laboratory parameters, in particular, demonstrated good predictive value for in-hospital mortality risk.
Collapse
Affiliation(s)
- Kemei Wu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Yin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangqin Han
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuhan Cai
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Jin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Wu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Luo C, Tung TH, Zhu JS. Hesitation towards COVID-19 booster vaccination among dialysis patients: a cross-sectional study in Taizhou, China. BMC Infect Dis 2024; 24:1095. [PMID: 39358705 PMCID: PMC11445873 DOI: 10.1186/s12879-024-09917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE This research aimed to explore hesitation towards the COVID-19 booster vaccine among dialysis patients and study the association between COVID-19 pandemic-induced health behavior and vaccination hesitancy. METHODS A self-administered online questionnaire evaluating dialysis patients' hesitation to take COVID-19 booster vaccination was conducted between March 24 and 22 April 2022 in Taizhou, China. The logistic regression method was applied to identify factors associated with vaccination hesitancy, and all data were analyzed using R software. RESULTS Of the 365 study participants, 272 (74.5%) individuals hesitated to take the booster dose. Health behavior was found to be a significant factor for hesitation to take COVID-19 vaccines, with OR (95% CI) of 1.09 (1.02-1.17). Influenza vaccination history was also significantly associated with the hesitation (OR (95% CI) = 0.39 (0.21-0.74)). In addition, participants with higher education levels exhibited lower vaccine hesitancy compared to those with junior secondary or below, with ORs (95% CIs) of 0.49 (0.27-0.91) for senior secondary and 0.35 (0.14-0.89) for junior college or above, respectively. CONCLUSION The proportion of hesitancy for taking the booster vaccination of the COVID-19 vaccine was high among dialysis patients. Health behaviors, influenza vaccination history, and education levels were risk factors in their vaccination hesitancy. These findings may aid efforts to help vaccinate people with underlying diseases against future pandemics.
Collapse
Affiliation(s)
- Chengwen Luo
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China.
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, China.
| | - Jian-Sheng Zhu
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China.
| |
Collapse
|
9
|
Tan X, Gao X, Zheng H, Yuan H, Liu H, Ran Q, Luo M. Platelet dysfunction caused by differentially expressed genes as key pathogenic mechanisms in COVID-19. Minerva Cardiol Angiol 2024; 72:517-534. [PMID: 38804627 DOI: 10.23736/s2724-5683.24.06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became prevalent worldwide, which brought a heavy medical burden and tremendous economic losses to the world population. In addition to the common clinical respiratory symptoms such as fever, cough and headache, patients with COVID-19 often have hematological diseases, especially platelet dysfunction. Platelet dysfunction usually leads to multiple organ dysfunction, which is closely related to patient severity or mortality. In addition, studies have confirmed significant changes in the gene expression profile of circulating platelets under SARS-CoV-2 infection, which will further lead to changes in platelet function. At the same time, studies have shown that platelets may absorb SARS-COV-2 mRNA independently of ACE2, which further emphasizes the importance of the stability of platelet function in defense against SARS-CoV-2 infection. This study reviewed the relationship between COVID-19 and platelet and SARS-CoV-2 damage to the circulatory system, and further analyzed the significantly differentially expressed mRNA in platelets after infection with SARS-CoV-2 on the basis of previous studies. The top eight hub genes were identified as NLRP3, MT-CO1, CD86, ICAM1, MT-CYB, CASP8, CXCL8 and CXCR4. Subsequently, the effects of SARS-CoV-2 infection on platelet transcript abnormalities and platelet dysfunction were further explored on the basis of 8 hub genes. Finally, the treatment measures of complications caused by platelet dysfunction in patients with COVID-19 were discussed in detail, so as to provide reference for the prevention, diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyong Tan
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Huanhuan Zheng
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Yuan
- Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Qijun Ran
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China -
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Nkodo JA, Gana W, Debacq C, Aïdoud A, Camus V, Leroy V, Fougère B. Support for Nursing Home Caregivers During the COVID-19 Pandemic: A Review. J Gerontol Nurs 2024; 50:24-33. [PMID: 39361639 DOI: 10.3928/00989134-20240912-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
PURPOSE To review support systems for nursing home caregivers (NHCGs) that were implemented during the first year of the coronavirus disease 2019 (COVID-19) pandemic. METHOD Database searches in PubMed, ScienceDirect, and CINAHL resulted in five publications. RESULTS Studies differed in design, interventions, and outcomes. An urgent eye movement desensitization and reprocessing protocol was feasible and effective among nurses in services highly mobilized during the acute phase of the pandemic. The "self-help plus" psychological intervention was not associated with significant reductions in anxiety or posttraumatic symptoms but prompted exploration of non-specific factors influencing its effectiveness. The Extension for Community Healthcare Outcomes in Long-Term Care of the Elderly virtual program increased confidence among NHCGs. Self-compassion training was associated with positive changes for certified nursing assistants. Weekly debriefing sessions implemented at one hospital highlighted pathogenic and salutogenic factors. CONCLUSION The COVID-19 pandemic had a marked psychosocial impact on NHCGs and necessitated targeted interventions. Despite their limitations, these promising studies provided insights into potential support avenues. Policy considerations should stress the pivotal role of advanced practice nurses in shaping supportive work environments. Future research should focus on robust assessments of the efficacy of psychosocial interventions for NHCGs facing ongoing challenges posed by the pandemic, and even recurrent viral epidemics. [Journal of Gerontological Nursing, 50(10), 24-33.].
Collapse
|
11
|
Kayano T, Sasanami M, Nishiura H. Science-based exit from stringent countermeasures against COVID-19: Mortality prediction using immune landscape between 2021 and 2022 in Japan. Vaccine X 2024; 20:100547. [PMID: 39238533 PMCID: PMC11375238 DOI: 10.1016/j.jvacx.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
Background Stringent public health and social measures against COVID-19 infection were implemented to avoid an overwhelming hospital caseload and excessive number of deaths, especially among elderly people. We analyzed population-level immunity and predicted mortality, calculated as the potential number of deaths on a given calendar date in Japan, to develop a science-based exit strategy from stringent control measures. Methods Immune proportions were inferred by age group using vaccination coverage data and the estimated number of naturally infected individuals. Immunity against symptomatic illness and death were estimated separately, allowing for inference of the immune fraction that was protected against either COVID-19-related symptomatic infection or death. By multiplying the infection fatality risk by age group for the immune fraction, the potential number of deaths was obtained. Results Accounting for a second and third dose of messenger RNA vaccine in the present-day population, approximately 155,000 potential deaths would be expected among people aged ≥ 60 years if all individuals were infected at the very end of 2022. A fourth dose (i.e., second booster) with a coverage identical to that of the third dose could reduce mortality by 60%. In all examined settings, the largest number of deaths occurred among people aged 80 years and older. Conclusions Our estimates can help policymakers understand the mortality impact of the COVID-19 epidemic in a quantitative manner and the critical importance of timely immunization so as to assist in decision making.
Collapse
Affiliation(s)
- Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Health Security, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Misaki Sasanami
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Health Security, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Xia S, Bei F, Cai C, Xu L, Gong X, Wang J, Zhang Y, Huang H, Xia H. Clinical characteristics and outcomes of neonatal SARS-CoV-2 infection after the release of the epidemic situation of COVID-19. BMC Pediatr 2024; 24:616. [PMID: 39342170 PMCID: PMC11437735 DOI: 10.1186/s12887-024-05096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND With the release of the coronavirus disease 2019 (COVID-19) pandemic in late 2022 in China, the number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) roared, including neonatal cases. However, there were few studies on neonatal COVID-19, especially multi-center case reports. This study aimed to explore clinical characteristics and short-term outcomes of neonatal COVID-19 in China. METHODS We reviewed 187 cases of neonatal COVID-19 between December 11, 2022, and January 12, 2023. The diagnosis was assessed by symptoms, laboratory tests, X-ray manifestations, and diagnosis code. Clinical characteristics and outcomes were evaluated. RESULTS In 187 neonatal cases with COVID-19, 84 (44.9%) had severe SARS-CoV-2 infection. Most patients had confirmed exposure to SARS-CoV-2. Fever and respiratory symptoms were common (75.4% and 71.7%, respectively). Severe patients were more likely to have high alanine transaminase (ALT) (> 40U/L) (11.9% vs. 3.9%) and high N-terminal pro-brain natriuretic peptide (NT-proBNP) (> 2000pg/mL) (38.0% vs. 19.6%), compared with nonsevere ones (P < 0.05). None of the patients received COVID-19-specific medical interventions. A few severe patients received corticosteroids (1.1%), and immunoglobulin (0.5%), respectively. All patients were discharged home after the medical care with a median length of stay (LOS) of four days and none of them met the criteria of multisystem inflammatory syndrome in neonates (MIS-N). CONCLUSIONS After the release of the epidemic situation of COVID-19 in late 2022 in China, more neonatal cases with severe COVID-19 had high ALT and NT-proBNP level. Few specific medical interventions were given, and the outcome was satisfying.
Collapse
Affiliation(s)
- Siyi Xia
- Department of Neonatology, Xinhua Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Bei
- Department of Neonatology, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liqing Xu
- Department of Neonatology, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Wang
- Department of Neonatology, Jiaxing Maternity and Child Health Care Hospital, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafei Huang
- Department of Neonatology, Jiaxing Maternity and Child Health Care Hospital, Shanghai, China.
| | - Hongping Xia
- Department of Neonatology, Xinhua Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Ferreira da Silva L, Valle Garay A, Queiroz PF, Garcia de Resende S, Gomide M, Moreira de Oliveira IC, Souza Bernasol A, Arce A, Canet Santos L, Torres F, Silva-Pereira I, de Freitas SM, Marques Coelho C. A novel viral RNA detection method based on the combined use of trans-acting ribozymes and HCR-FRET analyses. PLoS One 2024; 19:e0310171. [PMID: 39325749 PMCID: PMC11426510 DOI: 10.1371/journal.pone.0310171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The diagnoses of retroviruses are essential for controlling the rapid spread of pandemics. However, the real-time Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR), which has been the gold standard for identifying viruses such as SARS-CoV-2 in the early stages of infection, is associated with high costs and logistical challenges. To innovate in viral RNA detection a novel molecular approach for detecting SARS-CoV-2 viral RNA, as a proof of concept, was developed. This method combines specific viral gene analysis, trans-acting ribozymes, and Fluorescence Resonance Energy Transfer (FRET)-based hybridization of fluorescent DNA hairpins. In this molecular mechanism, SARS-CoV-2 RNA is specifically recognized and cleaved by ribozymes, releasing an initiator fragment that triggers a hybridization chain reaction (HCR) with DNA hairpins containing fluorophores, leading to a FRET process. A consensus SARS-CoV-2 RNA target sequence was identified, and specific ribozymes were designed and transcribed in vitro to cleave the viral RNA into fragments. DNA hairpins labeled with Cy3/Cy5 fluorophores were then designed and synthesized for HCR-FRET assays targeting the RNA fragment sequences resulting from ribozyme cleavage. The results demonstrated that two of the three designed ribozymes effectively cleaved the target RNA within 10 minutes. Additionally, DNA hairpins labeled with Cy3/Cy5 pairs efficiently detected target RNA specifically and triggered detectable HCR-FRET reactions. This method is versatile and can be adapted for use with other viruses. Furthermore, the design and construction of a DIY photo-fluorometer prototype enabled us to explore the development of a simple and cost-effective point-of-care detection method based on digital image analysis.
Collapse
Affiliation(s)
- Leonardo Ferreira da Silva
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Aisel Valle Garay
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Pedro Felipe Queiroz
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sophia Garcia de Resende
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Mayna Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Izadora Cristina Moreira de Oliveira
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Amanda Souza Bernasol
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Anibal Arce
- Institute for biological and medical engineering, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Liem Canet Santos
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Fernando Torres
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| |
Collapse
|
14
|
Desai R, Mellacheruvu SP, Akella SA, Mohammed AS, Hussain M, Mohammed AA, Saketha P, Sunkara P, Gummadi J, Ghantasala P. Recurrent stroke admissions with vs without COVID-19 and associated in-hospital mortality: A United States nationwide analysis, 2020. World J Virol 2024; 13:96453. [PMID: 39323442 PMCID: PMC11401001 DOI: 10.5501/wjv.v13.i3.96453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has been shown to increase the risk of stroke. However, the prevalence and risk of recurrent stroke in COVID-19 patients with prior stroke/transient ischemic attack (TIA), as well as its impact on mortality, are not established. AIM To evaluate the impact of COVID-19 on in-hospital mortality, length of stay, and healthcare costs in patients with recurrent strokes. METHODS We identified admissions of recurrent stroke (current acute ischemic stroke admissions with at least one prior TIA or stroke) in patients with and without COVID-19 using ICD-10-CM codes using the National Inpatient Sample (2020). We analyzed the impact of COVID-19 on mortality following recurrent stroke admissions by subgroups. RESULTS Of 97455 admissions with recurrent stroke, 2140 (2.2%) belonged to the COVID-19-positive group. The COVID-19-positive group had a higher prevalence of diabetes and chronic kidney disease vs the COVID-19 negative group (P < 0.001). Among the subgroups, patients aged > 65 years, patients aged 45-64 years, Asians, Hispanics, whites, and blacks in the COVID-19 positive group had higher rates of all-cause mortality than the COVID-19 negative group (P < 0.01). Higher odds of in-hospital mortality were seen in the group aged 45-64 (OR: 8.40, 95%CI: 4.18-16.91) vs the group aged > 65 (OR: 7.04, 95%CI: 5.24-9.44), males (OR: 7.82, 95%CI: 5.38-11.35) compared to females (OR: 6.15, 95%CI: 4.12-9.18), and in Hispanics (OR: 15.47, 95%CI: 7.61-31.44) and Asians/Pacific Islanders (OR: 14.93, 95%CI: 7.22-30.87) compared to blacks (OR: 5.73, 95%CI: 3.08-10.68), and whites (OR: 5.54, 95%CI: 3.79-8.09). CONCLUSION The study highlights the increased risk of all-cause in-hospital mortality in recurrent stroke patients with COVID-19, with a more pronounced increase in middle-aged patients, males, Hispanics, or Asians.
Collapse
Affiliation(s)
- Rupak Desai
- Outcomes Research, Independent Researcher, Atlanta, GA 30033, United States
| | | | - Sai Anusha Akella
- Department of Internal Medicine, One Brooklyn Health- Interfaith Medical Center, Brooklyn, NY 11213, United States
| | - Adil Sarvar Mohammed
- Department of Internal Medicine, Central Michigan University College of Medicine, Saginaw, MI 48602, United States
| | - Mushfequa Hussain
- Department of Internal Medicine, Kamineni Institute of Medical Sciences, Narketpally 508254, India
| | - Abdul Aziz Mohammed
- Department of Internal Medicine, Kamineni Institute of Medical Sciences, Narketpally 508254, India
| | - Pakhal Saketha
- Department of Internal Medicine, Bhaskar Medical College, Moinabad 500075, Hyderabad, India
| | - Praveena Sunkara
- Department of Internal Medicine, MedStar Medical Group, Charlotte Hall, MD 20622, United States
| | - Jyotsna Gummadi
- Department of Medicine, Medstar Franklin Square Medical Center, Baltimore, MD 21237, United States
| | - Paritharsh Ghantasala
- Department of Internal Medicine, Central Michigan University College of Medicine, Saginaw, MI 48602, United States
| |
Collapse
|
15
|
Zhang G, Wang K, Ba L, Dong S, Gao J. Dynamic changes in the circulation of respiratory pathogens in children during and after the containment of the 2019 coronavirus disease pandemic in Kunming, China. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04945-1. [PMID: 39292354 DOI: 10.1007/s10096-024-04945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE We aimed to determine the changes in the frequency of respiratory pathogens and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during containment of the 2019 coronavirus disease pandemic and elucidate the epidemiological interference that may have occurred after lifting pandemic measures. METHODS A total of 4,770 Nasopharyngeal swab samples were collected from children with ARTIs from the First People's Hospital of Yunnan Province between January 2022 and December 2023 and subjected to nucleic acid testing for 13 types of respiratory pathogens and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS The frequency of pathogens among children from 2020 to 2022 was in the following order: HRV > Mp > HADV > H3N2 > HMPV and HRV > HRSV > HPIV > H1N1 > H3N2. In weeks 1 to 3 of 2023, the frequency of pathogens significantly declined, and then H1N1 rebounded significantly in 2023. HRV, HRSV, and H3N2 showed a shift in the season of high frequency. Patterns of multi-pathogen infections were more complex in 2023 than in 2022, with HRV having a higher frequency and co-infection rate than other pathogens. These changes may have been associated with interference caused by the resurgence of SARS-CoV-2 prevalence, in addition to being influenced by changes in pandemic containment and lifting measures. CONCLUSIONS The frequency rate of common respiratory pathogens among children was not significantly different and remained high. The study findings help elucidate the aforementioned unique historical period and effectively control respiratory tract infections to reduce the harm to pediatric health caused by respiratory pathogens.
Collapse
Affiliation(s)
- Guiqian Zhang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Basic and Clinical Medicine, Yunnan Provincial Key Laboratory of Clinical Virology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650100, China
| | - Kaimei Wang
- Department of Medical Technology, Yunnan University of Business Management, Kunming, Yunnan, China
| | - Limei Ba
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shumei Dong
- Department of Medical Technology, Yunnan University of Business Management, Kunming, Yunnan, China
| | - Jianmei Gao
- Institute of Basic and Clinical Medicine, Yunnan Provincial Key Laboratory of Clinical Virology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650100, China.
| |
Collapse
|
16
|
Manfroi B, Cuc BT, Sokal A, Vandenberghe A, Temmam S, Attia M, El Behi M, Camaglia F, Nguyen NT, Pohar J, Salem-Wehbe L, Pottez-Jouatte V, Borzakian S, Elenga N, Galeotti C, Morelle G, de Truchis de Lays C, Semeraro M, Romain AS, Aubart M, Ouldali N, Mahuteau-Betzer F, Beauvineau C, Amouyal E, Berthaud R, Crétolle C, Arnould MD, Faye A, Lorrot M, Benoist G, Briand N, Courbebaisse M, Martin R, Van Endert P, Hulot JS, Blanchard A, Tartour E, Leite-de-Moraes M, Lezmi G, Ménager M, Luka M, Reynaud CA, Weill JC, Languille L, Michel M, Chappert P, Mora T, Walczak AM, Eloit M, Bacher P, Scheffold A, Mahévas M, Sermet-Gaudelus I, Fillatreau S. Preschool-age children maintain a distinct memory CD4 + T cell and memory B cell response after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadl1997. [PMID: 39292802 DOI: 10.1126/scitranslmed.adl1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/19/2024] [Indexed: 09/20/2024]
Abstract
The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.
Collapse
Affiliation(s)
- Benoît Manfroi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Bui Thi Cuc
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Aurélien Sokal
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), 92110 Clichy, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, 75015 Paris, France
| | - Mohamed El Behi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Francesco Camaglia
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Ngan Thu Nguyen
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Jelka Pohar
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Immunology and Cellular Immunotherapy (ICI) Group, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Layale Salem-Wehbe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Valentine Pottez-Jouatte
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Sibyline Borzakian
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Narcisse Elenga
- Service de Pédiatrie, Centre Hospitalier de Cayenne, 97300 French Guiana
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Bicêtre Hospital, AP-HP, Paris-Saclay University, 94275 Le Kremlin-Bicêtre, France
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Camille de Truchis de Lays
- Service de Pédiatrie. Hôpital Jean-Verdier, AP-HP, Hôpitaux Universitaires Paris Seine-Saint-Denis, 93140 Bondy, France
| | - Michaela Semeraro
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Anne-Sophie Romain
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Mélodie Aubart
- INSERM U1163, Genetic Predisposition to Infectious Diseases, Imagine Institute, Université Paris Cité, Paris F-75015, France
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Naim Ouldali
- Department of General Pediatrics, Pediatric Infectious Disease and Internal Medicine, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France
- Paris Cité University, INSERM UMR 1137, Infection, Antimicrobials, Modelling, Evolution (IAME), 75018 Paris, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Claire Beauvineau
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Elsa Amouyal
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, 75005 Paris, France
| | - Romain Berthaud
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Célia Crétolle
- Département de Pédiatrie, Service de Chirurgie viscérale pédiatrique, Hôpital Universitaire Necker-Enfants Malades, GH Paris Centre, 75015 Paris, France
| | - Marc Duval Arnould
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Albert Faye
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Mathie Lorrot
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Grégoire Benoist
- Service de pédiatrie générale et hôpital de jour allergologie, CHU Ambroise-Paré, AP-HP, 92100 Boulogne-Billancourt, France
| | - Nelly Briand
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, 75908 Paris Cedex 15, France
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Peter Van Endert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Jean-Sébastien Hulot
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
| | - Anne Blanchard
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
- Sorbonne Paris Cité, Paris Descartes University, 75015 Paris, France
| | - Eric Tartour
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Department of Immunology, Hôpital Européen Georges-Pompidou, AP-HP, CEDEX 15, 75908 Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, 75015 Paris, France
| | - Mickael Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Pascal Chappert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthieu Mahévas
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Simon Fillatreau
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
17
|
Stiel L, Gaudet A, Thietart S, Vallet H, Bastard P, Voiriot G, Oualha M, Sarton B, Kallel H, Brechot N, Kreitmann L, Benghanem S, Joffre J, Jouan Y. Innate immune response in acute critical illness: a narrative review. Ann Intensive Care 2024; 14:137. [PMID: 39227416 PMCID: PMC11371990 DOI: 10.1186/s13613-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Activation of innate immunity is a first line of host defense during acute critical illness (ACI) that aims to contain injury and avoid tissue damages. Aberrant activation of innate immunity may also participate in the occurrence of organ failures during critical illness. This review aims to provide a narrative overview of recent advances in the field of innate immunity in critical illness, and to consider future potential therapeutic strategies. MAIN TEXT Understanding the underlying biological concepts supporting therapeutic strategies modulating immune response is essential in decision-making. We will develop the multiple facets of innate immune response, especially its cellular aspects, and its interaction with other defense mechanisms. We will first describe the pathophysiological mechanisms of initiation of innate immune response and its implication during ACI. We will then develop the amplification of innate immunity mediated by multiple effectors. Our review will mainly focus on myeloid and lymphoid cellular effectors, the major actors involved in innate immune-mediated organ failure. We will third discuss the interaction and integration of innate immune response in a global view of host defense, thus considering interaction with non-immune cells through immunothrombosis, immunometabolism and long-term reprogramming via trained immunity. The last part of this review will focus on the specificities of the immune response in children and the older population. CONCLUSIONS Recent understanding of the innate immune response integrates immunity in a highly dynamic global vision of host response. A better knowledge of the implicated mechanisms and their tissue-compartmentalization allows to characterize the individual immune profile, and one day eventually, to develop individualized bench-to-bedside immunomodulation approaches as an adjuvant resuscitation strategy.
Collapse
Affiliation(s)
- Laure Stiel
- Department of Intensive Care Medicine, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France.
- Lipness Team, INSERM Research Team, LNC UMR 1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.
| | - Alexandre Gaudet
- CHU Lille, Department of Intensive Care Medicine, Critical Care Center, Univ. Lille, 59000, Lille, France
- CIIL (Centre d'Infection et d'Immunité de Lille), Institut Pasteur de Lille, U1019-UMR9017, 59000, Lille, France
| | - Sara Thietart
- Département de Gériatrie, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
- Inserm, PARCC U970, F75, Université Paris Cité, Paris, France
| | - Hélène Vallet
- Department of Geriatric Medicine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Saint Antoine, Paris, France
- INSERM UMR1135, Centre d'immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Hôpitaux de Paris, Paris, France
- Centre de Recherche, Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Assistance Publique, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre-Paris University, Paris, France
| | - Benjamine Sarton
- Service de Réanimation Polyvalente Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- ToNIC Lab (Toulouse NeuroImaging Center) INSERM/UPS UMR 1214, 31300, Toulouse, France
| | - Hatem Kallel
- Service de Réanimation, Centre Hospitalier de Cayenne, Guyane, France
| | - Nicolas Brechot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Center for Interdisciplinary Research in Biology (CIRB)-UMRS, INSERM U1050-CNRS 7241, College de France, Paris, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Sarah Benghanem
- Service de Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jérémie Joffre
- Service de Réanimation Médicale, Hôpital de Saint Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint Antoine INSERM, U938, Sorbonne University, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France
- Services de Réanimation Chirurgicale Cardiovasculaire et de Chirurgie Cardiaque, CHRU Tours, Tours, France
- INSERM, U1100 Centre d'Etudes des Pathologies Respiratoires, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
18
|
van der Mescht MA, de Beer Z, Steel HC, Anderson R, Masenge A, Moore PL, Bastard P, Casanova JL, Abdullah F, Ueckermann V, Rossouw TM. Aberrant innate immune profile associated with COVID-19 mortality in Pretoria, South Africa. Clin Immunol 2024; 266:110323. [PMID: 39029640 DOI: 10.1016/j.clim.2024.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-β1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.
Collapse
Affiliation(s)
- Mieke A van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Zelda de Beer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane District Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Penny L Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa; Office of AIDS and TB Research, South African Medical Research Council, Pretoria, South Africa; Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
19
|
Liu R, Li J, Wen Y, Li H, Zhang P, Sheng B, Feng DD. DDE: Deep Dynamic Epidemiological Modeling for Infectious Illness Development Forecasting in Multi-level Geographic Entities. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2024; 8:478-505. [PMID: 39131102 PMCID: PMC11310392 DOI: 10.1007/s41666-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 08/13/2024]
Abstract
Understanding and addressing the dynamics of infectious diseases, such as coronavirus disease 2019, are essential for effectively managing the current situation and developing intervention strategies. Epidemiologists commonly use mathematical models, known as epidemiological equations (EE), to simulate disease spread. However, accurately estimating the parameters of these models can be challenging due to factors like variations in social distancing policies and intervention strategies. In this study, we propose a novel method called deep dynamic epidemiological modeling (DDE) to address these challenges. The DDE method combines the strengths of EE with the capabilities of deep neural networks to improve the accuracy of fitting real-world data. In DDE, we apply neural ordinary differential equations to solve variant-specific equations, ensuring a more precise fit for disease progression in different geographic regions. In the experiment, we tested the performance of the DDE method and other state-of-the-art methods using real-world data from five diverse geographic entities: the USA, Colombia, South Africa, Wuhan in China, and Piedmont in Italy. Compared to the state-of-the-art method, DDE significantly improved accuracy, with an average fitting Pearson coefficient exceeding 0.97 across the five geographic entities. In summary, the DDE method enhances the accuracy of parameter fitting in epidemiological models and provides a foundation for constructing simpler models adaptable to different geographic areas.
Collapse
Affiliation(s)
- Ruhan Liu
- Furong Laboratory, Central South University, Changsha, 410012 Hunan China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, 410008 Hunan China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 Shanghai China
| | - Yang Wen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 Shanghai China
| | - Ping Zhang
- Department of Computer Science and Engineering, The Ohio State University, Columbus, 43210 OH USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210 OH USA
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 Shanghai China
| | - David Dagan Feng
- School of Computer Science, The University of Sydney, Sydney, 410008 New South Wales Australia
| |
Collapse
|
20
|
Cori A, Kucharski A. Inference of epidemic dynamics in the COVID-19 era and beyond. Epidemics 2024; 48:100784. [PMID: 39167954 DOI: 10.1016/j.epidem.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
The COVID-19 pandemic demonstrated the key role that epidemiology and modelling play in analysing infectious threats and supporting decision making in real-time. Motivated by the unprecedented volume and breadth of data generated during the pandemic, we review modern opportunities for analysis to address questions that emerge during a major modern epidemic. Following the broad chronology of insights required - from understanding initial dynamics to retrospective evaluation of interventions, we describe the theoretical foundations of each approach and the underlying intuition. Through a series of case studies, we illustrate real life applications, and discuss implications for future work.
Collapse
Affiliation(s)
- Anne Cori
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, United Kingdom.
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, United Kingdom.
| |
Collapse
|
21
|
Haoyu W, Meiqin L, Jiaoyang S, Guangliang H, Haofeng L, Pan C, Xiongzhi Q, Kaixin W, Mingli H, Xuejie Y, Lämmermann I, Grillari J, Zhengli S, Jiekai C, Guangming W. Premature aging effects on COVID-19 pathogenesis: new insights from mouse models. Sci Rep 2024; 14:19703. [PMID: 39181932 PMCID: PMC11344828 DOI: 10.1038/s41598-024-70612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Aging is identified as a significant risk factor for severe coronavirus disease-2019 (COVID-19), often resulting in profound lung damage and mortality. Yet, the biological relationship between aging, aging-related comorbidities, and COVID-19 remains incompletely understood. This study aimed to elucidate the age-related COVID19 pathogenesis using an Hutchinson-Gilford progeria syndrome (HGPS) mouse model, a premature aging disease model, with humanized ACE2 receptors. Pathological features were compared between young, aged, and HGPS hACE2 mice following SARS-CoV-2 challenge. We demonstrated that young mice display robust interferon response and antiviral activity, whereas this response is attenuated in aged mice. Viral infection in aged mice results in severe respiratory tract hemorrhage, likely contributing a higher mortality rate. In contrast, HGPS hACE2 mice exhibit milder disease manifestations characterized by minor immune cell infiltration and dysregulation of multiple metabolic processes. Comprehensive transcriptome analysis revealed both shared and unique gene expression dynamics among different mouse groups. Collectively, our studies evaluated the impact of SARS-CoV-2 infection on progeroid syndromes using a HGPS hACE2 mouse model, which holds promise as a useful tool for investigating COVID-19 pathogenesis in individuals with premature aging.
Collapse
Affiliation(s)
- Wu Haoyu
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Liu Meiqin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China
| | - Sun Jiaoyang
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Hong Guangliang
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lin Haofeng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Pan
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Quan Xiongzhi
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wu Kaixin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Hu Mingli
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Xuejie
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200, Vienna, Austria
| | - Shi Zhengli
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Jiekai
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Kowloon, 999077, Hong Kong SAR, China.
| | - Wu Guangming
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China.
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
22
|
Huang Q. Spatial, temporal, and demographic nonstationary dynamics of COVID-19 exposure among older adults in the U.S. PLoS One 2024; 19:e0307303. [PMID: 39172979 PMCID: PMC11341038 DOI: 10.1371/journal.pone.0307303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
This study examines demographic disparities in COVID-19 exposures across older adults age 60-79 and older adults age 80 and over, and explores the factors driving these dynamics in the United States (U.S.) from January 2020 to July 2022. Spatial clusters were identified, and 14 main health determinants were synthesized from 62 pre-existing county-level variables. The study also assessed the correlation between these health determinants and COVID-19 incidence rates for both age groups during the pandemic years. Further examination of incidence rates in relation to health determinants was carried out through statistical and spatial regression models. Results show that individuals aged 80 and over had much higher hospitalization rates, death rates, and case-fatality rates in 2020-2022. Spatial results indicate that the geographical cluster of high incidence rates for both groups shifted from the Midwest at the beginning of the pandemic to the Southwest in 2022. The study revealed marked spatial, temporal, and demographic nonstationary dynamics in COVID-19 exposures, indicating that the health effects of contextual factors vary across age groups. COVID-19 incidence rates in older adults were strongly influenced by race, healthcare access, social capital, environment, household composition, and mobility. Future public health policies and mitigations should further their efforts by considering temporal and demographic nonstationarity as well as local conditions.
Collapse
Affiliation(s)
- Qian Huang
- Center for Rural Health Research, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United States of America
| |
Collapse
|
23
|
Akpoviroro O, Sauers NK, Uwandu Q, Castagne M, Akpoviroro OP, Humayun S, Mirza W, Woodard J. Severe COVID-19 infection: An institutional review and literature overview. PLoS One 2024; 19:e0304960. [PMID: 39163410 PMCID: PMC11335168 DOI: 10.1371/journal.pone.0304960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/21/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Our study aimed to describe the group of severe COVID-19 patients at an institutional level, and determine factors associated with different outcomes. METHODS A retrospective chart review of patients admitted with severe acute hypoxic respiratory failure due to COVID-19 infection. Based on outcomes, we categorized 3 groups of severe COVID-19: (1) Favorable outcome: progressive care unit admission and discharge (2) Intermediate outcome: ICU care (3) Poor outcome: in-hospital mortality. RESULTS Eighty-nine patients met our inclusion criteria; 42.7% were female. The average age was 59.7 (standard deviation (SD):13.7). Most of the population were Caucasian (95.5%) and non-Hispanic (91.0%). Age, sex, race, and ethnicity were similar between outcome groups. Medicare and Medicaid patients accounted for 62.9%. The average BMI was 33.5 (SD:8.2). Moderate comorbidity was observed, with an average Charlson Comorbidity index (CCI) of 3.8 (SD:2.6). There were no differences in the average CCI between groups(p = 0.291). Many patients (67.4%) had hypertension, diabetes (42.7%) and chronic lung disease (32.6%). A statistical difference was found when chronic lung disease was evaluated; p = 0.002. The prevalence of chronic lung disease was 19.6%, 27.8%, and 40% in the favorable, intermediate, and poor outcome groups, respectively. Smoking history was associated with poor outcomes (p = 0.04). Only 7.9% were fully vaccinated. Almost half (46.1%) were intubated and mechanically ventilated. Patients spent an average of 12.1 days ventilated (SD:8.5), with an average of 6.0 days from admission to ventilation (SD:5.1). The intermediate group had a shorter average interval from admission to ventilator (77.2 hours, SD:67.6), than the poor group (212.8 hours, SD:126.8); (p = 0.001). The presence of bacterial pneumonia was greatest in the intermediate group (72.2%), compared to the favorable group (17.4%), and the poor group (56%); this was significant (p<0.0001). In-hospital mortality was seen in 28.1%. CONCLUSION Most patients were male, obese, had moderate-level comorbidity, a history of tobacco abuse, and government-funded insurance. Nearly 50% required mechanical ventilation, and about 28% died during hospitalization. Bacterial pneumonia was most prevalent in intubated groups. Patients who were intubated with a good outcome were intubated earlier during their hospital course, with an average difference of 135.6 hours. A history of cigarette smoking and chronic lung disease were associated with poor outcomes.
Collapse
Affiliation(s)
- Ogheneyoma Akpoviroro
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Nathan Kyle Sauers
- Department of Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Queeneth Uwandu
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Myriam Castagne
- Clinical & Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | | | - Sara Humayun
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Wasique Mirza
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| | - Jameson Woodard
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|
24
|
Luo YW, Zhou JP, Ji H, Xu D, Zheng A, Wang X, Dai Z, Luo Z, Cao F, Wang XY, Bai Y, Chen D, Chen Y, Wang Q, Yang Y, Zhang X, Chiu S, Peng X, Huang AL, Tang KF. SARS-CoV-2 N protein-induced Dicer, XPO5, SRSF3, and hnRNPA3 downregulation causes pneumonia. Nat Commun 2024; 15:6964. [PMID: 39138195 PMCID: PMC11322655 DOI: 10.1038/s41467-024-51192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.
Collapse
Grants
- 81972648 National Natural Science Foundation of China (National Science Foundation of China)
- CSTB2023NSCQ-BHX0134 Chongqing Postdoctoral Science Foundation
- 82172915 National Natural Science Foundation of China (National Science Foundation of China)
- 81773011 National Natural Science Foundation of China (National Science Foundation of China)
- I01 HX000134 HSRD VA
- The National Key Research and Development Program is aimed at addressing major scientific and technological issues that are crucial to the national economy, people's livelihood, public welfare, industrial core competitiveness, overall capability for independent innovation, and national security. It aims to overcome technological bottlenecks in key areas of national economic and social development. This program integrates several initiatives previously managed by different departments, including the National Basic Research Program of Ministry of Science and Technology, the National High-Tech Research and Development Program, the National Science and Technology Support Program, special projects for international science and technology cooperation and exchange, industrial technology research and development funds co-managed by the National Development and Reform Commission and the Ministry of Industry and Information Technology, as well as public welfare industry scientific research special projects managed by 13 departments including the Ministry of Agriculture and the National Health and Family Planning Commission, into a unified national key R&D program.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiang-Peng Zhou
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hongyu Ji
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Doudou Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhizheng Dai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhicheng Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Fang Cao
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xing-Yue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yunfang Bai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Di Chen
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qi Wang
- Department of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, PR China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, PR China
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, PR China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
25
|
Ingelbeen B, Cumbane V, Mandlate F, Barbé B, Nhachungue SM, Cavele N, Manhica C, Cubai C, Nguenha NMC, Lacroix A, Mariën J, de Weggheleire A, van Kleef E, Selhorst P, van der Sande MAB, Peeters M, Widdowson MA, Ismael N, Macicame I. Mild and moderate COVID-19 during Alpha, Delta and Omicron pandemic waves in urban Maputo, Mozambique, December 2020-March 2022: A population-based surveillance study. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003550. [PMID: 39102391 PMCID: PMC11299809 DOI: 10.1371/journal.pgph.0003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
In sub-Saharan Africa, reported COVID-19 numbers have been lower than anticipated, even when considering populations' younger age. The extent to which risk factors, established in industrialised countries, impact the risk of infection and of disease in populations in sub-Saharan Africa, remains unclear. We estimated the incidence of mild and moderate COVID-19 in urban Mozambique and analysed factors associated with infection and disease in a population-based surveillance study. During December 2020-March 2022, 1,561 households (6,049 participants, median 21 years, 54.8% female, 7.3% disclosed HIV positive) of Polana Caniço, Maputo, Mozambique, were visited biweekly to report respiratory symptoms, anosmia, or ageusia, and self-administer a nasal swab for SARS-CoV-2 testing. Every three months, dried blood spots of a subset of participants (1,412) were collected for detection of antibodies against SARS-CoV-2 spike glycoprotein and nucleocapsid protein. Per 1000 person-years, 364.5 (95%CI 352.8-376.1) respiratory illness episodes were reported, of which 72.2 (95%CI 60.6-83.9) were COVID-19. SARS-CoV-2 seroprevalence rose from 4.8% (95%CI 1.1-8.6%) in December 2020 to 34.7% (95%CI 20.2-49.3%) in June 2021, when 3.0% were vaccinated. Increasing age, chronic lung disease, hypertension, and overweight increased risk of COVID-19. Older age increased the risk of SARS-CoV-2 seroconversion. We observed no association between socio-economic status, behaviour and COVID-19 or SARS-CoV-2 seroconversion. Active surveillance in an urban population confirmed frequent COVID-19 underreporting, yet indicated that the large majority of cases were mild and non-febrile. In contrast to reports from industrialised countries, social deprivation did not increase the risk of infection nor disease.
Collapse
Affiliation(s)
- Brecht Ingelbeen
- Instituut voor Tropische Geneeskunde, Antwerp, Belgium
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| | - Victória Cumbane
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| | - Ferão Mandlate
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| | - Barbara Barbé
- Instituut voor Tropische Geneeskunde, Antwerp, Belgium
| | | | - Nilzio Cavele
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| | - Cremildo Manhica
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| | - Catildo Cubai
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| | | | - Audrey Lacroix
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
| | | | | | - Esther van Kleef
- Instituut voor Tropische Geneeskunde, Antwerp, Belgium
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| | | | - Marianne A. B. van der Sande
- Instituut voor Tropische Geneeskunde, Antwerp, Belgium
- Julius Center for Health Sciences and Primary Care, Utrecht University, Utrecht, The Netherlands
| | - Martine Peeters
- TransVIHMI (Recherches Translationnelles sur VIH et Maladies Infectieuses), Université de Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
| | | | - Nalia Ismael
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| | - Ivalda Macicame
- Instituto Nacional de Saúde, Ministry of Health, Marracuene, Mozambique
| |
Collapse
|
26
|
Su Z, Li Y, Xie Y, Huang Z, Cheng A, Zhou X, Li J, Qin R, Wei X, Liu Y, Xia X, Song Q, Zhao L, Liu Z, Xiao D, Wang C. Acute and long COVID-19 symptoms and associated factors in the omicron-dominant period: a nationwide survey via the online platform Wenjuanxing in China. BMC Public Health 2024; 24:2086. [PMID: 39090598 PMCID: PMC11295386 DOI: 10.1186/s12889-024-19510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUNDS To our knowledge, there is no available nationwide data on omicron symptom patterns in China mainland. We aim to determine the acute and long COVID-19 symptoms in the omicron-dominant period and to evaluate its association with risk factors. METHODS We designed a cross-sectional nationwide study and data about self-reported symptoms were collected by an online platform named Wenjuanxing. Eligible participants were aged 25-65 years and were symptomatic. In this study, the ratios of the number of people of different ages and genders were weighted by the data from the Seventh National Census (2020 years), and validated by a published nationwide representative study through comparing smoking rates. Descriptive indicators were calculated for demographic characteristics, diagnosis ways, and duration time, acute symptoms, hospitalization, severity and long COVID-19 symptoms. And, the associations between risk factors and acute and long COVID-19 symptoms were analyzed by multivariable logistic regression models. RESULTS A total of 32,528 individuals diagnosed as COVID-19 infection from October 1, 2022 to February 21, 2023 were included. The first three acute symptoms of COVID-19 infection were fever (69.90%), headache (62.63%), and sore throat (54.29%), respectively. The hospitalization rate within 7 days was 3.07% and symptoms disappearance rate within 21 days was 68.84%, respectively. Among 3983 COVID-19 patients with 3 months or more time difference between first infection and participation into the study, the long COVID-19 rate was 19.68% and the primary symptoms were muscle weakness (19.39%), headache (17.98%) and smell/taste disorder (15.18%). Age groups, smoking, marriage status and vaccination were risk factors for numbers of acute phase symptoms and long COVID-19 symptoms. Lastly, female and current smokers also showed more numbers of symptoms during acute infection period. CONCLUSIONS In Chinese mainland, our respondent indicated that current smokers and women were associated with acute COVID-19 symptoms, which should be treated with caution due to the lack of representative.
Collapse
Affiliation(s)
- Zheng Su
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinghua Li
- China Health Education Center, Beijing, China
| | - Ying Xie
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenxiao Huang
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqi Cheng
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinmei Zhou
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinxuan Li
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Rui Qin
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaowen Wei
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yi Liu
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Xia
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingqing Song
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Liang Zhao
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Liu
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Xiao
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- National Center for Respiratory Medicine, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chen Wang
- Department of Tobacco Control and Prevention of Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Rotival M, Quintana-Murci L. Environmental variation and genetic diversity contribute to population differences in immune responses to SARS-CoV-2 and COVID-19 risk. Genes Immun 2024; 25:338-340. [PMID: 38142268 DOI: 10.1038/s41435-023-00249-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Affiliation(s)
- Maxime Rotival
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France.
- Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
28
|
Jia R, Li Z, Hu S, Chang H, Zeng M, Liu P, Lu L, Xu M, Zhai X, Qian M, Xu J. Immunological characterization and comparison of children with COVID-19 from their adult counterparts at single-cell resolution. Front Immunol 2024; 15:1358725. [PMID: 39148728 PMCID: PMC11325098 DOI: 10.3389/fimmu.2024.1358725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction The immunological characteristics that could protect children with coronavirus disease 2019 (COVID-19) from severe or fatal illnesses have not been fully understood yet. Methods Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on peripheral blood samples of 15 children (8 with COVID-19) and compared them to 18 adults (13 with COVID-19). Results The child-adult integrated single cell data indicated that children with the disease presented a restrained response to type I interferon in most of the major immune cell types, along with suppression of upstream interferon regulatory factor and toll-like receptor expression in monocytes, which was confirmed by in vitro interferon stimulation assays. Unlike adult patients, children with COVID-19 showed lower frequencies of activated proinflammatory CD14+ monocytes, possibly explaining the rareness of cytokine storm in them. Notably, natural killer (NK) cells in pediatric patients displayed potent cytotoxicity with a rich expression of cytotoxic molecules and upregulated cytotoxic pathways, whereas the cellular senescence, along with the Notch signaling pathway, was significantly downregulated in NK cells, all suggesting more robust cytotoxicity in NK cells of children than adult patients that was further confirmed by CD107a degranulation assays. Lastly, a modest adaptive immune response was evident with more naïve T cells but less activated and proliferated T cells while less naïve B cells but more activated B cells in children over adult patients. Conclusion Conclusively, this preliminary study revealed distinct cell frequency and activation status of major immune cell types, particularly more robust NK cell cytotoxicity in PBMC that might help protect children from severe COVID-19.
Collapse
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zifeng Li
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Shiwen Hu
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hailing Chang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pengcheng Liu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lijuan Lu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Dyas AR, Bronsert MR, Stuart CM, Thomas MB, Schulick RD, Franco SR, Gleisner A, Randhawa SK, David EA, Mitchell JD, Meguid RA. Analyzing the impact of the Coronavirus disease 2019 pandemic on initial oncologic presentation and treatment of non-small cell lung cancer in the United States. J Thorac Cardiovasc Surg 2024; 168:378-390.e7. [PMID: 37981103 DOI: 10.1016/j.jtcvs.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND A significantly lower rate of non-small cell lung cancer (NSCLC) screening, greater health care avoidance, and changes to oncologic recommendations were some consequences of the Coronavirus disease 2019 (COVID-19) pandemic affecting the medical environment. We sought to determine how the health care environment during the COVID-19 pandemic affected the oncologic treatment of patients diagnosed with non-small cell lung cancer (NSCLC). METHODS This was a retrospective cohort study evaluating patients with NSCLC in the National Cancer Database (2019-2020). Patients were divided into prepandemic (2019) and pandemic (2020) cohorts, and patient, oncologic, and treatment variables were compared. Multivariable logistic regression was performed to control for the impact of demographic characteristics on oncologic variables and the impact of oncologic variables on treatment variables. RESULTS The study population comprised 250,791 patients, including 114,533 patients (45.7%) in the pandemic cohort. There were 15% fewer new NSCLC diagnoses during the pandemic compared with prepandemic. Patients diagnosed during the pandemic had more advanced clinical TNM stage on presentation (P < .0001) and were more likely to have tumors in overlapping lobes or in a main bronchus (P = .0002). They were less likely to receive cancer treatment (P < .0001) and to undergo primary resection (P < .0001) and more likely to receive adjuvant systemic therapy (P = .004) and a combination of palliative treatment regimens (P < .0001). After risk adjustment, all these differences remained statistically significant (P < .05). CONCLUSIONS The COVID-19 pandemic was associated with increased clinical stage at presentation for patients with NSCLC, which impacted subsequent treatment strategies. However, treatment differed minimally when controlling for cancer stage. Future studies will examine the impact of these differences on overall survival and cancer-free survival.
Collapse
Affiliation(s)
- Adam R Dyas
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo.
| | - Michael R Bronsert
- Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo; Adult and Child Center for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, Colo
| | - Christina M Stuart
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo
| | - Madeline B Thomas
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo
| | - Richard D Schulick
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo
| | - Salvador Rodriguez Franco
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo
| | - Ana Gleisner
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo
| | - Simran K Randhawa
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo
| | - Elizabeth A David
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo
| | - John D Mitchell
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo
| | - Robert A Meguid
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colo; Surgical Outcomes and Applied Research, University of Colorado School of Medicine, Aurora, Colo; Adult and Child Center for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, Colo
| |
Collapse
|
30
|
Gupta A, Hathi P, Banaji M, Gupta P, Kashyap R, Paikra V, Sharma K, Somanchi A, Sudharsanan N, Vyas S. Large and unequal life expectancy declines during the COVID-19 pandemic in India in 2020. SCIENCE ADVANCES 2024; 10:eadk2070. [PMID: 39028821 PMCID: PMC11259167 DOI: 10.1126/sciadv.adk2070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Global population health during the COVID-19 pandemic is poorly understood because of weak mortality monitoring in low- and middle-income countries. High-quality survey data on 765,180 individuals, representative of one-fourth of India's population, uncover patterns missed by incomplete vital statistics and disease surveillance. Compared to 2019, life expectancy at birth was 2.6 years lower and mortality was 17% higher in 2020, implying 1.19 million excess deaths in 2020. Life expectancy declines in India were larger and had a younger age profile than in high-income countries. Increases in mortality were greater than expected based on observed seroprevalence and international infection fatality rates, most prominently among the youngest and older age groups. In contrast to global patterns, females in India experienced a life expectancy decline that was 1 year larger than losses for males. Marginalized social groups experienced greater declines than the most privileged social group. These findings uncover large and unequal mortality impacts during the pandemic in the world's most populous country.
Collapse
Affiliation(s)
- Aashish Gupta
- Department of Sociology, University of Oxford, 42-43 Park End Street, Oxford OX1 1JD, England
- Nuffield College, New Road, Oxford OX1 1NF, England
- Leverhulme Centre for Demographic Science, University of Oxford, 42-43 Park End Street, Oxford OX1 1JD, England
- Research Institute for Compassionate Economics, 472 Old Colchester Rd., Amston, CT 06231, USA
| | - Payal Hathi
- Research Institute for Compassionate Economics, 472 Old Colchester Rd., Amston, CT 06231, USA
- Department of Demography and Sociology, University of California, Berkeley, 310 Social Sciences Building, Berkeley, CA 94720, USA
| | - Murad Banaji
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter (550), Woodstock Road, Oxford OX2 6GG, England
| | - Prankur Gupta
- Department of Economics, University of Texas at Austin, 2225 Speedway, Austin, TX 78712, USA
| | - Ridhi Kashyap
- Department of Sociology, University of Oxford, 42-43 Park End Street, Oxford OX1 1JD, England
- Nuffield College, New Road, Oxford OX1 1NF, England
- Leverhulme Centre for Demographic Science, University of Oxford, 42-43 Park End Street, Oxford OX1 1JD, England
| | - Vipul Paikra
- Research Institute for Compassionate Economics, 472 Old Colchester Rd., Amston, CT 06231, USA
| | - Kanika Sharma
- Department of Sociology, Emory University, 1555 Dickey Dr, Atlanta, GA 30322, USA
| | - Anmol Somanchi
- Paris School of Economics, 48 Boulevard Jourdan, 75014 Paris, France
| | - Nikkil Sudharsanan
- TUM School of Medicine and Health, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Sangita Vyas
- Research Institute for Compassionate Economics, 472 Old Colchester Rd., Amston, CT 06231, USA
- Department of Economics, Hunter College (CUNY), 695 Park Ave., New York, NY 10065, USA
- CUNY Institute for Demographic Research, 135 E. 22nd St., New York, NY 10010, USA
| |
Collapse
|
31
|
Wang Y, Hu Y, Zhao R, Wang Q, Xu J, Yuan J, Dong S, Liu M, Wu C, Jiang R. Cerebral microbleeds in patients with COVID-19: is there an inevitable connection? Brain Commun 2024; 6:fcae236. [PMID: 39229491 PMCID: PMC11369825 DOI: 10.1093/braincomms/fcae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024] Open
Abstract
The COVID-19 pandemic has underscored the critical interplay between systemic infections and neurological complications, notably cerebral microbleeds. This comprehensive review meticulously aggregates and analyses current evidence on cerebral microbleeds' prevalence, pathophysiological underpinnings and clinical implications within COVID-19 cohorts. Our findings reveal a pronounced correlation between cerebral microbleeds and increased severity of COVID-19, emphasizing the role of direct viral effects, inflammatory responses and coagulation disturbances. The documented association between cerebral microbleeds and elevated risks of morbidity and mortality necessitates enhanced neurological surveillance in managing COVID-19 patients. Although variability in study methodologies presents challenges, the cumulative evidence substantiates cerebral microbleeds as a critical illness manifestation rather than mere coincidence. This review calls for harmonization in research methodologies to refine our understanding and guide targeted interventions. Prioritizing the detection and study of neurological outcomes, such as cerebral microbleeds, is imperative for bolstering pandemic response strategies and mitigating the long-term neurological impact on survivors.
Collapse
Affiliation(s)
- Yuchang Wang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuetao Hu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruichen Zhao
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qi Wang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiarui Xu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
32
|
Krishna VD, Chang A, Korthas H, Var SR, Seelig DM, Low WC, Li L, Cheeran MCJ. Impact of age and sex on neuroinflammation following SARS-CoV-2 infection in a murine model. Front Microbiol 2024; 15:1404312. [PMID: 39077737 PMCID: PMC11284165 DOI: 10.3389/fmicb.2024.1404312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is known to infect people of all ages and both sexes. Senior populations have the greatest risk of severe COVID-19, and sexual dimorphism in clinical outcomes has been reported. Neurological symptoms are widely observed in COVID-19 patients, with many survivors exhibiting persistent neurological and cognitive impairment. The present study aims to investigate the impact of age and sex on the neuroinflammatory response to SARS-CoV-2 infection using a mouse model. Wild-type C57BL/6J mice were intranasally inoculated with SARS-CoV-2 lineage B.1.351, a variant known to infect mice. Older male mice exhibited a significantly greater weight loss and higher viral loads in the lung at 3 days post infection. Notably, no viral RNA was detected in the brains of infected mice. Nevertheless, expression of IL-6, TNF-α, and CCL-2 in the lung and brain increased with viral infection. RNA-seq transcriptomic analysis of brains showed that SARS-CoV-2 infection caused significant changes in gene expression profiles, implicating innate immunity, defense response to virus, and cerebrovascular and neuronal functions. These findings demonstrate that SARS-CoV-2 infection triggers a neuroinflammatory response, despite the lack of detectable virus in the brain. Aberrant activation of innate immune response, disruption of blood-brain barrier and endothelial cell integrity, and suppression of neuronal activity and axonogenesis underlie the impact of SARS-CoV-2 infection on the brain. Understanding the role of these affected pathways in SARS-CoV-2 pathogenesis helps identify appropriate points of therapeutic interventions to alleviate neurological dysfunction observed during COVID-19.
Collapse
Affiliation(s)
- Venkatramana D. Krishna
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Allison Chang
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Holly Korthas
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Maxim C. -J. Cheeran
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
33
|
Abel L, Casanova JL. Human determinants of age-dependent patterns of death from infection. Immunity 2024; 57:1457-1465. [PMID: 38986441 PMCID: PMC11345826 DOI: 10.1016/j.immuni.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Regardless of microbial virulence (i.e., the global infection-fatality ratio), age generally drives the prevalence of death from infection in unvaccinated humans. Four mortality patterns are recognized: the common U- and L-shaped curves of endemic infections and the unique W- and J-shaped curves of pandemic infections. We suggest that these patterns result from different sets of human genetic and immunological determinants. In this model, it is the interplay between (1) monogenic genotypes affecting immunity to primary infection that preferentially manifest early in life and related genotypes or their phenocopies, including auto-antibodies, which manifest later in life and (2) the occurrence and persistence of adaptive, acquired immunity to primary or cross-reactive infections, which shapes the age-dependent pattern of human deaths from infection.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
34
|
Kamata H, Takamatsu K, Fukunaga K, Chubachi S, Nakagawara K, Namkoong H, Terai H, Tanaka K, Sato S, Hagiwara E, Takei R, Kondoh Y, Takazono T, Hashimoto M, Tasaka S, Ohrui T, Tanino Y, Mineshita M, Komase Y, Miyazaki K, Nishikawa M, Ando A, Kita H, Ichihara E, Ohshimo S, Murata Y, Ishida M, Kobayashi S, Uchida T, Tateno H, Ikari J, Terashima T, Kozu Y, Tateishi T, Shinkai M, Sagara H, To Y, Ito Y, Yamamoto M, Yamamoto Y, Kita T, Ito Y, Tomii K, Fujita Y, Funaki Y, Yatera K, Yamasue M, Komiya K, Kozawa S, Manabe H, Hozumi H, Horiguchi T, Kitajima T, Nakano Y, Nagaoka T, Hojo M, Ebihara A, Kobayashi M, Takayama K, Jinta T, Sawai T, Fukuda Y, Kaneko T, Chin K, Ogura T, Mukae H, Ishii M, Yokoyama A. Pulmonary function and chest CT abnormalities 3 months after discharge from COVID-19, 2020-2021: A nation-wide multicenter prospective cohort study from the Japanese respiratory society. Respir Investig 2024; 62:572-579. [PMID: 38669898 DOI: 10.1016/j.resinv.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND No comprehensive analysis of the pulmonary sequelae of coronavirus disease 2019 (COVID-19) in Japan based on respiratory function tests and chest computed tomography (CT) has been reported. We evaluated post-COVID-19 conditions, especially focusing on pulmonary sequelae assessed by pulmonary function tests and chest CT. METHODS For this prospective cohort study, we enrolled 1069 patients who presented pneumonia at the time of admission in 55 hospitals from February 2020 to September 2021. Disease severity was classified as moderateⅠ, moderate II, and severe, defined primarily according to the degree of respiratory failure. The data on post-COVID-19 conditions over 12 months, pulmonary function, and chest CT findings at 3 months were evaluated in this study. Additionally, the impact of COVID-19 severity on pulmonary sequelae, such as impaired diffusion capacity, restrictive pattern, and CT abnormalities, was also evaluated. RESULTS The most frequently reported post-COVID-19 conditions at 3 months after COVID-19 were muscle weakness, dyspnea, and fatigue (48.4%, 29.0%, and 24.7%, respectively). The frequency of symptoms gradually decreased over subsequent months. In pulmonary function tests at 3 months, the incidence of impaired diffusion capacity and restrictive pattern increased depending on disease severity. There also were differences in the presence of chest CT abnormalities at the 3 months, which was markedly correlated with the severity. CONCLUSION We reported a comprehensive analysis of post-COVID-19 condition, pulmonary function, and chest CT abnormalities in Japanese patients with COVID-19. The findings of this study will serve as valuable reference data for future post-COVID-19 condition research in Japan.
Collapse
Affiliation(s)
- Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazufumi Takamatsu
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Oko-cho, Kohasu, Nankoku, Kochi, 783-8505, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Susumu Sato
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawaharacho, Sakyo-ku, 606-8507, Japan
| | - Eri Hagiwara
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Kanazawa-ku, Yokohama, Kanagawa, 236-0051, Japan
| | - Reoto Takei
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwakecho, Seto, Aichi, 489-8642, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwakecho, Seto, Aichi, 489-8642, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Midori Hashimoto
- Department of Respiratory Medicine, NTT-East Corporation Sapporo Medical Center, South 1, West 15, Chuo-ku, Sapporo, 060-0061, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori, 036-8562, Japan
| | - Takashi Ohrui
- Division of Respiratory Medicine, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8512, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Masamichi Mineshita
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuko Komase
- Department of Respiratory Internal Medicine, St. Marianna University School of Medicine, Yokohama Seibu Hospital, 1197-1 Yasashicho, Asahi-ku, Yokohama, Kanagawa, 241-0811, Japan
| | - Kazuhito Miyazaki
- Department of Respiratory Medicine, Yokohama Municipal Citizen's Hospital, 1-1 Mitsuzawanishimachi, Kanagawa-ku, Yokohama, Kanagawa, 221-0855, Japan
| | - Masanori Nishikawa
- Department of Respiratory Medicine, Fujisawa City Hospital, 2-6-1 Fujisawa, Kanagawa, 251-8550, Japan
| | - Akira Ando
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideo Kita
- Department of Respiratory Medicine, Takatsuki Red Cross Hospital, 1-1-1 Abuno, Takatsuki, Osaka, 569-1045, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-0037, Japan
| | - Yoriyuki Murata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masayuki Ishida
- Department of Respiratory Medicine, Chikamori Hospital, 1-1-6 Okawasuji, Kochi, 780-8522, Japan
| | - Seiichi Kobayashi
- Department of Respiratory Medicine, Japanese Red Cross Ishinomaki Hospital, 71 Nishimichishita, Hebita, Ishinomaki, Miyagi, 986-8522, Japan
| | - Takahiro Uchida
- Department of Respiratory Medicine, Saitama Medical University Hospital, 38 Morohongo, Irumagun Moroyamamachi, Saitama, 350-0495, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, 2460, Oazamimuro, Midori-ku, Saitama, 336-8522, Japan
| | - Jun Ikari
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Takeshi Terashima
- Department of Respiratory Medicine, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-0824, Japan
| | - Yutaka Kozu
- Department of Internal Medicine, Division of Respiratory Medicine, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tomoya Tateishi
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, 6-3-22 Higashioi, Shinagawa-ku, Tokyo, 140-8522, Japan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yasuo To
- Department of Pulmonary Medicine, International University of Health and Welfare School of Medicine, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Yoko Ito
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, 4-57 Urafunecho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Toyama University Hospital, 2630 Sugitani, Toyama, 930-0152, Japan
| | - Toshiyuki Kita
- The Department of Respiratory Medicine, NHO Kanazawa Medical Center, 1-1 Shimoishibikimachi, Kanazawa, Ishikawa, 920-8650, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Mizuhochokawasumi, Mizuho-ku, Nagoya, 467-8602, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yukio Fujita
- Department of Respiratory Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yoshihiro Funaki
- Division of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishicho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807- 8556, Japan
| | - Mari Yamasue
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Hasamamachiidaigaoka, Yufu, Oita, 879-5503, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Hasamamachiidaigaoka, Yufu, Oita, 879-5503, Japan
| | - Satoko Kozawa
- Center for Asbestos-Related Diseases, Yokohama Rosai Hospital, 3211, Kozukuecho, Kohoku-ku, Yokohama, Kanagawa, 222-0036, Japan
| | - Hideaki Manabe
- Department of Respiratory Medicine, Sagamihara Kyodo Hospital, 4-3-1 Hashimotodai, Midori-ku, Sagamihara, Kanagawa, 252-5188, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3125, Japan
| | - Tomoya Horiguchi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, 1-98 Kutsukakechodengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Takamasa Kitajima
- Respiratory Disease Center, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Yasushi Nakano
- Department of Respiratory Medicine, Kawasaki Municipal Ida Hospital, 2-27-1 Ida, Nakahara-ku, Kawasaki, Kanagawa, 211-0035, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Hojo
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Akinori Ebihara
- Department of Respiratory Medicine, Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo, 151-0053, Japan
| | - Masayoshi Kobayashi
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, 4-23-15 Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan
| | - Koji Takayama
- Department of Respiratory Medicine, Musashino Red Cross Hospital, 1-26-1 Kyonancho, Musashino, Tokyo, 180-0023, Japan
| | - Torahiko Jinta
- Department of Pulmonary Medicine, St. Luke's International Hospital, 9-1 Akashicho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Toyomitsu Sawai
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, 6-39 Shinchimachi, Nagasaki, 850-0842, Japan
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, 9-3 Hirasecho, Sasebo, Nagasaki, 857-8511, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kazuo Chin
- Department of Sleep Medicine and Respiratory Care, Division of Sleep Medicine, Nihon University of Medicine, 30-1 Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomiokahigashi, Kanazawa-ku, Yokohama, Kanagawa, 236-0051, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Oko-cho, Kohasu, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
35
|
Tanaka K, Meguro A, Hara Y, Endo L, Izawa A, Muraoka S, Kaneko A, Somekawa K, Hirata M, Otsu Y, Matsumoto H, Nagasawa R, Kubo S, Murohashi K, Aoki A, Fujii H, Watanabe K, Horita N, Kato H, Kobayashi N, Takeuchi I, Nakajima A, Inoko H, Mizuki N, Kaneko T. HLA-DQA1*01:03 and DQB1*06:01 are risk factors for severe COVID-19 pneumonia. HLA 2024; 104:e15609. [PMID: 39041300 DOI: 10.1111/tan.15609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The clinical spectrum of COVID-19 includes a wide range of manifestations, from mild symptoms to severe pneumonia. HLA system plays a pivotal role in immune responses to infectious diseases. The purpose of our study was to investigate the association between HLA and COVID-19 severity in a Japanese population. The study included 209 Japanese COVID-19 patients aged ≥20 years. Saliva samples were collected and used to determine the HLA genotype by HLA imputation through genome-wide association analyses. The association between HLA genotype and COVID-19 severity was then evaluated. The allele frequency was compared between patients with respiratory failure (severe group: 91 cases) and those without respiratory failure (non-severe group: 118 cases), categorising the data into three time periods: pre-Omicron epidemic period, Omicron epidemic period, and total period of this study (from January 2021 to May 2023). In comparing the severe and non-severe groups, the frequencies of the HLA-DQA1*01:03 (35.1% vs. 10.5%, odds ratio [OR] = 4.57, corrected p [pc] = 0.041) and -DQB1*06:01 (32.4% vs. 7.9%, OR = 5.54, pc = 0.030) alleles were significantly higher in the severe group during the pre-Omicron epidemic period. During the Omicron epidemic period, HLA-DQB1*06 (32.4% vs. 7.9%, OR = 5.54, pc = 0.030) was significantly higher in the severe group. During total period of this study, HLA-DQA1*01:03 (30.2% vs. 14.4%, OR = 2.57, corrected pc = 0.0013) and -DQB1*06:01 (44.5% vs. 26.7%, OR = 2.20, pc = 0.013) alleles were significantly higher in the severe group. HLA-DQB1*06:01 and -DQA1*01:03 were in strong linkage disequilibrium with each other (r2 = 0.91) during total period of this study, indicating that these two alleles form a haplotype. The frequency of the HLA-DQA1*01:03-DQB1*06:01 in the severe group was significantly higher than in the non-severe group during pre-Omicron epidemic period (32.4% vs. 7.9%, OR = 5.59, pc = 0.00072), and total period of this study (28.6% vs. 13.1%, OR = 2.63, pc = 0.0013). During Omicron epidemic period, the haplotype did not demonstrate statistical significance, although the odds ratio indicated a value greater 1. Frequencies of the HLA-DQA1*01:03 and -DQB1*06:01 alleles were significantly higher in severe COVID-19 patients, suggesting that these alleles are risk factors for severe COVID-19 pneumonia in the Japanese population.
Collapse
Affiliation(s)
- Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Lisa Endo
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Momo Hirata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Otsu
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sosuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fujii
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Takeuchi
- Department of Emergency Medicine, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
36
|
Yang M, He Z, Zhang Y, Liu T, Ming WK. Pandemic Fatigue and Preferences for COVID-19 Public Health and Social Measures in China: Nationwide Discrete Choice Experiment. JMIR Public Health Surveill 2024; 10:e45840. [PMID: 38935420 PMCID: PMC11240073 DOI: 10.2196/45840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Information on the public's preferences for current public health and social measures (PHSMs) and people's mental health under PHSMs is insufficient. OBJECTIVE This study aimed to quantify the public's preferences for varied PHSMs and measure the level of pandemic fatigue in the COVID-19 normalization stage in China. METHODS A nationwide cross-sectional study with a discrete choice experiment and psychometric scales was conducted to assess public preferences for and attitudes toward PHSMs, using the quota sampling method. The COVID-19 Pandemic Fatigue Scale (CPFS) was used to screen fatigue levels among respondents. The multinomial logit model, latent class model, and Mann-Whitney test were used for statistical analysis. We also conducted subgroup analysis based on sex, age, monthly income, mental health status, and pandemic fatigue status. RESULTS A total of 689 respondents across China completed the survey. The discrete choice experiment revealed that respondents attached the greatest importance to the risk of COVID-19 infection within 3 months (45.53%), followed by loss of income within 3 months (30.69%). Vulnerable populations (low-income populations and elderly people) were more sensitive to the risk of infection, while younger respondents were more sensitive to income loss and preferred nonsuspension of social places and transportation. Migrants and those with pandemic fatigue had less acceptance of the mandatory booster vaccination and suspension of transportation. Additionally, a higher pandemic fatigue level was observed in female respondents, younger respondents, migrants, and relatively lower-income respondents (CPFS correlation with age: r=-0.274, P<.001; correlation with monthly income: r=-0.25, P<.001). Mandatory booster COVID-19 vaccination was also not preferred by respondents with a higher level of pandemic fatigue, while universal COVID-19 booster vaccination was preferred by respondents with a lower level of pandemic fatigue. CONCLUSIONS Pandemic fatigue is widely prevalent in respondents across China, and respondents desired the resumption of normal social life while being confronted with the fear of COVID-19 infection in the normalization stage of COVID-19 in China. During future pandemics, the mental burden and adherence of residents should be considered for the proper implementation of PHSMs.
Collapse
Affiliation(s)
- Meng Yang
- School of Medicine, Jinan University, Guangzhou, China
| | - Zonglin He
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China (Hong Kong)
| | - Yin Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Taoran Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China (Hong Kong)
| |
Collapse
|
37
|
Zhang H, Tan X, Zhang Z, Wang C, Shi H, Li Y, Li J, Kang Y, Jin X, Liao X. Nirmatrelvir and ritonavir for inpatients with severe or critical COVID-19 beyond five days of symptom onset: a propensity score-matched, multicenter, retrospective cohort study. BMC Infect Dis 2024; 24:597. [PMID: 38890575 PMCID: PMC11184924 DOI: 10.1186/s12879-024-09150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/17/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND There is an urgent need for therapeutic strategies for inpatients with severe or critical COVID-19. The evaluation of the clinical benefits of nirmatrelvir and ritonavir (Nmr/r) for these patients beyond five days of symptom onset is insufficient. METHODS A new propensity score-matched cohort was constructed by using multicenter data from 6695 adult inpatients with COVID-19 from December 2022 to February 2023 in China after the epidemic control measures were lifted across the country. The severity of disease of the inpatients was based on the tenth trial edition of the Guidelines on the Diagnosis and Treatment of COVID-19 in China. The symptom onset of 1870 enrolled severe or critical inpatients was beyond five days, and they received either Nmr/r plus standard treatment or only standard care. The ratio of patients whose SOFA score improved more than 2 points, crucial respiratory endpoints, changes in inflammatory markers, safety on the seventh day following the initiation of Nmr/r treatment, and length of hospital stay were evaluated. RESULTS In the Nmr/r group, on Day 7, the number of patients with an improvement in SOFA score ≥ 2 was much greater than that in the standard treatment group (P = 0.024) without a significant decrease in glomerular filtration rate (P = 0.815). Additionally, the rate of new intubation was lower (P = 0.004) and the no intubation days were higher (P = 0.003) in the first 7 days in the Nmr/r group. Other clinical benefits were limited. CONCLUSIONS Our study may provide new insight that inpatients with severe or critical COVID-19 beyond five days of symptom onset benefit from Nmr/r. Future studies, particularly randomized controlled trials, are necessary to verify the above findings.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
- Department of Cardiac Vascular Surgery Critical Care Medicine, The Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaojiao Tan
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
| | - Zheng Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
| | - Chenxi Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
| | - Haiqing Shi
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
| | - Yao Li
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
| | - Jianbo Li
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China
- Department of Critical Care Medicine, West China Tianfu Hospital of Sichuan University, Chengdu, China
| | - Xiaodong Jin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China.
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang Street, Chengdu, Sichuan, 610041, China.
- Department of Critical Care Medicine, West China Tianfu Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Guo S, Yang G. Enhancing public health through diet: A call for expanded research and social work intervention. Clin Nutr 2024; 43:1495-1496. [PMID: 38723302 DOI: 10.1016/j.clnu.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Shijie Guo
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Guang Yang
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China.
| |
Collapse
|
39
|
Lou D, Song Y, Li D, Shi Y, Wang B, Yang L. COVID-19 vaccination uptake in children with epilepsy and vaccine hesitancy among their parents: a survey. Eur J Pediatr 2024; 183:2763-2768. [PMID: 38558312 DOI: 10.1007/s00431-024-05537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
This study explored the coronavirus disease 2019 (COVID-19) vaccination coverage among children with epilepsy (CwE), factors affecting vaccination coverage, and the effect of COVID-19 vaccines on epilepsy after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A questionnaire was administered to CwE and their parents at the Pediatric Neurology Clinic of the Second Affiliated Hospital of Xi'an Jiaotong University between December 12, 2022, and February 28, 2023. Data were analyzed using the t-tests, chi-square tests, and logistic regression. The analysis included 250 CwE who responded to the survey; of these, 152 (60.8%) had been vaccinated against COVID-19. COVID-19 vaccine hesitancy in parents whose CwE were not vaccinated was mostly due to concerns of vaccine-related exacerbation of seizures and of vaccine-related adverse reactions (44.30% and 41.90% of the respondents, respectively). Univariate analysis showed that vaccination and number of doses of vaccine did not affect seizure incidence within 1 month of SARS-CoV-2 infection. Logistic regression analysis showed that CwE below primary school age, and those taking two or more antiseizure medication (ASMs) were less likely to be vaccinated (p = 0.007). Conclusion: The primary reasons for vaccine hesitancy among parents of unvaccinated CwE were concerns regarding seizure exacerbation and adverse reactions following COVID-19 vaccination. CwE who were below primary school age and those who took two or more ASMs were less likely to be vaccinated. Addressing parents' concerns is necessary to build their confidence in COVID-19 vaccines and ensure that CwE are vaccinated. What is Known: • People with epilepsy have a higher risk of severe and fatal COVID-19 than those without epilepsy but, despite this, COVID-19 vaccination coverage is considerably lower in people with epilepsy than in people without epilepsy. What is New: • In unvaccinated children with epilepsy, the foremost reasons for COVID-19 vaccine hesitancy among parents were concerns about seizure exacerbation and vaccine-related adverse reactions. • Vaccination and number of doses of vaccine did not exacerbate seizures in children with epilepsy, those below primary school level and those taking two or more antiseizure medications were less likely to be vaccinated.
Collapse
Affiliation(s)
- Dandan Lou
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Ye Song
- Department of Pediatrics, The First Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Dan Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yongjin Shi
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Bo Wang
- Department of Pediatrics, Xi'an Gaoxin Hospital, Xi'an, People's Republic of China
| | - Lin Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
40
|
Makanjuola S, Shantikumar S. The impact of the COVID-19 pandemic on non-COVID-associated mortality: A descriptive longitudinal study of UK data. PUBLIC HEALTH IN PRACTICE 2024; 7:100489. [PMID: 38562991 PMCID: PMC10982561 DOI: 10.1016/j.puhip.2024.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background It has been previously reported in the literature that the COVID-19 pandemic resulted in overall excess deaths and an increase in non-COVID deaths during the pandemic period.Specifically, our research elucidates the impact of the COVID-19 pandemic on non-COVID associated mortality. Study aim To compare mortality rates in non-COVID conditions before and after the onset of the COVID-19 pandemic in England and Wales. Study design Annual mortality data for the years 2011-2019 (pre-pandemic) and 2020 (pandemic) in England and Wales were retrieved from the Office for National Statistics (ONS). These data were filtered by ICD-10 codes for nine conditions with high associated mortality. We calculated mortality numbers - overall and age stratified (20-64 and 65+ years) and rates per 100 000, using annual mid-year population estimates. Methods Interrupted time series analyses were conducted using segmented quasi-Poisson regression to identify whether there was a statistically significant change (p < 0.05) in condition-specific death rates following the pandemic onset. Results Eight of the nine conditions investigated in this study had significant changes in mortality rate during the pandemic period (2020). All-age mortality rate was significantly increased in: 'Symptoms Signs and Ill-defined conditions', 'Cirrhosis and Other Diseases of the Liver', and 'Malignant Neoplasm of the Breast', whereas 'Chronic Lower Respiratory Disorders' saw a significant decrease. Age-stratified analyses also revealed significant increases in the 20-64 age-group in: 'Cerebrovascular Disorders', 'Dementia and Alzheimer's Disease', and 'Ischaemic Heart Diseases'. Conclusion Trends in non-COVID condition-specific mortality rates from 2011 to 2020 revealed that some non-COVID conditions were disproportionately affected during the pandemic. This may be due to the direct impact COVID-19 had on these conditions or the effect the public health response had on non-COVID risk factor development and condition-related management. Further work is required to understand the reasons behind these disproportionate changes.
Collapse
|
41
|
Ladau J, Brodie EL, Falco N, Bansal I, Hoffman EB, Joachimiak MP, Mora AM, Walker AM, Wainwright HM, Wu Y, Pavicic M, Jacobson D, Hess M, Brown JB, Abuabara K. Estimating geographic variation of infection fatality ratios during epidemics. Infect Dis Model 2024; 9:634-643. [PMID: 38572058 PMCID: PMC10990719 DOI: 10.1016/j.idm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives We aim to estimate geographic variability in total numbers of infections and infection fatality ratios (IFR; the number of deaths caused by an infection per 1,000 infected people) when the availability and quality of data on disease burden are limited during an epidemic. Methods We develop a noncentral hypergeometric framework that accounts for differential probabilities of positive tests and reflects the fact that symptomatic people are more likely to seek testing. We demonstrate the robustness, accuracy, and precision of this framework, and apply it to the United States (U.S.) COVID-19 pandemic to estimate county-level SARS-CoV-2 IFRs. Results The estimators for the numbers of infections and IFRs showed high accuracy and precision; for instance, when applied to simulated validation data sets, across counties, Pearson correlation coefficients between estimator means and true values were 0.996 and 0.928, respectively, and they showed strong robustness to model misspecification. Applying the county-level estimators to the real, unsimulated COVID-19 data spanning April 1, 2020 to September 30, 2020 from across the U.S., we found that IFRs varied from 0 to 44.69, with a standard deviation of 3.55 and a median of 2.14. Conclusions The proposed estimation framework can be used to identify geographic variation in IFRs across settings.
Collapse
Affiliation(s)
- Joshua Ladau
- Departments of Computational Precision Health and Dermatology, University of California, San Francisco, CA, 94115, USA
- Arva Intelligence, Inc., Salt Lake City, UT, 84101, USA
- Computational Biosciences Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eoin L. Brodie
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nicola Falco
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ishan Bansal
- Computational Biosciences Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elijah B. Hoffman
- Arva Intelligence, Inc., Salt Lake City, UT, 84101, USA
- Graduate Group in Biostatistics, University of California, Berkeley, CA, 94720, USA
| | - Marcin P. Joachimiak
- Biosystems Data Science, Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ana M. Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Angelica M. Walker
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Haruko M. Wainwright
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Boston, MA, 02139, USA
| | - Yulun Wu
- Graduate Group in Biostatistics, University of California, Berkeley, CA, 94720, USA
| | - Mirko Pavicic
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Daniel Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | | | - James B. Brown
- Arva Intelligence, Inc., Salt Lake City, UT, 84101, USA
- Computational Biosciences Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Statistics Department, University of California, Berkeley, CA, 94720, USA
| | - Katrina Abuabara
- Departments of Computational Precision Health and Dermatology, University of California, San Francisco, CA, 94115, USA
- Division of Epidemiology and Biostatistics, University of California Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA, 94720, USA
| |
Collapse
|
42
|
Kircheis R. In Silico Analyses Indicate a Lower Potency for Dimerization of TLR4/MD-2 as the Reason for the Lower Pathogenicity of Omicron Compared to Wild-Type Virus and Earlier SARS-CoV-2 Variants. Int J Mol Sci 2024; 25:5451. [PMID: 38791489 PMCID: PMC11121871 DOI: 10.3390/ijms25105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.
Collapse
|
43
|
Viox EG, Bosinger SE, Douek DC, Schreiber G, Paiardini M. Harnessing the power of IFN for therapeutic approaches to COVID-19. J Virol 2024; 98:e0120423. [PMID: 38651899 PMCID: PMC11092331 DOI: 10.1128/jvi.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
44
|
You J, Huang R, Zhong R, Shen J, Huang S, Chen J, Chen F, Kang Y, Chen L. Serum AXL is a potential molecular marker for predicting COVID-19 progression. Front Immunol 2024; 15:1394429. [PMID: 38799467 PMCID: PMC11116689 DOI: 10.3389/fimmu.2024.1394429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background The severity, symptoms, and outcome of COVID-19 is thought to be closely linked to how the virus enters host cells. This process involves the key roles of angiotensin-converting enzyme 2 (ACE2) and the Tyrosine protein kinase receptor UFO (AXL) receptors. However, there is limited research on the circulating levels of ACE2 and AXL and their implications in COVID-19. Methods A control group of 71 uninfected individuals was also included in the study. According to the Guidance for Corona Virus Disease 2019 (10th edition), a cohort of 358 COVID-19 patients were categorized into non-severe and severe cases. Serum ACE2/AXL levels in COVID-19 patients were detected by enzyme-linked immunosorbent assay (ELISA) at different time points post-COVID-19 infection, including days 0-7, 8-15, 31-179 and >180 days. Serum SARS-CoV-2 IgG/IgM antibodies in COVID-19 patients at the same intervals were assessed by using an iFlash 3000 Chemiluminescence Immunoassay Analyzer. The receiver operating characteristic (ROC) curves were used to assess the diagnostic value of the biological markers, and the association between laboratory parameters and illness progression were explored. Results Compared with the uninfected group, the levels of ACE2 and AXL in the COVID-19 group were decreased, and the SARS-COV-2 IgG level was increased. AXL (AUC = 0.774) demonstrated a stronger predictive ability for COVID-19 than ACE2. In the first week after infection, only the level of AXL was statistically different between severe group and non-severe group. After first week, the levels of ACE2 and AXL were different in two groups. Moreover, in severe COVID-19 cases, the serum ACE2, AXL, and SARS-COV-2 IgM levels reached a peak during days 8-15 before declining, whereas serum SARS-COV-2 IgG levels continued to rise, reaching a peak at day 31-180 days before decreasing. In addition, the AXL level continued to decrease and the SARS-COV-2 IgG level continued to increase in the infected group after 180 days compared to the uninfected group. Conclusions The levels of serum ACE2 and AXL correlate with COVID-19 severity. However, AXL can also provide early warning of clinical deterioration in the first week after infection. AXL appears to be a superior potential molecular marker for predicting COVID-19 progression.
Collapse
Affiliation(s)
- Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Rong Huang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Shen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Shuhang Huang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
45
|
Trebuian CI, Brici OM, Sutoi D, Popa DI, Chioibas DR, Mederle OA. Lactate Levels and Clearance: Key Predictors of Prognosis for COVID-19 and Non-COVID-19 Septic Shock Patients in the Emergency Department. Clin Pract 2024; 14:834-845. [PMID: 38804397 PMCID: PMC11130935 DOI: 10.3390/clinpract14030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND This investigation assesses the prognostic value of lactate levels and their clearance in septic shock patients, particularly emphasizing the comparative analysis between COVID-19 and non-COVID-19 patients in the emergency department. This study aims to elucidate the unique prognostic implications of lactate dynamics in these distinct patient groups, thereby enhancing the management of septic shock. METHODS An observational prospective study was conducted, enrolling 114 septic shock patients from the Emergency County Hospital Resita, Romania, categorizing them into COVID-19 and non-COVID-19 groups to examine their initial lactate levels, clearance rates, and their correlation with patient outcomes. RESULTS This study identified significant differences in the initial lactate levels and clearance rates between the two groups, indicating higher initial lactate levels and slower clearance rates in COVID-19 patients. Survivors demonstrated significantly lower initial lactate levels (1.5 ± 0.4 mmol/L) and higher lactate clearance rates (33 ± 15%) compared to non-survivors (2.5 ± 0.5 mmol/L and 24 ± 9%, respectively; lactate levels p = 0.001, clearance rates p = 0.002). CONCLUSIONS Lactate monitoring, particularly clearance rates, is crucial in the prognostic assessment of septic shock patients. These findings highlight the need for targeted interventions in COVID-19 patients to improve outcomes, underscoring lactate dynamics as a vital component of septic shock management in differing patient populations.
Collapse
Affiliation(s)
- Cosmin Iosif Trebuian
- Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.T.); (D.S.); (D.R.C.); (O.A.M.)
| | - Octavia Maria Brici
- Department of Doctoral Studies, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Dumitru Sutoi
- Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.T.); (D.S.); (D.R.C.); (O.A.M.)
| | - Daian Ionel Popa
- Department of Doctoral Studies, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Daniel Raul Chioibas
- Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.T.); (D.S.); (D.R.C.); (O.A.M.)
| | - Ovidiu Alexandru Mederle
- Department of Surgery I, “Victor Babes” University of Medicine and Pharmacy, E. Murgu Square No. 2, 300041 Timisoara, Romania; (C.I.T.); (D.S.); (D.R.C.); (O.A.M.)
| |
Collapse
|
46
|
Ferrante P. The First Two Years of COVID-19 Hospitalization Characteristics and Costs: Results from the National Discharge Registry. Healthcare (Basel) 2024; 12:958. [PMID: 38786370 PMCID: PMC11121639 DOI: 10.3390/healthcare12100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has emerged as the primary global health challenge of the new millennium. Understanding its impact on health systems and learning from these experiences are crucial for improving system resilience against future health crises. This paper examines hospitalizations related to COVID-19 in Italy from 2020 to 2021, with a specific focus on the costs associated with these admissions. DESIGN AND METHODS This is a retrospective, population-based study of Italian hospitalizations of patients diagnosed with COVID-19 during the 2020-2021 period, using data extracted from the National Hospital Discharge Registry. The outcome variables considered include hospital admissions, costs, and length of stay. RESULTS In Italy, hospitalizations for COVID-19 totaled 357,354 in 2020 and 399,043 in 2021, with the transfer rate being three times higher than that of other patients. Hospitalizations were predominantly concentrated in the northern regions, especially during the first year. Mortality rates increased with age, while hospitalization rates peaked in the youngest and oldest age groups. The financial impact of COVID-19 hospitalizations was approximately €3.1 billion in 2020 and €3.6 billion in 2021. The cost per admission was around €8000 for standard care and €24,000 for intensive therapy in both years. CONCLUSION Conducting a cost-benefit analysis of implementing a protective pad around the entire health system, which leverages networks of family doctors and nurses connected in real-time, could be an important step in strengthening health system resilience.
Collapse
Affiliation(s)
- Pierpaolo Ferrante
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian National Workers' Compensation Authority (INAIL), Via Stefano Gradi 55, 00143 Rome, Italy
| |
Collapse
|
47
|
Poisson J, El-Sissy C, Serret-Larmande A, Smith N, Lebraud M, Augy JL, Conti C, Gonnin C, Planquette B, Arlet JB, Hermann B, Charbit B, Pastre J, Devaux F, Ladavière C, Lim L, Ober P, Cannovas J, Biard L, Gulczynski MC, Blumenthal N, Péré H, Knosp C, Gey A, Benhamouda N, Murris J, Veyer D, Tartour E, Diehl JL, Duffy D, Paillaud E, Granier C. Increased levels of GM-CSF and CXCL10 and low CD8 + memory stem T Cell count are markers of immunosenescence and severe COVID-19 in older people. Immun Ageing 2024; 21:28. [PMID: 38715114 PMCID: PMC11075216 DOI: 10.1186/s12979-024-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Ageing leads to altered immune responses, resulting in higher susceptibility to certain infections in the elderly. Immune ageing is a heterogeneous process also associated with inflammaging, a low-grade chronic inflammation. Altered cytotoxic T cell responses and cytokine storm have previously been described in severe COVID-19 cases, however the parameters responsible for such immune response failures are not well known. The aim of our study was to characterize CD8+ T cells and cytokines associated with ageing, in a cohort of patients aged over 70 years stratified by COVID-19 severity. RESULTS One hundred and four patients were included in the study. We found that, in older people, COVID-19 severity was associated with (i) higher level of GM-CSF, CXCL10 (IP-10), VEGF, IL-1β, CCL2 (MCP-1) and the neutrophil to lymphocyte ratio (NLR), (ii) increased terminally differentiated CD8+T cells, and (ii) decreased early precursors CD8+ T stem cell-like memory cells (TSCM) and CD27+CD28+. The cytokines mentioned above were found at higher concentrations in the COVID-19+ older cohort compared to a younger cohort in which they were not associated with disease severity. CONCLUSIONS Our results highlight the particular importance of the myeloid lineage in COVID-19 severity among older people. As GM-CSF and CXCL10 were not associated with COVID-19 severity in younger patients, they may represent disease severity specific markers of ageing and should be considered in older people care.
Collapse
Affiliation(s)
- Johanne Poisson
- Université Paris Cité, Paris, France
- Department of Geriatric Medicine, Hôpital Europeen Georges Pompidou, AP-HP, Paris, France
- Inserm U1149, Center for Research on Inflammation, Paris, France
| | - Carine El-Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Cordeliers Research Center, Sorbonne University, University Paris Cité, Paris, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Arnaud Serret-Larmande
- ECSTRRA Team, UMR-1153, Université Paris Cité, INSERM, AP-HP, Saint Louis Hospital, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgane Lebraud
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Jean-Loup Augy
- Medical intensive care unit, Hopital Delafontaine, 2 rue du Dr Delafontaine, Saint-Denis, 93200, France
| | - Catherine Conti
- Université Paris Cité, Paris, France
- Department of Geriatric Medicine, Hôpital Europeen Georges Pompidou, AP-HP, Paris, France
| | - Cécile Gonnin
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
- Université Paris Cité, INSERM, PARCC, Paris, France
| | - Benjamin Planquette
- Service de Pneumologie Et Soins Intensifs, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jean-Benoît Arlet
- Internal Medicine Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculty of Medicine, Université Paris Cité, Paris, 75006, France
| | - Bertrand Hermann
- Medical Intensive Care Unit, AP-HP. Centre Université Paris Cité, Georges Pompidou European Hospital, Paris, 75015, France
- INSERM UMR 1266, Institut de Psychiatrie Et Neurosciences de Paris (IPNP), Université Paris Cité, Paris, France
| | - Bruno Charbit
- Institute of Ophthalmology, University College London (UCL), London, UK
| | - Jean Pastre
- Service de Pneumologie Et Soins Intensifs, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Floriane Devaux
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Cyrielle Ladavière
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Lydie Lim
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Pauline Ober
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Johanna Cannovas
- Department of Geriatric Medicine, Hôpital Europeen Georges Pompidou, AP-HP, Paris, France
| | - Lucie Biard
- ECSTRRA Team, UMR-1153, Université Paris Cité, INSERM, AP-HP, Saint Louis Hospital, Paris, France
| | - Marie-Christelle Gulczynski
- Gérontologie 1, GHU AP-HP. Centre Université Paris Cité, Corentin Celton Hospital, Issy-Les-Moulineaux, 92130, France
| | - Noémie Blumenthal
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Hélène Péré
- Virology Laboratory, Hôpital Européen Georges-Pompidou, APHP.Centre - Université Paris Cité, Paris, France
- Centre de Recherche Des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre Le Cancer, Labex OncoImmunology, Paris, France
- Université Paris Cité, Faculté de Santé, UFR de Médecine, Paris, France
| | | | - Alain Gey
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Nadine Benhamouda
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Juliette Murris
- HeKA, Inria Paris, Inserm, Université Paris Cité, Paris, France
| | - David Veyer
- Virology Laboratory, Hôpital Européen Georges-Pompidou, APHP.Centre - Université Paris Cité, Paris, France
- Centre de Recherche Des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre Le Cancer, Labex OncoImmunology, Paris, France
| | - Eric Tartour
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France
| | - Jean-Luc Diehl
- Medical Intensive Care Unit, AP-HP. Centre Université Paris Cité, Georges Pompidou European Hospital, Paris, 75015, France
- University Paris Cité, Innovative Therapies in Hemostasis, INSERM, Paris, 75006, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Elena Paillaud
- Université Paris Cité, Paris, France.
- Department of Geriatric Medicine, Hôpital Europeen Georges Pompidou, AP-HP, Paris, France.
- Univ. Paris Est Créteil, Inserm U955, IMRB, Créteil, France.
| | - Clémence Granier
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Paris, France.
| |
Collapse
|
48
|
Qian X, Zuo Z, Xu D, He S, Zhou C, Wang Z, Xie S, Zhang Y, Wu F, Lyu F, Zhang L, Qian Z. Demystifying COVID-19 mortality causes with interpretable data mining. Sci Rep 2024; 14:10076. [PMID: 38698064 PMCID: PMC11066015 DOI: 10.1038/s41598-024-60841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024] Open
Abstract
While COVID-19 becomes periodical, old individuals remain vulnerable to severe disease with high mortality. Although there have been some studies on revealing different risk factors affecting the death of COVID-19 patients, researchers rarely provide a comprehensive analysis to reveal the relationships and interactive effects of the risk factors of COVID-19 mortality, especially in the elderly. Through retrospectively including 1917 COVID-19 patients (102 were dead) admitted to Xiangya Hospital from December 2022 to March 2023, we used the association rule mining method to identify the risk factors leading causes of death among the elderly. Firstly, we used the Affinity Propagation clustering to extract key features from the dataset. Then, we applied the Apriori Algorithm to obtain 6 groups of abnormal feature combinations with significant increments in mortality rate. The results showed a relationship between the number of abnormal feature combinations and mortality rates within different groups. Patients with "C-reactive protein > 8 mg/L", "neutrophils percentage > 75.0 %", "lymphocytes percentage < 20%", and "albumin < 40 g/L" have a 2 × mortality rate than the basic one. When the characteristics of "D-dimer > 0.5 mg/L" and "WBC > 9.5 × 10 9 /L" are continuously included in this foundation, the mortality rate can be increased to 3 × or 4 × . In addition, we also found that liver and kidney diseases significantly affect patient mortality, and the mortality rate can be as high as 100%. These findings can support auxiliary diagnosis and treatment to facilitate early intervention in patients, thereby reducing patient mortality.
Collapse
Affiliation(s)
- Xinyu Qian
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zhihong Zuo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danni Xu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Shanyun He
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Conghao Zhou
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
| | - Zhanwen Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongmin Zhang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Fan Wu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| | - Feng Lyu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Bian J, Zhang W, Guo Z, Li X, Fu L, Lu Z, Fitzpatrick T, Sun Y, Gao Y, Chen Y, Liu Q, He L, Sun C, Zou H. Influence of grandchildren on COVID-19 vaccination uptake among older adults in China: a parallel-group, cluster-randomized controlled trial. NATURE AGING 2024; 4:638-646. [PMID: 38724731 DOI: 10.1038/s43587-024-00625-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
The uptake of COVID-19 booster vaccination among older adults in China is suboptimal. Here, we report the results of a parallel-group cluster-randomized controlled trial evaluating the efficacy of promoting COVID-19 booster vaccination among grandparents (≥60 years) through a health education intervention delivered to their grandchildren (aged ≥16 years) in a Chinese cohort (Chinese Clinical Trial Registry: ChiCTR2200063240 ). The primary outcome was the uptake rate of COVID-19 booster dose among grandparents. Secondary outcomes include grandparents' attitude and intention to get a COVID-19 booster dose. A total of 202 college students were randomized 1:1 to either the intervention arm of web-based health education and 14 daily reminders (n = 188 grandparents) or control arm (n = 187 grandparents) and reported their grandparents' COVID-19 booster vaccination status at baseline and 21 days. Grandparents in the intervention arm were more likely to receive COVID-19 booster vaccination compared to control cohort (intervention, 30.6%; control, 16.9%; risk ratio = 2.00 (95% CI, 1.09 to 3.66)). Grandparents in the intervention arm also had greater attitude change (β = 0.28 (95% CI, 0.04 to 0.52)) and intention change (β = 0.32 (95% CI, 0.12 to 0.52)) to receive a COVID-19 booster dose. Our results show that an educational intervention targeting college students increased COVID-19 booster vaccination uptake among grandparents in China.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Weijie Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xinyi Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Leiwen Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | | | - Yinghui Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanxiao Gao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyi Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Longtao He
- Research Institute of Social Development, Southwestern University of Finance and Economics, Chengdu, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| | - Huachun Zou
- School of Public Health, Fudan University, Shanghai, China.
- Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- School of Public Health, Southwest Medical University, Luzhou, China.
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
50
|
Smith DRM, Duval A, Grant R, Abbas M, Harbarth S, Opatowski L, Temime L. Predicting consequences of COVID-19 control measure de-escalation on nosocomial transmission and mortality: a modelling study in a French rehabilitation hospital. J Hosp Infect 2024; 147:47-55. [PMID: 38467250 DOI: 10.1016/j.jhin.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Infection control measures are effective for nosocomial COVID-19 prevention but bear substantial health-economic costs, motivating their "de-escalation" in settings at low risk of SARS-CoV-2 transmission. Yet consequences of de-escalation are difficult to predict, particularly in light of novel variants and heterogeneous population immunity. AIM To estimate how infection control measure de-escalation influences nosocomial COVID-19 risk. METHODS An individual-based transmission model was used to simulate SARS-CoV-2 outbreaks and control measure de-escalation in a French long-term care hospital with multi-modal control measures in place (testing and isolation, universal masking, single-occupant rooms). Estimates of COVID-19 case fatality rates (CFRs) from reported outbreaks were used to quantify excess COVID-19 mortality due to de-escalation. RESULTS In a population fully susceptible to infection, de-escalating both universal masking and single rooms resulted in hospital-wide outbreaks of 114 (95% CI: 103-125) excess infections, compared with five (three to seven) excess infections when de-escalating only universal masking or 15 (11-18) when de-escalating only single rooms. When de-escalating both measures and applying CFRs from the first wave of COVID-19, excess patient mortality ranged from 1.57 (1.41-1.71) to 9.66 (8.73-10.57) excess deaths/1000 patient-days. By contrast, when applying CFRs from subsequent pandemic waves and assuming susceptibility to infection among 40-60% of individuals, excess mortality ranged from 0 (0-0) to 0.92 (0.77-1.07) excess deaths/1000 patient-days. CONCLUSIONS The de-escalation of bundled COVID-19 control measures may facilitate widespread nosocomial SARS-CoV-2 transmission. However, excess mortality is probably limited in populations at least moderately immune to infection and given CFRs resembling those estimated during the 'post-vaccine' era.
Collapse
Affiliation(s)
- D R M Smith
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - A Duval
- Epidemiology & Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris-Cité, Paris, France; Anti-Infective Evasion & Pharmacoepidemiology, Université Paris-Saclay, UVSQ, INSERM, CESP, Montigny-Le-Bretonneux, France; Laboratoire MESuRS, Conservatoire National des Arts et Métiers, Paris, France
| | - R Grant
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Infection Control Programme & WHO Collaborating Centre on Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals, Geneva, Switzerland
| | - M Abbas
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Infection Control Programme & WHO Collaborating Centre on Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals, Geneva, Switzerland; MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - S Harbarth
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Infection Control Programme & WHO Collaborating Centre on Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals, Geneva, Switzerland
| | - L Opatowski
- Epidemiology & Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris-Cité, Paris, France; Anti-Infective Evasion & Pharmacoepidemiology, Université Paris-Saclay, UVSQ, INSERM, CESP, Montigny-Le-Bretonneux, France
| | - L Temime
- Laboratoire MESuRS, Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|