1
|
Aiken CE, de Souza FS, Kumaran K, Ozanne SE. Challenges with developing nutritional recommendations to improve pregnancy outcomes. BMJ 2025; 389:e081325. [PMID: 40233972 DOI: 10.1136/bmj-2024-081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Affiliation(s)
- Catherine E Aiken
- Department of Obstetrics and Gynaecology, Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Fabiola Suano de Souza
- Department of Pediatrics of Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Pediatrics, Centro Universitário FMABC, Santo André, Brazil
| | - Kalyanaraman Kumaran
- Faculty of Medicine, School of Primary Care, Population Science and Medical Education, University of Southampton, UK
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Schell LD, Carmody RN. An energetic framework for gut microbiome-mediated obesity induced by early-life exposure to antibiotics. Cell Host Microbe 2025; 33:470-483. [PMID: 40209676 DOI: 10.1016/j.chom.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 04/12/2025]
Abstract
Early-life antibiotic (ELA) exposure has garnered attention for its potential role in modulating obesity risk, although outcomes from mouse experiments and human epidemiological studies often vary based on dosage and sex. Low-dose (subtherapeutic) antibiotics can enhance energy availability through moderate alterations in gut microbiome profile, while high-dose (therapeutic) antibiotics substantially deplete the gut microbiota, thereby contributing to short-term negative energy balance. In this perspective, we propose a framework to understand how these distinct impacts of antibiotics on the gut microbiome during critical developmental windows shape long-term obesity risk through their influence on host energy balance. Using this framework, we then propose several hypotheses to explain variation in ELA-induced obesity outcomes across males and females. We conclude by discussing the evolutionary implications of ELAs, positing that the response of the gut microbiome to ELAs may signal energy availability and environmental volatility, influencing metabolic programming and adaptive traits across generations.
Collapse
Affiliation(s)
- Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Watanabe K, Yamano M, Miyamoto J, Ohue-Kitano R, Masujima Y, Sasahara D, Mouri Y, Kono N, Inuki S, Osakada F, Nagaoka K, Aoki J, Sugiura Y, Ohno H, Kondoh E, Kimura I. Maternal progesterone and adipose mPRε in pregnancy regulate the embryonic nutritional state. Cell Rep 2025; 44:115433. [PMID: 40085645 DOI: 10.1016/j.celrep.2025.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Sex steroid hormones such as progesterone play a pivotal role in reproductive functions and maintaining pregnancy; however, the impact of progesterone on the interaction between mother and embryo is unclear. Here, we demonstrate that the relationship between maternal progesterone and membrane progesterone receptor epsilon (mPRε) in adipose tissue regulates embryonic nutritional environment and growth after birth in mice. The activation of adipose mPRε by increased progesterone during pregnancy enhances maternal insulin resistance via prostaglandin production, efficiently providing glucose to embryos. Correspondingly, the offspring of mPRε-deficient mothers exhibited metabolic dysfunction, whereas mPRε-deficient mothers with high-fat diet-induced obesity exhibited improved insulin sensitivity. These findings establish the importance of progesterone as a nutritional regulator between mother and embryo. Additionally, mPRε may represent a modulator for treating pregnant glycemic control disorders such as gestational diabetes mellitus, as well as metabolic syndrome in offspring.
Collapse
Affiliation(s)
- Keita Watanabe
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Ohue-Kitano
- Department of Biological & Environmental Chemistry, Kindai University, 11-6 Kayanomori, Iizuka City, Fukuoka 820-8555, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daiki Sasahara
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Noster Inc., Kamiueno, Muko-shi, Kyoto 617-0006, Japan
| | - Yuki Mouri
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shunsuke Inuki
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kentaro Nagaoka
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan; Laboratory of Veterinary Physiology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Moonshot Research and Development Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Eiji Kondoh
- Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan; Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto City, Kumamoto 860-8556, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan; Department of Moonshot Research and Development Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
4
|
Wu Y, Lin C, Wang C, Wang R, Jin B, Zhang X, Chen B, Yang Y, Cui J, Xu W, Song L, Yang H, He W, Zhang Y, Li X. Association of BMI with mortality and health-related quality of life among 4.4 million adults: Evidence from a nationwide, population-based, prospective cohort study. Diabetes Obes Metab 2025. [PMID: 40084543 DOI: 10.1111/dom.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
AIMS The body mass index (BMI), as an easy-to-calculate measure of body fatness, is closely associated with all-cause mortality, but few studies with a large enough scale have examined the relationship between BMI and quality of life. A comprehensive and precise insight into a new range is needed. MATERIALS AND METHODS Based on the ChinaHEART (Health Evaluation And risk Reduction through nationwide Teamwork), a nationwide, population-based cohort study, 4,485,773 participants living in 20,159 communities or villages were passively followed for death records, through a linkage of data with the National Mortality Surveillance System and Vital Registration. Firstly, we conducted Cox proportional-hazards regression models to assess the hazard ratios (HRs) of BMI on the risk of all-cause and cause-specific mortality. Secondly, we used logistic regression models to examine associations between BMI and health-related quality of life (HRQL). Fully adjusted models were adjusted for age, sex, annual household income, occupation, education level, marriage, medical insurance, urbanity, tobacco smoking, alcohol consumption and the history of hypertension, diabetes mellitus, dyslipidaemia and cardiovascular disease (CVD). RESULTS Among the 4 485 773 included participants with an average age of 56.4 ± 10.0 years, 59.0% were female. During the follow-up period, which had a median duration of 5.3 years, a total of 142 004 cases of all-cause mortality were confirmed. After adjusting for participant characteristics and lifestyles, we observed the U-shaped association between BMI and all-cause mortality with an inflection of 26-27 kg/m2, and the estimated HR per 1 kg/m2 increase in BMI was 0.92 (95% CI 0.92-0.93) and 1.03 (95% CI 1.03-1.04) below and above the turning point, respectively. An inverted J-shape pattern between BMI and HRQL with a peak of 22-23 kg/m2 was found, in which the odd ratio per 1 kg/m2 increase in BMI was 0.98 (95% CI 0.98, 0.99) below 22-23 kg/m2 and 1.03 (95% CI 1.03-1.03) above this point. CONCLUSIONS We found distinct ranges of BMI for minimized mortality risk and maximized HRQL. The BMI range corresponding to the HRQL is lower than the BMI range corresponding to the lowest risk of death generally. Therefore, it is worth considering how to define the new recommended range for a new BMI based on the goal of 'living a longer and healthier life'.
Collapse
Affiliation(s)
- Yi Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunying Lin
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chunqi Wang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Runsi Wang
- General Office of the Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bolin Jin
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoyan Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bowang Chen
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Yang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianlan Cui
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Xu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lijuan Song
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hao Yang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenyan He
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xi Li
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People's Republic of China
- Central China Sub-Center of the National Center for Cardiovascular Diseases, Zhengzhou, People's Republic of China
| |
Collapse
|
5
|
Zhang Z, Su V, Wiese CB, Cheng L, Wang D, Cui Y, Kallapur A, Kim J, Wu X, Tran PH, Zhou Z, Casero D, Li W, Hevener AL, Reue K, Sallam T. A genome-wide ATLAS of liver chromatin accessibility reveals that sex dictates diet-induced nucleosome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623052. [PMID: 40161732 PMCID: PMC11952359 DOI: 10.1101/2024.11.13.623052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The three-dimensional organization of the genome plays an important role in cellular function. Alterations between open and closed chromatin states contributes to DNA binding, collaborative transcriptional activities and informs post-transcriptional processing. The liver orchestrates systemic metabolic control and has the ability to mount a rapid adaptive response to environmental challenges. We interrogated the chromatin architecture in liver under different dietary cues. Using ATAC-seq, we mapped over 120,000 nucleosome peaks, revealing a remarkably preserved hepatic chromatin landscape across feeding conditions. Stringent analysis of nucleosome rearrangements in response to diet revealed that sex is the dominant factor segregating changes in chromatin accessibility. A lipid-rich diet led to a more accessible chromatin confirmation at promoter regions in female mice along with enrichment of promoter binding CCAAT-binding domain proteins. Male liver exhibited stronger binding for nutrient sensing nuclear receptors. Integrative analysis with gene expression corroborated a role for chromatin states in informing functional differences in metabolic traits. We distinguished the impact of gonadal sex and chromosomal sex as determinants of chromatin modulation by diet using the Four Core Genotypes mouse model. Our data provide mechanistic evidence underlying the regulation for the critical sex-dimorphic GWAS gene, Pnpla3 . In summary, we provide a comprehensive epigenetic resource in murine liver that uncovers the complexity of chromatin dynamics in response to diet and sex. Highlights ATAC-Seq, RNA-Seq, and FCG model-integrated analysis unravel sex differences in chromatin accessibility and transcriptome responses to dietary challenges.Lipid-rich diet led to sex-biased chromatin confirmation at promoter regions.Gonadal sex emerged as the most prevalent determinant of the sex bias hepatic chromatin modulation by lipid-rich diets. The critical sex-dimorphic GWAS gene Pnpla3 is suppressed by testosterone, which underlies hepatic differences in expression between the sexes.
Collapse
|
6
|
Gao W, Wang T, Cui J, Huang N, Fan G, Pan T, Jiang C, Wang F, Liu X, Ma L, Le Q. Paternal heroin self-administration in rats increases drug-seeking behavior in male offspring via miR-19b downregulation in the nucleus accumbens. Neuropsychopharmacology 2025:10.1038/s41386-025-02081-8. [PMID: 40057637 DOI: 10.1038/s41386-025-02081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Accumulating evidence indicates that drug addiction may lead to adaptive behavioral changes in offspring, potentially due to epigenetic modifications in parental germline. However, the underlying mechanisms remain inadequately understood. In this study, we show that paternal heroin self-administration (SA) increased heroin-seeking behavior in the F1 generation, when compared with offspring sired by yoke-infused control males, indicating cross-generational impact of paternal voluntary heroin seeking behavior. Notably, the increase of heroin seeking behavior in offspring was replicated by zygotic microinjection of sperm RNAs derived from sperm of heroin-SA-experienced rats. Analysis of non-coding RNAs in spermatozoa revealed coordinated changes in miRNA content between the nucleus accumbens and spermatozoa. We validated that restoration of miR-19b downregulation in sperm RNA from self-administration-experienced rats, in parallel with its overexpression in the nucleus accumbens of F1 offspring sired by heroin-SA-experienced fathers, reversed the increased heroin SA observed in these F1 offspring. Taken together, our findings suggest in rats that paternal heroin self-administration induces epigenetic changes in both brain and sperm miRNA, with miR-19b downregulation playing a critical role in mediating the epigenetic inheritance of increased heroin self-administration behavior in the F1 generation.
Collapse
Affiliation(s)
- Wenjing Gao
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Tingting Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Cui
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Nan Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
7
|
Guo Q, Wang G, Zheng L, Xue H, Wang R, Fang Y, Zhang J. A WYL domain transcription factor regulates Lactiplantibacillus plantarum intestinal colonization via perceiving c-di-GMP. Nat Commun 2025; 16:2193. [PMID: 40038299 DOI: 10.1038/s41467-025-57581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) functions as a crucial bacterial second messenger to control diverse biological functions. Although numerous studies have reported the health effects of Lactiplantibacillus plantarum, the regulatory role of c-di-GMP in L. plantarum remains elusive. Here we show that c-di-GMP functions as an important signal molecule for intestinal colonization of L. plantarum. The intracellular c-di-GMP pool in this probiotic is governed principally by the diguanylate cyclases DgcB, DgcC, and DgcD and the phosphodiesterases PdeA and PdeD. Moreover, we reveal that the WYL domain transcription factor MbpR is a c-di-GMP effector in L. plantarum WCFS1. MbpR reduces the transcription level of mucin-binding proteins (MucBPs) via binding to a special motif within the coding sequences. Perception of c-di-GMP by the WYL domain reversed the inhibitory effect of MbpR on the expression of MucBPs, resulting in increased adherence to intestinal epithelial cells by L. plantarum. Overall, our study provides evidence that a WYL domain transcription factor participates in probiotic colonization by sensing c-di-GMP.
Collapse
Affiliation(s)
- Quan Guo
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leijie Zheng
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan, China
| | - Hui Xue
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan, China
| | - Ruimin Wang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan, China
| | - Yajing Fang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Collaborative Innovation Center of One Health, Hainan University, Hainan, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China.
- Collaborative Innovation Center of One Health, Hainan University, Hainan, China.
| |
Collapse
|
8
|
India Aldana S, Demateis D, Valvi D, Just AC, Gutiérrez-Avila I, Estrada-Gutierrez G, Téllez Rojo MM, Wright RO, Baccarelli AA, Wu H, Keller KP, Wilson A, Colicino E. Windows of susceptibility to air pollution during and surrounding pregnancy in relation to longitudinal maternal measures of adiposity and lipid profiles. ENVIRONMENTAL RESEARCH 2025; 274:121198. [PMID: 39986430 DOI: 10.1016/j.envres.2025.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Pregnancy is a critical window for long-term metabolic programming of fetal effects stemming from airborne particulate matter ≤2.5 μm (PM2.5) exposure. Yet, little is known about long-term metabolic effects of PM2.5 exposure during and surrounding pregnancy in mothers. We assessed potential critical windows of PM2.5 exposure during and surrounding pregnancy with maternal adiposity and lipid measures later in life. We included 517 pregnant women from the PROGRESS cohort with adiposity [body mass index (BMI), waist circumference (WC), % body fat] and lipids [total cholesterol, high-density-lipoprotein (HDL), low-density-lipoprotein (LDL)] measured repeatedly at 4, 6 and 8 years post-delivery. Monthly average PM2.5 exposure was estimated at each participant's address using a validated spatiotemporal model. We employed distributed lag interaction models (DLIMs) adjusting for socio-demographics and clinical covariates. We found that a 1 μg/m3 increase in PM2.5 exposure throughout mid-/late-pregnancy was associated with higher WC at 6-years post-delivery, peaking at 6 months of gestation: 0.04 cm (95%CI: 0.01, 0.06). We also identified critical windows of PM2.5 exposure during and surrounding pregnancy associated with higher LDL and lower HDL both measured at 4 years post-delivery with peaks at pre-conception for LDL [0.17 mg/dL (95%CI: 0.00, 0.34)] and at the 11th month after conception for HDL [-0.07 mg/dL (95%CI: -0.11, -0.02)]. Stratified analyses by fetal sex indicated stronger associations with adiposity measures in mothers carrying a male, while with lipids in mothers carrying a female fetus. Stratified analyses also indicated potential stronger deleterious lagged effects in women with folic acid intake lower than 600mcg/day during pregnancy.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Danielle Demateis
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guadalupe Estrada-Gutierrez
- Department of Immunobiochemistry, Research Division, National Institute of Perinatology, Mexico City, Mexico
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Yu J, Zhang X, Cai C, Zhou T, Chen Q. Small RNA and Toll-like receptor interactions: origins and disease mechanisms. Trends Biochem Sci 2025:S0968-0004(25)00004-0. [PMID: 39956743 DOI: 10.1016/j.tibs.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Advances in small RNA sequencing have revealed diverse small noncoding RNAs (sncRNAs) beyond microRNAs (miRNAs), derived from transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and Y RNAs, carrying distinct RNA modifications. These emerging sncRNAs can function beyond RNA interference (RNAi), adopting aptamer-like roles by interacting with Toll-like receptors 7 and 8 (TLR7 and TLR8) via specific sequences, modifications, and structures. We propose a Sequential Activation Hypothesis where initial abnormal sncRNAs - triggered by infections or stresses - activate TLR7/8, leading to autoantibody production against autoantigens like RNA-binding proteins La and Ro. These autoantibody-antigen complexes further promote secondary immunogenic sncRNA production and repetitive TLR7/8 activation, perpetuating a vicious cycle sustaining autoimmunity. TLR7/8's X chromosome location and sex-biased expression contribute to female-dominant autoimmune diseases. Understanding sncRNA-TLR interactions is essential for designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiancheng Yu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Xudong Zhang
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chen Cai
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| | - Qi Chen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Zhang Y, Hu S, Han S, Liu C, Liang X, Li Y, Lin Z, Qin Y, Geng C, Liu Y, Cui L, Hu J, Zhang C, Wang Z, Liu X, Ma J, Chen ZJ, Zhao H. Transgenerational inheritance of diabetes susceptibility in male offspring with maternal androgen exposure. Cell Discov 2025; 11:14. [PMID: 39934105 DOI: 10.1038/s41421-025-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025] Open
Abstract
Androgen exposure (AE) poses a profound health threat to women, yet its transgenerational impacts on male descendants remain unclear. Here, employing a large-scale mother-child cohort, we show that maternal hyperandrogenism predisposes sons to β-cell dysfunction. Male offspring mice with prenatal AE exhibited hyperglycemia and glucose intolerance across three generations, which were further exacerbated by aging and a high-fat diet. Mechanistically, compromised insulin secretion underlies this transgenerational susceptibility to diabetes. Integrated analyses of methylome and transcriptome revealed differential DNA methylation of β-cell functional genes in AE-F1 sperm, which was transmitted to AE-F2 islets and further retained in AE-F2 sperm, leading to reduced expression of genes related to insulin secretion, including Pdx1, Irs1, Ptprn2, and Cacna1c. The methylation signatures in AE-F1 sperm were corroborated in diabetic humans and the blood of sons with maternal hyperandrogenism. Moreover, caloric restriction and metformin treatments normalized hyperglycemia in AE-F1 males and blocked their inheritance to offspring by restoring the aberrant sperm DNA methylations. Our findings highlight the transgenerational inheritance of impaired glucose homeostasis in male offspring from maternal AE via DNA methylation changes, providing methylation biomarkers and therapeutic strategies to safeguard future generations' metabolic health.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China.
| | - Shourui Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Shan Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Congcong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Xiaofan Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Yuxuan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Zongxuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Yiming Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Chunxuan Geng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
| | - Linlin Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Changming Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Zhao Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Jinlong Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, the Second Hospital, Shandong University, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education (Shandong University), Ministry of Education, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China.
| |
Collapse
|
11
|
An Y, Xing D, Chen S, Wang X, Zhou X, Zhang Y. Association between ambient temperatures and cardiovascular disease: A time series analysis using emergency ambulance dispatches in Chongqing, China, 2019-2021. Health Place 2025; 91:103403. [PMID: 39709856 DOI: 10.1016/j.healthplace.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is one of the leading causes of death globally. Yet, further research is required into the relationship between CVD and extreme environmental temperatures. This study aims to explore the association between the incidence of CVD and extreme temperatures, and also to identify susceptible subgroups within the population. METHODS We collected cardiovascular emergency ambulance dispatch (CEAD) records from Chongqing Emergency Dispatch Center in the main urban areas of Chongqing from 2019 to 2021. Then, we used distributed lag nonlinear modeling (DLNM) with a quasi-Poisson distribution to evaluate the association between extreme temperatures and CEADs. Susceptibility subgroups were identified by stratified analysis according to gender, age and initial diagnosis. Finally, the attribution analysis was used to calculate the scores and counts of CEADs caused by low and high temperatures. RESULTS Compared with the optimal temperature (23 °C), the cumulative lagged risk of total CEADs was increased under extreme low-temperature conditions (CRR: 1.732, 95% CI: [1.157, 2.593]), with the lagged effect lasting for 8 days. Under extreme high-temperature conditions, it decreased (CRR: 0.752, 95% CI: [0.611, 0.926]) and a protective effect was observed. Compared to the group under 60, those over 60 were more sensitive to temperature changes, showing a higher risk of disease with cold exposure (RR: 1.087, 95% CI: [1.021, 1.157]). In addition, a reduction in risk of disease was observed just one day after heat exposure. There were also gender differences in the elderly group: males showed longer lagged effects after cold exposure, while females had higher dispatch risk in cold weather and less heat adaptation in hot weather than males. CONCLUSION Ambient temperature is significantly associated with the risk of CVD, with elderly patients, especially females, being a high-risk subgroup. Governments need to formulate localized health policies that address regional climate patterns and population vulnerabilities. As one of the famous "Furnace Cities", Chongqing's measures for coping with hot environments can serve as a reference. Nonetheless, improving our understanding and preparation for cold weather is also crucial. Public warning systems should be improved, and local heating strategies for vulnerable groups should be developed to minimize the negative risk of extreme cold temperatures to the public.
Collapse
Affiliation(s)
- Yunyi An
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - DianGuo Xing
- Chongqing Municipal Health Commission, No.6 Qilong Road, Yubei District, Chongqing, 401147, China.
| | - Saijuan Chen
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - Xinyue Wang
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - Xinyun Zhou
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - Yan Zhang
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| |
Collapse
|
12
|
Liu S, Xu L, Cheng Y, Liu D, Zhang B, Chen X, Zheng M. Decreased telomerase activity and shortened telomere length in infants whose mothers have gestational diabetes mellitus and increased severity of telomere shortening in male infants. Front Endocrinol (Lausanne) 2024; 15:1490336. [PMID: 39736866 PMCID: PMC11682970 DOI: 10.3389/fendo.2024.1490336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring. Methods We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels. Results The length of telomeres in umbilical CBMCs in the GDM group was significantly shorter than that in the Ctrl group (P<0.001), and the shortening of telomeres in male infants in the GDM group was more significant than that in the Ctrl group (P<0.001) after adjustment for Pre-pregnancy body mass index (PBMI), Pregnancy weight gain (PGW), and Triglyceride (TG) as confounding factors. In addition, the TE expression level in the GDM group was lower after adjustment. There was no statistically significant difference in oxidative stress hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA) and superoxide dismutase (SOD) between the two groups. TL was positively correlated with TE activity, and both were negatively correlated with blood glucose levels. There was no correlation between TL and Gestational age (GA), PBMI, PGW, or TG levels. Conclusion The poor intrauterine environment in pregnant women with GDM increases telomere attrition and reduces TE activity, which may be potential genetic risk factors for an increased risk of metabolic diseases in offspring later in life due to intrauterine reprogramming.
Collapse
Affiliation(s)
- Shuhua Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Liping Xu
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yan Cheng
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Dehong Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Aljabali SM, Pai S, Teperino R. Paternal impact on the developmental programming of sexual dimorphism. Front Cell Dev Biol 2024; 12:1520783. [PMID: 39712575 PMCID: PMC11659275 DOI: 10.3389/fcell.2024.1520783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Sexual dimorphism involves distinct anatomical, physiological, behavioral, and developmental differences between males and females of the same species, influenced by factors prior to conception and during early development. These sex-specific traits contribute to varied phenotypes and individual disease risks within and across generations and understanding them is essential in mammalian studies. Hormones, sex chromosomes, and imprinted genes drive this dimorphism, with over half of quantitative traits in wildtype mice showing sex-based variation. This review focuses on the impact of paternal non-genetic factors on sexual dimorphism. We synthesize current research on how paternal health before conception affects offspring phenotypes in a sex-specific manner, examining mechanisms such as DNA methylation, paternally imprinted genes, sperm RNA, and seminal plasma. Additionally, we explore how paternal influences indirectly shape offspring through maternal behavior, uterine environment, and placental changes, affecting males and females differently. We propose mechanisms modulating sexual dimorphism during development, underscoring the need for sex-specific documentation in animal studies.
Collapse
Affiliation(s)
- Shefa’ M. Aljabali
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Shruta Pai
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- DZD – German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
14
|
Lock MC, Patey OV, Smith KLM, Niu Y, Jaggs B, Trafford AW, Giussani DA, Galli GLJ. Maladaptive cardiomyocyte calcium handling in adult offspring of hypoxic pregnancy: protection by antenatal maternal melatonin. J Physiol 2024; 602:6683-6703. [PMID: 39572933 DOI: 10.1113/jp287325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic fetal hypoxia is one of the most common complications of pregnancy and can programme cardiac abnormalities in adult offspring including ventricular remodelling, diastolic dysfunction and sympathetic dominance. However, the underlying mechanisms at the level of the cardiomyocyte are unknown, preventing the identification of targets for therapeutic intervention. Therefore, we aimed to link echocardiographic data with cardiomyocyte function to reveal cellular mechanism for cardiac dysfunction in rat offspring from hypoxic pregnancy. Further, we investigated the potential of maternal treatment with melatonin as antenatal antioxidant therapy. Wistar rats were randomly allocated into normoxic (21% O2) or hypoxic (13% O2) pregnancy with or without melatonin treatment (5 µg/ml; normoxic melatonin in the maternal drinking water from gestational day 6 to 20 (term = 22 days). After delivery, male and female offspring were maintained to adulthood (16 weeks). Cardiomyocytes were isolated from the left and right ventricles, and calcium (Ca2+) handling was investigated in field-stimulated myocytes. Systolic and diastolic function was negatively impacted in male and female offspring of hypoxic pregnancy demonstrating biventricular systolic and diastolic dysfunction and compensatory increases in cardiac output. Ca2+ transients from isolated cardiomyocytes in offspring of both sexes in hypoxic pregnancy displayed diastolic dysfunction with a reduced rate of [Ca2+]i recovery. Cardiac and cardiomyocyte dysfunction in male and female adult offspring was ameliorated by maternal antenatal treatment with melatonin in hypoxic pregnancy. Therefore, cardiomyocyte Ca2+ mishandling provides a cellular mechanism explaining functional deficits in hearts of male and female offspring in pregnancies complicated by chronic fetal hypoxia. KEY POINTS: This study identified significant changes in Ca2+ handling within cardiomyocytes isolated from offspring of hypoxic pregnancy including reduced systolic Ca2+ transients, impaired diastolic recovery of [Ca2+]i and a greater increase in systolic [Ca2+]i amplitude to β-adrenergic stimulation. These changes in cardiomyocyte Ca2+ handling help to explain dysregulation of biventricular systolic and diastolic dysfunction determined by echocardiography. The data show protection against maladaptive cardiomyocyte calcium handling and thereby improvement in cardiac function in adult offspring of hypoxic pregnancy treated with melatonin with doses lower than those recommended for overcoming jet lag in humans. Melatonin treatment alone in healthy pregnancy did cause some alterations in cardiac structure. Therefore, maternal treatment with melatonin should only be given to pregnancies affected by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Mitchell C Lock
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kerri L M Smith
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ben Jaggs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
16
|
Casciaro C, Hamada H, Bloise E, Matthews SG. The paternal contribution to shaping the health of future generations. Trends Endocrinol Metab 2024:S1043-2760(24)00275-3. [PMID: 39562264 DOI: 10.1016/j.tem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Paternal health and exposure to adverse environments in the period prior to conception have a profound impact on future generations. Adversities such as stress, diet, and toxicants influence offspring health. Emerging evidence indicates that epigenetic mechanisms including noncoding RNA, DNA methylation, and chromatin remodelling mediate these effects. Preclinical studies have contributed to advancing mechanistic understanding in the field; however, human research is limited and primarily observational. Here, we discuss the evidence linking paternal to offspring health and advocate for further research in this area, which may ultimately inform policy and healthcare guidelines to improve paternal preconception health and offspring outcomes.
Collapse
Affiliation(s)
| | - Hirotaka Hamada
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada.
| |
Collapse
|
17
|
Shang Q, Wu H, Wang K, Zhang M, Dou Y, Jiang X, Zhao Y, Zhao H, Chen ZJ, Wang J, Bian Y. Exposure to polystyrene microplastics during lactational period alters immune status in both male mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175371. [PMID: 39137849 DOI: 10.1016/j.scitotenv.2024.175371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The widespread use of microplastics and their harmful effects on the environment have emerged as serious concerns. However, the effect of microplastics on the immune system of mammals, particularly their offspring, has received little attention. In this study, polystyrene microplastics (PS-MPs) were orally administered to male mice during lactation. Flow cytometry was used to assess the immune cells in the spleens of both adult male mice and their offspring. The results showed that mice exposed to PS-MPs exhibited an increase in spleen weight and an elevated number of B and regulatory T cells (Tregs), irrespective of dosage. Furthermore, the F1 male offspring of the PS-MPs-exposed group had enlarged spleens; an increased number of B cells, T helper cells (Th cells), and Tregs; and an elevated ratio of T helper cells 17 (Th17 cells) to Tregs and T helper cells 1 (Th1 cells) to T helper cells 2 (Th2 cells). These results suggested a pro-inflammatory state in the spleen. In contrast, in the F1 female offspring exposed to PS-MPs, the changes in splenic immune cells were less pronounced. In the F2 generation of mice with exposed to PS-MPs, minimal alterations were observed in spleen immune cells and morphology. In conclusion, our study demonstrated that exposure to real human doses of PS-MPs during lactation in male mice altered the immune status, which can be passed on to F1 offspring but is not inherited across generations.
Collapse
Affiliation(s)
- Qian Shang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Han Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Ke Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China.
| | - Xiaohong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| |
Collapse
|
18
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
19
|
Baptista FI, Ambrósio AF. Tracing the influence of prenatal risk factors on the offspring retina: Focus on development and putative long-term consequences. Eur J Clin Invest 2024; 54:e14266. [PMID: 38864773 DOI: 10.1111/eci.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Pregnancy represents a window of vulnerability to fetal development. Disruptions in the prenatal environment during this crucial period can increase the risk of the offspring developing diseases over the course of their lifetime. The central nervous system (CNS) has been shown to be particularly susceptible to changes during crucial developmental windows. To date, research focused on disruptions in the development of the CNS has predominantly centred on the brain, revealing a correlation between exposure to prenatal risk factors and the onset of neuropsychiatric disorders. Nevertheless, some studies indicate that the retina, which is part of the CNS, is also vulnerable to in utero alterations during pregnancy. Such changes may affect neuronal, glial and vascular components of the retina, compromising retinal structure and function and possibly impairing visual function. METHODS A search in the PubMed database was performed, and any literature concerning prenatal risk factors (drugs, diabetes, unbalanced diet, infection, glucocorticoids) affecting the offspring retina were included. RESULTS This review collects evidence on the cellular, structural and functional changes occurring in the retina triggered by maternal risk factors during pregnancy. We highlight the adverse impact on retinal development and its long-lasting effects, providing a critical analysis of the current knowledge while underlining areas for future research. CONCLUSIONS Appropriate recognition of the prenatal risk factors that negatively impact the developing retina may provide critical clues for the design of preventive strategies and for early therapeutic intervention that could change retinal pathology in the progeny.
Collapse
Affiliation(s)
- Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| |
Collapse
|
20
|
Hernandez R, Li X, Shi J, Dave TR, Zhou T, Chen Q, Zhou C. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring. JCI Insight 2024; 9:e179291. [PMID: 39253968 PMCID: PMC11385100 DOI: 10.1172/jci.insight.179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tejasvi R. Dave
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
21
|
Zhang D, Zhang W, Liu H, Huang S, Huang W, Zhu Y, Ma X, Xia Y, Zhang J, Lu W, Shao D, Weng D. Intergenerational metabolism-disrupting effects of maternal exposure to plasticizer acetyl tributyl citrate (ATBC). ENVIRONMENT INTERNATIONAL 2024; 191:108967. [PMID: 39217724 DOI: 10.1016/j.envint.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Environmental chemicals and pollutants are increasingly recognized for their potential transgenerational effects. Acetyl tributyl citrate (ATBC), a widely used plasticizer substituting di-(2-ethylhexyl) phthalate (DEHP), was identified as an inducer of lipogenesis in male mice by our previous research. This study aimed to investigate the impact of ATBC exposure on the metabolic homeostasis of female mice and simultaneously evaluate its intergenerational effects. Female C57BL/6J mice were orally exposed to ATBC (0.01 or 1 μg/kg/day) for 10 weeks before mating with unexposed male mice. The resulting F1 female mice were bred with unexposed males to generate F2 offspring. Our results indicated that 10-week ATBC exposure disrupted glucose metabolism homeostasis and the reproductive system in F0 female mice. In F1 female mice, elevated liver lipid levels and mild insulin resistance were observed. In the F2 generation, maternal ATBC exposure resulted in increased weight gain, elevated liver triglycerides, and higher fasting blood glucose levels, primarily in F2 male mice. These findings suggest that maternal ATBC exposure may exert intergenerational disturbing effects on glucose metabolism across generations of mice. Further investigation is needed to evaluate the health risks associated with ATBC exposure.
Collapse
Affiliation(s)
- Danyang Zhang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Weigao Zhang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Hu Liu
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Shuxian Huang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Wangchao Huang
- School of Medicine, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| | - Yunfeng Zhu
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Xuening Ma
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yugui Xia
- Institute of Artificial Intelligence Biomedicine, Nanjing University, 10th Xinghuo Road, Jiangbei New District, Nanjing 210000, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Wei Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Da Shao
- Research Center of Translational Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China.
| | - Dan Weng
- School of Environmental and Biological Engineering, Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
22
|
Naciri I, Andrade-Ludena MD, Yang Y, Kong M, Sun S. An emerging link between lncRNAs and cancer sex dimorphism. Hum Genet 2024; 143:831-842. [PMID: 38095719 PMCID: PMC11176266 DOI: 10.1007/s00439-023-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/05/2023] [Indexed: 06/15/2024]
Abstract
The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Maria D Andrade-Ludena
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
23
|
Beck EA, Hetrick B, Nassar L, Turnbull DW, Dean TA, Gannon M, Aagaard KM, Wesolowski SR, Friedman JE, Kievit P, McCurdy CE. Maternal Western-style diet programs skeletal muscle gene expression in lean adolescent Japanese macaque offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594191. [PMID: 38826380 PMCID: PMC11142092 DOI: 10.1101/2024.05.17.594191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet, had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet. We included offspring weaned to both a WSD or CTR diet to further account for differences in response to post-weaning diet and interaction effects between diets. Overall, we found that a maternal WSD fed to dams during pregnancy and lactation was the principal driver of differential gene expression (DEG) in offspring muscle at this time point. We identified key gene pathways important in insulin signaling including PI3K-Akt and MAP-kinase, regulation of muscle regeneration, and transcription-translation feedback loops, in both male and female offspring. Muscle DEG showed no measurable difference between offspring of obese dams on WSD compared to those of lean dams fed WSD. A post-weaning WSD effected offspring transcription only in individuals from the maternal CTR diet group but not in maternal WSD group. Collectively, we identify that maternal diet composition has a significant and lasting impact on offspring muscle transcriptome and influences later transcriptional response to WSD in muscle, which may underlie the increased metabolic disease risk in offspring.
Collapse
|
24
|
Chen E, da Cruz RS, Nascimento A, Joshi M, Pereira DG, Dominguez O, Fernandes G, Smith M, Paiva SPC, de Assis S. Paternal DDT exposure induces sex-specific programming of fetal growth, placenta development and offspring's health phenotypes in a mouse model. Sci Rep 2024; 14:7567. [PMID: 38555297 PMCID: PMC10981700 DOI: 10.1038/s41598-024-58176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Mounting evidence suggests that environmentally induced epigenetic inheritance occurs in mammals and that traits in the progeny can be shaped by parental environmental experiences. Epidemiological studies link parental exposure to environmental toxicants, such as the pesticide DDT, to health phenotypes in the progeny, including low birth and increased risk of chronic diseases later in life. Here, we show that the progeny of male mice exposed to DDT in the pre-conception period are born smaller and exhibit sexual dimorphism in metabolic function, with male, but not female, offspring developing severe glucose intolerance compared to controls. These phenotypes in DDT offspring were linked to reduced fetal growth and placenta size as well as placenta-specific reduction of glycogen levels and the nutrient sensor and epigenetic regulator OGT, with more pronounced phenotypes observed in male placentas. However, placenta-specific genetic reduction of OGT only partially replicates the metabolic phenotype observed in offspring of DDT-exposed males. Our findings reveal a role for paternal pre-conception environmental experiences in shaping placenta development and in fetal growth restriction. While many questions remain, our data raise the tantalizing possibility that placenta programming could be a mediator of environmentally induced intergenerational epigenetic inheritance of phenotypes and needs to be further evaluated.
Collapse
Affiliation(s)
- Elaine Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Aallya Nascimento
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Meghali Joshi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Duane Gischewski Pereira
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Odalys Dominguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Gabriela Fernandes
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Megan Smith
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Sara P C Paiva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
- Department of Obstetrics and Gynecology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
25
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
26
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Pantaleão LC, Loche E, Fernandez-Twinn DS, Dearden L, Córdova-Casanova A, Osmond C, Salonen MK, Kajantie E, Niu Y, de Almeida-Faria J, Thackray BD, Mikkola TM, Giussani DA, Murray AJ, Bushell M, Eriksson JG, Ozanne SE. Programming of cardiac metabolism by miR-15b-5p, a miRNA released in cardiac extracellular vesicles following ischemia-reperfusion injury. Mol Metab 2024; 80:101875. [PMID: 38218535 PMCID: PMC10832484 DOI: 10.1016/j.molmet.2024.101875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.
Collapse
Affiliation(s)
- Lucas C Pantaleão
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Laura Dearden
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Adriana Córdova-Casanova
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Minna K Salonen
- Finnish Institute for Health and Welfare, Public Health Unit, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliana de Almeida-Faria
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Benjamin D Thackray
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tuija M Mikkola
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Folkhalsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Johan G Eriksson
- Folkhalsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Finland; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Muscogiuri G, Verde L, Vetrani C, Barrea L, Savastano S, Colao A. Obesity: a gender-view. J Endocrinol Invest 2024; 47:299-306. [PMID: 37740888 PMCID: PMC10859324 DOI: 10.1007/s40618-023-02196-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE There is a growing awareness of the importance of understanding gender differences in obesity. The aim of this short review was to revise the current evidence on anthropometric characteristics and nutritional and pharmacological aspects of obesity from a gender perspective. METHODS A literature search within PubMed was performed. Selected publications related to obesity and gender differences were reviewed. RESULTS The prevalence of obesity among men is higher than in women, but women have a higher percentage of body fat content compared to men, and gender appears to be an important factor in the manifestation of central (android) or peripheral (gynoid) obesity. In addition, while in most clinical trials, women are still underrepresented, in clinical registration trials of anti-obesity drugs, women are commonly up-represented and gender-specific analysis is uncommon. Considering that adipose tissue is one of the factors affecting the volume of distribution of many drugs, mainly lipophilic drugs, gender differences might be expected in the pharmacokinetics and pharmacodynamics of anti-obesity drugs. Indeed, although Liraglutide 3 mg, a long-acting glucagon-like peptide-1 receptor agonist, and naltrexone/bupropion display lipophilic properties, currently, a gender-dose adjustment for both these drugs administration is not recommended. In addition, despite that predicted responders to treatment offer substantial opportunities for efficient use, especially of expensive new therapies, such as anti-obesity drugs, data on gender differences to identify early responders to both these have not yet been investigated. Finally, bariatric surgery gender disparity reflects healthcare practices. Weight loss similar, but differing effects: women need more correction and face psychology challenges; men have worse physiology and fewer comorbidity improvements. CONCLUSION Gender differences exist in obesity prevalence and phenotype, body fat distribution, drug efficacy, clinical trial representation, and different secondary effects of bariatric surgery. Gender is an important variable in obesity analysis.
Collapse
Affiliation(s)
- G Muscogiuri
- Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy.
| | - L Verde
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - C Vetrani
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via PorzioIsola F2, 80143, Naples, Italy
| | - L Barrea
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via PorzioIsola F2, 80143, Naples, Italy
| | - S Savastano
- Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - A Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Medicina Clinica E Chirurgia, Diabetologia E Andrologia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
29
|
Saeed H, Wu J, Tesfaye M, Grantz KL, Tekola-Ayele F. Placental accelerated aging in antenatal depression. Am J Obstet Gynecol MFM 2024; 6:101237. [PMID: 38012987 PMCID: PMC10843762 DOI: 10.1016/j.ajogmf.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Antenatal maternal depression is associated with poor pregnancy outcomes and long-term effects on the offspring. Previous studies have identified links between antenatal depression and placental DNA methylation and between placental epigenetic aging and poor pregnancy outcomes, such as preterm labor and preeclampsia. The relationship between antenatal depression and poor pregnancy outcomes may be partly mediated via placental aging. OBJECTIVE This study aimed to investigate whether antenatal depressive symptoms are associated with placental epigenetic age acceleration, an epigenetic aging clock measure derived from the difference between methylation age and gestational age at delivery. STUDY DESIGN The study included 301 women who provided placenta samples at delivery as part of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies - Singletons that recruited participants from diverse race and ethnic groups at 12 US clinical sites (2009-2013). Women underwent depression screening using the Edinburgh Postnatal Depression Scale up to 6 times across the 3 trimesters of pregnancy. Depressive symptoms status was determined for each pregnancy trimester using an Edinburgh Postnatal Depression Scale score, in which a score of ≥10 was defined as having depressive symptoms and a score of <10 was defined as not having depressive symptoms. Placental DNA methylation was profiled from placenta samples. Placental epigenetic age was estimated using a methylation-based age estimator (placental "epigenetic clock") that has previously been found to have high placental gestational age prediction accuracy for uncomplicated term pregnancies. Placental age acceleration was defined to be the residual upon regressing the estimated epigenetic age on gestational age at delivery. Associations between an Edinburgh Postnatal Depression Scale score of ≥10 and an Edinburgh Postnatal Depression Scale score of <10 in the first, second, and third trimesters of pregnancy (ie, depressive symptoms vs none in each trimester) and placental age acceleration were tested using multivariable linear regression adjusting for maternal age, parity, race and ethnicity, and employment. RESULTS There were 31 (10.3%), 48 (16%), and 49 (16.4%) women with depressive symptoms (ie, Edinburgh Postnatal Depression Scale score of ≥10) in the first, second, and third trimesters of pregnancy, respectively. Of these women, 21 (7.2%) had sustained first- and second-trimester depressive symptoms, 19 (7%) had sustained second- and third-trimester depressive symptoms, and 12 (4.8%) had sustained depressive symptoms throughout pregnancy. Women with depressive symptoms in the second trimester of pregnancy had 0.41 weeks higher placental age acceleration than women without depressive symptoms during the second trimester of pregnancy (β=0.21 weeks [95% confidence interval, -0.17 to 0.58; P=.28] during the first trimester of pregnancy; β=0.41 weeks [95% confidence interval, 0.10-0.71; P=.009] during the second trimester of pregnancy; β=0.17 weeks [95% confidence interval, -0.14 to 0.47; P=.29] during the third trimester of pregnancy). Sustained first- and second-trimester depressive symptoms were associated with 0.72 weeks higher placental age acceleration (95% confidence interval, 0.29-1.15; P=.001) than no depressive symptom in the 2 trimesters. The association between second-trimester depressive symptoms and higher placental epigenetic age acceleration strengthened in the analysis of pregnancies with male fetuses (β=0.53 weeks; 95% confidence interval, 0.06-1.08; P=.03) but was not significant in pregnancies with female fetuses. CONCLUSION Antenatal depressive symptoms during the second trimester of pregnancy were associated with an average of 0.41 weeks of increased placental age acceleration. Accelerated placental aging may play an important role in the underlying mechanism linking antenatal depression to pregnancy complications related to placental dysfunction.
Collapse
Affiliation(s)
- Haleema Saeed
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (Dr Saeed); Department of Maternal-Fetal Medicine, Medstar Washington Hospital Center, Washington, DC (Drs Saeed)
| | - Jing Wu
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (Drs Wu, Grantz, and Tekola-Ayele)
| | - Markos Tesfaye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, University of Oslo, Oslo, Norway (Dr Tesfaye); Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Dr Tesfaye)
| | - Katherine L Grantz
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (Drs Wu, Grantz, and Tekola-Ayele)
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (Drs Wu, Grantz, and Tekola-Ayele).
| |
Collapse
|
30
|
Christians JK, Reue K. The role of gonadal hormones and sex chromosomes in sex-dependent effects of early nutrition on metabolic health. Front Endocrinol (Lausanne) 2023; 14:1304050. [PMID: 38189044 PMCID: PMC10770830 DOI: 10.3389/fendo.2023.1304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as Kdm5c, contribute to baseline sex-differences in metabolism, while Ogt, another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
Collapse
Affiliation(s)
- Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Greyslak KT, Hetrick B, Bergman BC, Dean TA, Wesolowski SR, Gannon M, Schenk S, Sullivan EL, Aagaard KM, Kievit P, Chicco AJ, Friedman JE, McCurdy CE. A Maternal Western-Style Diet Impairs Skeletal Muscle Lipid Metabolism in Adolescent Japanese Macaques. Diabetes 2023; 72:1766-1780. [PMID: 37725952 PMCID: PMC10658061 DOI: 10.2337/db23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.
Collapse
Affiliation(s)
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Bryan C. Bergman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tyler A. Dean
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | | | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
- Department of Psychiatry, Oregon Health & Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health & Science University, Portland, OR
| | - Kjersti M. Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | |
Collapse
|
32
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
33
|
Xue Y, Gong Y, Li X, Peng F, Ding G, Zhang Z, Shi J, Savul IS, Xu Y, Chen Q, Han L, Mao S, Sun Z. Sex differences in paternal arsenic-induced intergenerational metabolic effects are mediated by estrogen. Cell Biosci 2023; 13:165. [PMID: 37691128 PMCID: PMC10493026 DOI: 10.1186/s13578-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences. METHODS After weaning, C57BL/6 WT male mice were treated with 250 ppb iAs in drinking water (iAsF0) or normal water (conF0) for 6 weeks and then bred with 15-week-old, non-exposed females for 3 days in cages with only normal water (without iAs), to generate iAsF1 or conF1 mice, respectively. F0 females and all F1 mice drank normal water without iAs all the time. RESULTS We find that exposure of male mice to 250 ppb iAs leads to glucose intolerance and insulin resistance in F1 female offspring (iAsF1-F), with almost no change in blood lipid profiles. In contrast, F1 males (iAsF1-M) show lower liver and blood triglyceride levels than non-exposed control, with improved glucose tolerance and insulin sensitivity. The liver of F1 offspring shows sex-specific transcriptomic changes, with hepatocyte-autonomous alternations of metabolic fluxes in line with the sex-specific phenotypes. The iAsF1-F mice show altered levels of circulating estrogen and follicle-stimulating hormone. Ovariectomy or liver-specific knockout of estrogen receptor α/β made F1 females resemble F1 males in their metabolic responses to paternal iAs exposure. CONCLUSIONS These results demonstrate that disrupted reproductive hormone secretion in alliance with hepatic estrogen signaling accounts for the sex-specific intergenerational effects of paternal iAs exposure, which shed light on the sex disparities in long-term gene-environment interactions.
Collapse
Affiliation(s)
- Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yingyun Gong
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Li
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fei Peng
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guolian Ding
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junchao Shi
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ilma Saleh Savul
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zheng Sun
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Bernstein SR, Kelleher C, Khalil RA. Gender-based research underscores sex differences in biological processes, clinical disorders and pharmacological interventions. Biochem Pharmacol 2023; 215:115737. [PMID: 37549793 PMCID: PMC10587961 DOI: 10.1016/j.bcp.2023.115737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Earlier research has presumed that the male and female biology is similar in most organs except the reproductive system, leading to major misconceptions in research interpretations and clinical implications, with serious disorders being overlooked or misdiagnosed. Careful research has now identified sex differences in the cardiovascular, renal, endocrine, gastrointestinal, immune, nervous, and musculoskeletal systems. Also, several cardiovascular, immunological, and neurological disorders have shown differences in prevalence and severity between males and females. Genetic variations in the sex chromosomes have been implicated in several disorders at young age and before puberty. The levels of the gonadal hormones estrogen, progesterone and testosterone and their receptors play a role in the sex differences between adult males and premenopausal women. Hormonal deficiencies and cell senescence have been implicated in differences between postmenopausal and premenopausal women. Specifically, cardiovascular disorders are more common in adult men vs premenopausal women, but the trend is reversed with age with the incidence being greater in postmenopausal women than age-matched men. Gender-specific disorders in females such as polycystic ovary syndrome, hypertension-in-pregnancy and gestational diabetes have attained further research recognition. Other gender-related research areas include menopausal hormone therapy, the "Estrogen Paradox" in pulmonary arterial hypertension being more predominant but less severe in young females, and how testosterone may cause deleterious effects in the kidney while having vasodilator effects in the coronary circulation. This has prompted the National Institutes of Health (NIH) initiative to consider sex as a biological variable in research. The NIH and other funding agencies have provided resources to establish state-of-the-art centers for women health and sex differences in biology and disease in several academic institutions. Scientific societies and journals have taken similar steps to organize specialized conferences and publish special issues on gender-based research. These combined efforts should promote research to enhance our understanding of the sex differences in biological systems beyond just the reproductive system, and provide better guidance and pharmacological tools for the management of various clinical disorders in a gender-specific manner.
Collapse
Affiliation(s)
- Sofia R Bernstein
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Kelleher
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Milà-Guasch M, Ramírez S, Llana SR, Fos-Domènech J, Dropmann LM, Pozo M, Eyre E, Gómez-Valadés AG, Obri A, Haddad-Tóvolli R, Claret M. Maternal emulsifier consumption programs offspring metabolic and neuropsychological health in mice. PLoS Biol 2023; 21:e3002171. [PMID: 37616199 PMCID: PMC10449393 DOI: 10.1371/journal.pbio.3002171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/24/2023] [Indexed: 08/26/2023] Open
Abstract
Modern lifestyle is associated with a major consumption of ultra-processed foods (UPF) due to their practicality and palatability. The ingestion of emulsifiers, a main additive in UPFs, has been related to gut inflammation, microbiota dysbiosis, adiposity, and obesity. Maternal unbalanced nutritional habits during embryonic and perinatal stages perturb offspring's long-term metabolic health, thus increasing obesity and associated comorbidity risk. However, whether maternal emulsifier consumption influences developmental programming in the offspring remains unknown. Here, we show that, in mice, maternal consumption of dietary emulsifiers (1% carboxymethyl cellulose (CMC) and 1% P80 in drinking water), during gestation and lactation, perturbs the development of hypothalamic energy balance regulation centers of the progeny, leads to metabolic impairments, cognition deficits, and induces anxiety-like traits in a sex-specific manner. Our findings support the notion that maternal consumption of emulsifiers, common additives of UPFs, causes mild metabolic and neuropsychological malprogramming in the progeny. Our data call for nutritional advice during gestation.
Collapse
Affiliation(s)
- Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergio R. Llana
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Fos-Domènech
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lea Maria Dropmann
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Kane AD, Herrera EA, Niu Y, Camm EJ, Allison BJ, Tijsseling D, Lusby C, Derks JB, Brain KL, Bronckers IM, Cross CM, Berends L, Giussani DA. Combined Statin and Glucocorticoid Therapy for the Safer Treatment of Preterm Birth. Hypertension 2023; 80:837-851. [PMID: 36724801 PMCID: PMC10017302 DOI: 10.1161/hypertensionaha.122.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Prematurity is strongly associated with poor respiratory function in the neonate. Rescue therapies include treatment with glucocorticoids due to their anti-inflammatory and maturational effects on the developing lung. However, glucocorticoid treatment in the infant can increase the risk of long-term cardiovascular complications including hypertension, cardiac, and endothelial dysfunction. Accumulating evidence implicates a molecular link between glucocorticoid excess and depletion of nitric oxide (NO) bioavailability as a mechanism underlying the detrimental effects of postnatal steroids on the heart and circulation. Therefore, combined glucocorticoid and statin therapy, by increasing NO bioavailability, may protect the developing cardiovascular system while maintaining beneficial effects on the lung. METHODS We investigated combined glucocorticoid and statin therapy using an established rodent model of prematurity and combined experiments of cardiovascular function in vivo, with those in isolated organs as well as measurements at the cellular and molecular levels. RESULTS We show that neonatal glucocorticoid treatment increases the risk of later cardiovascular dysfunction in the offspring. Underlying mechanisms include decreased circulating NO bioavailability, sympathetic hyper-reactivity, and NO-dependent endothelial dysfunction. Combined neonatal glucocorticoid and statin therapy protects the developing cardiovascular system by normalizing NO and sympathetic signaling, without affecting pulmonary maturational or anti-inflammatory effects of glucocorticoids. CONCLUSIONS Therefore, combined glucocorticoid and statin therapy may be safer than glucocorticoids alone for the treatment of preterm birth.
Collapse
Affiliation(s)
- Andrew D. Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Emilio A. Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile (E.A.H.)
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Beth J. Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Deodata Tijsseling
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Ciara Lusby
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Jan B. Derks
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Kirsty L. Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Inge M. Bronckers
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, the Netherlands (I.M.B.)
| | - Christine M. Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Lindsey Berends
- Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom (L.B.)
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| |
Collapse
|
37
|
Xin Y, Sun X, Ren L, Chen G, Chen Y, Ni Y, He B. Maternal preconceptional inflammation transgenerationally alters metabolic and behavioral phenotypes in offspring. Life Sci 2023; 321:121577. [PMID: 36933826 DOI: 10.1016/j.lfs.2023.121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
AIMS Evidence is accumulating that maternal inflammation induces phenotypic changes in the next generation. However, whether maternal preconceptional inflammation alters metabolic and behavioral phenotypes in offspring remains poorly understood. MAIN METHODS Female mice were injected with either lipopolysaccharide or saline to establish the inflammatory model and then allowed to mate with normal males. Offspring from both control and inflammatory dams were subsequently given chow diet and water ad libitum, without any challenge, for metabolic and behavioral tests. KEY FINDINGS Male offspring derived from inflammatory mothers (Inf-F1) maintained on the chow diet developed impaired glucose tolerance and hepatic ectopic fat deposition. Hepatic transcriptome sequencing showed the largest gene changes related to the metabolic pathway. Moreover, Inf-F1 mice exhibited anxiety- and depressive-like behaviors and were accompanied by higher serum corticosterone concentration and lower glucocorticoid receptor abundance in the hippocampus. SIGNIFICANCE The results expand the current knowledge of developmental programming of health and disease to include maternal preconceptional health and provide a basis for understanding metabolic and behavioral alterations in offspring linked to maternal inflammation.
Collapse
Affiliation(s)
- Yining Xin
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Li Ren
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guo Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingqi Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
38
|
Liu J, Shi J, Hernandez R, Li X, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou C. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. ENVIRONMENT INTERNATIONAL 2023; 172:107769. [PMID: 36709676 DOI: 10.1016/j.envint.2023.107769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 05/10/2023]
Abstract
Exposure to ubiquitous plastic-associated endocrine disrupting chemicals (EDCs) is associated with the increased risk of many chronic diseases. For example, phthalate exposure is associated with cardiometabolic mortality in humans, with societal costs ∼ $39 billion/year or more. We recently demonstrated that several widely used plastic-associated EDCs increase cardiometabolic disease in appropriate mouse models. In addition to affecting adult health, parental exposure to EDCs has also been shown to cause metabolic disorders, including obesity and diabetes, in the offspring. While most studies have focused on the impact of maternal EDC exposure on the offspring's health, little is known about the effects of paternal EDC exposure. In the current study, we investigated the adverse impact of paternal exposure to a ubiquitous but understudied phthalate, dicyclohexyl phthalate (DCHP) on the metabolic health of F1 and F2 offspring in mice. Paternal DCHP exposure led to exacerbated insulin resistance and impaired insulin signaling in F1 offspring without affecting diet-induced obesity. We previously showed that sperm small non-coding RNAs including tRNA-derived small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs) contribute to the intergenerational transmission of paternally acquired metabolic disorders. Using a novel PANDORA-seq, we revealed that DCHP exposure can lead to sperm tsRNA/rsRNA landscape changes that were undetected by traditional RNA-seq, which may contribute to DCHP-elicited adverse effects. Lastly, we found that paternal DCHP can also cause sex-specific transgenerational adverse effects in F2 offspring and elicited glucose intolerance in female F2 descendants. Our results suggest that exposure to endocrine disrupting phthalates may have intergenerational and transgenerational adverse effects on the metabolic health of their offspring. These findings increase our understanding of the etiology of chronic human diseases originating from chemical-elicited intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Pranav Konchadi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Yuma Miyake
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV 89557, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
39
|
Mihalovičová L, Kunšteková V, Miláček D, Janko J, Pastorek M, Konečná B, Gurecká R, Rausová Z, Uličná O, Celec P, Šebeková K. Severe gestational diabetes mellitus in lean dams is associated with low IL-1α levels and affects the growth of the juvenile mouse offspring. Sci Rep 2023; 13:1700. [PMID: 36717684 PMCID: PMC9886986 DOI: 10.1038/s41598-023-28903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
We investigated how maternal gestational diabetes (GDM) impacts the metabolic status of offspring. GDM was induced in CD1 mice consuming a fast-food diet (FFD) by repeated low-dose streptozotocin injections before mating. Offspring of normoglycemic standard chow or the FFD consuming dams served as controls. In 4-week-old offspring weaned to standard chow, plasma concentrations of extracellular DNA, inflammatory markers, and parameters of the cardiometabolic status (glycemia, liver lipid content; body, organ, and fat weight) were determined. Two-factor analysis of variance indicated that the male offspring of GDM dams manifest postnatal growth retardation and lower relative kidney weight. Regardless of sex, GDM offspring manifest the lowest IL-1α levels, and other inflammatory markers showed mild and inconsistent alterations. Offspring of dams consuming the FFD displayed higher liver triacylglycerols content. The three groups of offspring showed no significant differences in glycemia and extracellular DNA. Partial least squares-discriminant analysis indicated that male GDM offspring present lower kidney, body, and brown adipose tissue weights; lower IL-1α levels, and higher concentrations of GM-CSF and IL-10 compared with their FFD counterparts. The model failed to select discriminative variables in females. In conclusion, in mice, maternal GDM in the absence of obesity adversely affects the early growth of juvenile male offspring.
Collapse
Affiliation(s)
- Lucia Mihalovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Veronika Kunšteková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Department of Biology, Faculty of Medicine, Slovak Medical University, 833 03, Bratislava, Slovakia
| | - Dávid Miláček
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Oľga Uličná
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.
| |
Collapse
|
40
|
Dearden L, Ozanne SE. Considerations for designing and analysing inter-generational studies in rodents. Nat Metab 2023; 5:1-4. [PMID: 36609721 DOI: 10.1038/s42255-022-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome MRC Institute of Metabolic Science, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome MRC Institute of Metabolic Science, Cambridge, UK.
| |
Collapse
|
41
|
Wong KK, Cheng F, Lim CKP, Tam CHT, Tutino G, Yuen LY, Wang CC, Hou Y, Chan MHM, Ho CS, Joglekar MV, Hardikar AA, Jenkins AJ, Metzger BE, Lowe WL, Tam WH, Ma RCW. Early emergence of sexual dimorphism in offspring leukocyte telomere length was associated with maternal and children's glucose metabolism-a longitudinal study. BMC Med 2022; 20:490. [PMID: 36536359 PMCID: PMC9764638 DOI: 10.1186/s12916-022-02687-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Leukocyte telomere length (LTL) is suggested to be a biomarker of biological age and reported to be associated with metabolic diseases such as type 2 diabetes. Glucose metabolic traits including glucose and insulin levels have been reported to be associated with LTL in adulthood. However, there is relatively little research focusing on children's LTL and the association with prenatal exposures. This study investigates the relationship between maternal and offspring glucose metabolism with offspring LTL in early life. METHODS This study included 882 mother-child pairs from the HAPO Hong Kong Field Centre, with children evaluated at age 7.0 ± 0.4 (mean ± SD) years. Glucose metabolic traits including maternal post-load glucose during pregnancy, children's glucose and insulin levels, and their derived indices at follow-up were measured or calculated. Offspring LTL was assessed using real-time polymerase chain reaction. RESULTS Sex- and age-adjusted children's LTL was found to be associated with children's HOMA-IR (β=-0.046 ± 0.016, p=0.005). Interestingly, both children's and maternal post-load glucose levels were positively associated with children's LTL. However, negative associations were observed between children's LTL and children's OGTT insulin levels. In addition, the LTL in females was more strongly associated with pancreatic beta-cell function whilst LTL in males was more strongly associated with OGTT glucose levels. CONCLUSIONS Our findings suggest a close association between maternal and offspring glucose metabolic traits with early life LTL, with the offspring sex as an important modifier of the disparate relationships in insulin production and response.
Collapse
Affiliation(s)
- Kwun Kiu Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Feifei Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Greg Tutino
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lai Yuk Yuen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yong Hou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Michael H M Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, Australia.,NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, Australia.,NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Alicia J Jenkins
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.,NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Boyd E Metzger
- Northwestern University Feinberg School of Medicine, Chicago, USA
| | - William L Lowe
- Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Shatin, Hong Kong. .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
42
|
Savy V, Stein P, Shi M, Williams CJ. PMCA1 depletion in mouse eggs amplifies calcium signaling and impacts offspring growth†. Biol Reprod 2022; 107:1439-1451. [PMID: 36130203 PMCID: PMC10144700 DOI: 10.1093/biolre/ioac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Egg activation in mammals is triggered by oscillations in egg intracellular calcium (Ca2+) level. Ca2+ oscillation patterns can be modified in vitro by changing the ionic composition of culture media or in vivo by conditions affecting mitochondrial function, such as obesity and inflammation. In mice, disruption of Ca2+ oscillations in vitro impacts embryo development and offspring growth. Here we tested the hypothesis that, even without in vitro manipulation, abnormal Ca2+ signaling following fertilization impacts offspring growth. Plasma membrane Ca2+ ATPases (PMCA) extrude cytosolic Ca2+ to restore Ca2+ homeostasis. To disrupt Ca2+ signaling in vivo, we conditionally deleted PMCA1 (cKO) in oocytes. As anticipated, in vitro fertilized cKO eggs had increased Ca2+ exposure relative to controls. To assess the impact on offspring growth, cKO females were mated to wild type males to generate pups that had high Ca2+ exposure at fertilization. Because these offspring would be heterozygous, we also tested the impact of global PMCA1 heterozygosity on offspring growth. Control heterozygous pups that had normal Ca2+ at fertilization were generated by mating wild type females to heterozygous males; these control offspring weighed significantly less than their wild type siblings. However, heterozygous offspring from cKO eggs (and high Ca2+ exposure) were larger than heterozygous controls at 12 week-of-age and males had altered body composition. Our results show that global PMCA1 haploinsufficiency impacts growth and support that abnormal Ca2+ signaling after fertilization in vivo has a long-term impact on offspring weight. These findings are relevant for environmental and medical conditions affecting Ca2+ handling and for design of culture conditions and procedures for domestic animal and human assisted reproduction.
Collapse
Affiliation(s)
- Virginia Savy
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Paula Stein
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
43
|
Chen Q. Sperm RNA-mediated epigenetic inheritance in mammals: challenges and opportunities. Reprod Fertil Dev 2022; 35:118-124. [PMID: 36592983 PMCID: PMC9827497 DOI: 10.1071/rd22218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence now shows that in addition to delivering a haploid DNA, the mammalian sperm also carry various types of RNAs that respond to the paternal environment, which can mediate the intergenerational transmission of certain phenotypes to the offspring relating to the paternal environmental exposures (e.g. diet, mental stress). Improved analytical tools are beginning to decipher the complexity of sperm RNAs, RNA modifications and their spatial compartmentalisation, which support the concept of 'sperm RNA code' in programming specific offspring phenotypes during embryonic development. In this commentary article, I discuss the challenges and opportunities in solidifying the field of mammalian sperm RNA-mediated epigenetic inheritance, including the identification of the key sperm RNAs that are responsible for the paternal phenotype transmission, and the cellular and molecular events that are triggered by sperm RNAs during embryo development. I also discuss the translational application potential by harnessing the knowledge of sperm RNA code to improve farm animal production and human health.
Collapse
Affiliation(s)
- Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.,Correspondence to: Qi Chen, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA,
| |
Collapse
|
44
|
Cajachagua-Torres KN, Blaauwendraad SM, El Marroun H, Demmelmair H, Koletzko B, Gaillard R, Jaddoe VWV. Fetal Exposure to Maternal Smoking and Neonatal Metabolite Profiles. Metabolites 2022; 12:metabo12111101. [PMID: 36422240 PMCID: PMC9692997 DOI: 10.3390/metabo12111101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal tobacco exposure has persistent effects on growth and metabolism. The underlying mechanisms of these relationships are yet unknown. We investigated the associations of fetal exposure to maternal smoking with neonatal metabolite profiles. In a population-based cohort study among 828 mother-infant pairs, we assessed maternal tobacco use by questionnaire. Metabolite concentrations of amino acids, non-esterified fatty acids, phospholipids and carnitines were determined by using LC-MS/MS in cord blood samples. Metabolite ratios reflecting metabolic pathways were computed. Compared to non-exposed neonates, those exposed to first trimester only tobacco smoking had lower neonatal mono-unsaturated acyl-alkyl-phosphatidylcholines (PC.ae) and alkyl-lysophosphatidylcholines (Lyso.PC.e) 18:0 concentrations. Neonates exposed to continued tobacco smoking during pregnancy had lower neonatal mono-unsaturated acyl-lysophosphatidylcholines (Lyso.PC.a), Lyso.PC.e.16:0 and Lyso.PC.e.18:1 concentration (False discovery rate (FDR) p-values < 0.05). Dose-response associations showed the strongest effect estimates in neonates whose mothers continued smoking ≥5 cigarettes per day (FDR p-values < 0.05). Furthermore, smoking during the first trimester only was associated with altered neonatal metabolite ratios involved in the Krebs cycle and oxidative stress, whereas continued smoking during pregnancy was associated with inflammatory, transsulfuration, and insulin resistance markers (p-value < 0.05). Thus, fetal tobacco exposure seems associated with neonatal metabolite profile adaptations. Whether these changes relate to later life metabolic health should be studied further.
Collapse
Affiliation(s)
- Kim N. Cajachagua-Torres
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- The Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- The Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Hanan El Marroun
- The Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children’s Hospital, 3000 CB Rotterdam, The Netherlands
- The Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, 3062 PA Rotterdam, The Netherlands
| | - Hans Demmelmair
- Department of Pediatrics, Dr. von Huaner Children’s Hospital, LMU University Hospitals, LMU—Ludwig Maximilians Universität Munich, 80539 Munich, Germany
| | - Berthold Koletzko
- Department of Pediatrics, Dr. von Huaner Children’s Hospital, LMU University Hospitals, LMU—Ludwig Maximilians Universität Munich, 80539 Munich, Germany
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- The Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- The Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)10-704-3405
| |
Collapse
|
45
|
Boulet N, Briot A, Galitzky J, Bouloumié A. The Sexual Dimorphism of Human Adipose Depots. Biomedicines 2022; 10:2615. [PMID: 36289874 PMCID: PMC9599294 DOI: 10.3390/biomedicines10102615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 08/21/2023] Open
Abstract
The amount and the distribution of body fat exhibit trajectories that are sex- and human species-specific and both are determinants for health. The enhanced accumulation of fat in the truncal part of the body as a risk factor for cardiovascular and metabolic diseases is well supported by epidemiological studies. In addition, a possible independent protective role of the gluteofemoral fat compartment and of the brown adipose tissue is emerging. The present narrative review summarizes the current knowledge on sexual dimorphism in fat depot amount and repartition and consequences on cardiometabolic and reproductive health. The drivers of the sex differences and fat depot repartition, considered to be the results of complex interactions between sex determination pathways determined by the sex chromosome composition, genetic variability, sex hormones and the environment, are discussed. Finally, the inter- and intra-depot heterogeneity in adipocytes and progenitors, emphasized recently by unbiased large-scale approaches, is highlighted.
Collapse
Affiliation(s)
| | | | | | - Anne Bouloumié
- Inserm, Unité Mixte de Recherche (UMR) 1297, Team 1, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, F-31432 Toulouse, France
| |
Collapse
|
46
|
Maternal body mass index in early pregnancy is associated with overweight and obesity in children up to 16 years of age. PLoS One 2022; 17:e0275542. [PMID: 36201557 PMCID: PMC9536626 DOI: 10.1371/journal.pone.0275542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
AIMS Childhood obesity is an increasing public health problem. The aim of this study was to investigate the correlation between maternal body mass index in early pregnancy and body mass index in children up to the age of 16 years, and to estimate the prevalence of childhood overweight and obesity in a rural municipality in Sweden. METHODS The study population comprised 312 pregnant women who attended the antenatal clinics in Lidköping during the year 1999 and their 319 children. Data on body mass index from antenatal clinics, child health care centres and school health care were used in linear and multinomial logistic regressions adjusted for maternal age, smoking status, and parity. RESULTS Overweight or obesity were found in 23.0% of 16-year-olds. The correlation between maternal and child body mass index at all studied ages was positive and significant. Body mass index in 16-year-old boys showed the strongest correlation with maternal body mass index (adjusted r-square = 0.31). The adjusted relative-risk ratio for 16-year old children to be classified as obese as compared to normal weight, per 1 unit increase in maternal body mass index was 1.46 (95% confidence interval 1.29-1.65, p<0.001). Among adolescents with obesity, 37.6% had been overweight or obese at 4 years of age. CONCLUSIONS This study confirms the correlation between maternal and child body mass index and that obesity can be established early in childhood. Further, we showed a high prevalence of overweight and obesity in children, especially in boys, in a Swedish rural municipality. This suggests a need for early intervention in the preventive work of childhood obesity, preferably starting at the antenatal clinic and in child health care centres.
Collapse
|