1
|
Stearns V, ONeill A, Schneider BP, Skaar TC, Liu MC, Lohrisch C, Goetz MP, Vallejos CS, Sparano JA, Villa D, Silverman P, Cheema PS, Moore DF, Sledge GW. CYP2D6 activity in patients with metastatic breast cancer treated with single agent tamoxifen: results from ECOG-ACRIN E3108. Breast Cancer Res Treat 2025; 209:595-602. [PMID: 39432161 DOI: 10.1007/s10549-024-07519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE In tamoxifen-treated individuals, reduced-function genetic variants in the CYP2D6 gene or inhibition of the enzyme result in low circulating endoxifen concentrations. We assessed the impact of reduced CYP2D6 activity and circulating endoxifen concentrations on breast cancer outcomes. PATIENTS AND METHODS Patients with locally advanced or stage IV hormone receptor-positive breast cancer were enrolled in this single arm phase II trial and received open label tamoxifen 20 mg PO daily. The primary objective was to assess CYP2D6 poor metabolizer (PM) vs intermediate and normal metabolizer status (IM + NM) with progression-free survival (PFS). CYP2D6 phenotype was determined from whole blood samples (Roche Amplichip), and secondary endpoint evaluated endoxifen concentrations determined from 3 month post registration plasma samples (Quest Diagnostics). RESULTS From September 2010 to June 2013, 113 of planned 204 patients were registered to the trial and began protocol treatment. Accrual to the trial closed early due to lower-than-expected rate of CYP2D6 poor metabolizers. Median age was 62, 86% (97/113) were white, 33% (30/113) Hispanic, 83% (92/113) postmenopausal. Samples were evaluable for CYP2D6 in 75% (85/113) of patients (2/85 PM, 27/85 IM, and 56/85 NM). Median PFS for PM and IM + NM was 12.9 months and 6.9 months, respectively. Median PFS was 11.1 and 13.8 months respectively for patients with low (≤ 15.5) and high (> 15.5) endoxifen concentrations (ng/ml). CONCLUSION We did not observe significant associations between CYP2D6 metabolizer status or endoxifen with PFS. Small sample sizes and barriers to adequate samples in this trial prohibited determination of relationship between these markers and PFS. TRIAL ID NCT01124695 (registered May 14, 2010).
Collapse
Affiliation(s)
- Vered Stearns
- Weill Cornell Medicine, Meyer Cancer Center, 420 East 70th Street, 2nd Floor, New York, NY, 10021, USA.
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Anne ONeill
- Dana Farber Cancer Institute-ECOG-ACRIN Biostatistics Center, Boston, MA, USA
| | | | - Todd C Skaar
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minetta C Liu
- Natera, Inc., Austin, TX, USA
- Georgetown University, Washington, DC, USA
| | | | | | | | - Joseph A Sparano
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Montefiore Hospital and Medical Center, Bronx, NY, USA
| | - Diego Villa
- BC Cancer-Vancouver Cancer Center, Vancouver, BC, USA
| | | | | | | | - George W Sledge
- Indiana University School of Medicine, Indianapolis, IN, USA
- Caris Life Sciences, Irving, TX, USA
| |
Collapse
|
2
|
Stingl JC, Viviani R. Pharmacogenetic guided drug therapy - how to deal with phenoconversion in polypharmacy. Expert Opin Drug Metab Toxicol 2025:1-9. [PMID: 39791881 DOI: 10.1080/17425255.2025.2451440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION The prevalence of polypharmacy and the increasing availability of pharmacogenetic information in clinical practice have raised the prospect of data-driven clinical decision-making when addressing the issues of drug-drug interactions and genetic polymorphisms in metabolizing enzymes. Inhibition of metabolizing enzymes in drug interactions can lead to genotype-phenotype discrepancies (phenoconversion) that reduce the relevance of individual pharmacogenetic information. AREAS COVERED The aim of this review is to provide an overview of existing models of phenoconversion, and we discuss how phenoconversion models may be developed to estimate joint drug-interactions and genetic effects. Based on a literature search in PubMed, Google Scholar, and reference lists from review articles, we provide an overview of the current models of phenoconversion. The currently applied phenoconversion models are presented and discussed to predict the effects of drug-drug interactions while accounting for the pharmacogenetic status of patients. EXPERT OPINION While pharmacogenetic-dose recommendations alone are most relevant for rare and extreme genotypes, phenoconversion may increase the prevalence of these phenotypes. Therefore, in polypharmacy conditions, phenoconversion assessment is especially important for personalized drug therapy.
Collapse
Affiliation(s)
- Julia Carolin Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberto Viviani
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
D'Cunha R, Azam T, Kalabic J, Anschutz T, Lahat A, Pang Y. Evaluation of the Effect of Risankizumab on the Pharmacokinetics of Cytochrome P450 Substrates in Patients with Moderately to Severely Active Ulcerative Colitis or Crohn's Disease. Clin Pharmacokinet 2025; 64:143-154. [PMID: 39707077 PMCID: PMC11762434 DOI: 10.1007/s40262-024-01462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND AND OBJECTIVE The objective of this study was to characterize the effects of risankizumab on the pharmacokinetics of cytochrome P450 (CYP) 1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A substrates in patients with moderately to severely active Crohn's disease (CD) or ulcerative colitis (UC) using a cocktail approach. METHODS Patients with CD or UC (n = 20) received single doses of probe substrates for CYP1A2 (caffeine 100 mg), CYP2C9 (warfarin 10 mg), CYP2C19 (omeprazole 20 mg), CYP2D6 (metoprolol 50 mg), and CYP3A (midazolam 2 mg) before and after intravenous infusions of risankizumab 1800 mg once every 4 weeks for four doses. Serial blood samples were collected for determination of concentrations of the CYP probe drugs and metabolites with and without risankizumab. Trough samples for risankizumab were collected at sparse timepoints. RESULTS The point estimates and 90% confidence intervals for maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time zero to infinity (AUCinf) ratios for the CYP probe substrates administered with risankizumab versus without risankizumab were mostly within the 0.8-1.25 equivalence bounds, except for omeprazole and caffeine. While the upper 90% CI for caffeine AUCinf exceeded 1.25, the point estimate was a modest 1.13 and the Cmax ratio was well within 0.8-1.25. For omeprazole, while the lower bound of the 90% CI for AUCt (0.715) and AUCinf (0.624) extended slightly below the default equivalence limit, the exposures of its metabolite, 5-hydroxy-omeprazole, formed via CYP2C19, were comparable before and after risankizumab treatment, indicating a limited impact of risankizumab. No new safety issues were identified in this study. CONCLUSION The totality of data indicated a lack of clinically relevant impact of risankizumab on the evaluated CYP enzymes in patients with CD/UC. CLINICALTRIALS GOV: NCT04254783.
Collapse
Affiliation(s)
- Ronilda D'Cunha
- Clinical Pharmacology, AbbVie Inc., Dept R4PK, Bldg AP31-3, 1 North Waukegan Road, North Chicago, IL, 60064-1802, USA
| | - Tofial Azam
- Clinical Pharmacology, AbbVie Inc., Dept R4PK, Bldg AP31-3, 1 North Waukegan Road, North Chicago, IL, 60064-1802, USA
| | | | - Toni Anschutz
- Clinical Pharmacology, AbbVie Inc., Dept R4PK, Bldg AP31-3, 1 North Waukegan Road, North Chicago, IL, 60064-1802, USA
| | - Adi Lahat
- Chaim Sheba Medical Center, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
- Samson Assuta Ashdod Medical Center, Affiliated with Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Yinuo Pang
- Clinical Pharmacology, AbbVie Inc., Dept R4PK, Bldg AP31-3, 1 North Waukegan Road, North Chicago, IL, 60064-1802, USA.
| |
Collapse
|
4
|
Poikola S, von Plato H, Harju J, Kiiski JI, Mattila K, Olkkola KT, Niemi M, Kalso E, Kontinen V. Does cytochrome 2D6 genotype affect the analgesic efficacy of codeine after ambulatory surgery? Prospective trial in 987 adults. Acta Anaesthesiol Scand 2025; 69:e14549. [PMID: 39542691 DOI: 10.1111/aas.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Paracetamol-codeine combination tablet is widely used in pain management after day surgery. For safety reasons, its use has decreased in recent years. Codeine is a prodrug metabolised in the liver by the cytochrome P450 2D6 (CYP2D6) enzyme to morphine that produces the analgesic effect of codeine. CYP2D6 is highly polymorphic, and based on genotypes, individuals can be divided into four categories: poor-, intermediate-, normal- and ultrarapid metabolisers. Differences in morphine and its metabolite concentrations have been described between different CYP2D6 genotypes following codeine administration. The aim of the study was to investigate the possible effect of CYP2D6 genotype on codeine efficacy and adverse effects in a large cohort of adult patients undergoing ambulatory surgery. METHODS A total of 987 patients scheduled for ambulatory surgery were included in the analyses. Operation types or anaesthesia methods were not limited in the study protocol. All study patients received a fixed dose of paracetamol (1000 mg) and codeine (60 mg) orally for premedication. A blood sample was drawn to identify the genotype of CYP2D6. At home, the first-line analgesic was paracetamol-codeine combination of 1-2 tablets at 1-3 times per day. Data on the efficacy and side effects of codeine were collected on the day of surgery and the following two postoperative days. RESULTS Of the studied patients, 37 (3.7%) were poor CYP2D6 metabolisers, 264 (27%) were intermediate, 623 (63%) were normal and 63 (6.4%) were ultrarapid metabolisers. Activity scores ranged from 0 to 4. CYP2D6 genotype was not associated in a statistically significant manner with postoperative pain, opioid consumption or the adverse effects of codeine, except for constipation at home. Poor CYP2D6 metabolisers reported significantly less severe constipation compared with normal metabolisers (p = .009, OR 0.40, 95% Cl 0.20-0.80). CONCLUSION CYP2D6 genotype appears to be of minor importance for the analgesic efficacy of oral paracetamol-codeine combination therapy after ambulatory surgery in adult patients undergoing similar types of surgery as in the present study but it may affect the risk of constipation.
Collapse
Affiliation(s)
- Satu Poikola
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Perioperative and Intensive Care, Helsinki University Hospital, Helsinki, Finland
| | - Hanna von Plato
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Perioperative and Intensive Care, Helsinki University Hospital, Helsinki, Finland
| | - Jukka Harju
- Gastroenterological surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Clinical Pharmacology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Klaus T Olkkola
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Perioperative and Intensive Care, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Perioperative and Intensive Care, Helsinki University Hospital, Helsinki, Finland
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Vesa Kontinen
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Perioperative and Intensive Care, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
De Brabander EY, van Amelsvoort T, van Westrhenen R. Unidentified CYP2D6 genotype does not affect pharmacological treatment for patients with first episode psychosis. J Psychopharmacol 2024; 38:1111-1121. [PMID: 39344086 PMCID: PMC11528939 DOI: 10.1177/02698811241279022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Research on the pharmacogenetic influence of hepatic CYP450 enzyme 2D6 (CYP2D6) on metabolism of drugs for psychosis and associated outcome has been inconclusive. Some results suggest increased risk of adverse reactions in poor and intermediate metabolizers, while others find no relationship. However, retrospective designs may fail to account for the long-term pharmacological treatment of patients. Previous studies found that clinicians adapted risperidone dose successfully without knowledge of patient CYP2D6 phenotype. AIM Here, we aimed to replicate the results of those studies in a Dutch cohort of patients with psychosis (N = 418) on pharmacological treatment. METHOD We compared chlorpromazine-equivalent dose between CYP2D6 metabolizer phenotypes and investigated which factors were associated with dosage. This was repeated in two smaller subsets; patients prescribed pharmacogenetics-actionable drugs according to published guidelines, and risperidone-only as done previously. RESULTS We found no relationship between chlorpromazine-equivalent dose and phenotype in any sample (complete sample: p = 0.3, actionable-subset: p = 0.82, risperidone-only: p = 0.34). Only clozapine dose was weakly associated with CYP2D6 phenotype (p = 0.03). CONCLUSION Clinicians were thus not intuitively adapting dose to CYP2D6 activity in this sample, nor was CYP2D6 activity associated with prescribed dose. Although the previous studies could not be replicated, this study may provide support for existing and future pharmacogenetic research.
Collapse
Affiliation(s)
- Emma Y De Brabander
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Centre, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Centre, The Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Groep BV, The Netherlands
- Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, UK
- St. John’s National Academy of Health Sciences, Bangalore, India
| | | |
Collapse
|
6
|
De Brabander EY, Breddels E, van Amelsvoort T, van Westrhenen R. Clinical effects of CYP2D6 phenoconversion in patients with psychosis. J Psychopharmacol 2024; 38:1095-1110. [PMID: 39310932 PMCID: PMC11528948 DOI: 10.1177/02698811241278844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND Pharmacogenetics is considered a promising avenue for improving treatment outcomes, yet evidence arguing for the use of pharmacogenetics in the treatment of psychotic disorders is mixed and clinical usefulness is under debate. Many patients with psychosis use multiple medications, which can alter the metabolic capacity of CYP enzymes, a process called phenoconversion. In clinical studies, treatment outcomes of drugs for psychosis management may have been influenced by phenoconversion. AIM Here we evaluate the impact and predictive value of CYP2D6 phenoconversion in patients with psychotic disorders under pharmacological treatment. METHOD Phenoconversion-corrected phenotype was determined by accounting for inhibitor strength. Phenoconversion-corrected and genotype-predicted phenotypes were compared in association with side effects, subjective well-being and symptom severity. RESULTS Phenoconversion led to a large increase in poor metabolizers (PMs; 17-82, 16% of sample), due to concomitant use of the serotonin reuptake inhibitors fluoxetine and paroxetine. Neither CYP2D6-predicted nor phenoconversion-corrected phenotype was robustly associated with outcome measures. Risperidone, however, was most affected by the CYP2D6 genotype. CONCLUSION Polypharmacy and phenoconversion were prevalent and accounted for a significant increase in PMs. CYP2D6 may play a limited role in side effects, symptoms and well-being measures. However, due to the high frequency of occurrence, phenoconversion should be considered in future clinical trials.
Collapse
Affiliation(s)
- Emma Y De Brabander
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience, Maastricht University (Medical Center), Maastricht, The Netherlands
| | - Esmee Breddels
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Research Institute for Mental Health and Neuroscience, Maastricht University (Medical Center), Maastricht, The Netherlands
| | - Roos van Westrhenen
- Outpatient Clinic Pharmacogenetics, Parnassia Groep, Amsterdam, The Netherlands
- Institute of Psychiatry, Psychology, and Neurosciences, King’s College London, London, UK
- St. John’s National Academy of Health Sciences, Bangalore, India
| | | |
Collapse
|
7
|
Bishop JR, Zhou C, Gaedigk A, Krone B, Kittles R, Cook EH, Newcorn JH, Stein MA. Dopamine Transporter and CYP2D6 Gene Relationships with Attention-Deficit/Hyperactivity Disorder Treatment Response in the Methylphenidate and Atomoxetine Crossover Study. J Child Adolesc Psychopharmacol 2024; 34:458-469. [PMID: 39387268 DOI: 10.1089/cap.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background: Few biological or clinical predictors guide medication selection and/or dosing for attention-deficit/hyperactivity disorder (ADHD). Accumulating data suggest that genetic factors may contribute to clinically relevant pharmacodynamic (e.g., dopamine transporter-SLC6A3 also commonly known as DAT1) or pharmacokinetic (e.g., the drug metabolizing enzyme Cytochrome P450 2D6 CYP2D6) effects of methylphenidate (stimulant) and atomoxetine (non-stimulant), which are commonly prescribed medications. This is the first study of youth with ADHD exposed to both medications examining the clinical relevance of genetic variation on treatment response. Methods: Genetic variations in DAT1 and CYP2D6 were examined to determine how they modified time relationships with changes in ADHD symptoms over a 4-week period in 199 youth participating in a double-blind crossover study following a stepped titration dose optimization protocol. Results: Our results identified trends in the modification effect from CYP2D6 phenotype and the time-response relationship between ADHD total symptoms for both medications (atomoxetine [ATX]: p = 0.058, Methylphenidate [MPH]: p = 0.044). There was also a trend for the DAT1 3' untranslated region (UTR) variable number of tandem repeat (VNTR) genotype to modify dose relationships with ADHD-RS total scores for atomoxetine (p = 0.029). Participants with DAT1 9/10 repeat genotypes had a more rapid dose-response to ATX compared to 10/10, while those with 9/9 genotypes did not respond as doses were increased. Regardless of genotype, ADHD symptoms and doses were similar across CYP2D6 metabolizer groups after 4 weeks of treatment. Conclusions: Most children with ADHD who were CYP2D6 normal metabolizers or had DAT1 10/10 or 9/10 genotypes responded well to both medications. While we observed some statistically significant effects of CYP2D6 and DAT1 with treatment response over time, our data indicate that genotyping for clinical purposes may have limited utility to guide treatment decisions for ATX or MPH because both medications were generally effective in the studied cohort after 3 weeks of titration to higher doses. The potential DAT1 association with ATX treatment is a novel finding, consistent with prior reports suggesting an association of the DAT1 in 9/9 genotypes with lower responsive rates to treatment at low and moderate doses.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chuan Zhou
- Seattle Children's, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Andrea Gaedigk
- Children's Mercy Research Institute (CMRI), Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Beth Krone
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rick Kittles
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Edwin H Cook
- University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Mark A Stein
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Ashraf MW, Poikola S, Neuvonen M, Kiiski JI, Kontinen VK, Olkkola KT, Backman JT, Niemi M, Saari TI. Population Pharmacokinetic Quantification of CYP2D6 Activity in Codeine Metabolism in Ambulatory Surgical Patients for Model-Informed Precision Dosing. Clin Pharmacokinet 2024; 63:1547-1560. [PMID: 39441506 PMCID: PMC11573879 DOI: 10.1007/s40262-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Codeine metabolism in humans is complex due to the involvement of multiple cytochrome P450 (CYP) enzymes, and has a strong genetic underpinning, which determines the levels of relevant CYP450 enzyme expression in vivo. Polymorphic CYP2D6 metabolises codeine to morphine via O-demethylation, while a strong correlation between CYP2D6 phenotype and opioidergic adverse effects of codeine is well documented. The aim of this study was to quantify the effect of CYP2D6 genotype on the biotransformation of codeine. METHODS We conducted a prospective clinical trial with 1000 patients, during which ambulatory patients were administered 60 mg of codeine preoperatively and the association between CYP2D6 activity and morphine exposure across various CYP2D6 genotypes was quantified using a population pharmacokinetic model. Plasma concentration data for codeine and its primary metabolites were obtained from 997 patients and CYP2D6 genotype was screened for study subjects, and respective sums of activity scores assigned for each CYP2D6 allele were used as covariates in model development. RESULTS Our final model predicts the disposition of codeine and the formation of morphine, codeine-6-glucuronide and morphine-3-glucuronide adequately while accounting for variability in morphine exposure on the basis of CYP2D6 genotype. In agreement with previous results, patients with decreased function alleles (CYP2D6*10 and *41) showed varying levels of decrease in CYP2D6 activity that were inconsistent with increasing activity scores. Model simulations demonstrate that morphine concentrations in ultrarapid CYP2D6 metabolisers reach systemic concentrations that can potentially cause respiratory depression (over 9.1 ng/mL), and have 218% higher exposure (19 versus 8.7 µg · h/L, p < 0.001) to morphine than normal metabolisers. Similarly, poor and intermediate metabolisers had significantly reduced morphine exposure (1.0 and 3.7 versus 8.7 µg · h/L, p < 0.001) as compared with normal metabolisers. CONCLUSIONS Our final model leads the way in implementing model-informed precision dosing in codeine therapy and identifies the use of genetic testing as an integral component in the effort to implement rational pharmacotherapy with codeine.
Collapse
Affiliation(s)
- Muhammad Waqar Ashraf
- Department of Anaesthesiology and Intensive Care, University of Turku, Kiinamyllynkatu 4-8, P.O. Box 52, 20520, Turku, Finland
| | - Satu Poikola
- Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, Jorvi Hospital, University of Helsinki, HUS Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vesa K Kontinen
- Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, Jorvi Hospital, University of Helsinki, HUS Helsinki University Hospital, Helsinki, Finland
| | - Klaus T Olkkola
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki, HUS Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Teijo I Saari
- Department of Anaesthesiology and Intensive Care, University of Turku, Kiinamyllynkatu 4-8, P.O. Box 52, 20520, Turku, Finland.
- Division of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland.
| |
Collapse
|
9
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
10
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001049. [PMID: 39406507 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, e.g., somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for more than five decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information about the tumor and the germline, taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to consider PGx data in interdisciplinary molecular tumor boards, where cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. Significance Statement The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, full potential of targeted therapy remains untapped due to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
| | | | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Germany
| | | | | | - Matthias Schwab
- Dr Margerte Fischer Bosch Institute of Clinical Pharmacology, Germany
| |
Collapse
|
11
|
Sherman CA, Claw KG, Lee SB. Pharmacogenetic analysis of structural variation in the 1000 genomes project using whole genome sequences. Sci Rep 2024; 14:22774. [PMID: 39354004 PMCID: PMC11445439 DOI: 10.1038/s41598-024-73748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
While significant strides have been made in understanding pharmacogenetics (PGx) and gene-drug interactions, there remains limited characterization of population-level PGx variation. This study aims to comprehensively profile global star alleles (haplotype patterns) and phenotype frequencies in 58 pharmacogenes associated with drug absorption, distribution, metabolism, and excretion. PyPGx, a star-allele calling tool, was employed to identify star alleles within high-coverage whole genome sequencing (WGS) data from the 1000 Genomes Project (N = 2504; 26 global populations). This process involved detecting structural variants (SVs), such as gene deletions, duplications, hybrids, as well as single nucleotide variants and insertion-deletion variants. The majority of our PyPGx calls for star alleles and phenotype frequencies aligned with the Pharmacogenomics Knowledge Base, although notable population-specific frequencies differed at least twofold. Validation efforts confirmed known SVs while uncovering several novel SVs currently undefined as star alleles. Additionally, we identified 210 small nucleotide variants associated with severe functional consequences that are not defined as star alleles. The study serves as a valuable resource, providing updated population-level star allele and phenotype frequencies while incorporating SVs. It also highlights the burgeoning potential of cost-effective WGS for PGx genotyping, offering invaluable insights to improve tailored drug therapies across diverse populations.
Collapse
Affiliation(s)
- Carissa A Sherman
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katrina G Claw
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
12
|
Viviani R, Berres J, Stingl JC. Phenotypic Models of Drug-Drug-Gene Interactions Mediated by Cytochrome Drug-Metabolizing Enzymes. Clin Pharmacol Ther 2024; 116:592-601. [PMID: 38318716 DOI: 10.1002/cpt.3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Genetic polymorphisms in drug metabolizing enzymes and drug-drug interactions are major sources of inadequate drug exposure and ensuing adverse effects or insufficient responses. The current challenge in assessing drug-drug gene interactions (DDGIs) for the development of precise dose adjustment recommendation systems is to take into account both simultaneously. Here, we analyze the static models of DDGI from in vivo data and focus on the concept of phenoconversion to model inhibition and genetic polymorphisms jointly. These models are applicable to datasets where pharmacokinetic information is missing and are being used in clinical support systems and consensus dose adjustment guidelines. We show that all such models can be handled by the same formal framework, and that models that differ at first sight are all versions of the same linear phenoconversion model. This model includes the linear pharmacogenetic and inhibition models as special cases. We highlight present challenges in this endeavor and the open issues for future research in developing DDGI models for recommendation systems.
Collapse
Affiliation(s)
- Roberto Viviani
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | - Judith Berres
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
13
|
Skaar TC, Myers RA, Fillingim RB, Callaghan JT, Cicali E, Eadon MT, Elwood EN, Ginsburg GS, Lynch S, Nguyen KA, Obeng AO, Park H, Pratt VM, Rosenman M, Sadeghpour A, Shuman S, Singh R, Tillman EM, Volpi S, Wiisanen K, Winterstein AG, Horowitz CR, Voora D, Orlando L, Chakraborty H, Van Driest S, Peterson JF, Cavallari LA, Johnson JA, Dexter PR. Implementing a pragmatic clinical trial to tailor opioids for chronic pain on behalf of the IGNITE ADOPT PGx investigators. Clin Transl Sci 2024; 17:e70005. [PMID: 39177194 PMCID: PMC11342225 DOI: 10.1111/cts.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024] Open
Abstract
Chronic pain is a prevalent condition with enormous economic burden. Opioids such as tramadol, codeine, and hydrocodone are commonly used to treat chronic pain; these drugs are activated to more potent opioid receptor agonists by the hepatic CYP2D6 enzyme. Results from clinical studies and mechanistic understandings suggest that CYP2D6-guided therapy will improve pain control and reduce adverse drug events. However, CYP2D6 is rarely used in clinical practice due in part to the demand for additional clinical trial evidence. Thus, we designed the ADOPT-PGx (A Depression and Opioid Pragmatic Trial in Pharmacogenetics) chronic pain study, a multicenter, pragmatic, randomized controlled clinical trial, to assess the effect of CYP2D6 testing on pain management. The study enrolled 1048 participants who are taking or being considered for treatment with CYP2D6-impacted opioids for their chronic pain. Participants were randomized to receive immediate or delayed (by 6 months) genotyping of CYP2D6 with clinical decision support (CDS). CDS encouraged the providers to follow the CYP2D6-guided trial recommendations. The primary study outcome is the 3-month absolute change in the composite pain intensity score assessed using Patient-Reported Outcomes Measurement Information System (PROMIS) measures. Follow-up will be completed in July 2024. Herein, we describe the design of this trial along with challenges encountered during enrollment.
Collapse
Affiliation(s)
- Todd C. Skaar
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachel A. Myers
- Department of Medicine, Clinical Research UnitDuke University School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
| | - Roger B. Fillingim
- Department of Community Dentistry and Behavioral ScienceUniversity of Florida College of DentistryGainesvilleFloridaUSA
| | - John T. Callaghan
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Emily Cicali
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
| | - Michael T. Eadon
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
- Division of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Erica N. Elwood
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
| | | | - Sheryl Lynch
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Khoa A. Nguyen
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
| | - Aniwaa Owusu Obeng
- Pharmacy DepartmentMount Sinai Health SystemNew YorkNew YorkUSA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Division of General Internal MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Haesuk Park
- Department of Pharmaceutical Outcomes and PolicyCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
- Center for Drug Evaluation and SafetyUniversity of FloridaGainesvilleFloridaUSA
| | - Victoria M. Pratt
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Marc Rosenman
- Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
- Ann & Robert H. Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Azita Sadeghpour
- Duke Precision Medicine Program, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | | | - Rajbir Singh
- Department of MedicineMeharry Medical CollegeNashvilleTennesseeUSA
| | - Emma M. Tillman
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Simona Volpi
- Division of Genomic MedicineNational Human Genome Research InstituteBethesdaMarylandUSA
| | - Kristin Wiisanen
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
| | - Almut G. Winterstein
- Department of Pharmaceutical Outcomes and PolicyCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
- Center for Drug Evaluation and SafetyUniversity of FloridaGainesvilleFloridaUSA
| | - Carol R. Horowitz
- Institute for Health Equity Research, Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Deepak Voora
- Duke Precision Medicine Program, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Lori Orlando
- Duke Precision Medicine Program, Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | | | - Sara Van Driest
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Present address:
All of Us Research Program, Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Josh F. Peterson
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Larisa A. Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineCollege of Pharmacy, University of FloridaGainesvilleFloridaUSA
- Present address:
Center for Clinical and Translational ScienceColleges of Medicine and Pharmacy, The Ohio State UniversityColumbusOhioUSA
| | - Paul R. Dexter
- Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Regenstrief Institute, Inc.IndianapolisIndianaUSA
| | | |
Collapse
|
14
|
Muriel J, Escorial M, Carratalá C, Margarit C, Barrachina J, López A, Gallardo E, Kringen MK, Peiró AM. Use of CYP2D6 substrates and inhibitors during pain management with analgesic opioids: Drug-drug interactions that lead to lack of analgesic effectiveness. Biomed Pharmacother 2024; 176:116882. [PMID: 38876046 DOI: 10.1016/j.biopha.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Several opioids have pharmacogenetic and drug-drug interactions which may compromise their analgesic effectiveness, but are not routinely implemented into supportive pain management. We hypothesized that CYP2D6 phenotypes and concomitant use of CYP2D6 substrates or inhibitors would correlate with opioid analgesic outcomes. MATERIALS AND METHODS An observational cross-sectional study was conducted with 263 adult chronic non cancer pain (CNCP) patients from a real-world pain unit under long-term CYP2D6-related opioid treatment (tramadol, hydromorphone, tapentadol or oxycodone). Metabolizer phenotype (ultrarapid [UM], normal [NM], intermediate [IM] or poor [PM]) was determined by the CYP2D6 genotype. The socio-demographic (sex, age, employment status), clinical (pain intensity and relief, neuropathic component, quality of life, disability, anxiety and depression), pharmacological (opioid doses and concomitant pharmacotherapy) and safety (adverse events) variables were recorded. RESULTS The whole population (66 % female, 65 (14) years old, 70 % retired and 63 % attended for low back pain) were classified as PM (5 %), IM (32 %), NM (56 %) and UM (6 %). Multiple linear and logistic regressions showed higher pain intensity and neuropathic component at younger ages when using any CYP2D6 substrate (p = 0.022) or inhibitor (p = 0.030) drug, respectively, with poorer pain relief when CYP2D6 inhibitors (p=0.030) were present. CONCLUSION The concomitant use of CYP2D6 substrates or inhibitors during opioid therapy for CNCP may result in lack of analgesic effectiveness. This aspect could be relevant for pharmacological decision making during CNCP management.
Collapse
Affiliation(s)
- J Muriel
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, c/Pintor Baeza, 12, Alicante 03010, Spain
| | - M Escorial
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, c/Pintor Baeza, 12, Alicante 03010, Spain; Occupational Observatory, University Miguel Hernández, Avda. de la Universidad s/n, Elche 03202, Spain
| | - C Carratalá
- Occupational Observatory, University Miguel Hernández, Avda. de la Universidad s/n, Elche 03202, Spain
| | - C Margarit
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, c/Pintor Baeza, 12, Alicante 03010, Spain; Pain Unit, Dr. Balmis General University Hospital, c/ Pintor Baeza, 12, Alicante 03010, Spain
| | - J Barrachina
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, c/Pintor Baeza, 12, Alicante 03010, Spain
| | - A López
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, c/Pintor Baeza, 12, Alicante 03010, Spain; Occupational Observatory, University Miguel Hernández, Avda. de la Universidad s/n, Elche 03202, Spain
| | - E Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, Covilhã 6201-506, Portugal
| | - M K Kringen
- Department of Psychopharmacology, Diakonhjemmet Hospital, Forskningsveien 7, Oslo 0373, Norway
| | - A M Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Dr. Balmis General University Hospital, c/Pintor Baeza, 12, Alicante 03010, Spain; Pain Unit, Dr. Balmis General University Hospital, c/ Pintor Baeza, 12, Alicante 03010, Spain; Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, Elche 03202, Spain.
| |
Collapse
|
15
|
Pham M, Caglayan A. A Comprehensive Review of Schizophrenia and Antipsychotic Metabolism as a Predictor of Treatment Response. Cureus 2024; 16:e65279. [PMID: 39184784 PMCID: PMC11343069 DOI: 10.7759/cureus.65279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Some patients with schizophrenia fail to respond to standard antipsychotics and are considered treatment-resistant. In these cases, clozapine is the only antipsychotic with proven efficacy, but its use is complicated by severe adverse effects, complex monitoring requirements, and non-response. Variation within the CYP450 enzymes CYP1A2, CYP2D6, CYP3A4, and CYP2C19 has been linked to the differential metabolism of antipsychotics. Testing for CYP450 single nucleotide polymorphisms may be a useful predictor of treatment resistance and could inform pharmacogenetic recommendations to identify potential treatment non-responders. Nonetheless, it remains uncertain whether differential antipsychotic metabolism is directly related to treatment efficacy. This comprehensive narrative review endeavours to delve into the molecular and genetic basis of schizophrenia, and discuss the current treatments available. In particular, we aim to examine the aetiology of treatment resistance in schizophrenia through available literature and discuss current challenges within the field.
Collapse
Affiliation(s)
- Mia Pham
- General Internal Medicine, St. George's Hospital, London, GBR
| | - Aydin Caglayan
- General Surgery, Medway NHS Foundation Trust, London, GBR
| |
Collapse
|
16
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
17
|
Cheng S, Al-Kofahi M, Leeder JS, Brown JT. Population Pharmacokinetic Analysis of Atomoxetine and its Metabolites in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. Clin Pharmacol Ther 2024; 115:1033-1043. [PMID: 38117180 DOI: 10.1002/cpt.3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Atomoxetine (ATX) is a non-stimulant used to treat attention-deficit/hyperactivity disorder (ADHD) and systemic exposure is highly variable due to polymorphic cytochrome P450 2D6 (CYP2D6) activity. The objective of this study was to characterize the time course of ATX and metabolites (4-hydroxyatomoxetine (4-OH); N-desmethylatomoxetine (NDA); and 2-carboxymethylatomoxetine (2-COOH)) exposure following oral ATX dosing in children with ADHD to support individualized dosing. A nonlinear mixed-effect modeling approach was used to analyze ATX, 4-OH, and NDA plasma and urine, and 2-COOH urine profiles obtained over 24-72 hours from children with ADHD (n = 23) following a single oral ATX dose. Demographics and CYP2D6 activity score (AS) were evaluated as covariates. Simulations were performed to explore the ATX dosing in subjects with various CYP2D6 AS. A simultaneous pharmacokinetic modeling approach was used in which a model for ATX, 4-OH, and NDA in plasma and urine, and 2-COOH in urine was developed. Plasma ATX, 4-OH, and NDA were modeled using two-compartment models with first-order elimination. CYP2D6 AS was a significant determinant of ATX apparent oral clearance (CL/F), fraction metabolized to 4-OH, and systemic exposure of NDA. CL/F of ATX varied almost 7-fold across the CYP2D6 AS groups: AS 2: 20.02 L/hour; AS 1: 19.00 L/hour; AS 0.5: 7.47 L/hour; and AS 0: 3.10 L/hour. The developed model closely captures observed ATX, 4-OH, and NDA plasma and urine, and 2-COOH urine profiles. Application of the model shows the potential for AS-based dosing recommendations for improved individualized dosing.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City and University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Jacob T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, Minnesota, USA
| |
Collapse
|
18
|
Abdel Shaheed C, Hayes C, Maher CG, Ballantyne JC, Underwood M, McLachlan AJ, Martin JH, Narayan SW, Sidhom MA. Opioid analgesics for nociceptive cancer pain: A comprehensive review. CA Cancer J Clin 2024; 74:286-313. [PMID: 38108561 DOI: 10.3322/caac.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023] Open
Abstract
Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.
Collapse
Affiliation(s)
- Christina Abdel Shaheed
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Christopher Hayes
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Christopher G Maher
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Jane C Ballantyne
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Martin Underwood
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
- University Hospitals of Coventry and Warwickshire, Coventry, United Kingdom
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer H Martin
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sujita W Narayan
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark A Sidhom
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
- South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Wang Z, Liranso T, Maldonado-Cruz Z, Kosheleff AR, Nasser A. Impact of Viloxazine Extended-Release Capsules (Qelbree ®) on Select Cytochrome P450 Enzyme Activity and Evaluation of CYP2D6 Genetic Polymorphisms on Viloxazine Pharmacokinetics. Clin Drug Investig 2024; 44:303-317. [PMID: 38598106 PMCID: PMC11088557 DOI: 10.1007/s40261-024-01356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND OBJECTIVE Viloxazine extended-release (ER) [Qelbree®] is a nonstimulant attention-deficit/hyperactivity disorder (ADHD) treatment. In vitro studies suggested potential for viloxazine to inhibit cytochrome 450 (CYP) enzymes 1A2, 2B6, 2D6 and 3A4. This clinical study therefore evaluated viloxazine ER effects on index substrates for CYP1A2, 2D6, and 3A4, and secondarily evaluated the impact of CYP2D6 polymorphisms on viloxazine pharmacokinetics. METHODS Thirty-seven healthy subjects received a modified Cooperstown cocktail (MCC; caffeine 200 mg, dextromethorphan 30 mg, midazolam 0.025 mg/kg) on Day 1, viloxazine ER 900 mg/day on Days 3-5, and a combination of viloxazine ER 900 mg and MCC on Day 6. Viloxazine ER effects on MCC substrates were evaluated using analysis of variance. The impact of CYP2D6 genetic polymorphisms on steady-state viloxazine plasma concentrations was evaluated using Student's t test assessing pharmacokinetic parameter differences between poor versus extensive metabolizers. RESULTS The least squares geometric mean ratio [GMR%] (90% CI) of MCC substrate + viloxazine ER/MCC substrate alone for caffeine maximum concentration (Cmax), area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUCt), and area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC∞) was 99.11 (95.84-102.49), 436.15 (398.87-476.92), and 583.35 (262.41-1296.80), respectively; 150.76 (126.03-180.35), 185.76 (155.01-222.61), and 189.71 (160.37-224.42) for dextromethorphan Cmax, AUCt, and AUC∞, respectively; and 112.81 (104.71-121.54), 167.56 (153.05-183.45), and 168.91 (154.38-184.80) for midazolam Cmax, AUCt, and AUC∞, respectively. At steady state, viloxazine least squares GMR (90% CI) for poor/extensive CYP2D6 metabolizers were Cmax 120.70 (102.33-142.37) and area under the plasme concentration-time curve from time 0 to 24 hours (AUC0-24 125.66 (105.36-149.87)). CONCLUSION Viloxazine ER is a strong CYP1A2 inhibitor and a weak CYP2D6 and CYP3A4 inhibitor. CYP2D6 polymorphisms did not meaningfully alter the viloxazine ER pharmacokinetic profile.
Collapse
Affiliation(s)
- Zhao Wang
- Supernus Pharmaceuticals, Inc., 9715 Key West Avenue, Rockville, MD, 20850, USA.
| | - Tesfaye Liranso
- Supernus Pharmaceuticals, Inc., 9715 Key West Avenue, Rockville, MD, 20850, USA
| | | | - Alisa R Kosheleff
- Supernus Pharmaceuticals, Inc., 9715 Key West Avenue, Rockville, MD, 20850, USA
| | - Azmi Nasser
- Supernus Pharmaceuticals, Inc., 9715 Key West Avenue, Rockville, MD, 20850, USA
| |
Collapse
|
20
|
Knuijver T, ter Heine R, Schellekens AFA, Heydari P, Lucas L, Westra S, Belgers M, van Oosteren T, Verkes RJ, Kramers C. The pharmacokinetics and pharmacodynamics of ibogaine in opioid use disorder patients. J Psychopharmacol 2024; 38:481-488. [PMID: 38519421 PMCID: PMC11102648 DOI: 10.1177/02698811241237873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
OBJECTIVE Ibogaine is a hallucinogenic drug that may be used to treat opioid use disorder (OUD). The relationships between pharmacokinetics (PKs) of ibogaine and its metabolites and their clinical effects on side effects and opioid withdrawal severity are unknown. We aimed to study these relationships in patients with OUD undergoing detoxification supported by ibogaine. METHODS The study was performed in 14 subjects with OUD. They received a single dose of 10mg/kg ibogaine hydrochloride. Plasma PKs of ibogaine, noribogaine, and noribogaine glucuronide were obtained during 24 h. Cytochrome P450 isoenzyme 2D6 (CYP2D6) genotyping was performed. The PKs were analyzed by means of nonlinear mixed effects modeling and related with corrected QT interval (QTc) prolongation, cerebellar ataxia, and opioid withdrawal severity. RESULTS The PK of ibogaine were highly variable and significantly correlated to CYP2D6 genotype (p < 0.001). The basic clearance of ibogaine (at a CYP2D6 activity score (AS) of 0) was 0.82 L/h. This increased with 30.7 L/h for every point of AS. The relation between ibogaine plasma concentrations and QTc was best described by a sigmoid Emax model. Spearman correlations were significant (p < 0.03) for ibogaine but not noribogaine with QTc (p = 0.109) and cerebellar effects (p = 0.668); neither correlated with the severity of opioid withdrawal symptoms. CONCLUSIONS The clearance of ibogaine is strongly related to CYPD2D6 genotype. Ibogaine cardiac side effects (QTc time) and cerebellar effects are most likely more driven by ibogaine rather than noribogaine. Future studies should aim at exploring lower doses and/or applying individualized dosing based on CYP2D6 genotype.
Collapse
Affiliation(s)
- Thomas Knuijver
- IrisZorg, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands
| | - Rob ter Heine
- Department of Pharmacy, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Arnt F. A. Schellekens
- Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands
- Department of Psychiatry, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Paniz Heydari
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luc Lucas
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Westra
- Department of Cardiology, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Maarten Belgers
- IrisZorg, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands
| | | | - Robbert Jan Verkes
- Department of Psychiatry, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Pompestichting, Nijmegen, The Netherlands
| | - Cornelis Kramers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Wang Z, Gao Y, Ji X, Wu T, Pu L, Qiu W. Effects of CYP2D6 *10 and *41 Variants in Healthy Chinese Men on the Pharmacokinetics of Dapoxetine. J Clin Pharmacol 2024; 64:601-608. [PMID: 38059315 DOI: 10.1002/jcph.2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Dapoxetine is a selective serotonin reuptake inhibitor (SSRI) used to treat premature ejaculation (PE), and is mainly metabolized by CYP2D6, CYP3A4, and flavin-containing monooxygenase 1. The purpose of the study was to evaluate the effect of CYP2D6 polymorphism on the pharmacokinetics of dapoxetine in healthy Chinese men. Thirty-nine subjects who received a single oral dose of 30 mg dapoxetine hydrochloride were classified based on their CYP2D6 genotype: *1/*1 (n = 9), *1/*41 (n = 1), *1/*10 (n = 12), *10/*41 (n = 3), or *10/*10 (n = 14). The difference in pharmacokinetic parameters between different genotype groups was analyzed and then scored according to the activity score system. Compared with the wild-type subjects of CYP2D6 *1/*1, the peak plasma concentration (Cmax) and the area under the plasma drug concentration-time curve (AUCinf) of dapoxetine in the *10/*10 and *10/*41 groups were notably increased (P ≤ .05). Significant differences in Cmax, AUC, volume of distribution/bioavailability (V/F) and clearance/bioavailability (CL/F) were observed among dapoxetine activity score groups (P ≤ .05). The AUCinf was increased significantly (154% and 89.73%, P ≤ .05) and the Cmax was increased significantly (73.45% and 42.67%, P ≤ .05) in CYP2D6 *10/*41 subjects, compared with CYP2D6 *1/*1 and *1/*10 subjects. The results obtained indicated that CYP2D6 *10 and *41 polymorphisms have significant effects on the pharmacokinetic properties of dapoxetine.
Collapse
Affiliation(s)
- Zhipeng Wang
- School of Pharmacy Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Gao
- School of Pharmacy Lanzhou University, Lanzhou, Gansu, China
| | - Xingfang Ji
- School of Pharmacy Lanzhou University, Lanzhou, Gansu, China
| | - Tong Wu
- School of Pharmacy Lanzhou University, Lanzhou, Gansu, China
| | - Libin Pu
- School of Pharmacy Lanzhou University, Lanzhou, Gansu, China
| | - Wen Qiu
- National Drug Clinical Trial Institution, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, Pryce CR, Vollenweider FX, Liechti ME, Duthaler U. In vitro and in vivo metabolism of psilocybin's active metabolite psilocin. Front Pharmacol 2024; 15:1391689. [PMID: 38741590 PMCID: PMC11089204 DOI: 10.3389/fphar.2024.1391689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
In vivo, psilocybin is rapidly dephosphorylated to psilocin which induces psychedelic effects by interacting with the 5-HT2A receptor. Psilocin primarily undergoes glucuronidation or conversion to 4-hydroxyindole-3-acetic acid (4-HIAA). Herein, we investigated psilocybin's metabolic pathways in vitro and in vivo, conducting a thorough analysis of the enzymes involved. Metabolism studies were performed using human liver microsomes (HLM), cytochrome P450 (CYP) enzymes, monoamine oxidase (MAO), and UDP-glucuronosyltransferase (UGT). In vivo, metabolism was examined using male C57BL/6J mice and human plasma samples. Approximately 29% of psilocin was metabolized by HLM, while recombinant CYP2D6 and CYP3A4 enzymes metabolized nearly 100% and 40% of psilocin, respectively. Notably, 4-HIAA and 4-hydroxytryptophol (4-HTP) were detected with HLM but not with recombinant CYPs. MAO-A transformed psilocin into minimal amounts of 4-HIAA and 4-HTP. 4-HTP was only present in vitro. Neither 4-HIAA nor 4-HTP showed relevant interactions at assessed 5-HT receptors. In contrast to in vivo data, UGT1A10 did not extensively metabolize psilocin in vitro. Furthermore, two putative metabolites were observed. N-methyl-4-hydroxytryptamine (norpsilocin) was identified in vitro (CYP2D6) and in mice, while an oxidized metabolite was detected in vitro (CYP2D6) and in humans. However, the CYP2D6 genotype did not influence psilocin plasma concentrations in the investigated study population. In conclusion, MAO-A, CYP2D6, and CYP3A4 are involved in psilocin's metabolism. The discovery of putative norpsilocin in mice and oxidized psilocin in humans further unravels psilocin's metabolism. Despite limitations in replicating phase II metabolism in vitro, these findings hold significance for studying drug-drug interactions and advancing research on psilocybin as a therapeutic agent.
Collapse
Affiliation(s)
- Jan Thomann
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Karolina E. Kolaczynska
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Oliver V. Stoeckmann
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Marius C. Hoener
- Neuroscience Research, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christopher R. Pryce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Preclinical Laboratory for Translational Research Into Affective Disorders, University of Zurich, Zurich, Switzerland
| | - Franz X. Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Neurophenomenology and Consciousness, University of Zurich, Zurich, Switzerland
| | - Matthias E. Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| |
Collapse
|
23
|
Salazar YEAR, Louzada J, Puça MCSDB, Guimarães LFF, Vieira JLF, de Siqueira AM, Gil JP, de Brito CFA, de Sousa TN. Delayed gametocyte clearance in Plasmodium vivax malaria is associated with polymorphisms in the cytochrome P450 reductase (CPR). Antimicrob Agents Chemother 2024; 68:e0120423. [PMID: 38411047 PMCID: PMC10989009 DOI: 10.1128/aac.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.
Collapse
Affiliation(s)
- Yanka Evellyn Alves Rodrigues Salazar
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Jaime Louzada
- Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Maria Carolina Silva de Barros Puça
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Felipe Ferreira Guimarães
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | - André Machado de Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
24
|
Aly SM, Hennart B, Gaulier JM, Allorge D. Effect of CYP2D6, 2C19, and 3A4 Phenoconversion in Drug-Related Deaths. TOXICS 2024; 12:260. [PMID: 38668482 PMCID: PMC11054314 DOI: 10.3390/toxics12040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Molecular autopsy is a very important tool in forensic toxicology. However, many determinants, such as co-medication and physiological parameters, should be considered for optimal results. These determinants could cause phenoconversion (PC), a discrepancy between the real metabolic profile after phenoconversion and the phenotype determined by the genotype. This study's objective was to assess the PC of drug-metabolizing enzymes, namely CYP2D6, 2C19, and 3A4, in 45 post-mortem cases where medications that are substrates, inducers, or inhibitors of these enzymes were detected. It also intended to evaluate how PC affected the drug's metabolic ratio (MR) in four cases. Blood samples from 45 cases of drug-related deaths were analyzed to detect and determine drug and metabolite concentrations. Moreover, all the samples underwent genotyping utilizing the HaloPlex Target Enrichment System for CYP2D6, 2C19, and 3A4. The results of the present study revealed a statistically significant rate of PC for the three investigated enzymes, with a higher frequency of poor metabolizers after PC. A compatibility was seen between the results of the genomic evaluation after PC and the observed MRs of venlafaxine, citalopram, and fentanyl. This leads us to focus on the determinants causing PC that may be mainly induced by drug interactions. This complex phenomenon can have a significant impact on the analysis, interpretation of genotypes, and accurate conclusions in forensic toxicology. Nevertheless, more research with more cases in the future is needed to confirm these results.
Collapse
Affiliation(s)
- Sanaa M. Aly
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Jean-Michel Gaulier
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Delphine Allorge
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| |
Collapse
|
25
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
26
|
Abad-Santos F, Aliño SF, Borobia AM, García-Martín E, Gassó P, Maroñas O, Agúndez JAG. Developments in pharmacogenetics, pharmacogenomics, and personalized medicine. Pharmacol Res 2024; 200:107061. [PMID: 38199278 DOI: 10.1016/j.phrs.2024.107061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of Pharmacogenetics and Pharmacogenomics in Western Europe is highly relevant in the worldwide scenario. Despite the usually low institutional support, many research groups, composed of basic and clinical researchers, have been actively working for decades in this field. Their contributions made an international impact and paved the way for further studies and pharmacogenomics implementation in clinical practice. In this manuscript, that makes part of the Special Issue entitled Spanish Pharmacology, we present an analysis of the state of the art of Pharmacogenetics and Pharmacogenomics research in Europe, we compare it with the developments in Spain, and we summarize the most salient contributions since 1988 to the present, as well as recent developments in the clinical application of pharmacogenomics knowledge. Finally, we present some considerations on how we could improve translation to clinical practice in this specific scenario.
Collapse
Affiliation(s)
- Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), CIBEREHD, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
| | - Salvador F Aliño
- Gene Therapy and Pharmacogenomics Group, Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM), IdiPAZ, Madrid, Spain
| | - Elena García-Martín
- Department of Pharmacology, Universidad de Extremadura, Avda de la Universidad s/n, 10071 Cáceres, Spain
| | - Patricia Gassó
- Basic Clinical Practice Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Olalla Maroñas
- Public Foundation of Genomic Medicine, Santiago University Hospital, Genomic Medicine group, Pharmacogenetics and Drug Discovery (GenDeM), CIBERER, Santiago Health Research Institute (IDIS), Galicia, Spain
| | - José A G Agúndez
- Universidad de Extremadura. University Institute of Molecular Pathology Biomarkers, Avda de las Ciencias s/n, 10071 Cáceres, Spain.
| |
Collapse
|
27
|
Kiiski JI, Neuvonen M, Kurkela M, Hirvensalo P, Hämäläinen K, Tarkiainen EK, Sistonen J, Korhonen M, Khan S, Orpana A, Filppula AM, Lehtonen M, Niemi M. Solanidine is a sensitive and specific dietary biomarker for CYP2D6 activity. Hum Genomics 2024; 18:11. [PMID: 38303026 PMCID: PMC10835938 DOI: 10.1186/s40246-024-00579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.
Collapse
Affiliation(s)
- Johanna I Kiiski
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mika Kurkela
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Päivi Hirvensalo
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Kreetta Hämäläinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Sistonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Korhonen
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arto Orpana
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
28
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
29
|
Wang X, Huang J, Lu J, Li X, Tang H, Shao P. Risperidone plasma level, and its correlation with CYP2D6 gene polymorphism, clinical response and side effects in chronic schizophrenia patients. BMC Psychiatry 2024; 24:41. [PMID: 38200532 PMCID: PMC10782740 DOI: 10.1186/s12888-023-05488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND To explore the influence of CYP2D6 genetic polymorphism on risperidone metabolism, thereby affecting risperidone's effects and safeties in patients with chronic schizophrenia. METHODS Sixty-nine subjects with chronic schizophrenia treated with risperidone were recruited. CYP2D6 genotypes was determined using targeted sequencing and translated into phenotype using activity system. Risperidone plasma concentrations were measured using HPLC. Positive and Negative Symptom Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS) were used to evaluate the existence and severity of psychiatric symptoms, Barnes Akathisia Scale (BAS) and Extrapyramidal Symptom Rating Scale (ESRS) for neurological side effects. Metabolic and endocrine status assess were also included. RESULTS The plasma drug concentrations varied hugely among individuals. Intermediate metabolizer (IM) group had higher plasma levels of RIP and dose corrected RIP concentration, RIP/9-OH-RIP ratio and C/D ratio than normal metabolizer (NM) group (p < 0.01). There was no statistic difference between responders and non-responders in dose-adjusted plasma concentrations and ratios of RIP/9-OH-RIP and C/D. The occurrence of EPS was related to active moiety levels in 4th week (p < 0.05). The prolactin (PRL) levels in two follow-ups were both significantly higher than baseline (p < 0.01). PRL change from baseline to week 4 and week 8 were both positively associated with active moiety concentration detected in week 4 (p < 0.05). CONCLUSIONS The risperidone plasma levels have great inter- and intraindividual variations, and are associated with the CYP2D6 phenotypes, as well as the changes in serum prolactin in patients diagnosed with chronic schizophrenia.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jianjun Lu
- The Third People's Hospital of Jiangyin City, Wuxi, Jiangsu, China
| | - Xuemei Li
- People's Hospital of Dali Prefecture, Dali, Yunnan, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Ping Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Smith D, He B, Shi J, Zhu HJ, Wang X. Novel Independent Trans- and Cis-Genetic Variants Associated with CYP2D6 Expression and Activity in Human Livers. Drug Metab Dispos 2024; 52:143-152. [PMID: 38050015 PMCID: PMC10801631 DOI: 10.1124/dmd.123.001548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical hepatic drug-metabolizing enzyme in humans, responsible for metabolizing approximately 20%-25% of commonly used medications such as codeine, desipramine, fluvoxamine, paroxetine, and tamoxifen. The CYP2D6 gene is highly polymorphic, resulting in substantial interindividual variability in its catalytic function and the pharmacokinetics and therapeutic outcomes of its substrate drugs. Although many functional CYP2D6 variants have been discovered and validated, a significant portion of the variability in the expression and activity of CYP2D6 remains unexplained. In this study, we performed a genome-wide association study (GWAS) to identify novel variants associated with CYP2D6 protein expression in individual human livers, followed by a conditional analysis to control for the effect of functional CYP2D6 star alleles. We also examined their impact on hepatic CYP2D6 activity. Genotyping on a genome-wide scale was achieved using the Illumina Multi-Ethnic Genotyping Array (MEGA). A data-independent acquisition (DIA)-based proteomics method was used to quantify CYP2D6 protein concentrations. CYP2D6 activity was determined by measuring the dextromethorphan O-demethylation in individual human liver s9 fractions. The GWAS identified 44 single nuclear polymorphisms (SNPs) that are significantly associated with CYP2D6 protein expressions with a P value threshold of 5.0 × 10-7 After the conditional analysis, five SNPs, including the cis-variants rs1807493 and rs1062753 and the trans-variants rs4073010, rs729559, and rs80274432, emerged as independent variants significantly correlated with hepatic CYP2D6 protein expressions. Notably, four of these SNPs, except for rs80274432, also exhibited a significant association with CYP2D6 activities in human livers, suggesting their potential as novel and independent cis- and trans-variants regulating CYP2D6. SIGNIFICANT STATEMENT: Using individual human livers, we identified four novel cis- and trans-pQTLs/aQTLs (protein quantitative trait loci/activity quantitative trait loci) of Cytochrome P450 2D6 (CYP2D6) that are independent from known functional CYP2D6 star alleles. This study connects the CYP2D6 gene expression and activity, enhancing our understanding of the genetic variants associated with CYP2D6 protein expression and activity, potentially advancing our insight into the interindividual variability in CYP2D6 substrate medication response.
Collapse
Affiliation(s)
- Dylan Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Bing He
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Jian Shi
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| |
Collapse
|
31
|
Serrano-Gonzalo I, de Frutos LL, Lahoz-Gil C, Delgado-Mateos F, Fernández-Galán MÁ, Morales-Conejo M, Calle-Gordo MV, Ibarretxe-Gerediaga D, Madinaveitia-Ochoa A, Albarracin-Arraigosa A, Balanzat-Muñoz J, Correcher-Medina P, García-Frade LJ, Hernández-Rivas JM, Labbadia F, López-Dupla JM, Lozano-Almela ML, Mora-Casterá E, Noya-Pereira MS, Ruíz-Guinaldo MÁ, Del Mar Tormo-Díaz M, Vitoria-Miñana I, Arévalo-Vargas I, Andrade-Campos M, Giraldo P. Real life data: follow-up assessment on Spanish Gaucher disease patients treated with eliglustat. TRAZELGA project. Orphanet J Rare Dis 2023; 18:390. [PMID: 38102667 PMCID: PMC10722815 DOI: 10.1186/s13023-023-02939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The availability of multiple treatments for type 1 Gaucher disease increases the need for real-life studies to evaluate treatment efficacy and safety and provide clinicians with more information to choose the best personalized therapy for their patients. AIMS To determine whether treatment with eliglustat produces, in adult GD1 patients, ans optimal response in daily clinical practice. METHODS We designed a real-life study with 2 years of follow-up (TRAZELGA [GEE-ELI-2017-01]) to uniformly evaluate the response and adverse events to eliglustat treatment. This study, conducted in 30 patients across Spain and previously treated with other therapies, included the evaluation of safety and efficacy by assessing visceral enlargement, bone disease (DEXA and T and Z scores), concomitant treatments and adverse events, as well as a quality of life evaluation (SF-36). In addition, the quantification of classical biomarkers (chitotriosidase activity, CCL18/PARC and glucosylsphingosine (GluSph)) and new candidates for GD biomarkers (YKL-40, cathepsin S, hepcidin and lipocalin-2 determined by immunoassay) were also assessed. Non-parametric statistical analysis was performed and p < 0.05 was considered statistically significant. MAIN RESULTS Thirty patients were enrolled in the study. The median age was 41.5 years and the male-female ratio was 1.1:1. 84% of the patients had received ERT and 16% SRT as previous treatment. The most common symptoms at baseline were fatigue (42%) and bone pain (38%), no patient had a bone crisis during the study, and two years after switching, 37% had reduced their use of analgesics. Patient-reported outcomes showed a significant increase in physical function scores (p = 0.027) and physical pain scores (p = 0.010). None of the enrolled patients discontinued treatment due to adverse events, which were mild and transient in nature, mainly gastrointestinal and skin dryness. None of the biomarkers show a significant increase or decompensation after switching. CCL18/PARC (p = 0.0012), YKL-40 (p = 0.00004) and lipocalin-2 (p = 0.0155) improved after two years and GluSph after one year (p = 0.0008) and two years (p = 0.0245) of oral therapy. CONCLUSION In summary, this real-life study, showed that eliglustat maintains stability and can improve quality of life with few side effects. Significant reductions in classic and other novel biomarkers were observed after two years of therapy.
Collapse
Affiliation(s)
- Irene Serrano-Gonzalo
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Saragossa, Spain
- Grupo de Investigación de Enfermedad de Gaucher (GIIS-012), Instituto de Investigación Sanitaria de Aragón, Saragossa, Spain
| | - Laura López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Saragossa, Spain
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
| | - Carlos Lahoz-Gil
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Saragossa, Spain
| | - Francisco Delgado-Mateos
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Punta de Europa, Cádiz, Spain
| | - María Ángeles Fernández-Galán
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Virgen del Puerto, Plasencia, Spain
| | | | - María Victoria Calle-Gordo
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital de Torrecardenas, Almería, Spain
| | - Daiana Ibarretxe-Gerediaga
- Unitat de Medicina Vascular i Metabolisme (UVASMET), Unitat de Recerca en Lípids i Arteriosclerosis, Hospital Universitari San Joan, CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | | | | - José Balanzat-Muñoz
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Can Misses, Ibiza, Spain
| | | | - Luis Javier García-Frade
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Jesús María Hernández-Rivas
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Departamento de Medicina, Universidad de Salamanca and Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Francesca Labbadia
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital de La Vega Lorenzo Guirao, Murcia, Spain
| | | | - María Luisa Lozano-Almela
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, IMIB-Pascual Parrilla, CIBERER-U765, Murcia, Spain
| | - Elvira Mora-Casterá
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - María Soledad Noya-Pereira
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Teresa Herrera, A Coruña, Spain
| | - María Ángeles Ruíz-Guinaldo
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Comarcal Francesc de Borja, Valencia, Spain
| | - María Del Mar Tormo-Díaz
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
- Servicio de Hematología, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Isidro Vitoria-Miñana
- Unidad de Nutrición y Metabolopatías, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Isidro Arévalo-Vargas
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Saragossa, Spain
- Grupo de Investigación de Enfermedad de Gaucher (GIIS-012), Instituto de Investigación Sanitaria de Aragón, Saragossa, Spain
| | - Marcio Andrade-Campos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Saragossa, Spain
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain
| | - Pilar Giraldo
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Saragossa, Spain.
- Grupo Español de Enfermedades de Depósito Lisosomal (GEEDL), Sociedad Española de Hematología y Hemoterapia, Saragossa, Spain.
- Servicio de Hematología, Hospital QuirónSalud, Saragossa, Spain.
| |
Collapse
|
32
|
Turner AJ, Nofziger C, Ramey BE, Ly RC, Bousman CA, Agúndez JAG, Sangkuhl K, Whirl-Carrillo M, Vanoni S, Dunnenberger HM, Ruano G, Kennedy MA, Phillips MS, Hachad H, Klein TE, Moyer AM, Gaedigk A. PharmVar Tutorial on CYP2D6 Structural Variation Testing and Recommendations on Reporting. Clin Pharmacol Ther 2023; 114:1220-1237. [PMID: 37669183 PMCID: PMC10840842 DOI: 10.1002/cpt.3044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the highly polymorphic human CYP2D6 gene locus and a comprehensive summary of structural variation. CYP2D6 contributes to the metabolism of numerous drugs and, thus, genetic variation in its gene impacts drug efficacy and safety. To accurately predict a patient's CYP2D6 phenotype, testing must include structural variants including gene deletions, duplications, hybrid genes, and combinations thereof. This tutorial offers a comprehensive overview of CYP2D6 structural variation, terms, and definitions, a review of methods suitable for their detection and characterization, and practical examples to address the lack of standards to describe CYP2D6 structural variants or any other pharmacogene. This PharmVar tutorial offers practical guidance on how to detect the many, often complex, structural variants, as well as recommends terms and definitions for clinical and research reporting. Uniform reporting is not only essential for electronic health record-keeping but also for accurate translation of a patient's genotype into phenotype which is typically utilized to guide drug therapy.
Collapse
Affiliation(s)
- Amy J Turner
- Department of Pediatrics, Children’s Research Institute, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- RPRD Diagnostics LLC, Wauwatosa, Wisconsin, USA
| | | | | | - Reynold C Ly
- Department of Medical and Molecular Genetics, Division of Diagnostic Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chad A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - José AG Agúndez
- University of Extremadura, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | | | | | - Henry M Dunnenberger
- Mark R. Neaman Center for Personalized Medicine, NorthShore University Health System, Evanston, Illinois, USA
| | - Gualberto Ruano
- Institute of Living, Hartford Hospital (Hartford CT) and Department of Psychiatry, University of Connecticut School of Medicine (Farmington CT), USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Houda Hachad
- Houda Hachad, Department of Clinical Operations, AccessDx Laboratories, Houston, Texas, USA
| | - Teri E Klein
- Departments of Biomedical Data Science and Medicine (BMIR), Stanford University, Stanford, California, USA
| | - Ann M Moyer
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Gaedigk
- Children’s Mercy Research Institute (CMRI), Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
33
|
Ramírez G, Vital M, Vergara C, Carusso F, Neffa F, Valle AD, Esperón P. CYP2D6 genotyping and the clinical impact on outcomes in breast cancer tamoxifen-treated patients. Per Med 2023; 20:477-483. [PMID: 37947089 DOI: 10.2217/pme-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Aims: To report the distribution of allele frequencies of CYP2D6 gene and to evaluate their influence on the clinical outcomes of a group of breast cancer patients receiving adjuvant tamoxifen treatment from Uruguay. Patients & methods: 199 samples were genotyped through real-time polymerase chain reaction assays. Metabolization profiles were inferred from the genotypes. Correlations were evaluated using Pearson's χ2 test. Results: Phenotype frequencies were 0.65 normal (NM), 0.30 intermediate (IM) and 0.05 poor metabolizers (PM). Similar clinical outcomes between NM and (PM + IM) patient groups (odds ratio = 1.011, 95% CI = 0.2703-3.7826; p = 0.987) were found. Conclusion: CYP2D6 allele frequencies were analyzed for the first time in a cohort from Uruguay. Results did not support any impact of CYP2D6 gene polymorphisms on clinical outcomes.
Collapse
Affiliation(s)
- Gabriel Ramírez
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, 11800, Uruguay
| | - Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, 11800, Uruguay
| | - Carolina Vergara
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Florencia Carusso
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Florencia Neffa
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Adriana Della Valle
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, 11800, Uruguay
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| |
Collapse
|
34
|
Shimizu M, Uehara S, Ohyama K, Nishimura H, Tanaka Y, Saito Y, Suemizu H, Yoshida S, Yamazaki H. Pharmacokinetic Models Scaled-up from Humanized-liver Mouse Data Can Account for Drug Monitoring Results of Atomoxetine and Its 4-Hydroxylated and N-Demethylated Metabolites i n Pediatric Patients Genotyped for Cytochrome P450 2D6. Drug Metab Dispos 2023; 52:DMD-AR-2023-001481. [PMID: 37879849 DOI: 10.1124/dmd.123.001481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Atomoxetine is a cytochrome P450 (P450) 2D6 probe substrate and an approved medicine for attention-deficit/hyperactivity disorder. In this humanized-liver mouse study, interactions between atomoxetine and the P450 2D6 probe drug paroxetine were observed. Human physiologically based pharmacokinetic (PBPK) models were established by scaling up humanized-liver mouse data obtained in the absence or presence of paroxetine. These models could explain the drug monitoring results of atomoxetine and its primary 4-hydroxylated and N-demethylated metabolites in Japanese children aged 8-14 years and could be used to help establish the correct dosage and for the evaluation of clinical outcomes. The results of simple PBPK models (using input parameters that reflected the subjects' small body size and normal or reduced P450 2D6-dependent clearance) were in general agreement with one-point measured plasma concentrations of atomoxetine and its 4-hydroxylated and N-demethylated metabolites in 13 pediatric participants. Unexpectedly high hepatic exposure, possibly in intermediate-metabolizer patients harboring CYP2D6*10 or 2D6*36 alleles, might in part explain the adverse effects of atomoxetine prescribed alone recorded in a Japanese adverse-event database. The steady-state, one-point drug monitoring data from the participants indicated extensive biotransformation of atomoxetine to 4-hydroxyatomoxetine under individually prescribed doses of atomoxetine. These results also suggest that a relatively narrow range of 4-hydroxyatomoxetine and N-desmethylatomoxetine concentration ratios in spot urine and/or plasma samples from pediatric patients could be a simple semiquantitative determinant factor for P450 2D6 intermediate metabolizers, compared with the wide range of concentrations of the two primary metabolites and substrate in extensive metabolizers. Significance Statement Validated simple pharmacokinetic models are able to predict steady-state plasma concentrations of the approved medicine atomoxetine and its primary metabolites in the majority of pediatric patients. The package insert advises careful dose escalation, especially for poor metabolizers; however, no simple way exists to determine P450 2D6 phenotypes. A relatively narrow range ratio of 4-hydroxyatomoxetine and N-desmethylatomoxetine in spot urine/plasma samples could be a simple semi-quantitative determinant factor for P450 2D6 intermediate metabolizers to optimize or confirm the correct dosage.
Collapse
Affiliation(s)
- Makiko Shimizu
- Lab. of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Japan
| | | | | | | | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Japan
| | | | | | | | - Hiroshi Yamazaki
- Lab. Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Japan
| |
Collapse
|
35
|
May GB, de Souza BR, Gueuvoghlanian-Silva BY, Dos Reis EC, Mostardeiro SR, Boabaid May PP, Mateo EC, Vietta GG, Hoss GW. Distribution of pharmacogene allele and phenotype frequencies in Brazilian psychiatric patients. Pharmacogenomics 2023; 24:747-760. [PMID: 37846556 DOI: 10.2217/pgs-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Purpose: This work was designed to identify the pharmacogenetic profile of Brazilian psychiatric patients receiving psychoactive drug treatment according to ethnicity. Methods: Based on the GnTech® database, this cross-sectional study analyzed data from self-reported sociodemographic and genetic results from the next-generation sequencing panel composed of 26 pharmacogenes from 359 psychotropic drug users. Results: Variant frequencies of multiple pharmacogenes presented differences between ethnicities (CYP3A5, CYP2D6, CYP1A2, CYP2B6, CYP3A4, UGT1A4, UGT2B15, ABCB1 rs1045642, ADRA2A rs1800544, COMT rs4680, GRIK4 rs1954787, GSK3B rs334558, GSK3B rs6438552, HTR1A rs6295, HTR2A rs7997012, HTR2C rs1414334, MTHFR rs1801131, OPRM1 rs1799971 and 5-HTTLPR), endorsing the necessity of individual-level analyses in drug treatment. Conclusion: A discussion of pharmacogenomic test implementation in psychiatric clinical practice is needed to improve treatment choices, especially in Brazil, a multiethnic country.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Rech Mostardeiro
- Universidade do Sul de Santa Catarina (UNISUL)-Campus Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | | | | |
Collapse
|
36
|
Facal F, Portela B, Gil-Rodríguez A, Barros F, Maroñas O, Carracedo A. Deletion of the CYP2D6 gene as a likely explanation for the serious side effects of the antipsychotic drug pimozide: a case report. Front Pharmacol 2023; 14:1237446. [PMID: 37637419 PMCID: PMC10448185 DOI: 10.3389/fphar.2023.1237446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
CYP2D6 analysis prior to the prescription of pimozide is required above a certain dose by the Food and Drug Administration in order to detect individuals with the poor metabolizer status. This precautionary measure aims to prevent the occurrence of serious adverse drug reactions. This study presents a case of a patient diagnosed with schizophrenia spectrum disorder. The patient suffered re-admission in the psychiatry ward because of severe secondary symptoms due to the antipsychotic drug pimozide, previously prescribed on a first admission. In order to assess the patient's medication profile, real-time PCR was performed to analyze the main genes responsible for its metabolization, namely, CYP2D6 and CYP3A4. The pharmacogenetic study revealed that the patient is a poor metabolizer for CYP2D6, presenting deletion of both copies of the gene (diplotype *5/*5). Fortunately, the symptomatology disappeared after the withdrawal of the responsible drug. In conclusion, abiding by the pharmacogenetic clinical practice guidelines and the pharmacogenetic analysis of CYP2D6 when prescribing pimozide would have probably saved the patient from the consequences of severe side effects and the health system expenditure. There is an important need for more training in the pharmacogenetic field for specialists in psychiatry.
Collapse
Affiliation(s)
- Fernando Facal
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
- Grupo de Genética Psiquiátrica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Begoña Portela
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Almudena Gil-Rodríguez
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER), Madrid, Spain
- Grupo de Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | - Olalla Maroñas
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER), Madrid, Spain
- Grupo de Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Genética, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER), Madrid, Spain
- Grupo de Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| |
Collapse
|
37
|
Collins JM, Lester H, Shabnaz S, Wang D. A frequent CYP2D6 variant promotes skipping of exon 3 and reduces CYP2D6 protein expression in human liver samples. Front Pharmacol 2023; 14:1186540. [PMID: 37576811 PMCID: PMC10412816 DOI: 10.3389/fphar.2023.1186540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
CYP2D6 is one of the most polymorphic drug-metabolizing enzymes in the liver. While genetic CYP2D6 variants serve as clinical biomarkers to predict CYP2D6 activity, large inter-person variability in CYP2D6 expression remains unaccounted for. Previous results suggest that there is variable expression of a CYP2D6 splice isoform with an in-frame deletion of exon 3 (CYP2D6ΔE3) encoding a protein lacking numerous active site residues. Here, using fragment analysis and RT-qPCR, we revealed that rs1058164 G (MAF = 27%-43%) is associated with increased formation of CYP2D6∆E3 in human liver samples (1.4-2.5-fold) and transfected cells. Furthermore, western blots showed that rs1058164 G was associated with a 50% decrease in full-length hepatic CYP2D6 protein expression. In addition, by studying a larger liver cohort, we confirmed our previous results that rs16947 (CYP2D6*2) reduces full-length CYP2D6 mRNA by increasing the production of an unstable splice isoform lacking exon 6 (CYP2D6ΔE6) and that the impact of CYP2D6ΔE6 is offset in carriers of the downstream enhancer variant rs5758550. The three frequent SNPs (rs1058164, rs16947, and rs5758550) form various 3-SNP-haplotypes, each with distinct CYP2D6 expression characteristics. Using an expression score (ES) system, we tested the impact of the 3-SNP-haplotype on improving the standard model to predict hepatic CYP2D6 protein expression based on genotype. A model that incorporates the 3-SNP-haplotype provided the best fit for CYP2D6 expression and also accounted for more variability in CYP2D6 protein levels (59%) than a model based on the accepted standard (36%) or one that only adds rs16947 and rs5758550 (42%). Clinical studies are needed to determine whether including the 3-SNP-haplotype alongside current standard CYP2D6 models improves the predictive value of CYP2D6 panels.
Collapse
Affiliation(s)
| | | | | | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Agulló L, Aguado I, Muriel J, Margarit C, Gómez A, Escorial M, Sánchez A, Fernández A, Peiró AM. Pharmacogenetic Guided Opioid Therapy Improves Chronic Pain Outcomes and Comorbid Mental Health: A Randomized, Double-Blind, Controlled Study. Int J Mol Sci 2023; 24:10754. [PMID: 37445931 DOI: 10.3390/ijms241310754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Interindividual variability in analgesic response is at least partly due to well-characterized polymorphisms that are associated with opioid dosing and adverse outcomes. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has put forward recommendations for the CYP2D6 phenotype, but the list of studied drug-gene pairs continues to grow. This clinical trial randomized chronic pain patients (n = 60), referred from primary care to pain unit care into two opioid prescribing arms, one guided by CYP2D6, μ-opioid receptor (OPRM1), and catechol-O-methyl transferase (COMT) genotypes vs. one with clinical routine. The genotype-guided treatment reduced pain intensity (76 vs. 59 mm, p < 0.01) by improving pain relief (28 vs. 48 mm, p < 0.05), increased quality of life (43 vs. 56 mm p < 0.001), and lowered the incidence of clinically relevant adverse events (3 [1-5] vs. 1 [0-2], p < 0.01) and 42% opioid dose (35 [22-61] vs. 60 [40-80] mg/day, p < 0.05) as opposed to usual prescribing arm. The final health utility score was significantly higher (0.71 [0.58-0.82] vs. 0.51 [0.13-0.67] controls, p < 0.05) by improving sleepiness and depression comorbidity, with a significant reduction of 30-34% for headache, dry mouth, nervousness, and constipation. A large-scale implementation analysis could help clinical translation, together with a pharmaco-economic evaluation.
Collapse
Affiliation(s)
- Laura Agulló
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Isidro Aguado
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Javier Muriel
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - César Margarit
- Pain Unit, Department of Health of Alicante, General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
| | - Alba Gómez
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Mónica Escorial
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Astrid Sánchez
- San Vicente del Raspeig II Health Center, c/Alicante, 78, Sant Vicent del Raspeig, 03690 Alicante, Spain
| | - Alicia Fernández
- San Vicente del Raspeig II Health Center, c/Alicante, 78, Sant Vicent del Raspeig, 03690 Alicante, Spain
| | - Ana M Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), General University Hospital of Alicante, c/Pintor Baeza, 12, 03010 Alicante, Spain
- Clinical Pharmacology, Toxicology and Chemical Safety Unit, Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
39
|
Ramsey LB, Prows CA, Chidambaran V, Sadhasivam S, Quinn CT, Teusink-Cross A, Tang Girdwood S, Dawson DB, Vinks AA, Glauser TA. Implementation of CYP2D6-guided opioid therapy at Cincinnati Children's Hospital Medical Center. Am J Health Syst Pharm 2023; 80:852-859. [PMID: 36715063 PMCID: PMC11004919 DOI: 10.1093/ajhp/zxad025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
PURPOSE We describe the implementation of CYP2D6-focused pharmacogenetic testing to guide opioid prescribing in a quaternary care, nonprofit pediatric academic medical center. SUMMARY Children are often prescribed oral opioids after surgeries, for cancer pain, and occasionally for chronic pain. In 2004, Cincinnati Children's Hospital Medical Center implemented pharmacogenetic testing for CYP2D6 metabolism phenotype to inform codeine prescribing. The test and reports were updated to align with changes over time in the testing platform, the interpretation of genotype to phenotype, the electronic health record, and Food and Drug Administration (FDA) guidance. The use of the test increased when a research project required testing and decreased as prescribing of oxycodone increased due to FDA warnings about codeine. Education about the opioid-focused pharmacogenetic test was provided to prescribers (eg, the pain and sickle cell teams) as well as patients and families. Education and electronic health record capability increased provider compliance with genotype-guided postsurgical prescribing of oxycodone, although there was a perceived lack of utility for oxycodone prescribing. CONCLUSION The implementation of pharmacogenetic testing to inform opioid prescribing for children has evolved with accumulating evidence and guidelines, requiring changes in reporting of results and recommendations.
Collapse
Affiliation(s)
- Laura B Ramsey
- Department of Pediatrics, Division of Clinical Pharmacology and Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Cynthia A Prows
- Division of Human Genetics and Division of Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles T Quinn
- Department of Pediatrics and Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ashley Teusink-Cross
- Division of Pharmacy, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sonya Tang Girdwood
- Department of Pediatrics, Division of Clinical Pharmacology; and Division of Hospital Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - D Brian Dawson
- Department of Pediatrics and Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander A Vinks
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tracy A Glauser
- Department of Pediatrics, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
40
|
Dodson C, Layman L. Interdisciplinary Collaboration Among Nursing and Computer Science to Refine a Pharmacogenetics Clinical Decision Support Tool Via Mobile Application. Comput Inform Nurs 2023; 41:442-448. [PMID: 36731048 DOI: 10.1097/cin.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous work, a prototype clinical decision support mobile application was created that accepts a patient's genomic profile information and provides information and rationale for the prescription of certain oncology medications. The response to the instrument was overwhelmingly positive by healthcare providers in the oncology field who tested the instrument. This article reports on the interdisciplinary collaboration among nursing and computer science to redesign and reimplement a new version of the instrument with expanded functionality and improved usability. This article describes the functionality, usability considerations, and usability evaluation of the instrument over three versions. The current version is Web-based and responsive to different screen sizes (desktop, tablet, mobile), features improved usability, and expands the number of gene-drug recommendations provided based on Clinical Pharmacogenetics Implementation Consortium dosing guidelines. This project represents a successful new collaboration between the nursing and computer science disciplines.
Collapse
Affiliation(s)
- Crystal Dodson
- Author Affiliation: University of North Carolina Wilmington
| | | |
Collapse
|
41
|
Muriel J, Escorial M, Margarit C, Barrachina J, Carvajal C, Morales D, Peiró AM. Long-term deprescription in chronic pain and opioid use disorder patients: Pharmacogenetic and sex differences. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:227-241. [PMID: 37307374 DOI: 10.2478/acph-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 06/14/2023]
Abstract
More than half of patients with opioid use disorder for chronic non-cancer pain (CNCP) reduced their dose through a progressive opioid withdrawal supported by a rotation to buprenorphine and/or tramadol. The aim of this research is to analyse the long-term effectiveness of opioid deprescription taking into account the impact of sex and pharmacogenetics on the inter-individual variability. A cross-sectional study was carried out from October 2019 to June 2020 on CNCP patients who had previously undergone an opioid deprescription (n = 119 patients). Demographic, clinical (pain, relief and adverse events) and therapeutic (analgesic use) outcomes were collected. Effectiveness (< 50 mg per day of morphine equivalent daily dose without any aberrant opioid use behaviour) and safety (number of side-effects) were analysed in relation to sex differences and pharmacogenetic markers impact [OPRM1 genotype (rs1799971) and CYP2D6 phenotypes]. Long-term opioid deprescription was achieved in 49 % of the patients with an increase in pain relief and a reduction of adverse events. CYP2D6 poor metabolizers showed the lowest long-term opioid doses. Here, women showed a higher degree of opioid deprescription, but increased use of tramadol and neuromodulators, as well as an increased number of adverse events. Long-term deprescription was successful in half of the cases. Understanding sex and gender interaction plus a genetic impact could help to design more individualized strategies for opioid deprescription.
Collapse
Affiliation(s)
- Javier Muriel
- 1Neuropharmacology applied to Pain (NED) Alicante Institute for Health and Biomedical Research (ISABIAL), c/Pintor Baeza, 12 03010, Alicante, Spain
| | - Mónica Escorial
- 1Neuropharmacology applied to Pain (NED) Alicante Institute for Health and Biomedical Research (ISABIAL), c/Pintor Baeza, 12 03010, Alicante, Spain
- 2Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - César Margarit
- 1Neuropharmacology applied to Pain (NED) Alicante Institute for Health and Biomedical Research (ISABIAL), c/Pintor Baeza, 12 03010, Alicante, Spain
- 3Pain Unit, Dr. Balmis General University Hospital, ISABIAL, c/Pintor Baeza, 12 03010, Alicante, Spain
| | - Jordi Barrachina
- 1Neuropharmacology applied to Pain (NED) Alicante Institute for Health and Biomedical Research (ISABIAL), c/Pintor Baeza, 12 03010, Alicante, Spain
- 2Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Cristian Carvajal
- 2Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Domingo Morales
- 4Operations Research Centre, Miguel Hernández University, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Ana M Peiró
- 1Neuropharmacology applied to Pain (NED) Alicante Institute for Health and Biomedical Research (ISABIAL), c/Pintor Baeza, 12 03010, Alicante, Spain
- 2Institute of Bioengineering, Miguel Hernández University, Avda. de la Universidad s/n, 03202, Elche, Spain
- 3Pain Unit, Dr. Balmis General University Hospital, ISABIAL, c/Pintor Baeza, 12 03010, Alicante, Spain
- 5Clinical Pharmacology Department, Dr. Balmis General University Hospital ISABIAL, c/Pintor Baeza, 12, 03010 Alicante, Spain
| |
Collapse
|
42
|
Muriel J, Barrachina J, Del Barco G, Carvajal C, Escorial M, Margarit C, Ballester P, Peiró AM. Impact of CYP2D6 genotype on opioid use disorder deprescription: an observational prospective study in chronic pain with sex-differences. Front Pharmacol 2023; 14:1200430. [PMID: 37324467 PMCID: PMC10264765 DOI: 10.3389/fphar.2023.1200430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Opioid deprescription is the process of supervised tapering and safe withdrawal when a potentially inappropriate use is detected. This represents a challenge in chronic non-cancer pain (CNCP) patients who may respond differently to the procedure. Our aim was to analyze the potential impact of CYP2D6 phenotypes and sex on the clinical and safety outcomes during an opioid use disorder (OUD) tapering process. Methods: A prospective observational study was conducted on CNCP ambulatory OUD patients (cases, n = 138) who underwent a 6-month opioid dose reduction and discontinuation. Pain intensity, relief and quality of life (Visual analogue scale, VAS 0-100 mm), global activity (GAF, 0-100 scores), morphine equivalent daily dose (MEDD), analgesic drugs adverse events (AEs) and opioid withdrawal syndrome (OWS, 0-96 scores) were recorded at basal and final visits. Sex differences and CYP2D6 phenotypes (poor (PM), extensive (EM) and ultrarapid (UM) metabolizers based on CYP2D6*1, *2, *3, *4, *5, *6, *10, *17, *41, 2D6*5, 2D6 × N, 2D6*4 × 2 gene variants) were analyzed. Results: Although CYP2D6-UM consumed three-times less basal MEDD [40 (20-123) mg/day, p = 0.04], they showed the highest number of AEs [7 (6-11), p = 0.02] and opioid withdrawal symptoms (46 ± 10 scores, p = 0.01) after deprescription. This was inversely correlated with their quality of life (r = -0.604, p < 0.001). Sex-differences were evidenced with a tendency to a lower analgesic tolerability in females and lower quality of life in men. Discussion: These data support the potential benefits of CYP2D6-guided opioid deprescription, in patients with CNCP when OUD is detected. Further studies are required to understand a sex/gender interaction.
Collapse
Affiliation(s)
- Javier Muriel
- Pharmacogenetic Unit, Clinical Pharmacology Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Jordi Barrachina
- Pharmacogenetic Unit, Clinical Pharmacology Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Occupational Observatory, University Miguel Hernández, Elche, Spain
| | | | | | - Mónica Escorial
- Pharmacogenetic Unit, Clinical Pharmacology Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Occupational Observatory, University Miguel Hernández, Elche, Spain
| | - César Margarit
- Pharmacogenetic Unit, Clinical Pharmacology Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Pain Unit, Department of Health of Alicante-General Hospital, Alicante, Spain
| | - Pura Ballester
- Pharmacogenetic Unit, Clinical Pharmacology Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Ana María Peiró
- Pharmacogenetic Unit, Clinical Pharmacology Unit, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Pain Unit, Department of Health of Alicante-General Hospital, Alicante, Spain
- Bioengineering Institute, Toxicology and Environmental Health, University Miguel Hernández, Elche, Spain
| |
Collapse
|
43
|
Giorgetti A, Amurri S, Fazio G, Bini C, Anniballi L, Pirani F, Pelletti G, Pelotti S. The Evaluation of CYP2D6, CYP2C9, CYP2C19, and CYP2B6 Phenoconversion in Post-Mortem Casework: The Challenge of Forensic Toxicogenetics. Metabolites 2023; 13:metabo13050661. [PMID: 37233702 DOI: 10.3390/metabo13050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
In toxicogenetics, an integrative approach including the prediction of phenotype based on post-mortem genotyping of drug-metabolising enzymes might help explain the cause of death (CoD) and manner of death (MoD). The use of concomitant drugs, however, might lead to phenoconversion, a mismatch between the phenotype based on the genotype and the metabolic profile actually observed after phenoconversion. The aim of our study was to evaluate the phenoconversion of CYP2D6, CYP2C9, CYP2C19, and CYP2B6 drug-metabolising enzymes in a series of autopsy cases tested positive for drugs that are substrates, inducers, or inhibitors of these enzymes. Our results showed a high rate of phenoconversion for all enzymes and a statistically significant higher frequency of poor and intermediate metabolisers for CYP2D6, CYP2C9, and CYP2C19 after phenoconversion. No association was found between phenotypes and CoD or MoD, suggesting that, although phenoconversion might be useful for a forensic toxicogenetics approach, more research is needed to overcome the challenges arising from the post-mortem setting.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Sara Amurri
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Giulia Fazio
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Laura Anniballi
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Filippo Pirani
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| |
Collapse
|
44
|
Mapira NL, Thelingwani RS, Chikwambi Z, Kuona P, Masimirembwa C. Pharmacogenetics of pain management in Zimbabwean patients with sickle cell disease. Pharmacogenomics 2023; 24:359-369. [PMID: 37248824 PMCID: PMC10318569 DOI: 10.2217/pgs-2023-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Pain is a common cause of hospitalization in sickle cell disease (SCD) patients. Failure to effectively control pain remains a challenge in patient care. Materials & methods: The authors conducted a cross-sectional study to determine the effect of CYP2D6 and UGT2B7 polymorphisms on pain management in 106 Zimbabwean SCD patients. Participant information was collected on a questionnaire. Genotyping was conducted using the GenoPharm® pharmacogenomics open array panel containing CYP2D6 and UGT genetic variants implicated in opioid response. Results: The reduced function alleles CYP2D6*17 and *29 had high frequencies of 15.9% and 12.9%, respectively. UGT2B7 rs73823859 showed a statistically significant correlation with pain levels (p = 0.0454). Conclusion: This study demonstrated the role of UGT2B7 polymorphism in SCD patient pain management.
Collapse
Affiliation(s)
- Nyasha Lorraine Mapira
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Roslyn Stella Thelingwani
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
| | - Zedias Chikwambi
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Patience Kuona
- Child Adolescent Health Unit, Department of Primary Health Care, Faculty of Medicine & Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Collen Masimirembwa
- Department of Genomic Medicine, African Institute of Biomedical Science & Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg, Gauteng, 2000, South Africa
| |
Collapse
|
45
|
Agema BC, Buijs SM, Sassen SDT, Mürdter TE, Schwab M, Koch BCP, Jager A, van Schaik RHN, Mathijssen RHJ, Koolen SLW. Toward model-informed precision dosing for tamoxifen: A population-pharmacokinetic model with a continuous CYP2D6 activity scale. Biomed Pharmacother 2023; 160:114369. [PMID: 36753957 DOI: 10.1016/j.biopha.2023.114369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Tamoxifen is important in the adjuvant treatment of breast cancer. A plasma concentration of the active metabolite endoxifen of > 16 nM is associated with a lower risk of breast cancer-recurrence. Since inter-individual variability is high and > 20 % of patients do not reach endoxifen levels > 16 nM with the standard dose tamoxifen, therapeutic drug monitoring is advised. However, ideally, the correct tamoxifen dose should be known prior to start of therapy. Our aim is to develop a population pharmacokinetic (POP-PK) model incorporating a continuous CYP2D6 activity scale to support model informed precision dosing (MIPD) of tamoxifen to determine the optimal tamoxifen starting dose. METHODS Data from eight different clinical studies were pooled (539 patients, 3661 samples) and used to develop a POP-PK model. In this model, CYP2D6 activity per allele was estimated on a continuous scale. After inclusion of covariates, the model was subsequently validated using an independent external dataset (378 patients). Thereafter, dosing cut-off values for MIPD were determined. RESULTS A joint tamoxifen/endoxifen POP-PK model was developed describing the endoxifen formation rate. Using a continuous CYP2D6 activity scale, variability in predicting endoxifen levels was decreased by 37 % compared to using standard CYP2D6 genotype predicted phenotyping. After external validation and determination of dosing cut-off points, MIPD could reduce the proportion of patients with subtherapeutic endoxifen levels at from 22.1 % toward 4.8 %. CONCLUSION Implementing MIPD from the start of tamoxifen treatment with this POP-PK model can reduce the proportion of patients with subtherapeutic endoxifen levels at steady-state to less than 5 %.
Collapse
Affiliation(s)
- Bram C Agema
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center; Rotterdam, the Netherlands; Dept. of Clinical Pharmacy, Erasmus University Medical Center; Rotterdam, the Netherlands.
| | - Sanne M Buijs
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Sebastiaan D T Sassen
- Dept. of Clinical Pharmacy, Erasmus University Medical Center; Rotterdam, the Netherlands; Rotterdam Clinical Pharmacometrics Group; Rotterdam, the Netherlands
| | - Thomas E Mürdter
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology; Stuttgart, Germany; University of Tübingen; Tübingen, Germany
| | - Mathias Schwab
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology; Stuttgart, Germany; Dept. of Clinical Pharmacology, University Hospital Tübingen; Tübingen, Germany; iFIT Cluster of Excellence (EXC2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Birgit C P Koch
- Dept. of Clinical Pharmacy, Erasmus University Medical Center; Rotterdam, the Netherlands; Rotterdam Clinical Pharmacometrics Group; Rotterdam, the Netherlands
| | - Agnes Jager
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Dept. of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center; Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Dept. of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center; Rotterdam, the Netherlands; Dept. of Clinical Pharmacy, Erasmus University Medical Center; Rotterdam, the Netherlands
| |
Collapse
|
46
|
Short-term changes in ultrasound tomography measures of breast density and treatment-associated endocrine symptoms after tamoxifen therapy. NPJ Breast Cancer 2023; 9:12. [PMID: 36922547 PMCID: PMC10017770 DOI: 10.1038/s41523-023-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Although breast density decline with tamoxifen therapy is associated with greater therapeutic benefit, limited data suggest that endocrine symptoms may also be associated with improved breast cancer outcomes. However, it is unknown whether endocrine symptoms are associated with reductions in breast density after tamoxifen initiation. We evaluated treatment-associated endocrine symptoms and breast density change among 74 women prescribed tamoxifen in a 12-month longitudinal study. Treatment-associated endocrine symptoms and sound speed measures of breast density, assessed via novel whole breast ultrasound tomography (m/s), were ascertained before tamoxifen (T0) and at 1-3 (T1), 4-6 (T2), and 12 months (T3) after initiation. CYP2D6 status was genotyped, and tamoxifen metabolites were measured at T3. Using multivariable linear regression, we estimated mean change in breast density by treatment-associated endocrine symptoms adjusting for age, race, menopausal status, body mass index, and baseline density. Significant breast density declines were observed in women with treatment-associated endocrine symptoms (mean change (95% confidence interval) at T1:-0.26 m/s (-2.17,1.65); T2:-2.12 m/s (-4.02,-0.22); T3:-3.73 m/s (-5.82,-1.63); p-trend = 0.004), but not among women without symptoms (p-trend = 0.18) (p-interaction = 0.02). Similar declines were observed with increasing symptom frequency (p-trends for no symptoms = 0.91; low/moderate symptoms = 0.03; high symptoms = 0.004). Density declines remained among women with detectable tamoxifen metabolites or intermediate/efficient CYP2D6 metabolizer status. Emergent/worsening endocrine symptoms are associated with significant, early declines in breast density after tamoxifen initiation. Further studies are needed to assess whether these observations predict clinical outcomes. If confirmed, endocrine symptoms may be a proxy for tamoxifen response and useful for patients and providers to encourage adherence.
Collapse
|
47
|
Chatterjee M, Saha S, Maitra S, Ray A, Sinha S, Mukhopadhyay K. Post-treatment symptomatic improvement of the eastern Indian ADHD probands is influenced by CYP2D6 genetic variations. Drug Metab Pers Ther 2023; 38:45-56. [PMID: 36169235 DOI: 10.1515/dmpt-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Symptomatic remediation from attention deficit hyperactivity disorder (ADHD)-associated traits is achieved by treatment with methylphenidate (MPH)/atomoxetine (ATX). We have analyzed the association of functional CYP2D6 variations, rs1065852, rs3892097, rs1135840, and rs1058164, with ADHD in the Indian subjects. METHODS Subjects were recruited following the Diagnostic and Statistical Manual for Mental Disorders. Trait scores were obtained from the Conner's Parents Rating Scale-Revised. After obtaining informed consent, blood was collected for DNA isolation, and genotyping was performed by PCR or TaqMan-based methods. Probands were treated with MPH or ATX based on age, symptoms, and drug availability. Treatment outcome was assessed using a structured questionnaire. Data obtained was analyzed to identify the association of CYP2D6 variations and the SLC6A3 rs28363170 with the treatment outcome. RESULTS The frequency of rs1135840 "G" and rs1065852 "G" was higher in the male ADHD probands. Bias in parental transmission (p=0.007) and association with higher trait scores were observed for rs1065852 "A". Independent influence of rs1065852 on ADHD was also observed. Probands carrying rs1065852 'GG', rs1135840 'CG', and rs28363170 10R exhibited significant symptomatic improvement with MPH, while probands with rs1135840 'CC' and rs28363170 9R showed improvement after ATX treatment. CONCLUSIONS ADHD probands having specific CYP2D6 genetic variations respond differentially to pharmaceutical intervention.
Collapse
Affiliation(s)
- Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | | | - Anirban Ray
- Department of Psychiatry, Institute of Psychiatry, Kolkata, West Bengal, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| |
Collapse
|
48
|
Khor CC, Winter S, Sutiman N, Mürdter TE, Chen S, Lim JSL, Li Z, Li J, Sim KS, Ganchev B, Eccles D, Eccles B, Tapper W, Zgheib NK, Tfayli A, Ng RCH, Yap YS, Lim E, Wong M, Wong NS, Ang PCS, Dent R, Tremmel R, Klein K, Schaeffeler E, Zhou Y, Lauschke VM, Eichelbaum M, Schwab M, Brauch HB, Chowbay B, Schroth W. Cross-Ancestry Genome-Wide Association Study Defines the Extended CYP2D6 Locus as the Principal Genetic Determinant of Endoxifen Plasma Concentrations. Clin Pharmacol Ther 2023; 113:712-723. [PMID: 36629403 DOI: 10.1002/cpt.2846] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
The therapeutic efficacy of tamoxifen is predominantly mediated by its active metabolites 4-hydroxy-tamoxifen and endoxifen, whose formation is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6). Yet, known CYP2D6 polymorphisms only partially determine metabolite concentrations in vivo. We performed the first cross-ancestry genome-wide association study with well-characterized patients of European, Middle-Eastern, and Asian descent (n = 497) to identify genetic factors impacting active and parent metabolite formation. Genome-wide significant variants were functionally evaluated in an independent liver cohort (n = 149) and in silico. Metabolite prediction models were validated in two independent European breast cancer cohorts (n = 287, n = 189). Within a single 1-megabase (Mb) region of chromosome 22q13 encompassing the CYP2D6 gene, 589 variants were significantly associated with tamoxifen metabolite concentrations, particularly endoxifen and metabolic ratio (MR) endoxifen/N-desmethyltamoxifen (minimal P = 5.4E-35 and 2.5E-65, respectively). Previously suggested other loci were not confirmed. Functional analyses revealed 66% of associated, mostly intergenic variants to be significantly correlated with hepatic CYP2D6 activity or expression (ρ = 0.35 to -0.52), and six hotspot regions in the extended 22q13 locus impacting gene regulatory function. Machine learning models based on hotspot variants (n = 12) plus CYP2D6 activity score (AS) increased the explained variability (~ 9%) compared with AS alone, explaining up to 49% (median R2 ) and 72% of the variability in endoxifen and MR endoxifen/N-desmethyltamoxifen, respectively. Our findings suggest that the extended CYP2D6 locus at 22q13 is the principal genetic determinant of endoxifen plasma concentration. Long-distance haplotypes connecting CYP2D6 with adjacent regulatory sites and nongenetic factors may account for the unexplained portion of variability.
Collapse
Affiliation(s)
- Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Clinical Pharmacology, SingHealth, Singapore, Singapore
| | - Stefan Winter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Natalia Sutiman
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Thomas E Mürdter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Sylvia Chen
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Joanne Siok Liu Lim
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Zheng Li
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kar Seng Sim
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Boian Ganchev
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Diana Eccles
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Bryony Eccles
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - William Tapper
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Arafat Tfayli
- Hematology-Oncology Division, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Yoon Sim Yap
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Elaine Lim
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Mabel Wong
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Nan Soon Wong
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Peter Cher Siang Ang
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany
| | - Yitian Zhou
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Volker M Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Michel Eichelbaum
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany.,Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Tübingen, Tübingen, Germany
| | - Hiltrud B Brauch
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Tübingen, Tübingen, Germany
| | - Balram Chowbay
- Clinical Pharmacology, SingHealth, Singapore, Singapore.,Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore.,Centre for Clinician-Scientist Development, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Quintero Reis A, Newton BA, Kessler R, Polimanti R, Wendt FR. Functional and molecular characterization of suicidality factors using phenotypic and genome-wide data. Mol Psychiatry 2023; 28:1064-1071. [PMID: 36604601 PMCID: PMC10005939 DOI: 10.1038/s41380-022-01929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWAS) of suicidal thoughts and behaviors support the existence of genetic contributions. Continuous measures of psychiatric disorder symptom severity can sometimes model polygenic risk better than binarized definitions. We compared two severity measures of suicidal thoughts and behaviors at the molecular and functional levels using genome-wide data. We used summary association data from GWAS of four traits analyzed in 122,935 individuals of European ancestry: thought life was not worth living (TLNWL), thoughts of self-harm, actual self-harm, and attempted suicide. A new trait for suicidal thoughts and behaviors was constructed first, phenotypically, by aggregating the previous four traits (termed "suicidality") and second, genetically, by using genomic structural equation modeling (gSEM; termed S-factor). Suicidality and S-factor were compared using SNP-heritability (h2) estimates, genetic correlation (rg), partitioned h2, effect size distribution, transcriptomic correlations (ρGE) in the brain, and cross-population polygenic scoring (PGS). The S-factor had good model fit (χ2 = 0.21, AIC = 16.21, CFI = 1.00, SRMR = 0.024). Suicidality (h2 = 7.6%) had higher h2 than the S-factor (h2 = 2.54, Pdiff = 4.78 × 10-13). Although the S-factor had a larger number of non-null susceptibility loci (πc = 0.010), these loci had small effect sizes compared to those influencing suicidality (πc = 0.005, Pdiff = 0.045). The h2 of both traits was enriched for conserved biological pathways. The rg and ρGE support highly overlapping genetic and transcriptomic features between suicidality and the S-factor. PGS using European-ancestry SNP effect sizes strongly associated with TLNWL in Admixed Americans: Nagelkerke's R2 = 8.56%, P = 0.009 (PGSsuicidality) and Nagelkerke's R2 = 7.48%, P = 0.045 (PGSS-factor). An aggregate suicidality phenotype was statistically more heritable than the S-factor across all analyses and may be more informative for future genetic study designs interested in common genetic factors among different suicide related phenotypes.
Collapse
Affiliation(s)
- Andrea Quintero Reis
- American University of Antigua College of Medicine, Osbourn, Antigua and Barbuda
| | - Brendan A Newton
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
| | - Ronald Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA CT Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA CT Healthcare System, West Haven, CT, USA.
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada.
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence. Eur J Clin Pharmacol 2023; 79:349-370. [PMID: 36645468 DOI: 10.1007/s00228-022-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD. METHODS A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD. RESULTS Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine β hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient. CONCLUSION Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient's individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.
Collapse
|