1
|
Yafarova AA, Dementeva EV, Zlobovskaya OA, Sheptulina AF, Lopatukhina EV, Timofeev YS, Glazunova EV, Lyundup AV, Doludin YV, Kiselev AR, Shipulin GA, Makarov VV, Drapkina OM, Yudin SM. Gut Microbiota and Metabolic Alterations Associated with Heart Failure and Coronary Artery Disease. Int J Mol Sci 2024; 25:11295. [PMID: 39457077 PMCID: PMC11508380 DOI: 10.3390/ijms252011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the role of gut microbiota in cardiovascular diseases, with an additional focus on pro-atherogenic metabolites. We use advanced network analysis and machine learning techniques to identify key microbial features linked to coronary artery disease (CAD) and heart failure with reduced ejection fraction (HFrEF). This cross-sectional study included 189 participants divided into three groups: coronary artery disease (n = 93), heart failure with reduced ejection fraction (n = 43), and controls (n = 53). Assessments included physical exams, echocardiography, dietary surveys, blood analysis, and fecal analysis. Gut microbiota composition was analyzed using next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). Statistical analysis methods for testing hypotheses and correlations, alpha and beta-diversity analyses, co-occurrence networks, and machine learning were conducted using Python libraries or R packages with multiple comparisons corrected using the Benjamini-Hochberg procedure. Significant gut microbiota alterations were observed, with higher Bacillota/Bacteroidota ratios in CAD and HFrEF groups compared to controls (p < 0.001). Significant differences were observed in α-diversity indices (Pielou, Chao1, Faith) between disease groups and controls (p < 0.001). β-diversity analyses also revealed distinct microbial profiles (p = 0.0015). Interestingly, trimethylamine N-oxide (TMAO) levels were lower in CAD and HFrEF groups compared to controls (p < 0.05), while indoxyl sulfate (IS) levels were comparable between the study groups. Co-occurrence network analysis and machine learning identified key microbial features linked to these conditions, highlighting complex interactions within the gut microbiota associated with cardiovascular disease.
Collapse
Affiliation(s)
- Adel A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Elena V. Dementeva
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Olga A. Zlobovskaya
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Anna F. Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Elena V. Lopatukhina
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Yuriy S. Timofeev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Evgeniya V. Glazunova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Aleksey V. Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, 117036 Moscow, Russia
| | - Yuriy V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - German A. Shipulin
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Valentin V. Makarov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Sergey M. Yudin
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| |
Collapse
|
2
|
Li Y, Han S. Metabolomic Applications in Gut Microbiota-Host Interactions in Human Diseases. Gastroenterol Clin North Am 2024; 53:383-397. [PMID: 39068001 DOI: 10.1016/j.gtc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human gut microbiota, consisting of trillions of microorganisms, encodes diverse metabolic pathways that impact numerous aspects of host physiology. One key way in which gut bacteria interact with the host is through the production of small metabolites. Several of these microbiota-dependent metabolites, such as short-chain fatty acids, have been shown to modulate host diseases. In this review, we examine how disease-associated metabolic signatures are identified using metabolomic platforms, and where metabolomics is applied in gut microbiota-disease interactions. We further explore how integration of metagenomic and metabolomic data in human studies can facilitate biomarkers discoveries in precision medicine.
Collapse
Affiliation(s)
- Yuxin Li
- Biochemistry Graduate Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shuo Han
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, USA.
| |
Collapse
|
3
|
Loreaux F, Jéhannin P, Le Pabic E, Paillard F, Le Faucheur A, Mahe G. An unfavorable dietary pattern is associated with symptomatic peripheral artery disease. Nutr Metab Cardiovasc Dis 2024; 34:2173-2181. [PMID: 39003132 DOI: 10.1016/j.numecd.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND AIMS Diet has an essential role in primary and secondary cardiovascular prevention by modulating various cardiovascular risk factors. The need to have easily useable tools seems essential to facilitate the daily practice of clinicians in order to propose the most optimal management of their patients' diet. The aim of this study was to compare the diet assessed with a simple food frequency questionnaire (FFQ) between patients with symptomatic peripheral artery disease (PAD) and healthy subjects. MATERIALS AND RESULTS In this ancillary study (ELECTRO-PAD study), we included symptomatic PAD patients and healthy participants. All participants filled a FFQ previously validated called Cardiovascular-Dietary-Questionnaire 2 (CDQ-2). CDQ-2 allows the calculation of different scores: global food score, saturated fatty acids score (SFA), unsaturated fatty acids score (UFA), fruit and vegetable score. The higher the score, the better the diet. We compared the different scores between PAD patients and healthy participants. We included 37 PAD patients and 40 healthy subjects. Mean global score was significantly lower in PAD patients compared to the healthy participants (5.35 ± 7.65 vs 10.60 ± 5.81; p = 0.0011). Similarly, the sub-scores concerning unsaturated fatty acids and fruits-vegetables were significantly lower in PAD patients (p < 0.010). Only the sub-score concerning saturated fatty acids was not significantly different (p = 0.8803) between PAD patients and healthy participants. CONCLUSION CDQ-2 highlights that PAD patients have an unfavorable diet compared with healthy participants. CDQ-2 is a tool of interest to help the clinicians for dietary advice of PAD patients.
Collapse
Affiliation(s)
| | | | - Estelle Le Pabic
- CHU Rennes, Inserm, CIC 1414 (Clinical Investigation Center), F-35000 Rennes, France
| | | | | | - Guillaume Mahe
- Vascular Medicine Unit, CHU Rennes, France; CHU Rennes, Inserm, CIC 1414 (Clinical Investigation Center), F-35000 Rennes, France; Centre de Cardio-prévention, CHU Rennes, France; Univ Rennes 1, Rennes, France.
| |
Collapse
|
4
|
Porras CP, Teraa M, Damen JAA, Hazenberg CEVB, Bots ML, Verhaar MC, Vernooij RWM. Editor's Choice - Prognostic Factors and Models to Predict Mortality Outcomes in Patients with Peripheral Arterial Disease: A Systematic Review. Eur J Vasc Endovasc Surg 2024; 68:361-377. [PMID: 38795905 DOI: 10.1016/j.ejvs.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE Predicting adverse outcomes in patients with peripheral arterial disease (PAD) is a complex task owing to the heterogeneity in patient and disease characteristics. This systematic review aimed to identify prognostic factors and prognostic models to predict mortality outcomes in patients with PAD Fontaine stage I - III or Rutherford category 0 - 4. DATA SOURCES PubMed, Embase, and Cochrane Database of Systematic Reviews were searched to identify studies examining individual prognostic factors or studies aiming to develop or validate a prognostic model for mortality outcomes in patients with PAD. REVIEW METHODS Information on study design, patient population, prognostic factors, and prognostic model characteristics was extracted, and risk of bias was evaluated. RESULTS Sixty nine studies investigated prognostic factors for mortality outcomes in PAD. Over 80 single prognostic factors were identified, with age as a predictor of death in most of the studies. Other common factors included sex, diabetes, and smoking status. Six studies had low risk of bias in all domains, and the remainder had an unclear or high risk of bias in at least one domain. Eight studies developed or validated a prognostic model. All models included age in their primary model, but not sex. All studies had similar discrimination levels of > 70%. Five of the studies on prognostic models had an overall high risk of bias, whereas two studies had an overall unclear risk of bias. CONCLUSION This systematic review shows that a large number of prognostic studies have been published, with heterogeneity in patient populations, outcomes, and risk of bias. Factors such as sex, age, diabetes, hypertension, and smoking are significant in predicting mortality risk among patients with PAD Fontaine stage I - III or Rutherford category 0 - 4.
Collapse
Affiliation(s)
- Cindy P Porras
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Martin Teraa
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Johanna A A Damen
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Michiel L Bots
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Cheng TY, Lee TW, Li SJ, Lee TI, Chen YC, Kao YH, Higa S, Chen PH, Chen YJ. Short-chain fatty acid butyrate against TMAO activating endoplasmic-reticulum stress and PERK/IRE1-axis with reducing atrial arrhythmia. J Adv Res 2024:S2090-1232(24)00332-1. [PMID: 39111622 DOI: 10.1016/j.jare.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION The accumulation of microbiota-derived trimethylamine N-oxide (TMAO) in the atrium is linked to the development and progression of atrial arrhythmia. Butyrate, a major short-chain fatty acid, plays a crucial role in sustaining intestinal homeostasis and alleviating systemic inflammation, which may reduce atrial arrhythmogenesis. OBJECTIVES This study explored the roles of butyrate in regulating TMAO-mediated atrial remodeling and arrhythmia. METHODS Whole-cell patch clamp experiments, Western blotting, and immunocytochemistry were used to analyze electrical activity and signaling, respectively, in TMAO-treated HL-1 atrial myocytes with or without sodium butyrate (SB) administration. Telemetry electrocardiographic recording and echocardiography and Masson's trichrome staining and immunohistochemistry were employed to examine atrial function and histopathology, respectively, in mice treated with TMAO with and without SB administration. RESULTS Compared with control cells, TMAO-treated HL-1 myocytes exhibited reduced action potential duration (APD), elevated sarcoplasmic reticulum (SR) calcium content, larger L-type calcium current (ICa-L), increased Na+/Ca2+ exchanger (NCX) current, and increased potassium current. However, the combination of SB and TMAO resulted in similar APD, SR calcium content, ICa-L, transient outward potassium current (Ito), and ultrarapid delayed rectifier potassium current (IKur) compared with controls. Additionally, TMAO-treated HL-1 myocytes exhibited increased activation of endoplasmic reticulum (ER) stress signaling, along with increased PKR-like ER stress kinase (PERK)/IRE1α axis activation and expression of phospho-IP3R, NCX, and Kv1.5, compared with controls or HL-1 cells treated with the combination of TMAO and SB. TMAO-treated mice exhibited atrial ectopic beats, impaired atrial function, increased atrial fibrosis, and greater activation of ER stress signaling with PERK/IRE1α axis activation compared with controls and mice treated with TMAO combined with SB. CONCLUSION TMAO administration led to PERK/IRE1α axis activation, which may increase atrial remodeling and arrhythmogenesis. SB treatment mitigated TMAO-elicited ER stress. This finding suggests that SB administration is a valuable strategy for treating TMAO-induced atrial arrhythmia.
Collapse
Affiliation(s)
- Tzu-Yu Cheng
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Hsun Kao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, 1199 Makiminato, Urasoe, Okinawa 901-2131, Japan
| | - Pao-Huan Chen
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
8
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
9
|
Shkhair AI, Madanan AS, Varghese S, Abraham MK, Indongo G, Rajeevan G, K AB, Abbas SM, George S. Mo(IV) Ion-Modulated BSA-Protected Gold Nanocluster Probe for Fluorescence Turn-On Detection of Trimethylamine N-Oxide (TMAO). ACS APPLIED BIO MATERIALS 2024; 7:3460-3468. [PMID: 38703374 DOI: 10.1021/acsabm.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Trimethylamine N-oxide (TMAO), a molecule produced by the microbiota, has been associated with human health and illness. Its early discovery in body fluids may affect our understanding of the pathophysiology and treatment of many illnesses. Therefore, our knowledge of the pathophysiology and diagnostics of disorders associated with TMAO might be enhanced by the creation of dependable and fast methods for TMAO detection. Therefore, we developed a fluorescent probe for detecting TMAO utilizing an on-off-on strategy. Bovine serum albumin (BSA)@AuNCs luminescence is effectively quenched by Mo4+ because BSA@AuNCs and Mo4+ have a strong binding relationship. Mo4+ ions can substantially decrease the emission intensity of gold nanoclusters by establishing a BSA@AuNCs-Mo system. Then, the luminescence of BSA@AuNCs was restored due to the interaction between Mo4+ and TMAO. A significant linear relationship was seen between the emission intensity and TMAO concentration within the 0-201 μM range, with a detection limit of 1.532 μM. Additionally, the method can measure TMAO in blood and urine samples.
Collapse
Affiliation(s)
- Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Arathy B K
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
| | - Sara Muneer Abbas
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram695581, Kerala, India
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Sony George
- Associate Professor, Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- Coordinator, International Inter-University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
10
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
11
|
Aleksova A, Fluca AL, Stornaiuolo M, Barbati G, Pierri A, Zwas DR, Santon D, D'Errico S, Marketou M, Sinagra G, Avraham Y, Novellino E, Janjusevic M. Intra-hospital variation of gut microbiota product, trimethylamine N-oxide (TMAO), predicts future major adverse cardiovascular events after myocardial infarction. Hellenic J Cardiol 2024:S1109-9666(24)00111-8. [PMID: 38729348 DOI: 10.1016/j.hjc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Trimethylamine N-oxide (TMAO) has been associated with atherosclerosis and poor outcome. We evaluated the prognostic impact of intra-hospital TMAO variation on patient outcome. METHODS AND RESULTS Blood samples from 149 patients with acute myocardial infarction (AMI) were taken on admission and discharge. Plasma TMAO was determined by HPLC-MS. The endpoint was a composite three-point MACE (major adverse cardiovascular events), including all-cause mortality, re-infarction, or heart failure (HF) development. Median TMAO concentration on admission was significantly higher than on discharge (respectively, 7.81 [3.47-19.98] vs 3.45 [2.3-4.78] μM, p < 0.001). After estimating the 3.45 μM TMAO cut-off with the analysis of the continuous hazard ratio, we divided our cohort into two groups. The first group included 75 (50.3%) patients whose TMAO levels remained below or decreased under cut-off (low-low/high-low; LL/HL), while the second group included 74 (49.7%) patients whose TMAO levels remained high or increased above the cut-off during hospitalisation (high-high/low-high; HH/LH). During the median 30-month follow-up, 21.5% of patients experienced the composite endpoint. At Kaplan-Meier analysis, a trend of increasing MACE risk was observed in patients in the HH/LH group (p = 0.05). At multivariable Cox analysis, patients from the HH/LH group had more than two times higher risk of MACE during the follow-up than the LL/HL group (HR = 2.15 [95% CI, 1.03-4.5], p = 0.04). Other independent predictors of MACE were older age and worse left ventricular systolic function. CONCLUSION In patients with AMI, permanently high or increasing TMAO levels during hospitalisation are associated with a higher risk of MACE during long-term follow-up.
Collapse
Affiliation(s)
- Aneta Aleksova
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Alessandra Lucia Fluca
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Giulia Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Italy
| | - Alessandro Pierri
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Cardiology, San Paolo Hospital, Bari, Italy
| | - Donna R Zwas
- Linda Joy Pollin Cardiovascular Wellness Center for Women, Heart Institute, Hadassah University Medical Center, Jerusalem, Israel
| | - Daniela Santon
- Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maria Marketou
- Heraklion University General Hospital, University of Crete, School of Medicine, Cardiology Department Crete, Greece
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Yosefa Avraham
- Department of Human Nutrition and Metabolism, School of Public Health Medical Faculty Jerusalem, Jerusalem 91120, Israel
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, Rome 00168, Italy; Inventia Biotech Centro Ricerche Alimentari Healthcare, Caserta, Italy
| | - Milijana Janjusevic
- Azienda Sanitaria Universitaria Giuliano Isontina, Cardiothoracovascular Department, Trieste, Italy; Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
12
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
13
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
14
|
Hou C, Chen Y, Hazeena SH, Tain Y, Hsieh C, Chen D, Liu R, Shih M. Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives. FEBS Open Bio 2024; 14:358-379. [PMID: 38151750 PMCID: PMC10909991 DOI: 10.1002/2211-5463.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.
Collapse
Affiliation(s)
- Chih‐Yao Hou
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Yu‐Wei Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - You‐Lin Tain
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
- Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chang‐Wei Hsieh
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - De‐Quan Chen
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Rou‐Yun Liu
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Ming‐Kuei Shih
- Graduate Institute of Food Culture and InnovationNational Kaohsiung University of Hospitality and TourismTaiwan
| |
Collapse
|
15
|
Satheesh Babu AK, Petersen C, Iglesias-Carres L, Paz HA, Wankhade UD, Neilson AP, Anandh Babu PV. Blueberry intervention mitigates detrimental microbial metabolite trimethylamine N-oxide by modulating gut microbes. Biofactors 2024; 50:392-404. [PMID: 37921575 PMCID: PMC11014767 DOI: 10.1002/biof.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
Gut microbes play a pivotal role in host physiology by producing beneficial or detrimental metabolites. Gut bacteria metabolize dietary choline and L-carnitine to trimethylamine (TMA) which is then converted to trimethylamine-N-oxide (TMAO). An elevated circulating TMAO is associated with diabetes, obesity, cardiovascular disease, and cancer in humans. In the present study, we investigated the effect of dietary blueberries and strawberries at a nutritional dosage on TMA/TMAO production and the possible role of gut microbes. Blueberry cohort mice received a control (C) or freeze-dried blueberry supplemented (CB) diet for 12 weeks and subgroups received an antibiotics cocktail (CA and CBA). Strawberry cohort mice received a control (N) or strawberry-supplemented (NS) diet and subgroups received antibiotics (NA and NSA). Metabolic parameters, choline, TMA, and TMAO were assessed in addition to microbial profiling and characterization of berry powders. Blueberry supplementation (equivalent to 1.5 human servings) reduced circulating TMAO in CB versus C mice (~48%) without changing choline or TMA. This effect was not mediated through alterations in metabolic parameters. Dietary strawberries did not reduce choline, TMA, or TMAO. Depleting gut microbes with antibiotics in these cohorts drastically reduced TMA and TMAO to not-quantified levels. Further, dietary blueberries increased the abundance of bacterial taxa that are negatively associated with circulating TMA/TMAO suggesting the role of gut microbes. Our phenolic profiling indicates that this effect could be due to chlorogenic acid and increased phenolic contents in blueberries. Our study provides evidence for considering dietary blueberries to reduce TMAO and prevent TMAO-induced complications.
Collapse
Affiliation(s)
| | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
| | - Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Henry A. Paz
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Umesh D. Wankhade
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Andrew P. Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
16
|
Wei B, Deng N, Guo H, Wei Y, Xu F, Luo S, You W, Chen J, Li W, Si X. Trimethylamine N-oxide promotes abdominal aortic aneurysm by inducing vascular inflammation and vascular smooth muscle cell phenotypic switching. Eur J Pharmacol 2024; 965:176307. [PMID: 38160930 DOI: 10.1016/j.ejphar.2023.176307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Trimethylamine N-oxide (TMAO) has emerged as a crucial risk factor in cardiovascular diseases, inducing vascular inflammation and calcification. We aimed to evaluate the effect of TMAO on the formation of AAA. APPROACH AND RESULTS Here, we showed that TMAO was elevated in plasma from AAA patients compared with nonaneurysmal subjects by liquid chromatography‒mass spectrometry (LC‒MS) detection. Functional studies revealed that increased TMAO induced by feeding a choline-supplemented diet promoted Ang II-induced AAA formation. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analyses revealed that TMAO induced macrophage infiltration and inflammatory factor release. Conversely, inhibition of TMAO by supplementation with DMB suppressed AAA formation and the inflammatory response. Molecular studies revealed that TMAO regulated VSMC phenotypic switching. Flow cytometry analyses showed that TMAO induces macrophage M1-type polarization. Furthermore, pharmacological intervention experiments suggested that the nuclear factor-κB (NF-κB) signaling pathway was critical for TMAO to trigger AAA formation. CONCLUSIONS TMAO promotes AAA formation by inducing vascular inflammation and VSMC phenotypic switching through activation of the NF-κB signaling pathway. Thus, TMAO is a prospective therapeutic AAA target.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Na Deng
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Haijun Guo
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Yingying Wei
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Fujia Xu
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Sihan Luo
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Weili You
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Jingjing Chen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Wei Li
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China.
| | - Xiaoyun Si
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
17
|
Satheesh Babu AK, Petersen C, Paz HA, Iglesias-Carres L, Li Y, Zhong Y, Neilson AP, Wankhade UD, Anandh Babu PV. Gut Microbiota Depletion Using Antibiotics to Investigate Diet-Derived Microbial Metabolites: An Efficient Strategy. Mol Nutr Food Res 2024; 68:e2300386. [PMID: 38054624 DOI: 10.1002/mnfr.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Gut microbiota depletion using antibiotics in drinking water is a valuable tool to investigate the role of gut microbes and microbial metabolites in health and disease. However, there are challenges associated with this model. Animals avoid drinking water because of the antibiotic bitterness, which affects their metabolic health. The present study develops an efficient strategy to deplete gut microbes without affecting metabolic parameters. METHODS AND RESULTS Male C57BL/6J mice (7 weeks old) are fed a control (C) or high-fat (HF) diet. Subgroups of C and HF mice receive an antibiotic cocktail in drinking water (CA and HA). The antibiotic dosage is gradually increased so that the animals adapt to the taste of antibiotics. Metabolic parameters, gut microbiome, and microbial metabolites are assessed after 12 weeks treatment. Culture methods and 16s rRNA amplification confirm the depletion of gut microbes in antibiotic groups (CA and HA). Further, antibiotic treatment does not alter metabolic parameters (body weight, body fat, lean body mass, blood glucose, and glucose/insulin tolerance), whereas it suppresses the production of diet-derived microbial metabolites (trimethylamine and trimethylamine-N-oxide). CONCLUSION This strategy effectively depletes gut microbes and suppresses the production of microbial metabolites in mice without affecting their metabolic health.
Collapse
Affiliation(s)
| | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Henry A Paz
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
18
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
19
|
Huang PH, Chen DQ, Chen YW, Shih MK, Lee BH, Tain YL, Hsieh CW, Hou CY. Evaluation of the Feasibility of In Vitro Metabolic Interruption of Trimethylamine with Resveratrol Butyrate Esters and Its Purified Monomers. Molecules 2024; 29:429. [PMID: 38257342 PMCID: PMC10820948 DOI: 10.3390/molecules29020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 μM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - De-Quan Chen
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan;
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung 81157, Taiwan;
| |
Collapse
|
20
|
Kale D, Fatangare A, Phapale P, Sickmann A. Blood-Derived Lipid and Metabolite Biomarkers in Cardiovascular Research from Clinical Studies: A Recent Update. Cells 2023; 12:2796. [PMID: 38132115 PMCID: PMC10741540 DOI: 10.3390/cells12242796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The primary prevention, early detection, and treatment of cardiovascular disease (CVD) have been long-standing scientific research goals worldwide. In the past decades, traditional blood lipid profiles have been routinely used in clinical practice to estimate the risk of CVDs such as atherosclerotic cardiovascular disease (ASCVD) and as treatment targets for the primary prevention of adverse cardiac events. These blood lipid panel tests often fail to fully predict all CVD risks and thus need to be improved. A comprehensive analysis of molecular species of lipids and metabolites (defined as lipidomics and metabolomics, respectively) can provide molecular insights into the pathophysiology of the disease and could serve as diagnostic and prognostic indicators of disease. Mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based lipidomics and metabolomics analysis have been increasingly used to study the metabolic changes that occur during CVD pathogenesis. In this review, we provide an overview of various MS-based platforms and approaches that are commonly used in lipidomics and metabolomics workflows. This review summarizes the lipids and metabolites in human plasma/serum that have recently (from 2018 to December 2022) been identified as promising CVD biomarkers. In addition, this review describes the potential pathophysiological mechanisms associated with candidate CVD biomarkers. Future studies focused on these potential biomarkers and pathways will provide mechanistic clues of CVD pathogenesis and thus help with the risk assessment, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| | | | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| |
Collapse
|
21
|
Qu C, Xu QQ, Yang W, Zhong M, Yuan Q, Xian YF, Lin ZX. Gut dysbiosis aggravates cognitive deficits, amyloid pathology and lipid metabolism dysregulation in a transgenic mouse model of Alzheimer's disease. J Pharm Anal 2023; 13:1526-1547. [PMID: 38223452 PMCID: PMC10785152 DOI: 10.1016/j.jpha.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 01/16/2024] Open
Abstract
Gut dysbiosis, a well-known risk factor to triggers the progression of Alzheimer's disease (AD), is strongly associated with metabolic disturbance. Trimethylamine N-oxide (TMAO), produced in the dietary choline metabolism, has been found to accelerate neurodegeneration in AD pathology. In this study, the cognitive function and gut microbiota of TgCRND8 (Tg) mice of different ages were evaluated by Morris water maze task (MWMT) and 16S rRNA sequencing, respectively. Young pseudo germ-free (PGF) Tg mice that received faecal microbiota transplants from aged Tg mice and wild-type (WT) mice were selected to determine the role of the gut microbiota in the process of neuropathology. Excessive choline treatment for Tg mice was used to investigate the role of abnormal choline metabolism on the cognitive functions. Our results showed that gut dysbiosis, neuroinflammation response, Aβ deposition, tau hyperphosphorylation, TMAO overproduction and cyclin-dependent kinase 5 (CDK5)/transcription 3 (STAT3) activation occurred in Tg mice age-dependently. Disordered microbiota of aged Tg mice accelerated AD pathology in young Tg mice, with the activation of CDK5/STAT3 signaling in the brains. On the contrary, faecal microbiota transplantation from WT mice alleviated the cognitive deficits, attenuated neuroinflammation, Aβ deposition, tau hyperphosphorylation, TMAO overproduction and suppressed CDK5/STAT3 pathway activation in Tg mice. Moreover, excessive choline treatment was also shown to aggravate the cognitive deficits, Aβ deposition, neuroinflammation and CDK5/STAT3 pathway activation. These findings provide a novel insight into the interaction between gut dysbiosis and AD progression, clarifying the important roles of gut microbiota-derived substances such as TMAO in AD neuropathology.
Collapse
Affiliation(s)
- Chang Qu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510640, China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Farsi DN, Gallegos JL, Finnigan TJA, Cheung W, Munoz JM, Commane DM. The effects of substituting red and processed meat for mycoprotein on biomarkers of cardiovascular risk in healthy volunteers: an analysis of secondary endpoints from Mycomeat. Eur J Nutr 2023; 62:3349-3359. [PMID: 37624376 PMCID: PMC10611638 DOI: 10.1007/s00394-023-03238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Mycoprotein is a relatively novel food source produced from the biomass of Fusarium venenatum. It has previously been shown to improve CVD risk markers in intervention trials when it is compared against total meat. It has not hitherto been assessed specifically for benefits relative to red and processed meat. METHODS We leveraged samples from Mycomeat, an investigator-blind randomised crossover controlled trial in metabolically healthy male adults (n = 20), randomised to consume 240 g/day of red and processed meat for 14 days followed by mycoprotein, or vice versa. Blood biochemical indices were a priori defined secondary endpoints. RESULTS Mycoprotein consumption led to a 6.74% reduction in total cholesterol (P = 0.02) and 12.3% reduction in LDL cholesterol (P = 0.02) from baseline values. Change in fasted triglycerides was not significantly different between diets (+ 0.19 ± 0.11 mmol/l with mycoprotein, P = 0.09). There was a small but significant reduction in waist circumference for mycoprotein relative to meat (- 0.95 ± 0.42 cm, P = 0.04). Following the mycoprotein diet, mean systolic (- 2.41 ± 1.89 mmHg, P = 0.23) and diastolic blood pressure (- 0.80 ± 1.23 mmHg, P = 0.43) were reduced from baseline. There were no statistically significant effects of the intervention on urinary sodium, nitrite or TMAO; while urinary potassium (+ 126.12 ± 50.30 mmol/l, P = 0.02) and nitrate (+ 2.12 ± 0.90 mmol/l, P = 0.04) were both significantly higher with mycoprotein relative to meat. The study population comprised metabolically healthy adults, therefore, changes in plasma lipids had little effect on cardiovascular risk scores (- 0.34% FRS for mycoprotein P = 0.24). CONCLUSIONS These results confirm potential cardiovascular benefits when displacing red and processed meat with mycoprotein in the diet. Longer trials in higher risk study populations are needed to fully elucidate suggested benefits for blood pressure and body composition. CLINICALTRIALS gov Identifier: NCT03944421.
Collapse
Affiliation(s)
- Dominic N Farsi
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jose Lara Gallegos
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
- NUTRAN, Northumbria University, Newcastle upon Tyne, UK
| | | | - William Cheung
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| | - Jose Munoz Munoz
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| | - Daniel M Commane
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
23
|
Caldarelli M, Franza L, Rio P, Gasbarrini A, Gambassi G, Cianci R. Gut-Kidney-Heart: A Novel Trilogy. Biomedicines 2023; 11:3063. [PMID: 38002063 PMCID: PMC10669427 DOI: 10.3390/biomedicines11113063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
| |
Collapse
|
24
|
Russell MW, Muste JC, Kuo BL, Wu AK, Singh RP. Clinical trials targeting the gut-microbiome to effect ocular health: a systematic review. Eye (Lond) 2023; 37:2877-2885. [PMID: 36918627 PMCID: PMC10516887 DOI: 10.1038/s41433-023-02462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Clinical trials targeting the gut microbiome to mitigate ocular disease are now on the horizon. A review of clinical data thus far is essential to determine future directions in this novel promising field. This review examines recent clinical trials that support the plausibility of a gut-eye axis, and may form the basis of novel clinical interventions. PubMed was queried for English language clinical studies examining the relationships between gut microbiota and ocular pathology. 25 studies were extracted from 828 candidate publications, which suggest that gut imbalance is associated with ocular pathology. Of these, only four interventional studies exist which suggest probiotic supplementation or fecal microbiota transplant can reduce symptoms of chalazion or uveitis. The gut-eye axis appears to hold clinical relevance, but current data is limited in sample size and design. Further investigation via longitudinal clinical trials may be warranted.
Collapse
Affiliation(s)
- Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Blanche L Kuo
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Anna K Wu
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
25
|
Zhu J, Lyu J, Zhao R, Liu G, Wang S. Gut macrobiotic and its metabolic pathways modulate cardiovascular disease. Front Microbiol 2023; 14:1272479. [PMID: 37822750 PMCID: PMC10562559 DOI: 10.3389/fmicb.2023.1272479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Thousands of microorganisms reside in the human gut, and extensive research has demonstrated the crucial role of the gut microbiota in overall health and maintaining homeostasis. The disruption of microbial populations, known as dysbiosis, can impair the host's metabolism and contribute to the development of various diseases, including cardiovascular disease (CVD). Furthermore, a growing body of evidence indicates that metabolites produced by the gut microbiota play a significant role in the pathogenesis of cardiovascular disease. These bioactive metabolites, such as short-chain fatty acids (SCFAs), trimethylamine (TMA), trimethylamine N-oxide (TMAO), bile acids (BAs), and lipopolysaccharides (LPS), are implicated in conditions such as hypertension and atherosclerosis. These metabolites impact cardiovascular function through various pathways, such as altering the composition of the gut microbiota and activating specific signaling pathways. Targeting the gut microbiota and their metabolic pathways represents a promising approach for the prevention and treatment of cardiovascular diseases. Intervention strategies, such as probiotic drug delivery and fecal transplantation, can selectively modify the composition of the gut microbiota and enhance its beneficial metabolic functions, ultimately leading to improved cardiovascular outcomes. These interventions hold the potential to reshape the gut microbial community and restore its balance, thereby promoting cardiovascular health. Harnessing the potential of these microbial metabolites through targeted interventions offers a novel avenue for tackling cardiovascular health issues. This manuscript provides an in-depth review of the recent advances in gut microbiota research and its impact on cardiovascular health and offers a promising avenue for tackling cardiovascular health issues through gut microbiome-targeted therapies.
Collapse
Affiliation(s)
- Junwen Zhu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ruochi Zhao
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
| |
Collapse
|
26
|
Satheesh Babu AK, Srinivasan H, Anandh Babu PV. Breaking bugs: gut microbes metabolize dietary components and modulate vascular health. Crit Rev Food Sci Nutr 2023:1-9. [PMID: 37651204 PMCID: PMC10902197 DOI: 10.1080/10408398.2023.2251616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Gut microbiota modulates host physiology and pathophysiology through the production of microbial metabolites. Diet is a crucial factor in shaping the microbiome, and gut microbes interact with the host by producing beneficial or detrimental diet-derived microbial metabolites. Evidence from our lab and others indicates that the interaction between diet and gut microbes plays a pivotal role in modulating vascular health. Diet-derived microbial metabolites such as short-chain fatty acids and metabolites of phenolic acids improve vascular health, whereas trimethylamine oxide and certain amino acid-derived microbial metabolites impair the vasculature. These metabolites have been shown to regulate blood pressure, vascular inflammation, and atherosclerosis by acting on multiple targets. Nonetheless, there are substantial gaps in knowledge within this field. The microbial enzymes essential for the production of diet-derived metabolites, the role of the food matrix in regulating the bioavailability of metabolites, and the structure-activity relationships between metabolites and biomolecules in the vasculature are largely unknown. Potential diet-derived metabolites to improve vascular health can be identified through future studies that investigate the causal relationship between dietary components, gut microbes, diet-derived metabolites, and vascular health by using radiolabeled compounds, metabolomics, transcriptomics, and proteomics techniques.
Collapse
Affiliation(s)
| | | | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
27
|
Cuadrat RRC, Goris T, Birukov A, Eichelmann F, Andrade BGN, Bang C, Franke A, Wittenbecher C, Schulze MB. Association of the human gut microbiota with vascular stiffness. Sci Rep 2023; 13:13348. [PMID: 37587126 PMCID: PMC10432492 DOI: 10.1038/s41598-023-40178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
Gut microbiota metabolites have been mechanistically linked to inflammatory pathway activation and atherosclerosis, which are major causes of vascular stiffness (VS). Aiming to investigate if the gut microbiome might be involved in VS development, we performed a cross-sectional study (n = 3,087), nested within the population-based European Prospective Investigations into Cancer and Nutrition (EPIC) Potsdam. We investigated the correlation of the gut microbiota (alpha diversity and taxa abundance) with 3 vascular stiffness measures: carotid-femoral (PWV), aortic augmentation index (AIX) and ankle-brachial index (ABI). Shannon index was not significantly associated with VS but the number of observed Amplicon Sequence Variants (ASV) was positively associated with PWV and AIX. We found a total of 19 ASVs significantly associated with at least one VS measure in multivariable-adjusted models. One ASV (classified as Sutterella wadsworthensis) was associated with 2 VS measures, AIX (- 0.11 ± 0.04) and PWV (-0.14 ± 0.03). Other examples of ASVs associated with VS were Collinsella aerofaciens, previously reported to be affected by diet and Bacteroides uniformis, commercially available as probiotics. In conclusion, our study suggests a potential role of individual components of the gut microbiota in the aetiology of VS.
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Bioinformatics and Omics Data Science, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), Berlin, Germany
| | - Tobias Goris
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bruno G N Andrade
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
28
|
Muhamadali H, Winder CL, Dunn WB, Goodacre R. Unlocking the secrets of the microbiome: exploring the dynamic microbial interplay with humans through metabolomics and their manipulation for synthetic biology applications. Biochem J 2023; 480:891-908. [PMID: 37378961 PMCID: PMC10317162 DOI: 10.1042/bcj20210534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Metabolomics is a powerful research discovery tool with the potential to measure hundreds to low thousands of metabolites. In this review, we discuss the application of GC-MS and LC-MS in discovery-based metabolomics research, we define metabolomics workflows and we highlight considerations that need to be addressed in order to generate robust and reproducible data. We stress that metabolomics is now routinely applied across the biological sciences to study microbiomes from relatively simple microbial systems to their complex interactions within consortia in the host and the environment and highlight this in a range of biological species and mammalian systems including humans. However, challenges do still exist that need to be overcome to maximise the potential for metabolomics to help us understanding biological systems. To demonstrate the potential of the approach we discuss the application of metabolomics in two broad research areas: (1) synthetic biology to increase the production of high-value fine chemicals and reduction in secondary by-products and (2) gut microbial interaction with the human host. While burgeoning in importance, the latter is still in its infancy and will benefit from the development of tools to detangle host-gut-microbial interactions and their impact on human health and diseases.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Catherine L. Winder
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Warwick B. Dunn
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
29
|
Aldujeli A, Patel R, Grabauskyte I, Hamadeh A, Lieponyte A, Tatarunas V, Khalifeh H, Briedis K, Skipskis V, Aldujeili M, Jarasuniene D, Rana S, Unikas R, Haq A. The Impact of Trimethylamine N-Oxide and Coronary Microcirculatory Dysfunction on Outcomes following ST-Elevation Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10050197. [PMID: 37233164 DOI: 10.3390/jcdd10050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Persistent coronary microcirculatory dysfunction (CMD) and elevated trimethylamine N-oxide (TMAO) levels after ST-elevation myocardial infarction (STEMI) may drive negative structural and electrical cardiac remodeling, resulting in new-onset atrial fibrillation (AF) and a decrease in left ventricular ejection fraction (LVEF). AIMS TMAO and CMD are investigated as potential predictors of new-onset AF and left ventricular remodeling following STEMI. METHODS This prospective study included STEMI patients who had primary percutaneous coronary intervention (PCI) followed by staged PCI three months later. Cardiac ultrasound images were obtained at baseline and after 12 months to assess LVEF. Coronary flow reserve (CFR), and index of microvascular resistance (IMR) were assessed using the coronary pressure wire during the staged PCI. Microcirculatory dysfunction was defined as having an IMR value ≥25 U and CFR value <2.5 U. RESULTS A total of 200 patients were included in the study. Patients were categorized according to whether or not they had CMD. Neither group differed from the other with regards to known risk factors. Despite making up only 40.5% of the study population, females represented 67.4% of the CMD group p < 0.001. Similarly, CMD patients had a much higher prevalence of diabetes than those without CMD (45.7% vs. 18.2%; p < 0.001). At the one-year follow-up, the LVEF in the CMD group had decreased to significantly lower levels than those in the non-CMD group (40% vs. 50%; p < 0.001), whereas it had been higher in the CMD group at baseline (45% vs. 40%; p = 0.019). Similarly, during the follow-up, the CMD group had a greater incidence of AF (32.6% vs. 4.5%; p < 0.001). In the adjusted multivariable analysis, the IMR and TMAO were associated with increased odds of AF development (OR: 1.066, 95% CI: 1.018-1.117, p = 0.007), and (OR: 1.290, 95% CI: 1.002-1.660, p = 0.048), respectively. Similarly, elevated levels of IMR and TMAO were linked with decreased odds of LVEF improvement, while higher CFR values are related to a greater likelihood of LVEF improvement. CONCLUSIONS CMD and elevated TMAO levels were highly prevalent three months after STEMI. Patients with CMD had an increased incidence of AF and a lower LVEF 12 months after STEMI.
Collapse
Affiliation(s)
- Ali Aldujeli
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Riddhi Patel
- HCA Medical City Healthcare UNT-TCU Graduate Medical Education Program, Arlington, TX 76015, USA
| | - Ingrida Grabauskyte
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Anas Hamadeh
- Heart & Vascular Specialists of North Texas, Arlington, TX 76014, USA
| | - Austeja Lieponyte
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vacis Tatarunas
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Hussein Khalifeh
- Kreiskrankenhaus Rotenburg an der Fulda, 36199 Rotenburg an der Fulda, Germany
| | - Kasparas Briedis
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vilius Skipskis
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | | | - Dalia Jarasuniene
- Seamen's Branch, Department of Cardiology, Klaipeda University Hospital, 92288 Klaipeda, Lithuania
| | - Sumit Rana
- Thorndale Medical Clinic, D05 DX09 Dublin, Ireland
| | - Ramunas Unikas
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ayman Haq
- Abbott Northwestern Hospital, Minneapolis, MN 55407, USA
- Minneapolis Heart Institute Foundation, Minneapolis, MN 55407, USA
| |
Collapse
|
30
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
31
|
Schoch L, Sutelman P, Suades R, Badimon L, Moreno-Indias I, Vilahur G. The gut microbiome dysbiosis is recovered by restoring a normal diet in hypercholesterolemic pigs. Eur J Clin Invest 2023; 53:e13927. [PMID: 36453873 DOI: 10.1111/eci.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Gut microbiota is thought to modulate cardiovascular risk. However, the effect of cardiovascular primary prevention strategies on gut microbiota remains largely unknown. This study investigates the impact of diet and rosuvastatin interventions on gut microbiota composition in hypercholesterolemic pigs and associated potential changes in host metabolic pathways. METHODS Diet-induced hypercholesterolemic pigs (n = 32) were randomly distributed to receive one of the following 30-day interventions: (I) continued hypercholesterolemic diet (HCD; n = 9), (II) normocholesterolemic diet (NCD; n = 8), (III) continued HCD plus 40 mg rosuvastatin/daily (n = 7), or (IV) NCD plus 40 mg rosuvastatin/daily (n = 8). Faeces were collected at study endpoint for characterisation of the gut microbiome and metabolic profile prediction (PICRUSt2). TMAO levels and biochemical parameters were determined. RESULTS Principal coordinate analyses (beta-diversity) showed clear differences in the microbiota of NCD vs HCD pigs (PERMANOVA, p = .001). NCD-fed animals displayed significantly higher alpha-diversity, which inversely correlated with total cholesterol and LDL-cholesterol levels (p < .0003). NCD and HCD animals differed in the abundance of 12 genera (ANCOM; p = .001 vs HCD), and PICRUSt2 analysis revealed detrimental changes in HCD-related microbiota metabolic capacities. These latter findings were associated with a significant fivefold increase in TMAO levels in HCD-fed pigs (p < .0001 vs NCD). The addition of a 30-day rosuvastatin treatment to either of the diets exerted no effects in microbiota nor lipid profile. CONCLUSION In hypercholesterolemic animals, the ingestion of a low-fat diet for 30 days modifies gut microbiota composition in favour of alpha-diversity and towards a healthy metabolic profile, whereas rosuvastatin treatment for this period exerts no effects.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, Malaga, Spain
- CiberOBN, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Plasma Trimethylamine N-Oxide Levels Are Associated with Poor Kidney Function in People with Type 2 Diabetes. Nutrients 2023; 15:nu15040812. [PMID: 36839170 PMCID: PMC9960644 DOI: 10.3390/nu15040812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Previous studies have linked elevated plasma trimethylamine N-oxide (TMAO) levels to poor renal function. The relationship between TMAO and chronic kidney disease (CKD) in type 2 diabetes (T2D) is still unclear. We investigated the association between plasma TMAO levels and CKD in patients with T2D. A cross-sectional study of 133 patients with T2D with or without CKD has been conducted. Blood biomarkers of kidney function, diabetes, and inflammation were assessed in the study participants. Plasma TMAO levels were quantified using UPLC-MS/MS. People with T2D and CKD exhibited significantly higher plasma TMAO levels [10.16 (5.86-17.45) µmol/L] than those without CKD [4.69 (2.62-7.76) µmol/L] (p = 0.002). Participants in the highest quartile of TMAO levels (>8.38 µmol/L) presented relatively elevated serum creatinine levels and a higher number of people with CKD than those in the lower quartiles. TMAO levels were significantly correlated with kidney function biomarkers, including estimated glomerular filtration rate and urinary albumin to creatinine ratio. The association between TMAO and CKD was evident (p < 0.0001) and remained significant after adjusting for risk factors of kidney disease, including age, gender, body mass index, duration of diabetes, and smoking. These findings suggest the association between plasma TMAO and CKD in patients with T2D.
Collapse
|
34
|
Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int J Mol Sci 2023; 24:ijms24031940. [PMID: 36768264 PMCID: PMC9916030 DOI: 10.3390/ijms24031940] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is the main diet-induced metabolite produced by the gut microbiota, and it is mainly eliminated through renal excretion. TMAO has been correlated with an increased risk of atherosclerotic cardiovascular disease (ASCVD) and related complications, such as cardiovascular mortality or major adverse cardiovascular events (MACE). Meta-analyses have postulated that high circulating TMAO levels are associated with an increased risk of cardiovascular events and all-cause mortality, but the link between TMAO and CVD remains not fully consistent. The results of prospective studies vary depending on the target population and the outcome studied, and the adjustment for renal function tends to decrease or reverse the significant association between TMAO and the outcome studied, strongly suggesting that the association is substantially mediated by renal function. Importantly, one Mendelian randomization study did not find a significant association between genetically predicted higher TMAO levels and cardiometabolic disease, but another found a positive causal relationship between TMAO levels and systolic blood pressure, which-at least in part-could explain the link with renal function. The mechanisms by which TMAO can increase this risk are not clearly elucidated, but current evidence indicates that TMAO induces cholesterol metabolism alterations, inflammation, endothelial dysfunction, and platelet activation. Overall, there is no fully conclusive evidence that TMAO is a causal factor of ASCVD, and, especially, whether TMAO induces or just is a marker of hypertension and renal dysfunction requires further study.
Collapse
|
35
|
Li J, Kang PT, Jiang R, Lee JY, Soares JA, Krzycki JA, Chan MK. Insights into pyrrolysine function from structures of a trimethylamine methyltransferase and its corrinoid protein complex. Commun Biol 2023; 6:54. [PMID: 36646841 PMCID: PMC9842639 DOI: 10.1038/s42003-022-04397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
The 22nd genetically encoded amino acid, pyrrolysine, plays a unique role in the key step in the growth of methanogens on mono-, di-, and tri-methylamines by activating the methyl group of these substrates for transfer to a corrinoid cofactor. Previous crystal structures of the Methanosarcina barkeri monomethylamine methyltransferase elucidated the structure of pyrrolysine and provide insight into its role in monomethylamine activation. Herein, we report the second structure of a pyrrolysine-containing protein, the M. barkeri trimethylamine methyltransferase MttB, and its structure bound to sulfite, a substrate analog of trimethylamine. We also report the structure of MttB in complex with its cognate corrinoid protein MttC, which specifically receives the methyl group from the pyrrolysine-activated trimethylamine substrate during methanogenesis. Together these structures provide key insights into the role of pyrrolysine in methyl group transfer from trimethylamine to the corrinoid cofactor in MttC.
Collapse
Affiliation(s)
- Jiaxin Li
- grid.10784.3a0000 0004 1937 0482School of Life Sciences, and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Patrick T. Kang
- grid.261103.70000 0004 0459 7529Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272 USA ,grid.261331.40000 0001 2285 7943Ohio State University Biochemistry Program, Columbus, OH 43210 USA
| | - Ruisheng Jiang
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Jodie Y. Lee
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,grid.422834.b0000 0004 0387 4571TechLab, Inc., Blacksburg, VA 24060 USA
| | - Jitesh A. Soares
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,grid.286879.a0000 0001 1090 0879Division of Scientific Advancement, American Chemical Society, Washington, DC 20036 USA
| | - Joseph A. Krzycki
- grid.261331.40000 0001 2285 7943Ohio State University Biochemistry Program, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Michael K. Chan
- grid.10784.3a0000 0004 1937 0482School of Life Sciences, and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China ,grid.261331.40000 0001 2285 7943Ohio State University Biochemistry Program, Columbus, OH 43210 USA
| |
Collapse
|
36
|
Cheney AM, Costello SM, Pinkham NV, Waldum A, Broadaway SC, Cotrina-Vidal M, Mergy M, Tripet B, Kominsky DJ, Grifka-Walk HM, Kaufmann H, Norcliffe-Kaufmann L, Peach JT, Bothner B, Lefcort F, Copié V, Walk ST. Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia. Nat Commun 2023; 14:218. [PMID: 36639365 PMCID: PMC9839693 DOI: 10.1038/s41467-023-35787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023] Open
Abstract
Familial dysautonomia (FD) is a rare genetic neurologic disorder caused by impaired neuronal development and progressive degeneration of both the peripheral and central nervous systems. FD is monogenic, with >99.4% of patients sharing an identical point mutation in the elongator acetyltransferase complex subunit 1 (ELP1) gene, providing a relatively simple genetic background in which to identify modifiable factors that influence pathology. Gastrointestinal symptoms and metabolic deficits are common among FD patients, which supports the hypothesis that the gut microbiome and metabolome are altered and dysfunctional compared to healthy individuals. Here we show significant differences in gut microbiome composition (16 S rRNA gene sequencing of stool samples) and NMR-based stool and serum metabolomes between a cohort of FD patients (~14% of patients worldwide) and their cohabitating, healthy relatives. We show that key observations in human subjects are recapitulated in a neuron-specific Elp1-deficient mouse model, and that cohousing mutant and littermate control mice ameliorates gut microbiome dysbiosis, improves deficits in gut transit, and reduces disease severity. Our results provide evidence that neurologic deficits in FD alter the structure and function of the gut microbiome, which shifts overall host metabolism to perpetuate further neurodegeneration.
Collapse
Affiliation(s)
- Alexandra M Cheney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Stephanann M Costello
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Nicholas V Pinkham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Annie Waldum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Susan C Broadaway
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maria Cotrina-Vidal
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Marc Mergy
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Douglas J Kominsky
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heather M Grifka-Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | | | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
37
|
Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L, Zhou Y, Williams DL, Li C, Martinez L, Vazquez-Padron RI, Zhao H, Jiang X, Wang H, Yang X. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023; 8:e158183. [PMID: 36394956 PMCID: PMC9870092 DOI: 10.1172/jci.insight.158183] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. β-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.
Collapse
Affiliation(s)
| | - Lu Liu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Centers for Cardiovascular Research and
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Centers for Cardiovascular Research and
| | - Yifan Lu
- Centers for Cardiovascular Research and
| | - Yu Sun
- Centers for Cardiovascular Research and
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania, USA
| | - David L. Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and
- Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Huang YL, Xiang Q, Zou JJ, Wu Y, Yu R. Zuogui Jiangtang Shuxin formula Ameliorates diabetic cardiomyopathy mice via modulating gut-heart axis. Front Endocrinol (Lausanne) 2023; 14:1106812. [PMID: 36843604 PMCID: PMC9948445 DOI: 10.3389/fendo.2023.1106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND There is growing evidence demonstrating that the gut microbiota plays a crucial role in multiple endocrine disorders, including diabetic cardiomyopathy (DCM). Research shows that the Chinese herb reduces disease occurrence by regulating gut microbiota. Zuogui Jiangtang Shuxin formula (ZGJTSXF), a Chinese medicinal formula, has been clinically used for treatment of DCM for many years. However, there is still no clear understanding of how ZGJTSXF treatment contributes to the prevention and treatment of DCM through its interaction with gut microbiota and metabolism. METHODS In this study, mice models of DCM were established, and ZGJTSXF's therapeutic effects were assessed. Specifically, serum glycolipid, echocardiography, histological staining, myocardial apoptosis rate were assessed. Using 16s rRNA sequencing and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), we determined the impact of ZGJTSXF on the structure of gut microbiota and content of its metabolite TMAO. The mechanism of ZGJTSXF action on DCM was analyzed using quantitative real-time PCR and western blots. RESULTS We found that ZGJTSXF significantly ameliorated DCM mice by modulating gut-heart axis: ZGJTSXF administration improved glycolipid levels, heart function, cardiac morphological changes, inhibited cardiomyocytes apoptosis, and regulate the gut microbiota in DCM mice. Specifically, ZGJTSXF treatment reverse the significant changes in the abundance of certain genera closely related to DCM phenotype, including Lactobacillus, Alloprevotella and Alistipes. Furthermore, ZGJTSXF alleviated DCM in mice by blunting TMAO/PERK/FoxO1 signaling pathway genes and proteins. CONCLUSION ZGJTSXF administration could ameliorate DCM mice by remodeling gut microbiota structure, reducing serum TMAO generation and suppressing TMAO/PERK/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Ya-lan Huang
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Qin Xiang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jun-ju Zou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yongjun Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Rong Yu, ; Yongjun Wu,
| | - Rong Yu
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Rong Yu, ; Yongjun Wu,
| |
Collapse
|
39
|
Díez-Ricote L, San-Cristobal R, Concejo MJ, Martínez-González MÁ, Corella D, Salas-Salvadó J, Goday A, Martínez JA, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Lapetra J, Serra-Majem L, Bueno-Cavanillas A, Tur JA, Martín Sánchez V, Pintó X, Gaforio JJ, Matía-Martín P, Vidal J, Mas Fontao S, Ros E, Vázquez-Ruiz Z, Ortega-Azorín C, García-Gavilán JF, Malcampo M, Martínez-Urbistondo D, Tojal-Sierra L, García Rodríguez A, Gómez-Bellvert N, Chaplin A, García-Ríos A, Bernal-López RM, Santos-Lozano JM, Basterra-Gortari J, Sorlí JV, Murphy M, Gasulla G, Micó V, Salaverria-Lete I, Goñi Ochandorena E, Babio N, Herraiz X, Ordovás JM, Daimiel L. One-year longitudinal association between changes in dietary choline or betaine intake and cardiometabolic variables in the PREvención con DIeta MEDiterránea-Plus (PREDIMED-Plus) trial. Am J Clin Nutr 2022; 116:1565-1579. [PMID: 36124652 PMCID: PMC9761742 DOI: 10.1093/ajcn/nqac255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Choline and betaine intakes have been related to cardiovascular health. OBJECTIVES We aimed to explore the relation between 1-y changes in dietary intake of choline or betaine and 1-y changes in cardiometabolic and renal function traits within the frame of the PREDIMED (PREvención con DIeta MEDiterránea)-Plus trial. METHODS We used baseline and 1-y follow-up data from 5613 participants (48.2% female and 51.8% male; mean ± SD age: 65.01 ± 4.91 y) to assess cardiometabolic traits, and 3367 participants to assess renal function, of the Spanish PREDIMED-Plus trial. Participants met ≥3 criteria of metabolic syndrome and had overweight or obesity [BMI (in kg/m2) ≥27 and ≤40]. These criteria were similar to those of the PREDIMED parent study. Dietary intakes of choline and betaine were estimated from the FFQ. RESULTS The greatest 1-y increase in dietary choline or betaine intake (quartile 4) was associated with improved serum glucose concentrations (-3.39 and -2.72 mg/dL for choline and betaine, respectively) and HbA1c levels (-0.10% for quartile 4 of either choline or betaine intake increase). Other significant changes associated with the greatest increase in choline or betaine intake were reduced body weight (-2.93 and -2.78 kg, respectively), BMI (-1.05 and -0.99, respectively), waist circumference (-3.37 and -3.26 cm, respectively), total cholesterol (-4.74 and -4.52 mg/dL, respectively), and LDL cholesterol (-4.30 and -4.16 mg/dL, respectively). Urine creatinine was reduced in quartile 4 of 1-y increase in choline or betaine intake (-5.42 and -5.74 mg/dL, respectively). CONCLUSIONS Increases in dietary choline or betaine intakes were longitudinally related to improvements in cardiometabolic parameters. Markers of renal function were also slightly improved, and they require further investigation.This trial was registered at https://www.isrctn.com/ as ISRCTN89898870.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Rodrigo San-Cristobal
- Cardiometabolic Health Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | | | - Miguel Á Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Unit of Preventive Medicine & Public Health, Faculty of Medicine & Health Sciences, Universitat Rovira i Virgili, Reus, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J Alfredo Martínez
- Cardiometabolic Health Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Center for Nutrition Research, Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain
| | - Ángel M Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Cardiovascular, Respiratory and Metabolic Area, Bioaraba Health Research Institute; Araba University Hospital, Osakidetza Basque Health Service; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Nursing, University of Málaga, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Institute of Health and Biomedical Research of Alicante, Miguel Hernández University (ISABIAL-UMH), Alicante, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Málaga Biomedical Research Institute (IBIMA), University of Málaga, Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Sevilla Primary Care Health District, Sevilla, Spain
| | - Lluís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria and Maternal and Child Insular University Hospital Center (CHUIMI), Canarian Health Service, Las Palmas de Gran Canaria, Spain
| | - Aurora Bueno-Cavanillas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Vicente Martín Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Bellvitge University Hospital, Barcelona, Spain
| | - José J Gaforio
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Department of Health Sciences, University Institute for Research on Olives and Olive Oils, University of Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, San Carlos Clinical Hospital Institute of Health Research (IdISSC), Madrid, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Carlos III Institute of Health (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d` Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sebastián Mas Fontao
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Jimenez Díaz Foundation Hospital Biomedical Research Institute (IISFJD), Autonomous University of Madrid, Madrid, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Zenaida Vázquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
- Endocrinology Service, Navarra Hospital Complex, Osasunbidea, Navarro Health Service, Pamplona, Spain
| | - Carolina Ortega-Azorín
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Jesús F García-Gavilán
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Mireia Malcampo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
| | | | - Lucas Tojal-Sierra
- Cardiovascular, Respiratory and Metabolic Area, Bioaraba Health Research Institute; Araba University Hospital, Osakidetza Basque Health Service; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Antonio García Rodríguez
- Division of Preventive Medicine and Public Health, University of Malaga, Institute of Biomedical Research in Málaga (IBIMA-University of Malaga), Málaga, Spain
| | | | - Alice Chaplin
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology, Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Antonio García-Ríos
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Rosa M Bernal-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology, Virgen de la Victoria Hospital, Málaga Biomedical Research Institute (IBIMA), University of Málaga, Málaga, Spain
| | - José M Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Sevilla Primary Care Health District, Sevilla, Spain
| | - Javier Basterra-Gortari
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
- Endocrinology Service, Navarra Hospital Complex, Osasunbidea, Navarro Health Service, Pamplona, Spain
| | - José V Sorlí
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Michelle Murphy
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Griselda Gasulla
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
| | - Víctor Micó
- Cardiometabolic Health Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Salaverria-Lete
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Cardiovascular, Respiratory and Metabolic Area, Bioaraba Health Research Institute; Araba University Hospital, Osakidetza Basque Health Service; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Estibaliz Goñi Ochandorena
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, Navarra Institute of Health Research (IdISNA), University of Navarra, Pamplona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament of Biochemistry and Biotechnology, Human Nutrition Unit, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
| | - Xavier Herraiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d`Investigació Médica (IMIM), Barcelona, Spain
| | - José M Ordovás
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Tröscher-Mußotter J, Deusch S, Borda-Molina D, Frahm J, Dänicke S, Camarinha-Silva A, Huber K, Seifert J. Cow's microbiome from antepartum to postpartum: A long-term study covering two physiological challenges. Front Microbiol 2022; 13:1000750. [PMID: 36466656 PMCID: PMC9709127 DOI: 10.3389/fmicb.2022.1000750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 10/02/2023] Open
Abstract
Little is known about the interplay between the ruminant microbiome and the host during challenging events. This long-term study investigated the ruminal and duodenal microbiome and metabolites during calving as an individual challenge and a lipopolysaccharide-induced systemic inflammation as a standardized challenge. Strong inter- and intra-individual microbiome changes were noted during the entire trial period of 168 days and between the 12 sampling time points. Bifidobacterium increased significantly at 3 days after calving. Both challenges increased the intestinal abundance of fiber-associated taxa, e.g., Butyrivibrio and unclassified Ruminococcaceae. NMR analyses of rumen and duodenum samples identified up to 60 metabolites out of which fatty and amino acids, amines, and urea varied in concentrations triggered by the two challenges. Correlation analyses between these parameters indicated a close connection and dependency of the microbiome with its host. It turns out that the combination of phylogenetic with metabolite information supports the understanding of the true scenario in the forestomach system. The individual stages of the production cycle in dairy cows reveal specific criteria for the interaction pattern between microbial functions and host responses.
Collapse
Affiliation(s)
- Johanna Tröscher-Mußotter
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Simon Deusch
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Amélia Camarinha-Silva
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Korinna Huber
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
41
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
42
|
Cecchini AL, Biscetti F, Rando MM, Nardella E, Pecorini G, Eraso LH, Dimuzio PJ, Gasbarrini A, Massetti M, Flex A. Dietary Risk Factors and Eating Behaviors in Peripheral Arterial Disease (PAD). Int J Mol Sci 2022; 23:10814. [PMID: 36142725 PMCID: PMC9504787 DOI: 10.3390/ijms231810814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary risk factors play a fundamental role in the prevention and progression of atherosclerosis and PAD (Peripheral Arterial Disease). The impact of nutrition, however, defined as the process of taking in food and using it for growth, metabolism and repair, remains undefined with regard to PAD. This article describes the interplay between nutrition and the development/progression of PAD. We reviewed 688 articles, including key articles, narrative and systematic reviews, meta-analyses and clinical studies. We analyzed the interaction between nutrition and PAD predictors, and subsequently created four descriptive tables to summarize the relationship between PAD, dietary risk factors and outcomes. We comprehensively reviewed the role of well-studied diets (Mediterranean, vegetarian/vegan, low-carbohydrate ketogenic and intermittent fasting diet) and prevalent eating behaviors (emotional and binge eating, night eating and sleeping disorders, anorexia, bulimia, skipping meals, home cooking and fast/ultra-processed food consumption) on the traditional risk factors of PAD. Moreover, we analyzed the interplay between PAD and nutritional status, nutrients, dietary patterns and eating habits. Dietary patterns and eating disorders affect the development and progression of PAD, as well as its disabling complications including major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Nutrition and dietary risk factor modification are important targets to reduce the risk of PAD as well as the subsequent development of MACE and MALE.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Elisabetta Nardella
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giovanni Pecorini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Gasbarrini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimo Massetti
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Andrea Flex
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
43
|
Fan H, Zhou J, Huang Y, Feng X, Dang P, Li G, Yuan Z. A Proinflammatory Diet Is Associated with Higher Risk of Peripheral Artery Disease. Nutrients 2022; 14:nu14173490. [PMID: 36079748 PMCID: PMC9460607 DOI: 10.3390/nu14173490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Peripheral arterial disease (PAD) has a strong relationship with inflammation. However, it is unclear whether the dietary inflammatory potential is associated with PAD. We aimed to address this knowledge gap. The dietary inflammatory index (DII) was obtained using a 24-h dietary recall interview for each individual. Logistic regression models and restricted cubic spline were performed to assess the relationship of DII with the prevalence of PAD. In addition, Spearman correlation analysis and subgroup analysis were also undertaken. In total, 5840 individuals from the 1999–2004 National Health and Nutrition Examination Survey (NHANES) were enrolled in our study. Participants in higher DII quartile tended to have higher rates of PAD. The increase in DII scores showed a positive association with PAD after fully multivariate adjustment (OR (odds ratios) = 1.094, 95% confidence interval (CI): 1.022–1.171). The multivariable-adjusted OR and 95% CI of the highest DII index quartile compared with the lowest quartile was 1.543 (95% CI: 1.116–2.133). Subgroup analysis demonstrated that the positive association between DII and PAD was persistent across population subgroups. In conclusion, we report that a proinflammatory dietary pattern is related to a higher risk of developing PAD among US adults.
Collapse
Affiliation(s)
- Heze Fan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Juan Zhou
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Yuzhi Huang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Xueying Feng
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Peizhu Dang
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Guoliang Li
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Correspondence: (G.L.); (Z.Y.)
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
- Correspondence: (G.L.); (Z.Y.)
| |
Collapse
|
44
|
Kapoor B, Gulati M, Rani P, Gupta R. Psoriasis: Interplay between dysbiosis and host immune system. Clin Exp Rheumatol 2022; 21:103169. [PMID: 35964945 DOI: 10.1016/j.autrev.2022.103169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of both gut and skin microbiota in the pathogenesis of psoriasis. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts, have been identified as possible triggers for recurrent episodes of psoriasis. Mechanistically, gut dysbiosis leads to "leaky gut syndrome" via disruption of epithelial bilayer, thereby, resulting in translocation of bacteria and other endotoxins to systemic circulation, which in turn, results in inflammatory response. Similarly, skin dysbiosis disrupts the cutaneous homeostasis, leading to invasion of bacteria and other pathogens to deeper layers of skin or even systemic circulation further enhanced by injury caused by pruritus-induced scratching, and elicit innate and adaptive inflammation. The present review explores the correlation of both skin and gut microbiota dysbiosis with psoriasis. Also, the studies highlighting the potential of bacteriotherapeutic approaches including probiotics, prebiotics, metabiotics, and fecal microbiota transplantation for the management of psoriasis have been discussed.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
45
|
Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Nutrients 2022; 14:nu14132654. [PMID: 35807835 PMCID: PMC9268449 DOI: 10.3390/nu14132654] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-derived metabolites have recently attracted considerable attention due to their role in host-microbial crosstalk and their link with cardiovascular health. The MEDLINE-PubMed and Elsevier’s Scopus databases were searched up to June 2022 for studies evaluating the association of baseline circulating levels of trimethylamine N-oxide (TMAO), secondary bile acids, short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), tryptophan and indole derivatives, with risk of cardiovascular disease (CVD). A total of twenty-one studies were included in the systematic review after evaluating 1210 non-duplicate records. There were nineteen of the twenty-one studies that were cohort studies and two studies had a nested case–control design. All of the included studies were of high quality according to the “Newcastle–Ottawa Scale”. TMAO was positively associated with adverse cardiovascular events and CVD/all-cause mortality in some, but not all of the included studies. Bile acids were associated with atrial fibrillation and CVD/all-cause mortality, but not with CVD. Positive associations were found between BCAAs and CVD, and between indole derivatives and major adverse cardiovascular events, while a negative association was reported between tryptophan and all-cause mortality. No studies examining the relationship between SCFAs and CVD risk were identified. Evidence from prospective studies included in the systematic review supports a role of microbial metabolites in CVD.
Collapse
|
46
|
Jaber M, Altamimi M, Altamimi A, Cavaliere S, De Filippis F. Mediterranean diet diminishes the effects of Crohn's disease and improves its parameters: A systematic review. Nutr Health 2022:2601060221102281. [PMID: 35611526 DOI: 10.1177/02601060221102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The pathogenesis and clinical course of Crohn's disease (CD) is influenced by diet. Mediterranean Diet (MD) helps Crohn's patients through many mechanisms. AIMS This study aimed to evaluate the effect of the MD on CD patients and to evaluate such effect on body parameters. METHODS PubMed, Science Direct, Web of Science, MEDLINE and Cochrane central library were searched for MD and CD from 2010 to 2020. Included studies met the following criteria: (1) male and female adults (18-75 years) with a confirmed diagnosis of CD; (2) MD as an intervention; (3) original interventional Trial, Cross-Sectional Analysis, or Prospective Cohort Studies. RESULTS Five studies were included, involving 83,564 participants. A small number of patients with CD fulfilled the P-MDS criteria, the overall scores were low, 4.7 and 4.5 for females and males respectively. Patients with an inactive disease whose adherence to MD was greater, the MD score was negatively correlated with disease activity (p <0.001) and positively with IBDQ (p = 0.008). Twenty-seven percent had a prevalence of impaired adherence to a MD (mMED score = 0-2), giving such a population a risk attributed to 12% for the later CD. Seventy-point reduction in CDAI + decreased fecal CRP / calprotectin, calprotectin <250 mcg/gm or >50% decrease from baseline and hsCRP < 5 mg/L or >50% from baseline. CONCLUSIONS MD showed anti-inflammatory properties. Adherence to MD was associated with improvement in CD patients and negatively correlated with the disease activity, in addition to a lower risk of developing CD later in life.
Collapse
Affiliation(s)
- Mawada Jaber
- Department of Nutrition and food technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and food technology, An-Najah National University, Nablus, Palestine
| | - Almothana Altamimi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sara Cavaliere
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
47
|
Simó C, Fornari T, García-Risco MR, Peña-Cearra A, Abecia L, Anguita J, Rodríguez H, García-Cañas V. Resazurin-based high-throughput screening method for the discovery of dietary phytochemicals to target microbial transformation of L-carnitine into trimethylamine, a gut metabolite associated with cardiovascular disease. Food Funct 2022; 13:5640-5653. [PMID: 35506542 DOI: 10.1039/d2fo00103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nowadays, there is great interest in the discovery of food compounds that might inhibit gut microbial TMA production from its methylamine precursors. In this work, an innovative novel screening strategy capable of rapidly determining the differences in the metabolic response of Klebsiella pneumoniae, a bacteria producing TMA under aerobic conditions, to a library of extracts obtained from food and natural sources was developed. The proposed high-throughput screening (HTS) method combines resazurin reduction assay in 384-well plates and Gaussian Processes as a machine learning tool for data processing, allowing for a fast, cheap and highly standardized evaluation of any interfering effect of a given compound or extract on the microbial metabolism sustained by L-carnitine utilization. As a proof-of-concept of this strategy, a pilot screening of 39 extracts and 6 pure compounds was performed to search for potential candidates that could inhibit in vitro TMA formation from L-carnitine. Among all the extracts tested, three of them were selected as candidates to interfere with TMA formation. Subsequent in vitro assays confirmed the potential of oregano and red thyme hexane extracts (at 1 mg mL-1) to inhibit TMA formation in bacterial lysates. In such in vitro assay, the red thyme extract exerted comparable effects on TMA reduction (∼40%) as 7.5 mM meldonium (∼50% TMA decrease), a reported L-carnitine analogue. Our results show that metabolic activity could be used as a proxy of the capacity to produce TMA under controlled culture conditions using L-carnitine to sustain metabolism.
Collapse
Affiliation(s)
- Carolina Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, 28049, Spain.
| | - Tiziana Fornari
- Institute of Food Science Research (CIAL), Autonomous University of Madrid, Madrid, 28049, Spain
| | - Mónica R García-Risco
- Institute of Food Science Research (CIAL), Autonomous University of Madrid, Madrid, 28049, Spain
| | - Ainize Peña-Cearra
- CIC bioGUNE. Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain.,Immunology, Microbiology and Parasitology Department, Medicine and Nursing Faculty, University of the Basque Country (UPV), 48940, Leioa, Spain
| | - Leticia Abecia
- CIC bioGUNE. Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain.,Immunology, Microbiology and Parasitology Department, Medicine and Nursing Faculty, University of the Basque Country (UPV), 48940, Leioa, Spain
| | - Juan Anguita
- CIC bioGUNE. Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain
| | - Héctor Rodríguez
- CIC bioGUNE. Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, 28049, Spain.
| |
Collapse
|
48
|
Richards GHC, Hong KL, Henein MY, Hanratty C, Boles U. Coronary Artery Ectasia: Review of the Non-Atherosclerotic Molecular and Pathophysiologic Concepts. Int J Mol Sci 2022; 23:5195. [PMID: 35563583 PMCID: PMC9103542 DOI: 10.3390/ijms23095195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Coronary artery ectasia (CAE) is frequently encountered in clinical practice, conjointly with atherosclerotic CAD (CAD). Given the overlapping cardiovascular risk factors for patients with concomitant CAE and atherosclerotic CAD, a common underlying pathophysiology is often postulated. However, coronary artery ectasia may arise independently, as isolated (pure) CAE, thereby raising suspicions of an alternative mechanism. Herein, we review the existing evidence for the pathophysiology of CAE in order to help direct management strategies towards enhanced detection and treatment.
Collapse
Affiliation(s)
- Gavin H. C. Richards
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Hospital, D07 WKW8 Dublin, Ireland; (G.H.C.R.); (K.L.H.); (C.H.)
| | - Kathryn L. Hong
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Hospital, D07 WKW8 Dublin, Ireland; (G.H.C.R.); (K.L.H.); (C.H.)
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michael Y. Henein
- Department of Public Health and Clinical Medicine, Heart Clinic, Umea University, 901 87 Umea, Sweden;
| | - Colm Hanratty
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Hospital, D07 WKW8 Dublin, Ireland; (G.H.C.R.); (K.L.H.); (C.H.)
| | - Usama Boles
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Hospital, D07 WKW8 Dublin, Ireland; (G.H.C.R.); (K.L.H.); (C.H.)
- Cardiology Department, Tipperary University Hospital, E91 VY40 Clonmel, Ireland
| |
Collapse
|
49
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 768] [Impact Index Per Article: 384.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
50
|
Barcena ML, Aslam M, Pozdniakova S, Norman K, Ladilov Y. Cardiovascular Inflammaging: Mechanisms and Translational Aspects. Cells 2022; 11:cells11061010. [PMID: 35326461 PMCID: PMC8946971 DOI: 10.3390/cells11061010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525-359
| | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany;
- Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Barcelona Biomedical Research Park (PRBB), Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Kristina Norman
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Nutrition & Gerontology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yury Ladilov
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School Theodor Fontane, University Hospital, Ladeburger Str. 17, 16321 Bernau, Germany
| |
Collapse
|