1
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2025; 36:1-25. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
3
|
Han J, Liu K, Isaacson KB, Monakhova K, Griffith LG, You S. System- and sample-agnostic isotropic three-dimensional microscopy by weakly physics-informed, domain-shift-resistant axial deblurring. Nat Commun 2025; 16:745. [PMID: 39821085 PMCID: PMC11739688 DOI: 10.1038/s41467-025-56078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Three-dimensional subcellular imaging is essential for biomedical research, but the diffraction limit of optical microscopy compromises axial resolution, hindering accurate three-dimensional structural analysis. This challenge is particularly pronounced in label-free imaging of thick, heterogeneous tissues, where assumptions about data distribution (e.g. sparsity, label-specific distribution, and lateral-axial similarity) and system priors (e.g. independent and identically distributed noise and linear shift-invariant point-spread functions are often invalid. Here, we introduce SSAI-3D, a weakly physics-informed, domain-shift-resistant framework for robust isotropic three-dimensional imaging. SSAI-3D enables robust axial deblurring by generating a diverse, noise-resilient, sample-informed training dataset and sparsely fine-tuning a large pre-trained blind deblurring network. SSAI-3D is applied to label-free nonlinear imaging of living organoids, freshly excised human endometrium tissue, and mouse whisker pads, and further validated in publicly available ground-truth-paired experimental datasets of three-dimensional heterogeneous biological tissues with unknown blurring and noise across different microscopy systems.
Collapse
Affiliation(s)
- Jiashu Han
- Research Laboratory of Electronics, MIT, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Kunzan Liu
- Research Laboratory of Electronics, MIT, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Keith B Isaacson
- Newton-Wellesley Hospital, Mass General Brigham, Newton, MA, USA
| | | | - Linda G Griffith
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Sixian You
- Research Laboratory of Electronics, MIT, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Jones RM, DeRuiter RM, Deshmukh M, Dayton PA, Pinton GF. Non-invasive volumetric ultrasound localization microscopy detects vascular changes in mice with Alzheimer's disease. Theranostics 2025; 15:1110-1121. [PMID: 39776806 PMCID: PMC11700853 DOI: 10.7150/thno.99097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's Disease (AD) is the most common form of dementia and one of the leading causes of death. AD is known to be correlated to tortuosity in the microvasculature as well as decreases in blood flow throughout the brain. However, the mechanisms behind these changes and their causal relation to AD are poorly understood. Methods: Here, we use volumetric ultrasound localization microscopy (ULM) to non-invasively and quantitatively compare the microvascular morphology and flow dynamics of five wildtype (WT) and five APPNL-G-F Knock-in mice, a mouse model of AD, across a 1cmx1cmx1cm brain volume and in four specific brain regions: the hippocampal formation, thalamus, hypothalamus, and cerebral cortex. Results: Comparisons between groups showed a significant increase in tortuosity, as measured by the Sum of Angles Metric (SOAM), throughout the brain (p < 0.01) and the hypothalamus (p = 0.01), in mice with AD. While differences in mean velocity (p < 0.01) and blood flow (p=0.04) were detected across the whole brain, their effect size was small and no differences were detected in the four selected regions. There was a significant decrease in the linear log relationship between vessel diameter and blood flow, with AD mice experiencing a lower slope than WT mice across the whole brain volume (p = 0.02) and in the hippocampal formation (p = 0.05), a region affected by Amyloid Beta plaques in this mouse model. The AD mice had higher blood flows in smaller vessels and smaller blood flows in larger vessels than the WT mice. Conclusions: This preliminary demonstrates that the imaging technique can be used for non-invasive, longitudinal, volumetric assessment of AD, which may allow for investigation into the poorly understood microvascular degeneration associated with AD through time as well as the development of early diagnostic techniques.
Collapse
Affiliation(s)
- Rebecca M. Jones
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ryan M. DeRuiter
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Gianmarco F. Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| |
Collapse
|
5
|
Devraj K, Kulkarni O, Liebner S. Regulation of the blood-brain barrier function by peripheral cues in health and disease. Metab Brain Dis 2024; 40:61. [PMID: 39671124 PMCID: PMC11645320 DOI: 10.1007/s11011-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
The blood-brain barrier (BBB) is formed by microvascular endothelial cells which are ensembled with pericytes, astrocytes, microglia and neurons in the neurovascular unit (NVU) that is crucial for neuronal function. Given that the NVU and the BBB are highly dynamic and regulated structures, their integrity is continuously challenged by intrinsic and extrinsic factors. Herein, factors from peripheral organs such as gonadal and adrenal hormones may influence vascular function also in CNS endothelial cells in a sex- and age-dependent manner. The communication between the periphery and the CNS likely takes place in specific areas of the brain among which the circumventricular organs have a central position due to their neurosensory or neurosecretory function, owing to physiologically leaky blood vessels. In acute and chronic pathological conditions like liver, kidney, pulmonary disease, toxins and metabolites are generated that reach the brain via the circulation and may directly or indirectly affect BBB functionality via the activation of the immunes system. For example, chronic kidney disease (CKD) currently affects more than 840 million people worldwide and is likely to increase along with western world comorbidities of the cardio-vascular system in continuously ageing societies. Toxins leading to the uremic syndrome, may further lead to neurological complications such as cognitive impairment and uremic encephalopathy. Here we summarize the effects of hormones, toxins and inflammatory reactions on the brain vasculature, highlighting the urgent demand for mechanistically exploring the communication between the periphery and the CNS, focusing on the BBB as a last line of defense for brain protection.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India.
| | - Onkar Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
6
|
Gutiérrez-Jiménez E, Rasmussen PM, Mikkelsen IK, Kura S, Fruekilde SK, Hansen B, Bordoni L, Carlsen J, Palmfeldt J, Boas DA, Sakadžić S, Vinogradov S, Khatib ME, Ramos-Cejudo J, Wied B, Leduc-Galindo D, Canepa E, Mar AC, Gamallo-Lana B, Fossati S, Østergaard L. Carbonic anhydrase inhibitors prevent presymptomatic capillary flow disturbances in a model of cerebral amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609091. [PMID: 39229198 PMCID: PMC11370441 DOI: 10.1101/2024.08.22.609091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Disturbances in microvascular flow dynamics are hypothesized to precede the symptomatic phase of Alzheimer's disease (AD). However, evidence in presymptomatic AD remains elusive, underscoring the need for therapies targeting these early vascular changes. METHODS We employed a multimodal approach, combining in vivo optical imaging, molecular techniques, and ex vivo MRI, to investigate early capillary dysfunction in Tg-SwDI mice without memory impairment. We also assessed the efficacy of carbonic anhydrase inhibitors (CAIs) in preventing capillary flow disturbances. RESULTS Our study revealed capillary flow disturbances associated with alterations in capillary morphology, adhesion molecule expression, and Amyloid-β (Aβ) load in 9-10-month-old Tg-SwDI mice without memory impairment. CAI treatment ameliorated these capillary flow disturbances, enhanced oxygen availability, and reduced Aβ load. DISCUSSION These findings underscore the importance of capillary flow disturbances as early biomarkers in presymptomatic AD and highlight the potential of CAIs for preserving vascular integrity in the early stages of AD.
Collapse
|
7
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
8
|
Mutimer CA, Mujanovic A, Kaesmacher J, Churilov L, Kleinig TJ, Parsons MW, Mitchell PJ, Campbell BCV, Ng F. Comparison of Perfusion Imaging Definitions of the No-Reflow Phenomenon after Thrombectomy-What Is the Best Perfusion Imaging Definition? Ann Neurol 2024; 96:1104-1114. [PMID: 39225109 DOI: 10.1002/ana.27073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The no-reflow phenomenon is a potential contributor to poor outcome despite successful thrombectomy. There are multiple proposed imaging-based definitions of no-reflow leading to wide variations in reported prevalence. We investigated the agreement between existing imaging definitions and compared the characteristics and outcomes of patients identified as having no-reflow. METHODS We performed an external validation of 4 existing published definitions of no-reflow in thrombectomy patients with extended Thrombolysis in Cerebral Infarction scale 2c to 3 (eTICI2c-3) angiographic reperfusion who underwent 24-hour perfusion imaging from 2 international randomized controlled trials (EXTEND-IA TNK part-1 and 2) and a multicenter prospective observational study. Receiver-operating-characteristic and Bayesian-information-criterion (BIC) analyses were performed with the outcome variable being dependent-or-dead at 90-days (modified Rankin Score [mRS] ≥3). RESULTS Of 131 patients analyzed, the prevalence of no-reflow significantly varied between definitions (0.8-22.1%; p < 0.001). There was poor agreement between definitions (kappa 5/6 comparisons <0.212). Among patients with no-reflow according to at least 1 definition, there were significant differences between definitions in the intralesional interside differences in cerebral blood flow (CBF) (p = 0.006), cerebral blood volume (CBV) (p < 0.001), and mean-transit-time (MTT) (p = 0.005). No-reflow defined by 3 definitions was associated with mRS ≥3 at 90 days. The definition of >15% CBV or CBF asymmetry was the only definition that improved model fit on BIC analysis (ΔBIC = -8.105) and demonstrated an association between no-reflow and clinical outcome among patients with eTICI3 reperfusion. CONCLUSIONS Existing imaging definitions of no-reflow varied significantly in prevalence and post-treatment perfusion imaging profile, potentially explaining the variable prevalence of no-reflow reported in literature. The definition of >15% CBV or CBF asymmetry best discriminated for functional outcome at 90 days, including patients with eTICI3 reperfusion. ANN NEUROL 2024;96:1104-1114.
Collapse
Affiliation(s)
- Chloe A Mutimer
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Adnan Mujanovic
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Johannes Kaesmacher
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Leonid Churilov
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Timothy J Kleinig
- Department of Neurology, Royal Adelaide Hospital, Adelaide, Australia
| | - Mark W Parsons
- University of New South Wales, Liverpool Hospital, Sydney, Australia
| | - Peter J Mitchell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Radiology, Royal Melbourne Hospital, Parkville, Australia
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Felix Ng
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Neurology, Austin Health, Parkville, Australia
| |
Collapse
|
9
|
Liu X, Zhang H, Xiang J, Luo W, Zhang H, Wang P, Xu S. Jiawei Xionggui Decoction promotes meningeal lymphatic vessels clearance of β-amyloid by inhibiting arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156041. [PMID: 39299091 DOI: 10.1016/j.phymed.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an aging-associated form of dementia characterized by the pathological deposition of toxic misfolded proteins in the central nervous system (CNS), which is closely related to the clearance impairment of meningeal lymphatic vessels (mLVs). Thus, enhancement dural meningeal lymphatic drainage to remove amyloid-β (Aβ) is usually considered as a potential therapeutic target for AD. PURPOSE This study aimed to investigate the mechanisms of Jiawei Xionggui Decoction (JWXG) to attenuate cognitive dificits in APP/PS1 mice with impaired meningeal lymphatic drainage. METHODS Ligation of deep cervical lymph nodes (dcLNs) was performed to establish the mice model of the impaired meningeal lymphatic drainage in APP/PS1 mice. Cognitve behaviors and pathological morphology of mice were assessed. Cerebral blood flow (CBF) of mice was determined using Laser speckle contrast imaging analysis. Serum non-targeted metabolomics analysis was applied to decipher the mechanisms of JWXG in rescuing the impairment of mLVs, and C8-D1A cells were employed to validate in vitro. RESULTS Disruption of mLVs in APP/PS1 mice deteriorated cognitive dysfunction, accelerated Aβ burden and glia activation, accompanied by more severe neuropathological damage, CBF reduction and neuroinflammation exacerbation. Serum non-targeted metabolomics analysis indicates the increase of arachidonic acid (AA) metabolic pathway was the key contributor to the neuropathological exacerbation of dcLNs ligation APP/PS1 mice. Interestingly, clinically equivalent dose of JWXG was sufficient to restore mLVs drainage and rescue cognitive performance by inhibiting neuroinflammation depended by AA metabolic pathway in dcLNs ligation APP/PS1 mice. CONCLUSION Our findings establish a novel mechanism that rescue mLVs by inhibiting AA metabolic pathway to clear brain Aβ, and support JWXG as a feasible treatment strategy for AD by suppressing AA metabolic pathway to improve mLVs drainage efficiency.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Schreiber S, Arndt P, Morton L, Garza AP, Müller P, Neumann K, Mattern H, Dörner M, Bernal J, Vielhaber S, Meuth SG, Dunay IR, Dityatev A, Henneicke S. Immune system activation and cognitive impairment in arterial hypertension. Am J Physiol Cell Physiol 2024; 327:C1577-C1590. [PMID: 39495252 DOI: 10.1152/ajpcell.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Chronic arterial hypertension disrupts the integrity of the cerebral microvasculature, doubling the risk of age-related dementia. Despite sufficient antihypertensive therapy in still a significant proportion of individuals blood pressure lowering alone does not preserve cognitive health. Accumulating evidence highlights the role of inflammatory mechanisms in the pathogenesis of hypertension. In this review, we introduce a temporal framework to explore how early immune system activation and interactions at neurovascular-immune interfaces pave the way to cognitive impairment. The overall paradigm suggests that prohypertensive stimuli induce mechanical stress and systemic inflammatory responses that shift peripheral and meningeal immune effector mechanisms toward a proinflammatory state. Neurovascular-immune interfaces in the brain include a dysfunctional blood-brain barrier, crossed by peripheral immune cells; the perivascular space, in which macrophages respond to cerebrospinal fluid- and blood-derived immune regulators; and the meningeal immune reservoir, particularly T cells. Immune responses at these interfaces bridge peripheral and neurovascular unit inflammation, directly contributing to impaired brain perfusion, clearance of toxic metabolites, and synaptic function. We propose that deep immunophenotyping in biofluids together with advanced neuroimaging could aid in the translational determination of sequential immune and brain endotypes specific to arterial hypertension. This could close knowledge gaps on how and when immune system activation transits into neurovascular dysfunction and cognitive impairment. In the future, targeting specific immune mechanisms could prevent and halt hypertension disease progression before clinical symptoms arise, addressing the need for new interventions against one of the leading threats to cognitive health.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Müller
- Department of Cardiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Neumann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ildiko R Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Solveig Henneicke
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
11
|
Wang J, Jia R, Wan W, Han H, Wang G, Li Z, Li J. Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases. Bioconjug Chem 2024; 35:1687-1698. [PMID: 39377704 PMCID: PMC11583976 DOI: 10.1021/acs.bioconjchem.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.
Collapse
Affiliation(s)
- Juntao Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruiqin Jia
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Wubo Wan
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Haijun Han
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Guoying Wang
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Zhen Li
- Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Jia Li
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
12
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
13
|
Riera CE. Diabetes, IL-10 and the brain's microvascular crisis. Nat Metab 2024; 6:2029-2030. [PMID: 39496926 DOI: 10.1038/s42255-024-01161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Affiliation(s)
- Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Korte N, Barkaway A, Wells J, Freitas F, Sethi H, Andrews SP, Skidmore J, Stevens B, Attwell D. Inhibiting Ca 2+ channels in Alzheimer's disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia. Nat Neurosci 2024; 27:2086-2100. [PMID: 39294491 PMCID: PMC11537984 DOI: 10.1038/s41593-024-01753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/06/2024] [Indexed: 09/20/2024]
Abstract
Early in Alzheimer's disease (AD), pericytes constrict capillaries, increasing their hydraulic resistance and trapping of immune cells and, thus, decreasing cerebral blood flow (CBF). Therapeutic approaches to attenuate pericyte-mediated constriction in AD are lacking. Here, using in vivo two-photon imaging with laser Doppler and speckle flowmetry and magnetic resonance imaging, we show that Ca2+ entry via L-type voltage-gated calcium channels (CaVs) controls the contractile tone of pericytes. In AD model mice, we identifed pericytes throughout the capillary bed as key drivers of an immune reactive oxygen species (ROS)-evoked and pericyte intracellular calcium concentration ([Ca2+]i)-mediated decrease in microvascular flow. Blocking CaVs with nimodipine early in disease progression improved CBF, reduced leukocyte stalling at pericyte somata and attenuated brain hypoxia. Amyloid β (Aβ)-evoked pericyte contraction in human cortical tissue was also greatly reduced by CaV block. Lowering pericyte [Ca2+]i early in AD may, thus, offer a therapeutic strategy to enhance brain energy supply and possibly cognitive function in AD.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anna Barkaway
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Felipe Freitas
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephen P Andrews
- ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - John Skidmore
- ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - Beth Stevens
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center, Broad Institute, Cambridge, MA, USA
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.
| |
Collapse
|
15
|
Sharma S, Cheema M, Reeson PL, Narayana K, Boghozian R, Cota AP, Brosschot TP, FitzPatrick RD, Körbelin J, Reynolds LA, Brown CE. A pathogenic role for IL-10 signalling in capillary stalling and cognitive impairment in type 1 diabetes. Nat Metab 2024; 6:2082-2099. [PMID: 39496927 PMCID: PMC11599051 DOI: 10.1038/s42255-024-01159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Vascular pathology is associated with cognitive impairment in diseases such as type 1 diabetes; however, how capillary flow is affected and the underlying mechanisms remain elusive. Here we show that capillaries in the diabetic mouse brain in both sexes are prone to stalling, with blocks consisting primarily of erythrocytes in branches off ascending venules. Screening for circulating inflammatory cytokines revealed persistently high levels of interleukin-10 (IL-10) in diabetic mice. Contrary to expectation, stimulating IL-10 signalling increased capillary obstruction, whereas inhibiting IL-10 receptors with neutralizing antibodies or endothelial specific knockdown in diabetic mice reversed these impairments. Chronic treatment of diabetic mice with IL-10 receptor neutralizing antibodies improved cerebral blood flow, increased capillary flux and diameter, downregulated haemostasis and cell adhesion-related gene expression, and reversed cognitive deficits. These data suggest that IL-10 signalling has an unexpected pathogenic role in cerebral microcirculatory defects and cognitive impairment associated with type 1 diabetes.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Manjinder Cheema
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Patrick L Reeson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kamal Narayana
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Roobina Boghozian
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Ana Paula Cota
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Suzuki H, Murata J, Unekawa M, Kanno I, Izawa Y, Tomita Y, Tanaka KF, Nakahara J, Masamoto K. Microfluctuations in Capillary Lumens Independent of Pericyte Lining Density in the Anesthetized Mouse Cortex. Microcirculation 2024; 31:e12885. [PMID: 39283679 DOI: 10.1111/micc.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 11/12/2024]
Abstract
OBJECTIVE This study aimed to examine the spatiotemporal coherence of capillary lumen fluctuations in relation to spatial variations in the pericyte lining in the cortex of anesthetized mice. METHODS Two-photon microscopic angiography data (previously published) were reanalyzed, and spatial variations in capillary diameter fluctuations at rest and in capillary lining with vascular mural cells were measured along capillary centerlines. RESULTS Relatively large diameters of the capillaries (5.5 μm) coincided with a dense pericyte lining, while small capillaries (4.3 μm) had a sparse pericyte lining. Temporal variations had a frequency of about 0.1 Hz with an amplitude of 0.5 μm, which were negatively correlated with pericyte lining density. Spatial frequency analysis further revealed a common pattern of spatial variations in capillary diameter and pericyte lining, but temporal variations differed. The temporal variations in capillary lumens were locally distinct from those in neighboring locations, suggesting intrinsic fluctuations independent of the pericyte lining. CONCLUSIONS Capillary lumens in the brain exhibit slow microfluctuations that are independent of pericyte lining. These microfluctuations could affect the distribution of flowing blood cells and may be important for homogenizing their distribution in capillary networks.
Collapse
Affiliation(s)
- Hiroki Suzuki
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Juri Murata
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Iwao Kanno
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Tomita Hospital, Nagoya, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuto Masamoto
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
17
|
Zhang L, Lin J, Xiang K, Shi T, Guo B. Omnidirectional improvement of mitochondrial health in Alzheimer's disease by multi-targeting engineered activated neutrophil exosomes. J Control Release 2024; 376:470-487. [PMID: 39433157 DOI: 10.1016/j.jconrel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) is one kind of devasting neurodegenerative disorders affecting over 50 million people worldwide. Multi-targeted therapy has emerged as a new treatment for diagnosing and alleviating the pathogenesis process of AD; however, the current strategy is limited by its unsatisfactory efficiency. In our study, engineered activated neutrophil-derived exosomes (MP@Cur-MExo) were developed to improve the mitochondrial function in neurons by targeting and alleviating Aβ-induced neurotoxicity. MP@Cur-MExo are exosomes derived from IL-8-stimulated neutrophils decorated with mitochondria targeting ligand and Aβ targeted ligand modified SPION. Engineered exosomes can be cleaved by matrix metallopeptidase-2, which is overexpressed in the AD brain. Consequently, the released SPION and Curcumin-loaded engineered exosomes collaboratively protected neuron cells against Aβ-induced mitochondrial deficiency. In addition, MP@Cur-MExo effectively accumulated in the inflamed region of AD brain at an early stage, allowing early diagnosis of AD through bimodal (MRI/IVIS) imaging. Importantly, in a mouse model at an early stage of AD, intravenously injected MP@Cur-MExo restored mitochondrial function and reduced Aβ-induced mitochondrial damage, thereby attenuating AD progression. In conclusion, our designed engineered exosomes demonstrated that omnidirectional improvement of mitochondrial function can serve as a novel and practical approach for the diagnosis and treatment of neurodegenerative diseases. This study also reveals a promising therapeutic agent for impeding AD progression for future clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaquan Lin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Kai Xiang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianshu Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Baosheng Guo
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
18
|
Sato Y, Li Y, Kato Y, Kanoke A, Sun JY, Nishijima Y, Wang RK, Stryker M, Endo H, Liu J. Type 2 diabetes remodels collateral circulation and promotes leukocyte adhesion following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619748. [PMID: 39484619 PMCID: PMC11526934 DOI: 10.1101/2024.10.23.619748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with impaired leptomeningeal collateral compensation and poor stroke outcome. Neutrophils tethering and rolling on endothelium after stroke can also independently reduce flow velocity. However, the chronology and topological changes in collateral circulation in T2DM is not yet defined. Here, we describe the spatial and temporal blood flow dynamics and vessel remodeling in pial arteries and veins and leukocyte-endothelial adhesion following middle cerebral artery (MCA) stroke using two-photon microscopy in awake control and T2DM mice. Relative to control mice prior to stroke, T2DM mice already exhibited smaller pial vessels with reduced flow velocity. Following stroke, T2DM mice displayed persistently reduced blood flow in pial arteries and veins, resulting in a poor recovery of downstream penetrating arterial flow and a sustained deficit in microvascular flow. There was also persistent increase of leukocyte adhesion to the endothelium of veins, coincided with elevated neutrophils infiltration into brain parenchyma in T2DM mice compared to control mice after stroke. Our data suggest that T2DM-induced increase in chronic inflammation may contribute to the remodeling of leptomeningeal collateral circulation and the observed hemodynamics deficiency that potentiates poor stroke outcome.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuya Kato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kanoke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jennifer Y Sun
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- University College London, Institute of Ophthalmology, London, UK
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ruikang K. Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Stryker
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jialing Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
| |
Collapse
|
19
|
Terrabuio E, Constantin G. APOE4 affects neutrophil-microglia crosstalk in Alzheimer's disease. Trends Immunol 2024; 45:726-728. [PMID: 39322476 DOI: 10.1016/j.it.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Circulating immune cells contribute to the pathogenesis of Alzheimer's disease (AD), but their role is poorly understood. Rosenzweig et al. recently identified a subset of interleukin (IL)-17+ neutrophils that inhibit neuroprotective microglia in female APOE4 carriers. Blockade of IL-17 signaling or APOE4 deletion in neutrophils restored microglial responses and reduced murine amyloid pathology.
Collapse
Affiliation(s)
- Eleonora Terrabuio
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, 37134 Verona, Italy.
| |
Collapse
|
20
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
21
|
Haag N, Bremer J, Zempel H. Understanding genetics, sex and signaling: Implications of sex-dependent APOE4-neutrophil-microglia interactions for Alzheimer's and tauopathies. Signal Transduct Target Ther 2024; 9:252. [PMID: 39313493 PMCID: PMC11420353 DOI: 10.1038/s41392-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Natja Haag
- Institute for Human Genetics and Genomic Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Juliane Bremer
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Netzahualcoyotzi C, Santillán-Cigales JJ, Adalid-Peralta LV, Velasco I. Infiltration of immune cells to the brain and its relation to the pathogenesis of Alzheimer's and Parkinson's diseases. J Neurochem 2024; 168:2316-2334. [PMID: 38549444 DOI: 10.1111/jnc.16106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 10/04/2024]
Abstract
The neurovascular unit, composed of vascular endothelium, vascular smooth muscle, extracellular matrix components, pericytes, astrocytes, microglia, and neurons, allows the highly regulated exchange of molecules and the limited trafficking of cells to the brain through coordinated signaling activity. The passage of peripheral immune cells to the brain parenchyma is observed when there is clear damage to the barriers of this neurovascular unit, as occurs in traumatic brain injury. The possibility of leukocyte infiltration to the brain in neurodegenerative conditions has been proposed. In this review, we focus on describing the evidence for peripheral immune cell infiltration to the brain in the two most frequent neurodegenerative diseases: Alzheimer's and Parkinson's diseases. In particular, we address the mechanisms that promote the passage of these cells into the brain under such pathological conditions. We also discuss the relevance of the resulting cellular interactions, which provide evidence that the presence of peripheral immune cells in the brain is a key point in these neurodegenerative diseases.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Juan Jair Santillán-Cigales
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Virginia Adalid-Peralta
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| |
Collapse
|
23
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
24
|
Kigar SL, Lynall ME, DePuyt AE, Atkinson R, Sun VH, Samuels JD, Eassa NE, Poffenberger CN, Lehmann ML, Listwak SJ, Livak F, Elkahloun AG, Clatworthy MR, Bullmore ET, Herkenham M. Chronic social defeat stress induces meningeal neutrophilia via type I interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610447. [PMID: 39257811 PMCID: PMC11383661 DOI: 10.1101/2024.08.30.610447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Animal models of stress and stress-related disorders are also associated with blood neutrophilia. The mechanistic relevance of this to symptoms or behavior is unclear. We used cytometry, immunohistochemistry, whole tissue clearing, and single-cell sequencing to characterize the meningeal immune response to chronic social defeat (CSD) stress in mice. We find that chronic, but not acute, stress causes meningeal neutrophil accumulation, and CSD increases neutrophil trafficking in vascular channels emanating from skull bone marrow (BM). Transcriptional analysis suggested CSD increases type I interferon (IFN-I) signaling in meningeal neutrophils. Blocking this pathway via the IFN-I receptor (IFNAR) protected against the anhedonic and anxiogenic effects of CSD stress, potentially through reduced infiltration of IFNAR+ neutrophils into the meninges from skull BM. Our identification of IFN-I signaling as a putative mediator of meningeal neutrophil recruitment may facilitate development of new therapies for stress-related disorders.
Collapse
Affiliation(s)
- Stacey L. Kigar
- National Institute of Mental Health, Bethesda, MD, USA
- Department of Medicine, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | | | | | | | | | | | | | | | - Ferenc Livak
- Laboratory of Genome Integrity, Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Microarrays and Single-Cell Genomics, National Human Genome Research Institute, Bethesda, MD, USA
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | |
Collapse
|
25
|
Liu S, Zhang C, Zhang Y, Wu Z, Wu P, Tian S, Zhang M, Lang L, Li L, Wang R, Liu H, Zhang J, Mao X, Li S. Causal association between blood leukocyte counts and vascular dementia: a two-sample bidirectional Mendelian randomization study. Sci Rep 2024; 14:19582. [PMID: 39179767 PMCID: PMC11344047 DOI: 10.1038/s41598-024-70446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
While previous observational studies have suggested a link between leukocyte counts and vascular dementia (VD), the causal relationship between leukocyte counts and various subtypes of VD remains elusive. This study aimed to investigate the causal relationship between five types of leukocyte counts and VD, with the goal of improving prevention and treatment strategies. In this study, leukocyte counts were used as the exposure variable, with genome-wide association study (GWAS) data sourced from both the UK Biobank and the Blood Cell Consortium. Additionally, GWAS data for five subtypes of vascular dementia were obtained from the FinnGen database. We conducted rigorous statistical analysis and visualization using Mendelian randomization (MR) to elucidate the potential causal relationship between leukocyte counts and vascular dementia. This study, utilizing MR analysis with data from the UK Biobank and Blood Cell Consortium, identified significant causal associations between increased lymphocyte counts and VD. Specifically, lymphocyte counts were found to be causally related to multiple and mixed VD subtypes. Sensitivity analyses, including MR-Egger regression and MR-PRESSO tests, confirmed the robustness of these findings, with no evidence of reverse causality or significant horizontal pleiotropy detected. The results underscore a potential inflammatory or immunological mechanism in the pathogenesis of VD, highlighting lymphocytes as a key component in their etiology. This investigation establishes a robust association between elevated lymphocyte and leukocyte counts and an increased risk of VD, emphasizing the roles of inflammation, immune activation, and hematological factors in disease pathogenesis.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenwei Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yukai Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ping Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shouyuan Tian
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Zhang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limin Lang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruonan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Jingfen Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolu Mao
- Shengjing Hospital of China Medical University, Shenyang , Liaoning, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
26
|
Wang X, Chen W, Zhao W, Miao M. Risk of glaucoma to subsequent dementia or cognitive impairment: a systematic review and meta-analysis. Aging Clin Exp Res 2024; 36:172. [PMID: 39162899 PMCID: PMC11335947 DOI: 10.1007/s40520-024-02811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Substantial evidence supports that glaucoma and dementia share pathological mechanisms and pathogenic risk factors. However, the association between glaucoma, cognitive decline and dementia has yet to be elucidated. OBJECTIVE This study was aimed to assess whether glaucoma increase the risk of dementia or cognitive impairment. METHODS PubMed, Cochrane Library, Web of Science, and EMBASE databases for cohort or case-control studies were searched from inception to March 10, 2024. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to the risk of bias. Heterogeneity was rigorously evaluated using the I2 test, while publication bias was assessed by visual inspection of the funnel plot and by Egger' s regression asymmetry test. Subgroup analyses were applied to determine the sources of heterogeneity. RESULTS Twenty-seven studies covering 9,061,675 individuals were included. Pooled analyses indicated that glaucoma increased the risk of all-cause dementia, Alzheimer's disease, vascular dementia, and cognitive impairment. Subgroup analysis showed that the prevalence of dementia was 2.90 (95% CI: 1.45-5.77) in age ≥ 65 years and 2.07 (95% CI: 1.18-3.62) in age<65 years; the incidence rates in female glaucoma patients was 1.46 (95% CI: 1.06-2.00), respectively, which was no statistical significance in male patients. Among glaucoma types, POAG was more likely to develop dementia and cognitive impairment. There were also differences in regional distribution, with the highest prevalence in the Asia region, while glaucoma was not associated with dementia in Europe and North America regions. CONCLUSION Glaucoma increased the risk of subsequent cognitive impairment and dementia. The type of glaucoma, gender, age, and region composition of the study population may significantly affect the relationship between glaucoma and dementia.
Collapse
Affiliation(s)
- Xiaoran Wang
- Department of Clinical, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Wenjing Chen
- Department of Pharmacology, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan, 450046, China
| | - Wenxia Zhao
- The First Affiliated Hospital, Henan University of Chinese Medicine, No. 19 Renmin Road, Jinshui District, Zhengzhou, Henan, 450003, China.
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan, 450046, China.
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
27
|
Mihelic SA, Engelmann SA, Sadr M, Jafari CZ, Zhou A, Woods AL, Williamson MR, Jones TA, Dunn AK. Microvascular plasticity in mouse stroke model recovery: Anatomy statistics, dynamics measured by longitudinal in vivo two-photon angiography, network vectorization. J Cereb Blood Flow Metab 2024:271678X241270465. [PMID: 39113424 PMCID: PMC11572002 DOI: 10.1177/0271678x241270465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/19/2024] [Accepted: 06/23/2024] [Indexed: 11/20/2024]
Abstract
This manuscript quantitatively investigates remodeling dynamics of the cortical microvascular network (thousands of connected capillaries) following photothrombotic ischemia (cubic millimeter volume, imaged weekly) using a novel in vivo two-photon angiography and high throughput vascular vectorization method. The results suggest distinct temporal patterns of cerebrovascular plasticity, with acute remodeling peaking at one week post-stroke. The network architecture then gradually stabilizes, returning to a new steady state after four weeks. These findings align with previous literature on neuronal plasticity, highlighting the correlation between neuronal and neurovascular remodeling. Quantitative analysis of neurovascular networks using length- and strand-based statistical measures reveals intricate changes in network anatomy and topology. The distance and strand-length statistics show significant alterations, with a peak of plasticity observed at one week post-stroke, followed by a gradual return to baseline. The orientation statistic plasticity peaks at two weeks, gradually approaching the (conserved across subjects) stroke signature. The underlying mechanism of the vascular response (angiogenesis vs. tissue deformation), however, is yet unexplored. Overall, the combination of chronic two-photon angiography, vascular vectorization, reconstruction/visualization, and statistical analysis enables both qualitative and quantitative assessments of neurovascular remodeling dynamics, demonstrating a method for investigating cortical microvascular network disorders and the therapeutic modes of action thereof.
Collapse
Affiliation(s)
- Samuel A Mihelic
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Shaun A Engelmann
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Mahdi Sadr
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Chakameh Z Jafari
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Annie Zhou
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | - Aaron L Woods
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| | | | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Andrew K Dunn
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
28
|
Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications. Adv Healthc Mater 2024; 13:e2303419. [PMID: 38686434 PMCID: PMC11338730 DOI: 10.1002/adhm.202303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ninghao Zhu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
29
|
Huang T, Guo Y, Xie W, Yin J, Zhang Y, Chen W, Huang D, Li P. Brain border-derived CXCL2 + neutrophils drive NET formation and impair vascular reperfusion following ischemic stroke. CNS Neurosci Ther 2024; 30:e14916. [PMID: 39135337 PMCID: PMC11319398 DOI: 10.1111/cns.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The brain border compartments harbor a diverse population of immune cells and serve as invasion sites for leukocyte influx into the brain following CNS injury. However, how brain-border myeloid cells affect stroke pathology remains poorly characterized. METHODS AND RESULTS Here, we showed that ischemic stroke-induced expansion of CXCL2+ neutrophils, which exhibit highly proinflammatory features. We tracked CXCL2+ neutrophils in vivo by utilizing a photoconvertible Kik-GR mouse (fluorescent proteins Kikume Green Red, Kik-GR) and found that brain-infiltrating CXCL2+ neutrophils following ischemic stroke were mainly derived from the brain border rather than the periphery. We demonstrated that CXCL2 neutralization inhibited the formation and releasing of neutrophil extracellular traps (NETs) from in vitro cultured primary neutrophils. Furthermore, CXCL2-neutralizing antibody treatment reduced brain infarcts and improved vascular reperfusion at day 3 postischemic stroke. CONCLUSIONS Collectively, brain border-derived CXCL2+ neutrophil expansion may impair vascular reperfusion by releasing NETs following ischemic stroke.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Jiemin Yin
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Weijie Chen
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
30
|
Meng L, Zhou M, Wang Y, Pan Y, Chen Z, Wu B, Zhao Y. CD177 on neutrophils engages stress-related behavioral changes in male mice. Brain Behav Immun 2024; 120:403-412. [PMID: 38871062 DOI: 10.1016/j.bbi.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Persistent psychological stress can affect immune homeostasis and is a key factor in the development of depression. Many efforts are focused on the identifcation of pathways that link the immune system and mood disorders. Here, we found that psychological stress caused an increase in the frequency of brain-associated neutrophils and the level of neutrophil-specific antigen CD177 on peripheral neutrophils in male mice. Upregulated levels of blood CD177 are associated with depression in humans. Neutrophil depletion or Cd177 deficiency protected mice from stress-induced behavioral deficits. Importantly, adoptive transfer of CD177+ neutrophils from stressed mice increased the frequency of brain-associated leukocytes, including neutrophils, and caused behavioral defects in naive mice. These effects may be related to the endothelial adhesion advantage of CD177+ neutrophils and the interference of serine protease on endothelial junction. Our findings suggest a critical link between circulating CD177+ neutrophils and psychological stress-driven behavioral disorder.
Collapse
Affiliation(s)
- Ling Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunpeng Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Winfree RL, Erreger K, Phillips J, Seto M, Wang Y, Schneider JA, Bennett DA, Schrag MS, Hohman TJ, Hamm HE. Elevated protease-activated receptor 4 (PAR4) gene expression in Alzheimer's disease predicts cognitive decline. Neurobiol Aging 2024; 140:93-101. [PMID: 38761538 PMCID: PMC11610797 DOI: 10.1016/j.neurobiolaging.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024]
Abstract
Platelet activation of protease-activated receptor 4 (PAR4) and thrombin are at the top of a chain of events leading to fibrin deposition, microinfarcts, blood-brain barrier disruption, and inflammation. We evaluated mRNA expression of the PAR4 gene F2RL3 in human brain and global cognitive performance in participants with and without cognitive impairment or dementia. Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). F2RL3 mRNA was elevated in AD cases and was associated with worse retrospective longitudinal cognitive performance. Moreover, F2RL3 expression interacted with clinical AD diagnosis on longitudinal cognition whereas this relationship was attenuated in individuals without cognitive impairment. Additionally, when adjusting for the effects of AD neuropathology, F2RL3 expression remained a significant predictor of cognitive decline. F2RL3 expression correlated positively with transcript levels of proinflammatory markers including TNFα, IL-1β, NFκB, and fibrinogen α/β/γ. Together, these results reveal that F2RL3 mRNA expression is associated with multiple AD-relevant outcomes and its encoded product, PAR4, may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Rebecca L Winfree
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin Erreger
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jared Phillips
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Matthew S Schrag
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - Heidi E Hamm
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
32
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
33
|
Glück C, Zhou Q, Droux J, Chen Z, Glandorf L, Wegener S, Razansky D, Weber B, El Amki M. Pia-FLOW: Deciphering hemodynamic maps of the pial vascular connectome and its response to arterial occlusion. Proc Natl Acad Sci U S A 2024; 121:e2402624121. [PMID: 38954543 PMCID: PMC11252916 DOI: 10.1073/pnas.2402624121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The pial vasculature is the sole source of blood supply to the neocortex. The brain is contained within the skull, a vascularized bone marrow with a unique anatomical connection to the brain meninges. Recent developments in tissue clearing have enabled detailed mapping of the entire pial and calvarial vasculature. However, what are the absolute flow rate values of those vascular networks? This information cannot accurately be retrieved with the commonly used bioimaging methods. Here, we introduce Pia-FLOW, a unique approach based on large-scale transcranial fluorescence localization microscopy, to attain hemodynamic imaging of the whole murine pial and calvarial vasculature at frame rates up to 1,000 Hz and spatial resolution reaching 5.4 µm. Using Pia-FLOW, we provide detailed maps of flow velocity, direction, and vascular diameters which can serve as ground-truth data for further studies, advancing our understanding of brain fluid dynamics. Furthermore, Pia-FLOW revealed that the pial vascular network functions as one unit for robust allocation of blood after stroke.
Collapse
Affiliation(s)
- Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Jeanne Droux
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich8091, Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Lukas Glandorf
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Susanne Wegener
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich8091, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich8092, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich8057, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
| | - Mohamad El Amki
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich8091, Switzerland
| |
Collapse
|
34
|
Zhang C, Jamshidi M, Delafontaine-Martel P, Linninger AA, Lesage F. Evaluation of cerebral microcirculation in a mouse model of systemic inflammation. NEUROPHOTONICS 2024; 11:035003. [PMID: 39011517 PMCID: PMC11249390 DOI: 10.1117/1.nph.11.3.035003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024]
Abstract
Significance Perturbations in the microcirculatory system have been observed in neurological conditions, such as Alzheimer's disease or systemic inflammation. However, changes occurring at the level of the capillary are difficult to translate to biomarkers that could be measured macroscopically. Aim We aim to evaluate whether transit time changes reflect capillary stalling and to what degree. Approach We employ a combined spectral optical coherence tomography (OCT) and fluorescence optical imaging (FOI) system to investigate the relation between capillary stalling and transit time in a mouse model of systemic inflammation induced by intraperitoneal injection of lipopolysaccharide. Angiograms are obtained using OCT, and fluorescence signal images are acquired by the FOI system upon intravenous injection of fluorescein isothiocyanate via a catheter inserted into the tail vein. Results Our findings reveal that lipopolysaccharide (LPS) administration significantly increases both the percentage and duration of capillary stalling compared to mice receiving a 0.9% saline injection. Moreover, LPS-induced mice exhibit significantly prolonged arteriovenous transit time compared to control mice. Conclusions These observations suggest that capillary stalling, induced by inflammation, modulates cerebral mean transit time, a measure that has translational potential.
Collapse
Affiliation(s)
- Cong Zhang
- Polytechnique Montreal, Department of Electrical Engineering, Montreal, Quebec, Canada
- Montreal Heart Institute, Research center, Montreal, Quebec, Canada
| | - Mohammad Jamshidi
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Patrick Delafontaine-Martel
- Polytechnique Montreal, Department of Electrical Engineering, Montreal, Quebec, Canada
- Montreal Heart Institute, Research center, Montreal, Quebec, Canada
| | - Andreas A Linninger
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Neurosurgery, Chicago, Illinois, United States
| | - Frédéric Lesage
- Polytechnique Montreal, Department of Electrical Engineering, Montreal, Quebec, Canada
- Montreal Heart Institute, Research center, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Zhang X, He G, Hu Y, Liu B, Xu Y, Li X, Lv X, Li J. Single cell transcriptome analysis identified a unique neutrophil type associated with Alzheimer's disease. Immun Ageing 2024; 21:42. [PMID: 38918830 PMCID: PMC11197360 DOI: 10.1186/s12979-024-00448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Neutrophils play an essential role in Alzheimer's disease (AD) pathology. However, the extent of their heterogeneity remains poorly explored, particularly in the context of developing novel therapies targeting these cells. RESULTS We investigate the population structure of neutrophils purified from peripheral blood samples of AD mice. Utilizing single cell RNA sequencing, we comprehensively map neutrophil populations into six distinct clusters and find that the Neu-5 subset is specially enriched in AD mice. This subset exhibits fewer specific granules and a lower mature score. Gene ontology (GO) analysis reveals that genes involved in cytokine-mediated signaling are downregulated in the Neu-5 cluster. Furthermore, we identify the Ccrl2 gene is specifically upregulated in this subgroup, which is confirmed by flow cytometry in AD mice. Finally, immunohistochemical staining indicates that CCRL2 protein is increased in the brains of AD mice. CONCLUSIONS We identify a unique CCRL2 positive neutrophil cluster, that is specifically enriched in the peripheral blood of AD mice.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Yixuan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boren Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuliang Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xinyou Lv
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Jin Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.
- Institute of Public Health Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
36
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
37
|
Sun F, Zhou J, Chen X, Yang T, Wang G, Ge J, Zhang Z, Mei Z. No-reflow after recanalization in ischemic stroke: From pathomechanisms to therapeutic strategies. J Cereb Blood Flow Metab 2024; 44:857-880. [PMID: 38420850 PMCID: PMC11318407 DOI: 10.1177/0271678x241237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.
Collapse
Affiliation(s)
- Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
38
|
Yang T, Wei Q, Li C, Ou R, Lin J, Cheng Y, Xiao Y, Shang H. Peripheral immunity involvement in the cognitive impairment of sporadic amyotrophic lateral sclerosis. Front Neurol 2024; 15:1405275. [PMID: 38882692 PMCID: PMC11176427 DOI: 10.3389/fneur.2024.1405275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Recent research has indicated the significance of immune activation in amyotrophic lateral sclerosis (ALS). However, the impact of peripheral immunity on cognitive impairment in sporadic ALS remains poorly characterized. Therefore, we aim to assess the relationship between peripheral immune parameters and cognitive impairment in patients with sporadic ALS. Methods A case-control study involving 289 patients with sporadic ALS was conducted. All participants underwent cognitive assessment and measurements of blood immune parameters. The main outcomes included adjusted odds ratios (ORs) in multivariate logistic regression analysis and adjusted coefficients in a multivariate linear regression model. Sensitivity analysis was performed with stratification by the King's clinical stage. Results Cognitive impairment was observed in 98 (33.9%) patients. Higher counts of leukocyte (OR, 0.53; 95% CI, 0.29 to 0.95; p = 0.03), neutrophil (OR, 0.48; 95% CI, 0.26 to 0.88; p = 0.02), and monocyte (OR, 0.33; 95% CI, 0.18 to 0.60; p < 0.001) were significantly associated with better cognitive preformence in sporadic ALS, particularly among patients in King's clinical stages 1 and 2. Conversely, a higher percentage of CD4+ T cells was linked to an increased risk of cognitive impairment (OR, 2.79; 95% CI, 1.52 to 5.09; p = 0.001), particularly evident in patients in King's clinical stage 3. Conclusion These results highlight the involvement of peripheral immunity in the cognitive impairment of sporadic ALS and suggest dynamic and intricate roles that vary across disease stages. Elucidating the links between immunity and ALS sheds light on the pathophysiological mechanisms underlying this fatal neurodegenerative disorder and informs potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Cheng TY, Kim B, Zimmermann BB, Robinson MB, Renna M, Carp SA, Franceschini MA, Boas DA, Cheng X. Choosing a camera and optimizing system parameters for speckle contrast optical spectroscopy. Sci Rep 2024; 14:11915. [PMID: 38789499 PMCID: PMC11126420 DOI: 10.1038/s41598-024-62106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Speckle contrast optical spectroscopy (SCOS) is an emerging camera-based technique that can measure human cerebral blood flow (CBF) with high signal-to-noise ratio (SNR). At low photon flux levels typically encountered in human CBF measurements, camera noise and nonidealities could significantly impact SCOS measurement SNR and accuracy. Thus, a guide for characterizing, selecting, and optimizing a camera for SCOS measurements is crucial for the development of next-generation optical devices for monitoring human CBF and brain function. Here, we provide such a guide and illustrate it by evaluating three commercially available complementary metal-oxide-semiconductor cameras, considering a variety of factors including linearity, read noise, and quantization distortion. We show that some cameras that are well-suited for general intensity imaging could be challenged in accurately quantifying spatial contrast for SCOS. We then determine the optimal operating parameters for the preferred camera among the three and demonstrate measurement of human CBF with this selected low-cost camera. This work establishes a guideline for characterizing and selecting cameras as well as for determining optimal parameters for SCOS systems.
Collapse
Affiliation(s)
- Tom Y Cheng
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
| | - Bernhard B Zimmermann
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
| | - Mitchell B Robinson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Marco Renna
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stefan A Carp
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Maria Angela Franceschini
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
| | - Xiaojun Cheng
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Aries M, Cook M, Hensley-McBain T. A Pilot Study to Investigate Peripheral Low-Level Chronic LPS Injection as a Model of Neutrophil Activation in the Periphery and Brain in Mice. Int J Mol Sci 2024; 25:5357. [PMID: 38791393 PMCID: PMC11120811 DOI: 10.3390/ijms25105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the periphery and brain. Subclinical levels of LPS were injected intraperitoneally into mice to investigate its impacts on neutrophil frequency and activation. Neutrophil activation, as measured by CD11b expression, was higher in LPS-injected mice compared to saline-injected mice after 4 weeks but not 8 weeks of injections. Neutrophil frequency and activation increased in the periphery 4-12 h and 4-8 h after the fourth and final injection, respectively. Increased levels of G-CSF, TNFa, IL-6, and CXCL2 were observed in the plasma along with increased neutrophil elastase, a marker of neutrophil extracellular traps, peaking 4 h following the final injection. Neutrophil activation was increased in the brain of LPS-injected mice when compared to saline-injected mice 4-8 h after the final injection. These results indicate that subclinical levels of peripheral LPS induces neutrophil activation in the periphery and brain. This model of chronic low-level systemic inflammation could be used to understand how neutrophils may act as mediators of the periphery-brain axis of inflammation with age and/or in mouse models of neurodegenerative or neuroinflammatory disease.
Collapse
Affiliation(s)
- Michelle Aries
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
| | - Makayla Cook
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
| | - Tiffany Hensley-McBain
- McLaughlin Research Institute, Great Falls, MT 59405, USA; (M.A.)
- Department of Basic Sciences, Touro College of Osteopathic Medicine Montana, Great Falls, MT 59405, USA
| |
Collapse
|
41
|
Gattegno R, Arbel L, Riess N, Shinar H, Katz S, Ilovitsh T. Enhanced capillary delivery with nanobubble-mediated blood-brain barrier opening and advanced high resolution vascular segmentation. J Control Release 2024; 369:506-516. [PMID: 38575074 DOI: 10.1016/j.jconrel.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Overcoming the blood-brain barrier (BBB) is essential to enhance brain therapy. Here, we utilized nanobubbles with focused ultrasound for targeted and improved BBB opening in mice. A microscopy technique method assessed BBB opening at a single blood vessel resolution employing a dual-dye labeling technique using green fluorescent molecules to label blood vessels and Evans blue brain-impermeable dye for quantifying BBB extravasation. A deep learning architecture enabled blood vessels segmentation, delivering comparable accuracy to manual segmentation with a significant time reduction. Segmentation outcomes were applied to the Evans blue channel to quantify extravasation of each blood vessel. Results were compared to microbubble-mediated BBB opening, where reduced extravasation was observed in capillaries with a diameter of 2-6 μm. In comparison, nanobubbles yield an improved opening in these capillaries, and equivalent efficacy to that of microbubbles in larger vessels. These results indicate the potential of nanobubbles to serve as enhanced agents for BBB opening, amplifying bioeffects in capillaries while preserving comparable opening in larger vessels.
Collapse
Affiliation(s)
- Roni Gattegno
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Arbel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Riess
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Hila Shinar
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
42
|
Hu Z, Li Z, Shi Y, Liu S, Shen Y, Hu F, Li Q, Liu X, Gou X, Chen Z, Yang D. Advancements in investigating the role of cerebral small vein loss in Alzheimer's disease-related pathological changes. Neurol Sci 2024; 45:1875-1883. [PMID: 38133856 DOI: 10.1007/s10072-023-07208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Alzheimer's disease (AD) is the prevailing type of dementia in the elderly, yet a comprehensive comprehension of its precise underlying mechanisms remains elusive. The investigation of the involvement of cerebral small veins in the advancement of AD has yet to be sufficiently explored in previous studies, primarily due to constraints associated with pathological staining techniques. However, recent research has provided valuable insights into multiple pathophysiological occurrences concerning cerebral small veins in AD, which may manifest sequentially, concurrently, or in a self-perpetuating manner. These events are presumed to be among the initial processes in the disease's progression. The impact of cerebral small vein loss on amyloid beta (Aβ) clearance through the glial lymphatic system is noteworthy. There exists a potential interdependence between collagen deposition and Aβ deposition in cerebral small veins. The compromised functionality of cerebral small veins can result in decreased cerebral perfusion pressure, potentially leading to cerebral tissue ischemia and edema. Additionally, the reduction of cerebral small veins may facilitate the infiltration of inflammatory factors into the brain parenchyma, thereby eliciting neuroinflammatory responses. Susceptibility-weighted imaging (SWI) is a valuable modality for the efficient assessment of cerebral small veins, precisely the deep medullary vein (DMV), and holds promise for the identification of precise and reliable imaging biomarkers for AD. This review presents a comprehensive overview of the current advancements and obstacles to the impairment of cerebral small veins in AD. Additionally, we emphasize future research avenues and the importance of conducting further investigations in this domain.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Zhaoying Li
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yu Shi
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Shanyu Liu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yuling Shen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Fangfang Hu
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Qingqing Li
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xu Liu
- Department of Neurology, Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xinyu Gou
- Department of Neurology, Guang'an People's Hospital, Guang'an, 638001, China
| | - Zhenwei Chen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| |
Collapse
|
43
|
Pastor-Alonso D, Berg M, Boyer F, Fomin-Thunemann N, Quintard M, Davit Y, Lorthois S. Modeling oxygen transport in the brain: An efficient coarse-grid approach to capture perivascular gradients in the parenchyma. PLoS Comput Biol 2024; 20:e1011973. [PMID: 38781253 PMCID: PMC11257410 DOI: 10.1371/journal.pcbi.1011973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/18/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Recent progresses in intravital imaging have enabled highly-resolved measurements of periarteriolar oxygen gradients (POGs) within the brain parenchyma. POGs are increasingly used as proxies to estimate the local baseline oxygen consumption, which is a hallmark of cell activity. However, the oxygen profile around a given arteriole arises from an interplay between oxygen consumption and delivery, not only by this arteriole but also by distant capillaries. Integrating such interactions across scales while accounting for the complex architecture of the microvascular network remains a challenge from a modelling perspective. This limits our ability to interpret the experimental oxygen maps and constitutes a key bottleneck toward the inverse determination of metabolic rates of oxygen. We revisit the problem of parenchymal oxygen transport and metabolism and introduce a simple, conservative, accurate and scalable direct numerical method going beyond canonical Krogh-type models and their associated geometrical simplifications. We focus on a two-dimensional formulation, and introduce the concepts needed to combine an operator-splitting and a Green's function approach. Oxygen concentration is decomposed into a slowly-varying contribution, discretized by Finite Volumes over a coarse cartesian grid, and a rapidly-varying contribution, approximated analytically in grid-cells surrounding each vessel. Starting with simple test cases, we thoroughly analyze the resulting errors by comparison with highly-resolved simulations of the original transport problem, showing considerable improvement of the computational-cost/accuracy balance compared to previous work. We then demonstrate the model ability to flexibly generate synthetic data reproducing the spatial dynamics of oxygen in the brain parenchyma, with sub-grid resolution. Based on these synthetic data, we show that capillaries distant from the arteriole cannot be overlooked when interpreting POGs, thus reconciling recent measurements of POGs across cortical layers with the fundamental idea that variations of vascular density within the depth of the cortex may reveal underlying differences in neuronal organization and metabolic load.
Collapse
Affiliation(s)
- David Pastor-Alonso
- Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, Université de Toulouse, CNRS, Toulouse, France
| | - Maxime Berg
- Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, Université de Toulouse, CNRS, Toulouse, France
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Franck Boyer
- Institut de Mathématiques de Toulouse (IMT), UMR 5219, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Natalie Fomin-Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Michel Quintard
- Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, Université de Toulouse, CNRS, Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, Université de Toulouse, CNRS, Toulouse, France
| | - Sylvie Lorthois
- Institut de Mécanique des Fluides de Toulouse (IMFT), UMR 5502, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
44
|
Liu J, Xu J, Jia L, Zhou Y, Fu Q, Wang Y, Mu D, Wang D, Li N, Hou Y. Pterostilbene nanoemulsion promotes Nrf2 signaling pathway to downregulate oxidative stress for treating Alzheimer's disease. Int J Pharm 2024; 655:124002. [PMID: 38492898 DOI: 10.1016/j.ijpharm.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Pterostilbene, a stilbene compound, demonstrates neuroprotective effects through its antioxidant and anti-inflammatory properties. However, pterostilbene exhibits low bioavailability. We developed a pterostilbene nanoemulsion with better release stability and particle size. Behavioral tests, including the Y maze, new object recognition, and water maze, revealed that the pterostilbene nanoemulsion demonstrated a more significant effect on improving learning and memory function than pterostilbene. Immunofluorescence analysis revealed that pterostilbene nanoemulsion was more potent in safeguarding hippocampal neurons and inhibiting apoptosis and oxidative stress than pterostilbene. Further results from the Western blot and quantitative reverse transcription polymerase chain reaction indicated that the enhanced efficacy of pterostilbene nanoemulsion may be attributed to its stronger promotion of the nuclear factor erythroid 2-related factor 2 signaling pathway. Hence, enhanced drug delivery efficiency decreased dosage requirements and increased the bioavailability of pterostilbene, thereby potentially providing a safe, effective, and convenient treatment option for patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Jikai Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Luan Jia
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjun Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yichen Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China.
| |
Collapse
|
45
|
Liu C, Cárdenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:78. [PMID: 38600598 PMCID: PMC11005245 DOI: 10.1186/s13195-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. METHODS We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccharide-induced neuroinflammation. RESULTS Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. CONCLUSIONS This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shayna Teitelbaum
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Austin Birmingham
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammed Alfadhel
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammad A Yaseen
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Niso-Santano M, Fuentes JM, Galluzzi L. Immunological aspects of central neurodegeneration. Cell Discov 2024; 10:41. [PMID: 38594240 PMCID: PMC11004155 DOI: 10.1038/s41421-024-00666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
The etiology of various neurodegenerative disorders that mainly affect the central nervous system including (but not limited to) Alzheimer's disease, Parkinson's disease and Huntington's disease has classically been attributed to neuronal defects that culminate with the loss of specific neuronal populations. However, accumulating evidence suggests that numerous immune effector cells and the products thereof (including cytokines and other soluble mediators) have a major impact on the pathogenesis and/or severity of these and other neurodegenerative syndromes. These observations not only add to our understanding of neurodegenerative conditions but also imply that (at least in some cases) therapeutic strategies targeting immune cells or their products may mediate clinically relevant neuroprotective effects. Here, we critically discuss immunological mechanisms of central neurodegeneration and propose potential strategies to correct neurodegeneration-associated immunological dysfunction with therapeutic purposes.
Collapse
Affiliation(s)
- Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - José M Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
47
|
Jamshidi M, Ventimiglia T, Sudres P, Zhang C, Lesage F, Rooney W, Schwartz D, Linninger AA. Impact of stalling events on microcirculatory hemodynamics in the aged brain. Microcirculation 2024; 31:e12845. [PMID: 38265175 PMCID: PMC11014774 DOI: 10.1111/micc.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The role of cerebral microvasculature in cognitive dysfunction can be investigated by identifying the impact of blood flow on cortical tissue oxygenation. In this paper, the impact of capillary stalls on microcirculatory characteristics such as flow and hematocrit (Ht) in the cortical angioarchitecture is studied. METHODS Using a deterministic mathematical model to simulate blood flow in a realistic mouse cortex, hemodynamics parameters, including pressure, flow, vessel diameter-adjustable hematocrit, and transit time are calculated as a function of stalling events. RESULTS Using a non-linear plasma skimming model, it is observed that Ht increases in the penetrating arteries from the pial vessels as a function of cortical depth. The incidence of stalling on Ht distribution along the blood network vessels shows reduction of RBCs around the tissue near occlusion sites and decreased Ht concentration downstream from the blockage points. Moreover, upstream of the occlusion, there is a noticeable increase of the Ht, leading to larger flow resistance due to higher blood viscosity. We predicted marked changes in transit time behavior due to stalls which match trends observed in mice in vivo. CONCLUSIONS These changes to blood cell quantity and quality may be implicated in the development of Alzheimer's disease and contribute to the course of the illness.
Collapse
Affiliation(s)
- Mohammad Jamshidi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Thomas Ventimiglia
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Patrice Sudres
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cong Zhang
- Department of Electrical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Frederic Lesage
- Department of Electrical Engineering, Polytechnique Montréal, Montreal, Canada
| | - William Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Schwartz
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Andreas A Linninger
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
48
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Beinlich FR, Asiminas A, Untiet V, Bojarowska Z, Plá V, Sigurdsson B, Timmel V, Gehrig L, Graber MH, Hirase H, Nedergaard M. Oxygen imaging of hypoxic pockets in the mouse cerebral cortex. Science 2024; 383:1471-1478. [PMID: 38547288 PMCID: PMC11251491 DOI: 10.1126/science.adn1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (Po2) dynamics under physiological conditions. Here we introduce Green enhanced Nano-lantern (GeNL), a genetically encoded bioluminescent oxygen indicator for Po2 imaging. In awake behaving mice, we uncover the existence of spontaneous, spatially defined "hypoxic pockets" and demonstrate their linkage to the abrogation of local capillary flow. Exercise reduced the burden of hypoxic pockets by 52% compared with rest. The study provides insight into cortical oxygen dynamics in awake behaving animals and concurrently establishes a tool to delineate the importance of oxygen tension in physiological processes and neurological diseases.
Collapse
Affiliation(s)
- Felix R.M. Beinlich
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Antonios Asiminas
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Zuzanna Bojarowska
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Virginia Plá
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Björn Sigurdsson
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
| | - Vincenzo Timmel
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Lukas Gehrig
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Michael H. Graber
- School of Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland; 5210 Windisch, Switzerland
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen; 2200 Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center; Rochester, NY 14642, USA
| |
Collapse
|
50
|
Nehra G, Promsan S, Yubolphan R, Chumboatong W, Vivithanaporn P, Maloney BJ, Lungkaphin A, Bauer B, Hartz AMS. Cognitive decline, Aβ pathology, and blood-brain barrier function in aged 5xFAD mice. Fluids Barriers CNS 2024; 21:29. [PMID: 38532486 PMCID: PMC10967049 DOI: 10.1186/s12987-024-00531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) develop blood-brain barrier dysfunction to varying degrees. How aging impacts Aβ pathology, blood-brain barrier function, and cognitive decline in AD remains largely unknown. In this study, we used 5xFAD mice to investigate changes in Aβ levels, barrier function, and cognitive decline over time. METHODS 5xFAD and wild-type (WT) mice were aged between 9.5 and 15.5 months and tested for spatial learning and reference memory with the Morris Water Maze (MWM). After behavior testing, mice were implanted with acute cranial windows and intravenously injected with fluorescent-labeled dextrans to assess their in vivo distribution in the brain by two-photon microscopy. Images were processed and segmented to obtain intravascular intensity, extravascular intensity, and vessel diameters as a measure of barrier integrity. Mice were sacrificed after in vivo imaging to isolate brain and plasma for measuring Aβ levels. The effect of age and genotype were evaluated for each assay using generalized or cumulative-linked logistic mixed-level modeling and model selection by Akaike Information Criterion (AICc). Pairwise comparisons were used to identify outcome differences between the two groups. RESULTS 5xFAD mice displayed spatial memory deficits compared to age-matched WT mice in the MWM assay, which worsened with age. Memory impairment was evident in 5xFAD mice by 2-threefold higher escape latencies, twofold greater cumulative distances until they reach the platform, and twice as frequent use of repetitive search strategies in the pool when compared with age-matched WT mice. Presence of the rd1 allele worsened MWM performance in 5xFAD mice at all ages but did not alter the rate of learning or probe trial outcomes. 9.5-month-old 15.5-month-old 5xFAD mice had twofold higher brain Aβ40 and Aβ42 levels (p < 0.001) and 2.5-fold higher (p = 0.007) plasma Aβ40 levels compared to 9.5-month-old 5xFAD mice. Image analysis showed that vessel diameters and intra- and extravascular dextran intensities were not significantly different in 9.5- and 15.5-month-old 5xFAD mice compared to age-matched WT mice. CONCLUSION 5xFAD mice continue to develop spatial memory deficits and increased Aβ brain levels while aging. Given in vivo MP imaging limitations, further investigation with smaller molecular weight markers combined with advanced imaging techniques would be needed to reliably assess subtle differences in barrier integrity in aged mice.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Sasivimon Promsan
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ruedeemars Yubolphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Nakhon Pathom, Thailand
| | - Wijitra Chumboatong
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Pornpun Vivithanaporn
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Nakhon Pathom, Thailand
| | - Bryan J Maloney
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Anika M S Hartz
- Sanders-Brown Center On Aging, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, USA.
| |
Collapse
|