1
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Arutyunov A, Durán-Laforet V, Ai S, Ferrari L, Murphy R, Schafer DP, Klein RS. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules 2024; 14:808. [PMID: 39062523 PMCID: PMC11274721 DOI: 10.3390/biom14070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.
Collapse
Affiliation(s)
- Artem Arutyunov
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Shenjian Ai
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robert Murphy
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robyn S. Klein
- Department of Microbiology & Immunology, Western Institute of Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, 100 Perth Dr, London, ON N6A 5K8, Canada
| |
Collapse
|
3
|
Vanderheiden A, Hill JD, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS. Vaccination reduces central nervous system IL-1β and memory deficits after COVID-19 in mice. Nat Immunol 2024; 25:1158-1171. [PMID: 38902519 DOI: 10.1038/s41590-024-01868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy D Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Deppen
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada.
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Huang J, Wang XS, Gao T, Wang X, Yu MY, Song HX, Wang BY, Li LM, Zeng Q, Zhang HN. Astrocyte KDM4A mediates chemokines and drives neutrophil infiltration to aggravate cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab 2024; 44:491-507. [PMID: 38008899 PMCID: PMC10981400 DOI: 10.1177/0271678x231216158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Neutrophils plays a crucial role in acute ischemic brain injury and have emerged as potential treatment targets to mitigate such injuries. Lysine-specific demethylase 4 A (KDM4A), a member of the histone lysine demethylase family of enzymes involved in transcriptional regulation of gene expression, is upregulated during hypoxic events. However, the exact role of KDM4A in the pathological process of ischemic stroke remains largely unexplored. Our findings reveal that there was an upregulation of KDM4A levels in reactive astrocytes within both stroke mouse models and in vitro oxygen-glucose deprivation/regeneration (OGD/R) models. Using a conditional knockout mouse, we observed that astrocytic Kdm4a knockout regulates neutrophil infiltration and alleviates brain injury following middle cerebral artery occlusion reperfusion. Furthermore, Kdm4a deficiency astrocytes displayed lower chemokine C-X-C motif ligand 1 (CXCL1) level upon OGD/R and decreased neutrophil infiltration in a transwell system. Mechanistically, KDM4A, in cooperation with nuclear factor-kappa B (NF-κB), activates Cxcl1 gene expression by demethylating histone H3 lysine 9 trimethylation at Cxcl1 gene promoters in astrocytes upon OGD/R injury. Our findings suggest that astrocyte KDM4A-mediated Cxcl1 activation contributes to neutrophil infiltration via cooperation with NF-κB, and KDM4A in astrocytes may serve as a potential therapeutic target to modulate neutrophil infiltration after stroke.
Collapse
Affiliation(s)
- Jing Huang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
- Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tian Gao
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Xing Wang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Man-Yang Yu
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Hao-Xin Song
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Bi-Yan Wang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling-Mei Li
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiang Zeng
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hui-Nan Zhang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
- Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhou Y, Chen L, Zheng X, Fang Q, Qian Y, Xu T, Liang J, Zhang H, Han X, Sun L. Microglia orchestrate synaptic and neuronal stripping: Implication in neuropsychiatric lupus. J Cell Mol Med 2024; 28:e18190. [PMID: 38494844 PMCID: PMC10945089 DOI: 10.1111/jcmm.18190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Systemic lupus erythematosus (SLE), a multifactorial autoimmune disease, can affect the brain and cause neuropsychiatric dysfunction, also named neuropsychiatric lupus (NPSLE). Microglial activation is observed in NPSLE patients. However, the mechanisms regulating microglia-mediated neurotoxicity in NPSLE remain elusive. Here, we showed that M1-like proinflammatory cytokine levels were increased in the cerebrospinal fluid (CSF) of SLE patients, especially those with neuropsychiatric symptoms. We also demonstrated that MRL/lpr lupus mice developed anxiety-like behaviours and cognitive deficits in the early and active phases of lupus, respectively. An increase in microglial number was associated with upregulation of proinflammatory cytokines in the MRL/lpr mouse brain. RNA sequencing revealed that genes associated with phagocytosis and M1 polarization were upregulated in microglia from lupus mice. Functionally, activated microglia induced synaptic stripping in vivo and promoted neuronal death in vitro. Finally, tofacitinib ameliorated neuropsychiatric disorders in MRL/lpr mice, as evidenced by reductions in microglial number and synaptic/neuronal loss and alleviation of behavioural abnormalities. Thus, our results indicated that classically activated (M1) microglia play a crucial role in NPSLE pathogenesis. Minocycline and tofacitinib were found to alleviate NPSLE by inhibiting micrglial activation, providing a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yishan Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical SchoolNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
| | - Liang Chen
- Department of GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiulan Zheng
- School of PharmacyMacau University of Science and TechnologyMacauChina
| | - Qijun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower HospitalNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Yunzhi Qian
- Department of Nutrition, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower HospitalNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical SchoolNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
| | - Huajun Zhang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower HospitalNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Xiaojuan Han
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical SchoolNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Traditional Chinese Medicine, Nanjing Drum Tower HospitalNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical SchoolNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
- School of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
6
|
Marin C, Alobid I, López-Chacón M, VanStrahlen CR, Mullol J. Type 2 and Non-type 2 Inflammation in the Upper Airways: Cellular and Molecular Alterations in Olfactory Neuroepithelium Cell Populations. Curr Allergy Asthma Rep 2024; 24:211-219. [PMID: 38492160 PMCID: PMC11008081 DOI: 10.1007/s11882-024-01137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE OF REVIEW Neurogenesis occurring in the olfactory epithelium is critical to continuously replace olfactory neurons to maintain olfactory function, but is impaired during chronic type 2 and non-type 2 inflammation of the upper airways. In this review, we describe the neurobiology of olfaction and the olfactory alterations in chronic rhinosinusitis with nasal polyps (type 2 inflammation) and post-viral acute rhinosinusitis (non-type 2 inflammation), highlighting the role of immune response attenuating olfactory neurogenesis as a possibly mechanism for the loss of smell in these diseases. RECENT FINDINGS Several studies have provided relevant insights into the role of basal stem cells as direct participants in the progression of chronic inflammation identifying a functional switch away from a neuro-regenerative phenotype to one contributing to immune defense, a process that induces a deficient replacement of olfactory neurons. The interaction between olfactory stem cells and immune system might critically underlie ongoing loss of smell in type 2 and non-type 2 inflammatory upper airway diseases. In this review, we describe the neurobiology of olfaction and the olfactory alterations in type 2 and non-type 2 inflammatory upper airway diseases, highlighting the role of immune response attenuating olfactory neurogenesis, as a possibly mechanism for the lack of loss of smell recovery.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain.
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.
| | - Isam Alobid
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Mauricio López-Chacón
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Camilo R VanStrahlen
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain.
- Centre for Biomedical Research in Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain.
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Catalonia, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Pavesi A, Tiecco G, Rossi L, Sforza A, Ciccarone A, Compostella F, Lovatti S, Tomasoni LR, Castelli F, Quiros-Roldan E. Inflammatory Response Associated with West Nile Neuroinvasive Disease: A Systematic Review. Viruses 2024; 16:383. [PMID: 38543749 PMCID: PMC10976239 DOI: 10.3390/v16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) infection is a seasonal arbovirosis with the potential to cause severe neurological disease. Outcomes of the infection from WNV depend on viral factors (e.g., lineage) and host-intrinsic factors (e.g., age, sex, immunocompromising conditions). Immunity is essential to control the infection but may also prove detrimental to the host. Indeed, the persistence of high levels of pro-inflammatory cytokines and chemokines is associated with the development of blood-brain barrier (BBB) damage. Due to the importance of the inflammatory processes in the development of West Nile neuroinvasive disease (WNND), we reviewed the available literature on the subject. METHODS According to the 2020 updated PRISMA guidelines, all peer-reviewed articles regarding the inflammatory response associated with WNND were included. RESULTS One hundred and thirty-six articles were included in the data analysis and sorted into three groups (in vitro on-cell cultures, in vivo in animals, and in humans). The main cytokines found to be increased during WNND were IL-6 and TNF-α. We highlighted the generally small quantity and heterogeneity of information about the inflammatory patterns associated with WNND. CONCLUSIONS Further studies are needed to understand the pathogenesis of WNND and to investigate the extent and the way the host inflammatory response either helps in controlling the infection or in worsening the outcomes. This might prove useful both for the development of target therapies and for the development of molecular markers allowing early identification of patients displaying an inflammatory response that puts them at a higher risk of developing neuroinvasive disease and who might thus benefit from early antiviral therapies.
Collapse
Affiliation(s)
- Alessandro Pavesi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Giorgio Tiecco
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Luca Rossi
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Anita Sforza
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Andrea Ciccarone
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Federico Compostella
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Sofia Lovatti
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Lina Rachele Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Francesco Castelli
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.P.); (G.T.); (L.R.); (A.S.); (A.C.); (F.C.); (S.L.); (F.C.)
| |
Collapse
|
8
|
Shen Z, Kuang S, Zhang Y, Chen J, Wang S, Xu C, Huang Y, Zhang M, Huang S, Wang J, Zhao C, Lin Z, Shi X, Cheng B. Restoring periodontal tissue homoeostasis prevents cognitive decline by reducing the number of Serpina3n high astrocytes in the hippocampus. Innovation (N Y) 2024; 5:100547. [PMID: 38170012 PMCID: PMC10758991 DOI: 10.1016/j.xinn.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Cognitive decline has been linked to periodontitis through an undetermined pathophysiological mechanism. This study aimed to explore the mechanism underlying periodontitis-related cognitive decline and identify therapeutic strategies for this condition. Using single-nucleus RNA sequencing we found that changes in astrocyte number, gene expression, and cell‒cell communication were associated with cognitive decline in mice with periodontitis. In addition, activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was observed to decrease the phagocytic capability of macrophages and reprogram macrophages to a more proinflammatory state in the gingiva, thus aggravating periodontitis. To further investigate this finding, lipid-based nanoparticles carrying NLRP3 siRNA (NPsiNLRP3) were used to inhibit overactivation of the NLRP3 inflammasome in gingival macrophages, restoring the oral microbiome and reducing periodontal inflammation. Furthermore, gingival injection of NPsiNLRP3 reduced the number of Serpina3nhigh astrocytes in the hippocampus and prevented cognitive decline. This study provides a functional basis for the mechanism by which the destruction of periodontal tissues can worsen cognitive decline and identifies nanoparticle-mediated restoration of gingival macrophage function as a novel treatment for periodontitis-related cognitive decline.
Collapse
Affiliation(s)
- Zongshan Shen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Shuhong Kuang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Yong Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiayao Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Shuting Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Congfei Xu
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510650, China
| | - Yunjia Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Min Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Wang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510650, China
| | - ChuanJiang Zhao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
9
|
Bassil DT, Zheng B, Su B, Kafetsouli D, Udeh-Momoh C, Tzoulaki I, Ahmadi-Abhari S, Muller DC, Riboli E, Middleton LT. Lower Incidence of Dementia Following Cancer Diagnoses: Evidence from a Large Cohort and Mendelian Randomization Study. J Prev Alzheimers Dis 2024; 11:1397-1405. [PMID: 39350386 PMCID: PMC11436397 DOI: 10.14283/jpad.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/07/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The reported inverse association between cancer and subsequent Alzheimer's disease and related dementias (ADRD) remains uncertain. OBJECTIVES To investigate the association between these common conditions of old age and explore possible causal factors. DESIGN, SETTING, PARTICIPANTS AND MEASUREMENTS We conducted a large population-based cohort analysis using data from 3,021,508 individuals aged 60 and over in the UK Clinical Practice Research Datalink (CPRD), over a period up to 30 years (1988-2018). Cox proportional hazards models were fitted to estimate hazard ratios (HR) for risk of dementia associated with previous cancer diagnosis. Competing risk models were employed to account for competing risk of death. Two-sample Mendelian Randomization analysis based on meta-analysis data from large-scale GWAS studies was also conducted. RESULTS In the CPRD cohort, 412,903 participants had cancer diagnosis and 230,558 were subsequently diagnosed with dementia over a median follow-up period of 7.9 years. Cancer survivors had a 25% lower risk of developing dementia (HR=0.75, 95% CI:0.74-0.76) after adjustment for potential confounders. Accounting for competing risk of death provided a sub-distribution HR of 0.56 (95% CI:0.55-0.56). Results were consistent for prevalent and incident cancer and different common cancer types. Two-sample Mendelian Randomization analysis, using 357 cancer-related instrumental single-nucleotide polymorphisms (SNPs) revealed evidence of vertical pleiotropy between genetically predicted cancer and reduced risk of Alzheimer's disease (OR=0.97,95% CI:0.95-0.99). CONCLUSION Our results provide strong epidemiological evidence of the inverse association between cancer and risk of ADRD and support the potential causal nature of this association via genetic instruments. Further investigations into the precise underlying biological mechanisms may reveal valuable information for new therapeutic approaches.
Collapse
Affiliation(s)
- D T Bassil
- Prof. Elio Riboli, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK. , +44 (0)20 7594 3426
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Norris GT, Ames JM, Ziegler SF, Oberst A. Oligodendrocyte-derived IL-33 functions as a microglial survival factor during neuroinvasive flavivirus infection. PLoS Pathog 2023; 19:e1011350. [PMID: 37983247 PMCID: PMC10695366 DOI: 10.1371/journal.ppat.1011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/04/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
In order to recover from infection, organisms must balance robust immune responses to pathogens with the tolerance of immune-mediated pathology. This balance is particularly critical within the central nervous system, whose complex architecture, essential function, and limited capacity for self-renewal render it susceptible to both pathogen- and immune-mediated pathology. Here, we identify the alarmin IL-33 and its receptor ST2 as critical for host survival to neuroinvasive flavivirus infection. We identify oligodendrocytes as the critical source of IL-33, and microglia as the key cellular responders. Notably, we find that the IL-33/ST2 axis does not impact viral control or adaptive immune responses; rather, it is required to promote the activation and survival of microglia. In the absence of intact IL-33/ST2 signaling in the brain, neuroinvasive flavivirus infection triggered aberrant recruitment of monocyte-derived peripheral immune cells, increased neuronal stress, and neuronal cell death, effects that compromised organismal survival. These findings identify IL-33 as a critical mediator of CNS tolerance to pathogen-initiated immunity and inflammation.
Collapse
Affiliation(s)
- Geoffrey T. Norris
- Department of Immunology, University of Washington, Seattle Washington, United States of America
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle Washington, United States of America
| | - Steven F. Ziegler
- Department of Immunology, University of Washington, Seattle Washington, United States of America
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle Washington, United States of America
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle Washington, United States of America
| |
Collapse
|
12
|
Chandwani MN, Kamte YS, Singh VR, Hemerson ME, Michaels AC, Leak RK, O'Donnell LA. The anti-viral immune response of the adult host robustly modulates neural stem cell activity in spatial, temporal, and sex-specific manners. Brain Behav Immun 2023; 114:61-77. [PMID: 37516388 DOI: 10.1016/j.bbi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Yashika S Kamte
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Vivek R Singh
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Marlo E Hemerson
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Alexa C Michaels
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Rehana K Leak
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Blackhurst BM, Funk KE. Molecular and Cellular Mechanisms Underlying Neurologic Manifestations of Mosquito-Borne Flavivirus Infections. Viruses 2023; 15:2200. [PMID: 38005878 PMCID: PMC10674799 DOI: 10.3390/v15112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Flaviviruses are a family of enveloped viruses with a positive-sense RNA genome, transmitted by arthropod vectors. These viruses are known for their broad cellular tropism leading to infection of multiple body systems, which can include the central nervous system. Neurologic effects of flavivirus infection can arise during both acute and post-acute infectious periods; however, the molecular and cellular mechanisms underlying post-acute sequelae are not fully understood. Here, we review recent studies that have examined molecular and cellular mechanisms that may contribute to neurologic sequelae following infection with the West Nile virus, Japanese encephalitis virus, Zika virus, dengue virus, and St. Louis encephalitis virus. Neuronal death, either from direct infection or due to the resultant inflammatory response, is a common mechanism by which flavivirus infection can lead to neurologic impairment. Other types of cellular damage, such as oxidative stress and DNA damage, appear to be more specific to certain viruses. This article aims to highlight mechanisms of cellular damage that are common across several flavivirus members and mechanisms that are more unique to specific members. Our goal is to inspire further research to improve understanding of this area in the hope of identifying treatment options for flavivirus-associated neurologic changes.
Collapse
Affiliation(s)
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
14
|
Li Q, Liu H, Li L, Guo H, Xie Z, Kong X, Xu J, Zhang J, Chen Y, Zhang Z, Liu J, Xuan A. Mettl1-mediated internal m 7G methylation of Sptbn2 mRNA elicits neurogenesis and anti-alzheimer's disease. Cell Biosci 2023; 13:183. [PMID: 37779199 PMCID: PMC10544167 DOI: 10.1186/s13578-023-01131-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) is one of the most conserved modifications in nucleosides impacting mRNA export, splicing, and translation. However, the precise function and molecular mechanism of internal mRNA m7G methylation in adult hippocampal neurogenesis and neurogenesis-related Alzheimer's disease (AD) remain unknown. RESULTS We profiled the dynamic Mettl1/Wdr4 expressions and m7G modification during neuronal differentiation of neural stem cells (NSCs) in vitro and in vivo. Adult hippocampal neurogenesis and its molecular mechanisms were examined by morphology, biochemical methods and biological sequencing. The translation efficiency of mRNA was detected by polysome profiling. The stability of Sptbn2 mRNA was constructed by RNA stability assay. APPswe/PS1ΔE9 (APP/PS1) double transgenic mice were used as model of AD. Morris water maze was used to detect the cognitive function. METHODS We found that m7G methyltransferase complex Mettl1/Wdr4 as well as m7G was significantly elevated in neurons. Functionally, silencing Mettl1 in neural stem cells (NSCs) markedly decreased m7G modification, neuronal genesis and proliferation in addition to increasing gliogenesis, while forced expression of Mettl1 facilitated neuronal differentiation and proliferation. Mechanistically, the m7G modification of Sptbn2 mRNA by Mettl1 enhanced its stability and translation, which promoted neurogenesis. Importantly, genetic defciency of Mettl1 reduced hippocampal neurogenesis and spatial memory in the adult mice. Furthermore, Mettl1 overexpression in the hippocampus of APP/PS1 mice rescued neurogenesis and behavioral defects. CONCLUSION Our findings unravel the pivotal role of internal mRNA m7G modification in Sptbn2-mediated neurogenesis, and highlight Mettl3 regulation of neurogenesis as a novel therapeutic target in AD treatment.
Collapse
Affiliation(s)
- Qingfeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Hui Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Lishi Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Haomin Guo
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Zhihao Xie
- School of Basic Medical Sciences, First Clinical School, School of Health Management, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuejian Kong
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jiamin Xu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junlin Zhang
- School of Basic Medical Sciences, First Clinical School, School of Health Management, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yunxia Chen
- School of Basic Medical Sciences, First Clinical School, School of Health Management, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongsheng Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jun Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Aiguo Xuan
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- School of Basic Medical Sciences of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou, 511436, China.
| |
Collapse
|
15
|
Vanderheiden A, Hill J, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS. Vaccination prevents IL-1β-mediated cognitive deficits after COVID-19. RESEARCH SQUARE 2023:rs.3.rs-3353171. [PMID: 37790551 PMCID: PMC10543322 DOI: 10.21203/rs.3.rs-3353171/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 beta variant, leads to CNS infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes post-acute cognitive deficits. Breakthrough infection after vaccination with a low dose of adenoviral vectored Spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis, and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new murine model that is prevented by vaccination.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Deppen
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Kamte YS, Chandwani MN, London NM, Potosnak CE, Leak RK, O'Donnell LA. Perturbations in neural stem cell function during a neurotropic viral infection in juvenile mice. J Neurochem 2023; 166:809-829. [PMID: 37530081 DOI: 10.1111/jnc.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Viral infections of the central nervous system (CNS) often cause worse neurological outcomes in younger hosts. Throughout childhood, the brain undergoes extensive development and refinement to produce functional neural networks. Network function is maintained partly with the help of neural stem cells (NSCs) that replace neuronal and glia subtypes in the two neurogenic niches of the brain (the hippocampus and subventricular zone). Accumulating evidence suggests that viruses disrupt NSC function in adulthood and infancy, but the in vivo impact of childhood infections on acute and long-term NSC function is unknown. Using a juvenile mouse model of measles virus (MeV) infection, where only mature neurons in the brain are infected, we defined the effects of the antiviral immune response on NSCs from juvenile to adult stages of life. We found that (a) virus persists in the brains of survivors despite an anti-viral immune response; (b) NSC numbers decrease dramatically during early infection, but ultimately stabilize in adult survivors; (c) infection is associated with mild apoptosis throughout the juvenile brain, but NSC proliferation is unchanged; (d) the loss of NSC numbers is dependent upon the stage of NSC differentiation; and (e) immature neurons increase early during infection, concurrent with depletion of NSC pools. Collectively, we show that NSCs are exquisitely sensitive to the inflammatory microenvironment created during neuron-restricted MeV infection in juveniles, responding with an early loss of NSCs but increased neurogenesis. These studies provide insight into potential cellular mechanisms associated with long-term neurological deficits in survivors of childhood CNS infections.
Collapse
Affiliation(s)
- Yashika S Kamte
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Manisha N Chandwani
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Natalie M London
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Chloe E Potosnak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren A O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Scroggs SLP, Offerdahl DK, Stewart PE, Shaia C, Griffin AJ, Bloom ME. Of Murines and Humans: Modeling Persistent Powassan Disease in C57BL/6 Mice. mBio 2023; 14:e0360622. [PMID: 36809119 PMCID: PMC10128018 DOI: 10.1128/mbio.03606-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- Arthropod-Borne Animal Disease Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, USA
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Philip E. Stewart
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Amanda J. Griffin
- Office of the Chief, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
18
|
Norris GT, Ames JM, Ziegler SF, Oberst A. Oligodendrocyte-derived IL-33 functions as a microglial survival factor during neuroinvasive flavivirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536332. [PMID: 37090518 PMCID: PMC10120631 DOI: 10.1101/2023.04.11.536332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to recover from infection, organisms must balance robust immune responses to pathogens with the tolerance of immune-mediated pathology. This balance is particularly critical within the central nervous system, whose complex architecture, essential function, and limited capacity for self-renewal render it susceptible to both pathogen- and immune-mediated pathology. Here, we identify the alarmin IL-33 and its receptor ST2 as critical for host survival to neuroinvasive flavivirus infection. We identify oligodendrocytes as the critical source of IL-33, and microglia as the key cellular responders. Notably, we find that the IL-33/ST2 axis does not impact viral control or adaptive immune responses; rather, it is required to promote the activation and survival of microglia. In the absence of intact IL-33/ST2 signaling in the brain, neuroinvasive flavivirus infection triggered aberrant recruitment of monocyte-derived peripheral immune cells, increased neuronal stress, and neuronal cell death, effects that compromised organismal survival. These findings identify IL-33 as a critical mediator of CNS tolerance to pathogen-initiated immunity and inflammation.
Collapse
Affiliation(s)
- Geoffrey T. Norris
- Department of Immunology, University of Washington, Seattle WA 98109, USA
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle WA 98109, USA
| | - Steven F. Ziegler
- Department of Immunology, University of Washington, Seattle WA 98109, USA
- Immunology Program, Benaroya Research Institute, Seattle WA 98101, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle WA 98109, USA
- Lead Contact
| |
Collapse
|
19
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
21
|
Palacios E, Lobos-González L, Guerrero S, Kogan MJ, Shao B, Heinecke JW, Quest AFG, Leyton L, Valenzuela-Valderrama M. Helicobacter pylori outer membrane vesicles induce astrocyte reactivity through nuclear factor-κappa B activation and cause neuronal damage in vivo in a murine model. J Neuroinflammation 2023; 20:66. [PMID: 36895046 PMCID: PMC9996972 DOI: 10.1186/s12974-023-02728-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), βIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVβ3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.
Collapse
Affiliation(s)
- Esteban Palacios
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de La Salud, Universidad Central de Chile, 8330546, Santiago, Chile.,Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo-Clínica Alemana, 7590943, Santiago, Chile
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Facultad de Medicina, Universidad de Atacama, 153601, Copiapó, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98195-8055, USA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98195-8055, USA
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Lisette Leyton
- Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de La Salud, Universidad Central de Chile, 8330546, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.
| |
Collapse
|
22
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
23
|
Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int J Mol Sci 2023; 24:ijms24021581. [PMID: 36675095 PMCID: PMC9867397 DOI: 10.3390/ijms24021581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.
Collapse
|
24
|
Stępień T, Tarka S, Chmura N, Grzegorczyk M, Acewicz A, Felczak P, Wierzba-Bobrowicz T. Influence of SARS-CoV-2 on Adult Human Neurogenesis. Cells 2023; 12:244. [PMID: 36672177 PMCID: PMC9856847 DOI: 10.3390/cells12020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with the onset of neurological and psychiatric symptoms during and after the acute phase of illness. Inflammation and hypoxia induced by SARS-CoV-2 affect brain regions essential for fine motor function, learning, memory, and emotional responses. The mechanisms of these central nervous system symptoms remain largely unknown. While looking for the causes of neurological deficits, we conducted a study on how SARS-CoV-2 affects neurogenesis. In this study, we compared a control group with a group of patients diagnosed with COVID-19. Analysis of the expression of neurogenesis markers showed a decrease in the density of neuronal progenitor cells and newborn neurons in the SARS-CoV-2 group. Analysis of COVID-19 patients revealed increased microglial activation compared with the control group. The unfavorable effect of the inflammatory process in the brain associated with COVID-19 disease increases the concentration of cytokines that negatively affect adult human neurogenesis.
Collapse
Affiliation(s)
- Tomasz Stępień
- Department of Neuropathology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Sylwia Tarka
- Chair and Department of Forensic Medicine, Medical University of Warsaw, 02-007 Warsaw, Poland
| | - Natalia Chmura
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Grzegorczyk
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, 00-001 Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Paulina Felczak
- Department of Neuropathology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | |
Collapse
|
25
|
Soung AL, Vanderheiden A, Nordvig AS, Sissoko CA, Canoll P, Mariani MB, Jiang X, Bricker T, Rosoklija GB, Arango V, Underwood M, Mann JJ, Dwork AJ, Goldman JE, Boon ACM, Boldrini M, Klein RS. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022; 145:4193-4201. [PMID: 36004663 PMCID: PMC9452175 DOI: 10.1093/brain/awac270] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 01/14/2023] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.
Collapse
Affiliation(s)
- Allison L Soung
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna S Nordvig
- Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cheick A Sissoko
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gorazd B Rosoklija
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - Victoria Arango
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Mark Underwood
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andrew J Dwork
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maura Boldrini
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Vanderheiden A, Klein RS. Neuroinflammation and COVID-19. Curr Opin Neurobiol 2022; 76:102608. [PMID: 35863101 PMCID: PMC9239981 DOI: 10.1016/j.conb.2022.102608] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a historic pandemic of respiratory disease. COVID-19 also causes acute and post-acute neurological symptoms, which range from mild, such as headaches, to severe, including hemorrhages. Current evidence suggests that there is no widespread infection of the central nervous system (CNS) by SARS-CoV-2, thus what is causing COVID-19 neurological disease? Here, we review potential immunological mechanisms driving neurological disease in COVID-19 patients. We begin by discussing the implications of imbalanced peripheral immunity on CNS function. Next, we examine the evidence for dysregulation of the blood-brain barrier during SARS-CoV-2 infection. Last, we discuss the role myeloid cells may play in promoting COVID-19 neurological disease. Combined, we highlight the role of innate immunity in COVID-19 neuroinflammation and suggest areas for future research.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Departments of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Rosen SF, Soung AL, Yang W, Ai S, Kanmogne M, Davé VA, Artyomov M, Magee JA, Klein RS. Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Med 2022; 14:108. [PMID: 36153630 PMCID: PMC9509564 DOI: 10.1186/s13073-022-01111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
Background Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. Methods Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. Results Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. Conclusions We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01111-0.
Collapse
|
29
|
Kumaria A, Noah A, Kirkman MA. Does covid-19 impair endogenous neurogenesis? J Clin Neurosci 2022; 105:79-85. [PMID: 36113246 DOI: 10.1016/j.jocn.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/14/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
Endogenous neural stem cells are thought to continue to generate new neurons throughout life in the human brain. Endogenous neurogenesis has been proposed to contribute to physiological roles in maintaining and regenerating olfaction, as well as promoting normal cognition, learning and memory. Specific impairments in these processes in COVID-19 - impaired olfaction and cognition - may implicate the SARS-CoV-2 virus in attenuating neurogenesis. Furthermore, neurogenesis has been linked with neuroregeneration; and impaired neuroregeneration has previously been linked with neurodegenerative diseases. Emerging evidence supports an association between COVID-19 infection and accelerated neurodegeneration. Also, structural changes indicating global reduction in brain size and specific reduction in the size of limbic structures - including orbitofrontal cortex, olfactory cortex and parahippocampal gyrus - as a result of SARS-CoV-2 infection have been demonstrated. This paper proposes the hypothesis that SARS-CoV-2 infection may impair endogenous neural stem cell activity. An attenuation of neurogenesis may contribute to reduction in brain size and/or neurodegenerative processes following SARS-CoV-2 infection. Furthermore, as neural stem cells are thought to be the cell of origin in glioma, better understanding of SARS-CoV-2 interaction with tumorigenic stem cells is indicated, with a view to informing therapeutic modulation. The subacute and chronic implications of attenuated endogenous neurogenesis are explored in the context of long COVID. Modulating endogenous neurogenesis may be a novel therapeutic strategy to address specific neurological manifestations of COVID-19 and potential applicability in tumour virotherapy.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Abiodun Noah
- Anaesthesia and Critical Care, Academic Unit of Injury, Inflammation and Recovery Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Matthew A Kirkman
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
30
|
Maurya SK, Baghel MS, Gaurav, Chaudhary V, Kaushik A, Gautam A. Putative role of mitochondria in SARS-CoV-2 mediated brain dysfunctions: a prospect. Biotechnol Genet Eng Rev 2022:1-26. [PMID: 35934991 DOI: 10.1080/02648725.2022.2108998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. Though the virus primarily damages the respiratory and cardiovascular systems after binding to the host angiotensin-converting enzyme 2 (ACE2) receptors, it has the potential to affect all major organ systems, including the human nervous system. There are multiple clinical reports of anosmia, dizziness, headache, nausea, ageusia, encephalitis, demyelination, neuropathy, memory loss, and neurological complications in SARS-CoV-2 infected individuals. Though the molecular mechanism of these brain dysfunctions during SARS-CoV-2 infection is elusive, the mitochondria seem to be an integral part of this pathogenesis. Emerging research findings suggest that the dysfunctional mitochondria and associated altered bioenergetics in the infected host cells lead to altered energy metabolism in the brain of Covid-19 patients. The interactome between viral proteins and mitochondrial proteins during Covid-19 pathogenesis also provides evidence for the involvement of mitochondria in SARS-CoV-2-induced brain dysfunctions. The present review discusses the possible role of mitochondria in disturbing the SARS-CoV-2 mediated brain functions, with the potential to use this information to prevent and treat these impairments.
Collapse
Affiliation(s)
| | - Meghraj S Baghel
- Department of Pathology, School of Medicine Johns Hopkins University, Baltimore, MD, USA
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department ofEnvironmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
31
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Zhang M, Lu C, Su L, Long F, Yang X, Guo X, Song G, An T, Chen W, Chen J. Toosendanin activates caspase-1 and induces maturation of IL-1β to inhibit type 2 porcine reproductive and respiratory syndrome virus replication via an IFI16-dependent pathway. Vet Res 2022; 53:61. [PMID: 35906635 PMCID: PMC9334981 DOI: 10.1186/s13567-022-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen which causes significant economic losses in the global swine industry. Multiple vaccines have been developed to prevent PRRSV infection. However, they provide limited protection. Moreover, no effective therapeutic drugs are yet available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. Here we report that Toosendanin (TSN), a tetracyclic triterpene found in the bark or fruits of Melia toosendan Sieb. et Zucc., strongly suppressed type 2 PRRSV replication in vitro in Marc-145 cells and ex vivo in primary porcine alveolar macrophages (PAMs) at sub-micromolar concentrations. The results of transcriptomics revealed that TSN up-regulated the expression of IFI16 in Marc-145 cells. Furthermore, we found that IFI16 silencing enhanced the replication of PRRSV in Marc-145 cells and that the anti-PRRSV activity of TSN was dampened by IFI16 silencing, suggesting that the inhibition of TSN against PRRSV replication is IFI16-dependent. In addition, we showed that TSN activated caspase-1 and induced maturation of IL-1β in an IFI16-dependent pathway. To verify the role of IL-1β in PRRSV infection, we analyzed the effect of exogenous rmIL-1β on PRRSV replication, and the results showed that exogenous IL-1β significantly inhibited PRRSV replication in Marc-145 cells and PAMs in a dose-dependent manner. Altogether, our findings indicate that TSN significantly inhibits PRRSV replication at very low concentrations (EC50: 0.16–0.20 μM) and may provide opportunities for developing novel anti-PRRSV agents.
Collapse
Affiliation(s)
- Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Monash University, Clayton, VIC, 3168, Australia
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofeng Guo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Whitson HE, Colton C, El Khoury J, Gate D, Goate A, Heneka MT, Kaddurah-Daouk R, Klein RS, Shinohara ML, Sisodia S, Spudich SS, Stevens B, Tanzi R, Ting JP, Garden G. Infection and inflammation: New perspectives on Alzheimer's disease. Brain Behav Immun Health 2022; 22:100462. [PMID: 36118272 PMCID: PMC9475126 DOI: 10.1016/j.bbih.2022.100462] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022] Open
Abstract
Neuroinflammation has been recognized as a component of Alzheimer's Disease (AD) pathology since the original descriptions by Alois Alzheimer and a role for infections in AD pathogenesis has long been hypothesized. More recently, this hypothesis has gained strength as human genetics and experimental data suggest key roles for inflammatory cells in AD pathogenesis. To review this topic, Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium: "Infection and Inflammation: New Perspectives on Alzheimer's Disease (AD)." Participants considered current evidence for and against the hypothesis that AD could be caused or exacerbated by infection or commensal microbes. Discussion focused on connecting microglial transcriptional states to functional states, mouse models that better mimic human immunity, the potential involvement of inflammasome signaling, metabolic alterations, self-reactive T cells, gut microbes and fungal infections, and lessons learned from Covid-19 patients with neurologic symptoms. The content presented in the symposium, and major topics raised in discussions are reviewed in this summary of the proceedings.
Collapse
Affiliation(s)
- Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - Carol Colton
- Department of Neurology, Duke University School of Medicine, 3116 N Duke St, Durham, NM, 27704, USA
| | - Joseph El Khoury
- Center for Immunology & Inflammatory Diseases, Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - David Gate
- The Ken & Ruth Davee Dept of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Ward 12-140, Chicago, IL 60611, USA
| | - Alison Goate
- Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, One Gustave L. Levy Place, Box 1498, New York, NY, 10029-6574, USA
| | - Michael T. Heneka
- Dept of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127, Bonn, Germany
| | - Rima Kaddurah-Daouk
- Dept of Psychiatry and Behavioral Sciences, Dept of Medicine, Duke Institute of Brain Sciences, Duke University School of Medicine, DUMC Box 3903, Blue Zone, South, Durham, NC, 27710, USA
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Depts of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, 660 S Euclid Ave, Box 8015, St. Louis, MO, 63110, USA
| | - Mari L. Shinohara
- Dept of Immunology, Duke University School of Medicine, 207 Research Dr, Box 3010, Durham, NC, 27710, USA
| | - Sangram Sisodia
- Dept of Neurobiology, University of Chicago, Abbott Memorial Hall, 947 East 58th St, MC 0928, Chicago, IL, 60637, USA
| | - Serena S. Spudich
- Dept of Neurology, Yale School of Medicine, PO Box 208018, New Haven, CT, 06520, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, 300 Longwood Ave, Center for Life Sciences 12th Floor, Boston, MA, 02115, USA
| | - Rudolph Tanzi
- McCance Center for Brain Health, Massachusetts General Hospital, 114 16th St, Charlestown, MA, 02129, USA
| | - Jenny P. Ting
- Depts of Genetics, Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for Translational Immunology, UNC School of Medicine, 125 Mason Farm Road, 6th Floor Marsico Hall, Chapel Hill, NC, 27599-7290, USA
| | - Gwenn Garden
- Dept of Neurology, UNC School of Medicine, Physicians Office Building, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
| |
Collapse
|
34
|
Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Res 2022; 32:729-743. [PMID: 35750757 PMCID: PMC9343414 DOI: 10.1038/s41422-022-00678-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2022] [Indexed: 01/06/2023] Open
Abstract
Whether adult hippocampal neurogenesis (AHN) persists in adult and aged humans continues to be extensively debated. A major question is whether the markers identified in rodents are reliable enough to reveal new neurons and the neurogenic trajectory in primates. Here, to provide a better understanding of AHN in primates and to reveal more novel markers for distinct cell types, droplet-based single-nucleus RNA sequencing (snRNA-seq) is used to investigate the cellular heterogeneity and molecular characteristics of the hippocampi in macaques across the lifespan and in aged humans. All of the major cell types in the hippocampus and their expression profiles were identified. The dynamics of the neurogenic lineage was revealed and the diversity of astrocytes and microglia was delineated. In the neurogenic lineage, the regulatory continuum from adult neural stem cells (NSCs) to immature and mature granule cells was investigated. A group of primate-specific markers were identified. We validated ETNPPL as a primate-specific NSC marker and verified STMN1 and STMN2 as immature neuron markers in primates. Furthermore, we illustrate a cluster of active astrocytes and microglia exhibiting proinflammatory responses in aged samples. The interaction analysis and the comparative investigation on published datasets and ours imply that astrocytes provide signals inducing the proliferation, quiescence and inflammation of adult NSCs at different stages and that the proinflammatory status of astrocytes probably contributes to the decrease and variability of AHN in adults and elderly individuals.
Collapse
|
35
|
Abstract
Long COVID refers to the lingering symptoms which persist or appear after the acute illness. The dominant long COVID symptoms in the two years since the pandemic began (2020-2021) have been depression, anxiety, fatigue, concentration and cognitive impairments with few reports of psychosis. Whether other symptoms will appear later on is not yet known. For example, dopamine-dependent movement disorders generally take many years before first symptoms are seen. Post-stroke depression and anxiety may explain many of the early long COVID cases. Hemorrhagic, hypoxic and inflammatory damages of the central nervous system, unresolved systematic inflammation, metabolic impairment, cerebral vascular accidents such as stroke, hypoxia from pulmonary damages and fibrotic changes are among the major causes of long COVID. Glucose metabolic and hypoxic brain issues likely predispose subjects with pre-existing diabetes, cardiovascular or lung problems to long COVID as well. Preliminary data suggest that psychotropic medications may not be a danger but could instead be beneficial in combating COVID-19 infection. The same is true for diabetes medications such as metformin. Thus, a focus on sigma-1 receptor ligands and glucose metabolism is expected to be useful for new drug development as well as the repurposing of current drugs. The reported protective effects of psychotropics and antihistamines against COVID-19, the earlier reports of reduced number of sigma-1 receptors in post-mortem schizophrenic brains, with many antidepressant and antipsychotic drugs being antihistamines with significant affinity for the sigma-1 receptor, support the role of sigma and histamine receptors in neuroinflammation and viral infections. Literature and data in all these areas are accumulating at a fast rate. We reviewed and discussed the relevant and important literature.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW As of January 8, 2022, a global pandemic caused by infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a new RNA virus, has resulted in 304,896,785 cases in over 222 countries and regions, with over 5,500,683 deaths (www.worldometers.info/coronavirus/). Reports of neurological and psychiatric symptoms in the context of coronavirus infectious disease 2019 (COVID-19) range from headache, anosmia, and dysgeusia, to depression, fatigue, psychosis, seizures, delirium, suicide, meningitis, encephalitis, inflammatory demyelination, infarction, and acute hemorrhagic necrotizing encephalopathy. Moreover, 30-50% of COVID-19 survivors develop long-lasting neurologic symptoms, including a dysexecutive syndrome, with inattention and disorientation, and/or poor movement coordination. Detection of SARS-CoV-2 RNA within the central nervous system (CNS) of patients is rare, and mechanisms of neurological damage and ongoing neurologic diseases in COVID-19 patients are unknown. However, studies demonstrating viral glycoprotein effects on coagulation and cerebral vasculature, and hypoxia- and cytokine-mediated coagulopathy and CNS immunopathology suggest both virus-specific and neuroimmune responses may be involved. This review explores potential mechanistic insights that could contribute to COVID-19-related neurologic disease. RECENT FINDINGS While the development of neurologic diseases during acute COVID-19 is rarely associated with evidence of viral neuroinvasion, new evidence suggests SARS-CoV-2 Spike (S) protein exhibits direct inflammatory and pro-coagulation effects. This, in conjunction with immune dysregulation resulting in cytokine release syndrome (CRS) may result in acute cerebrovascular or neuroinflammatory diseases. Additionally, CRS-mediated loss of blood-brain barrier integrity in specific brain regions may contribute to the expression of proinflammatory mediators by neural cells that may impact brain function long after resolution of acute infection. Importantly, host co-morbid diseases that affect vascular, pulmonary, or CNS function may contribute to the type of neurologic disease triggered by SARS-COV-2 infection. SUMMARY Distinct effects of SARS-CoV-2 S protein and CNS compartment- and region-specific responses to CRS may underlie acute and chronic neuroinflammatory diseases associated with COVID-19.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
38
|
Chen XX, Tao T, Gao S, Wang H, Zhou XM, Gao YY, Hang CH, Li W. Knock-Down of CD24 in Astrocytes Aggravates Oxyhemoglobin-Induced Hippocampal Neuron Impairment. Neurochem Res 2022; 47:590-600. [PMID: 34665391 DOI: 10.1007/s11064-021-03468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/28/2023]
Abstract
Subarachnoid hemorrhage (SAH), as one of the most severe hemorrhagic strokes, is closely related to neuronal damage. Neurogenesis is a promising therapy, however, reliable targets are currently lacking. Increasing evidence has indicated that CD24 is associated with the growth of hippocampal neurons and the regulation of neural stem/precursor cell proliferation. To investigate the potential effect of CD24 in astrocytes on neuron growth in the hippocampus, we used a Transwell co-culture system of hippocampal astrocytes and neurons, and oxyhemoglobin (OxyHb) was added to the culture medium to mimic SAH in vitro. A specific lentivirus was used to knock down CD24 expression in astrocytes, which was verified by western blot, quantitative real-time polymerase chain reaction, and immunofluorescent staining. Astrocyte activation, neurite elongation, neuronal apoptosis, and cell viability were also assessed. We first determined the augmented expression level of CD24 in hippocampal astrocytes after SAH. A similar result was observed in cultured astrocytes exposed to OxyHb, and a corresponding change in SHP2/ERK was also noticed. CD24 in astrocytes was then downregulated by the lentivirus, which led to the impairment of axons and dendrites on the co-cultured neurons. Aggravated neuronal apoptosis was induced by the CD24 downregulation in astrocytes, which might be a result of a lower level of brain derived neurotrophic factor (BDNF). In conclusion, the knock-down of CD24 in astrocytes suppressed hippocampal neuron growth, in which the SHP2-ERK signaling pathway and BNDF were possibly involved.
Collapse
Affiliation(s)
- Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
- Department of Neurosurgery, The First School of Medicine, Jinling Hospital, Southern Medicine University (Guangzhou), Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
39
|
Xiao T, Ji H, Shangguan X, Qu S, Cui Y, Xu J. NLRP3 inflammasome of microglia promotes A1 astrocyte transformation, neo-neuron decline and cognition impairment in endotoxemia. Biochem Biophys Res Commun 2022; 602:1-7. [PMID: 35247698 DOI: 10.1016/j.bbrc.2022.02.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Infection, predominantly induced by gram-negative bacteria, is a critical health problem and a leading cause of death worldwide. Advance of techniques, such as antibiotics and life-supporting modality, allows a decreasing death rate of patients with infection in recent decades. Nevertheless, infection-associated complications, in particular cognitive dysfunction, largely influence the mortality of patients and the life quality of survivors. However, the effective medicine is still scant due to the poor interpretion of underlying mechanisms. Herein, we determined multiple cytokines of cerebrospinal fluid in mice challenged with various doses of lipopolysaccharides (LPS)-a pathogenic component of gram-negative bacteria, and found that IL-1β, the downstream of NLRP3 inflammasome, was boosted to a peak extent after a challenge of LPS in high dose. Genetically knockout of Nlrp3 or the downstreams, such as Asc and Gsdmd, dramatically restored LPS-induced cognitive impairment, which was attributed to inhibiting microglia-induced A1 astrocytes and so-caused neo-neuron decline. Taken together, NLRP3 inflammasome of microglia promotes transformation of A1 astrocytes and consequently exacerbates neo-neuron decline, resulting in cognitive impairment after a challenge of LPS. Our study thus discovers a novel understanding in the pathogenesis of LPS-induced cognitive dysfunction, and indicates that NLRP3 inflammasome would be a promising target in the treatment of the syndrome.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, PR China; Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan, 410007, PR China
| | - Heyu Ji
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, PR China
| | - Xuejuan Shangguan
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan, 410007, PR China
| | - Shuangquan Qu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan, 410007, PR China
| | - Yulong Cui
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, PR China.
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410000, PR China.
| |
Collapse
|
40
|
Experimental Arthritis Inhibits Adult Hippocampal Neurogenesis in Mice. Cells 2022; 11:cells11050791. [PMID: 35269413 PMCID: PMC8909078 DOI: 10.3390/cells11050791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund’s adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.
Collapse
|
41
|
Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct Target Ther 2022; 7:50. [PMID: 35177587 PMCID: PMC8854434 DOI: 10.1038/s41392-021-00867-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropsychiatric lupus (NPSLE) is a frequent manifestation of systemic lupus erythematosus (SLE) that occurs in 40–90% of SLE patients; however, the underlying mechanisms remain elusive, causing a severe lack of therapeutic targets for this condition. Here, we show that complement-coordinated elimination of synapses participated in NPSLE in MRL/lpr mice, a lupus-prone murine model. We demonstrated that lupus mice developed increased anxiety-like behaviors and persistent phagocytic microglial reactivation before overt peripheral lupus pathology. In the lupus brain, C1q was increased and localized at synaptic terminals, causing the apposition of phagocytic microglia and ensuing synaptic engulfment. We further determined that neuronal Nr4a1 signaling was essential for attracting C1q synaptic deposition and subsequent microglia-mediated synaptic elimination. Minocycline-mediated deactivation of microglia, antibody blockade of C1q, or neuronal restoration of Nr4a1 protected lupus mice from synapse loss and NP manifestations. Our findings revealed an active role of neurons in coordinating microglia-mediated synaptic loss and highlighted neuronal Nr4a1 and C1q as critical components amenable to therapeutic intervention in NPSLE.
Collapse
|
42
|
Klein RS. Encephalitic Arboviruses of Africa: Emergence, Clinical Presentation and Neuropathogenesis. Front Immunol 2022; 12:769942. [PMID: 35003087 PMCID: PMC8733932 DOI: 10.3389/fimmu.2021.769942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many mosquito-borne viruses (arboviruses) are endemic in Africa, contributing to systemic and neurological infections in various geographical locations on the continent. While most arboviral infections do not lead to neuroinvasive diseases of the central nervous system, neurologic diseases caused by arboviruses include flaccid paralysis, meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and post-infectious autoimmune or memory disorders. Here we review endemic members of the Flaviviridae and Togaviridae families that cause neurologic infections, their neuropathogenesis and host neuroimmunological responses in Africa. We also discuss the potential for neuroimmune responses to aide in the development of new diagnostics and therapeutics, and current knowledge gaps to be addressed by arbovirus research.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Neuroscience, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
43
|
Barati S, Kashani IR, Tahmasebi F. The effects of mesenchymal stem cells transplantation on A1 neurotoxic reactive astrocyte and demyelination in the cuprizone model. J Mol Histol 2022; 53:333-346. [PMID: 35031895 DOI: 10.1007/s10735-021-10046-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS), which is an autoimmune disease, is characterized by symptoms such as demyelination, axonal damage, and astrogliosis. As the most abundant type of glial cells, astrocytes play an important role in MS pathogenesis. Mesenchymal stem cells (MSCs) are a subset of stromal cells that have the potential for migration, immune-modulation, differentiation, remyelination, and neuroregeneration. Therefore, the present study evaluates the effects of MSC transplantation on A1 reactive astrocytes and the remyelination process in the cuprizone mouse model. The study used 30 male C57BL/6 mice, which were randomly distributed into three subgroups (n = 10), i.e., control, cuprizone, and transplanted MSCs groups. In order to generate a chronic demyelination model, the mice in the cuprizone group received food mixed with 0.2% cuprizone powder for 12 weeks. Then, 2 μl of DMEM containing approximately 3 × 105 DiI labeled cells was injected with a 4-min interval into the right lateral ventricle using a 10-μl Hamilton syringe. After 2 weeks of cell transplantation, we used the rotarod test to evaluate the behavioral deficits, while the remyelination process was assessed by transmission electron microscopy (TEM) and Luxol Fast Blue (LFB) staining. We assessed the population of A1 astrocytes and oligodendrocytes using specific markers, such as C3, GFAP, and Olig2, using the immunefleurocent method. The pro-inflammatory and trophic factors were assessed by a real-time polymerase chain reaction. According to our data, the specific marker of A1 astrocytes (C3) decreased in the MSCs group, while the number of oligodendrocytes significantly increased in this group compared to the cuprizone mice. Additionally, MSC was able to enhance the remyelination process after cuprizone usage, as shown by LFB and TEM images. The molecular results showed that MSCs could reduce pro-inflammatory factors, such as IL-1 and TNF-α, through the secretion of BDNF and TGF-β as trophic factors. The obtained results indicated that MSC could reduce demyelination and inflammation by decreasing A1 neurotoxic reactive astrocytes and neurotrophic and immunomodulatory factors secretion in the chronic cuprizone demyelination model.
Collapse
Affiliation(s)
- Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain Behav Immun 2022; 99:383-396. [PMID: 34695572 DOI: 10.1016/j.bbi.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Innate immune responses to emerging RNA viruses are increasingly recognized as having significant contributions to neurologic sequelae, especially memory disorders. Using a recovery model of West Nile virus (WNV) encephalitis, we show that, while macrophages deliver the antiviral and anti-neurogenic cytokine IL-1β during acute infection; viral recovery is associated with continued astrocyte inflammasome-mediated production of inflammatory levels of IL-1β, which is maintained by hippocampal astrogenesis via IL-1R1 signaling in neural stem cells (NSC). Accordingly, aberrant astrogenesis is prevented in the absence of IL-1 signaling in NSC, indicating that only newly generated astrocytes exert neurotoxic effects, preventing synapse repair and promoting spatial learning deficits. Ex vivo evaluation of IL-1β-treated adult hippocampal NSC revealed the upregulation of developmental differentiation pathways that derail adult neurogenesis in favor of astrogenesis, following viral infection. We conclude that NSC-specific IL-1 signaling within the hippocampus during viral encephalitis prevents synapse recovery and promotes spatial learning defects via altered fates of NSC progeny that maintain inflammation.
Collapse
|
45
|
Beneficial and detrimental functions of microglia during viral encephalitis. Trends Neurosci 2021; 45:158-170. [PMID: 34906391 DOI: 10.1016/j.tins.2021.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with multiple functions in health and disease. Their response during encephalitis depends on whether inflammation is triggered in a sterile or infectious manner, and in the latter case on the type of the infecting pathogen. Even though recent technological innovations advanced the understanding of the broad spectrum of microglia responses during viral encephalitis (VE), it is not entirely clear which microglia gene expression profiles are associated with antiviral and detrimental activities. Here, we review novel approaches to study microglia and the latest concepts of their function in VE. Improved understanding of microglial functions will be essential for the development of new therapeutic interventions for VE.
Collapse
|
46
|
Hua Y, Zhou L, Yang W, An W, Kou X, Ren J, Su H, Chen R, Zhang Z, Zou J, Zhao Z. Y-2 reduces oxidative stress and inflammation and improves neurological function of collagenase-induced intracerebral hemorrhage rats. Eur J Pharmacol 2021; 910:174507. [PMID: 34536364 DOI: 10.1016/j.ejphar.2021.174507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease, and there is currently no specific pharmacological treatment that can improve clinical outcomes. Y-2 sublingual tablets, each containing 30 mg edaravone and 6 mg (+)-borneol, is undergoing a phase III clinical trial for treatment of ischemic stroke in China. The purpose of the present study is to investigate the efficacy and potential mechanism of Y-2 in a rat model of collagenase IV injection induced ICH. Sublingual administration of Y-2 at the dose of 1, 3 and 6 mg/kg improved ICH-induced sensorimotor dysfunction, alleviated cell death and histopathological change, restored the hippocampal long-term potentiation (LTP), reduced brain edema and maintained blood-brain barrier (BBB) integrality in ICH rats. Further study demonstrated that Y-2 could reduce inflammatory response and oxidative stress by decreasing the levels of myeloperoxidase (MPO), ionized calcium-binding adaptor protein-1 (Iba-1), inflammatory cytokines and oxidative products, inhibit transcription factor nuclear factor-κB (NF-κB) activation, cyclooxygenase-2 (COX-2) and matrix metallopeptidase 9 (MMP-9) expression in brain tissue around in the core regions of hematoma. Importantly, the protective efficacy of Y-2 from ICH-induced injury was superior to edaravone. In conclusion, Y-2 sublingual tablets might be a promising therapeutic agent for the treatment of ICH.
Collapse
Affiliation(s)
- Yao Hua
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Limei Zhou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Weidong Yang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Wenji An
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Xiaolin Kou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Jian Ren
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Hailang Su
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Rong Chen
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Zhengping Zhang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China; State Key Laboratory of Translational Medicine and Innovative Drug, No.699-18, Xuanwu Avenue, Nanjing, Jiangsu, 210042, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
47
|
Tan PH, Ji J, Yeh CC, Ji RR. Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Front Immunol 2021; 12:783725. [PMID: 34804074 PMCID: PMC8602180 DOI: 10.3389/fimmu.2021.783725] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-β are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-β can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts, MA, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Chun-Chang Yeh
- Department of Anesthesiology of Tri-Service General Hospital & National Defense Medical Center, Taipei City, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
48
|
Klein R, Soung A, Sissoko C, Nordvig A, Canoll P, Mariani M, Jiang X, Bricker T, Goldman J, Rosoklija G, Arango V, Underwood M, Mann JJ, Boon A, Dowrk A, Boldrini M. COVID-19 induces neuroinflammation and loss of hippocampal neurogenesis. RESEARCH SQUARE 2021:rs.3.rs-1031824. [PMID: 34729556 PMCID: PMC8562542 DOI: 10.21203/rs.3.rs-1031824/v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness 1-4 . Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-2 5 , and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.
Collapse
|
49
|
The Role of AhR in the Hallmarks of Brain Aging: Friend and Foe. Cells 2021; 10:cells10102729. [PMID: 34685709 PMCID: PMC8534784 DOI: 10.3390/cells10102729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered to be involved in aging phenotypes across several species. This receptor is a highly conserved biosensor that is activated by numerous exogenous and endogenous molecules, including microbiota metabolites, to mediate several physiological and toxicological functions. Brain aging hallmarks, which include glial cell activation and inflammation, increased oxidative stress, mitochondrial dysfunction, and cellular senescence, increase the vulnerability of humans to various neurodegenerative diseases. Interestingly, many studies have implicated AhR signaling pathways in the aging process and longevity across several species. This review provides an overview of the impact of AhR pathways on various aging hallmarks in the brain and the implications for AhR signaling as a mechanism in regulating aging-related diseases of the brain. We also explore how the nature of AhR ligands determines the outcomes of several signaling pathways in brain aging processes.
Collapse
|
50
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|