1
|
Zhang M, Yang L, Jia J, Xu F, Gao S, Han F, Deng M, Wang J, Li V, Yu M, Sun Y, Yuan H, Zhou Y, Li N. Increased GHS-R1a expression in the hippocampus impairs memory encoding and contributes to AD-associated memory deficits. Commun Biol 2024; 7:1334. [PMID: 39415032 PMCID: PMC11484987 DOI: 10.1038/s42003-024-06914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Growth hormone secretagogue receptor 1a (GHS-R1a), also known as the ghrelin receptor, is an important nutrient sensor and metabolic regulator in both humans and rodents. Increased GHS-R1a expression is observed in the hippocampus of both Alzheimer's disease (AD) patients and AD model mice. However, the causal relationship between GHS-R1a elevation in the hippocampus and AD memory deficits remains uncertain. Here, we find that increasing GHS-R1a expression in dCA1 pyramidal neurons impairs hippocampus-dependent memory formation, which is abolished by local administration of the endogenous antagonist LEAP2. GHS-R1a elevation in dCA1 pyramidal neurons suppresses excitability and blocks memory allocation in these neurons. Chemogenetic activation of those high GHS-R1a neurons during training rescues GHS-R1a overexpression-induced memory impairment. Moreover, we demonstrate that increasing GHS-R1a expression in dCA1 pyramidal neurons hampers these neurons' ability to encode spatial memory and reduces engram size in the dCA1 region. Finally, we show that GHS-R1a deletion mitigates spatial memory deficits in APP/PS1 mice with increased GHS-R1a expression in the hippocampus. Our findings reveal a negative, causal relationship between hippocampal GHS-R1a expression and memory encoding, and suggest that blocking the abnormal increase in GHS-R1a activity/expression may be a promising approach to improve memory and treat cognitive decline in AD.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Liu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jiajia Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fenghua Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shanshan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Fubing Han
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Jiwei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China
| | - Vincent Li
- Beverly Hills High School, Beverly Hills, CA, 90212, USA
| | - Ming Yu
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, 266042, China
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China.
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Naveed M, Smedlund K, Zhou QG, Cai W, Hill JW. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol Metab 2024:S1043-2760(24)00220-0. [PMID: 39214743 DOI: 10.1016/j.tem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes, the predominant glial cell type in the mammalian brain, influence a wide variety of brain parameters including neuronal energy metabolism. Exciting recent studies have shown that obesity and diabetes can impact on astrocyte function. We review evidence that dysregulation of astrocytic lipid metabolism and glucose sensing contributes to dysregulation of whole-body energy balance, thermoregulation, and insulin sensitivity. In addition, we consider the overlooked topic of the sex-specific roles of astrocytes and their response to hormonal fluctuations that provide insights into sex differences in metabolic regulation. Finally, we provide an update on potential ways to manipulate astrocyte function, including genetic targeting, optogenetic and chemogenetic techniques, transplantation, and tailored exosome-based therapies, which may lead to improved treatments for metabolic disease.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Weikang Cai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
3
|
Pan X, Gao Y, Guan K, Chen J, Ji B. Ghrelin/GHSR System in Depressive Disorder: Pathologic Roles and Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7324-7338. [PMID: 39057075 PMCID: PMC11275499 DOI: 10.3390/cimb46070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays a dual role in experimental animals, increasing depressed behavior and decreasing anxiety. By combining several neuropeptides and traditional neurotransmitter systems to construct neural networks, this hormone modifies signals connected to depression. The present review focuses on the role of ghrelin in neuritogenesis, astrocyte protection, inflammatory factor production, and endocrine disruption in depression. Furthermore, ghrelin/GHSR can activate multiple signaling pathways, including cAMP/CREB/BDNF, PI3K/Akt, Jak2/STAT3, and p38-MAPK, to produce antidepressant effects, given which it is expected to become a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Xingli Pan
- School of Biological Sciences, Jining Medical University, Jining 272067, China;
| | - Yuxin Gao
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Kaifu Guan
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| |
Collapse
|
4
|
Frago LM, Gómez-Romero A, Collado-Pérez R, Argente J, Chowen JA. Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control. Physiology (Bethesda) 2024; 39:0. [PMID: 38530221 DOI: 10.1152/physiol.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Gómez-Romero
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
5
|
Ergul Erkec O, Acikgoz E, Huyut Z, Akyol ME, Ozyurt EO, Keskin S. Ghrelin ameliorates neuronal damage, oxidative stress, inflammatory parameters, and GFAP expression in traumatic brain injury. Brain Inj 2024; 38:514-523. [PMID: 38433464 DOI: 10.1080/02699052.2024.2324012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This study investigated the effects of ghrelin on oxidative stress, working memory, inflammatory parameters, and neuron degeneration. METHODS TBI was produced with the weight-drop technique. Rats in the G+TBI and TBI+G groups received ghrelin for 7 or 2 days, respectively. The control group received saline. On the 8th day of the study, the brain and blood tissue were taken under anesthesia. RESULTS A significant increase in brain GSH-PX, MDA, IL-1β, TGF-β1, and IL-8 levels and a significant decrease in CAT levels were found in the TBI group compared to the control. Serum MDA, GSH, IL-1β, and IL-8 levels were increased with TBI. Ghrelin treatment after TBI significantly increased the serum GSH, CAT, GSH-PX, and brain GSH and CAT levels, while it significantly decreased the serum MDA, IL-1β, and brain MDA, TGF-β1, and IL-8 levels. Histological evaluations revealed that ghrelin treatment led to a reduction in inflammation, while also significantly ameliorating TBI-induced neuron damage and vascular injuries. Immunohistochemistry staining showed that GFAP staining intensity was significantly increased in the cortex and hippocampus in TBI, and GFAP immunoreactivity was decreased with ghrelin treatment. CONCLUSION The results from this study suggested that ghrelin may have curative effects on TBI.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Edip Akyol
- Department of Neurosurgery, Faculty of Mecine, Van Yuzuncu Yil University, Van, Turkey
| | | | - Sıddık Keskin
- Department of Biostatistics, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
6
|
Mishra D, Richard JE, Maric I, Shevchouk OT, Börchers S, Eerola K, Krieger JP, Skibicka KP. Lateral parabrachial nucleus astrocytes control food intake. Front Endocrinol (Lausanne) 2024; 15:1389589. [PMID: 38887265 PMCID: PMC11180714 DOI: 10.3389/fendo.2024.1389589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.
Collapse
Affiliation(s)
- Devesh Mishra
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jennifer E. Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Olesya T. Shevchouk
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kim Eerola
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jean-Philippe Krieger
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich - VetSuisse, Zurich, Switzerland
| | - Karolina P. Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Lékó AH, Gregory-Flores A, Marchette RCN, Gomez JL, Vendruscolo JCM, Repunte-Canonigo V, Choung V, Deschaine SL, Whiting KE, Jackson SN, Cornejo MP, Perello M, You ZB, Eckhaus M, Rasineni K, Janda KD, Zorman B, Sumazin P, Koob GF, Michaelides M, Sanna PP, Vendruscolo LF, Leggio L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. Commun Biol 2024; 7:632. [PMID: 38796563 PMCID: PMC11127961 DOI: 10.1038/s42003-024-06303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
Affiliation(s)
- András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Renata C N Marchette
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vicky Choung
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Shelley N Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Maria Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Eckhaus
- Pathology Service, Division of Veterinary Resources, Office of Research Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
8
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Ameroso D, Rios M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech Dis 2024; 16:e1632. [PMID: 37833830 PMCID: PMC10842964 DOI: 10.1002/wsbm.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
10
|
Chamoso-Sanchez D, Rabadán Pérez F, Argente J, Barbas C, Martos-Moreno GA, Rupérez FJ. Identifying subgroups of childhood obesity by using multiplatform metabotyping. Front Mol Biosci 2023; 10:1301996. [PMID: 38174068 PMCID: PMC10761426 DOI: 10.3389/fmolb.2023.1301996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Obesity results from an interplay between genetic predisposition and environmental factors such as diet, physical activity, culture, and socioeconomic status. Personalized treatments for obesity would be optimal, thus necessitating the identification of individual characteristics to improve the effectiveness of therapies. For example, genetic impairment of the leptin-melanocortin pathway can result in rare cases of severe early-onset obesity. Metabolomics has the potential to distinguish between a healthy and obese status; however, differentiating subsets of individuals within the obesity spectrum remains challenging. Factor analysis can integrate patient features from diverse sources, allowing an accurate subclassification of individuals. Methods: This study presents a workflow to identify metabotypes, particularly when routine clinical studies fail in patient categorization. 110 children with obesity (BMI > +2 SDS) genotyped for nine genes involved in the leptin-melanocortin pathway (CPE, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, and SIM1) and two glutamate receptor genes (GRM7 and GRIK1) were studied; 55 harboring heterozygous rare sequence variants and 55 with no variants. Anthropometric and routine clinical laboratory data were collected, and serum samples processed for untargeted metabolomic analysis using GC-q-MS and CE-TOF-MS and reversed-phase U(H)PLC-QTOF-MS/MS in positive and negative ionization modes. Following signal processing and multialignment, multivariate and univariate statistical analyses were applied to evaluate the genetic trait association with metabolomics data and clinical and routine laboratory features. Results and Discussion: Neither the presence of a heterozygous rare sequence variant nor clinical/routine laboratory features determined subgroups in the metabolomics data. To identify metabolomic subtypes, we applied Factor Analysis, by constructing a composite matrix from the five analytical platforms. Six factors were discovered and three different metabotypes. Subtle but neat differences in the circulating lipids, as well as in insulin sensitivity could be established, which opens the possibility to personalize the treatment according to the patients categorization into such obesity subtypes. Metabotyping in clinical contexts poses challenges due to the influence of various uncontrolled variables on metabolic phenotypes. However, this strategy reveals the potential to identify subsets of patients with similar clinical diagnoses but different metabolic conditions. This approach underscores the broader applicability of Factor Analysis in metabotyping across diverse clinical scenarios.
Collapse
Affiliation(s)
- David Chamoso-Sanchez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | | | - Jesús Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Gabriel A. Martos-Moreno
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J. Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
11
|
Murphy-Royal C, Ching S, Papouin T. A conceptual framework for astrocyte function. Nat Neurosci 2023; 26:1848-1856. [PMID: 37857773 PMCID: PMC10990637 DOI: 10.1038/s41593-023-01448-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin 'contextual guidance'. It describes astrocytes as 'contextual gates' that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space.
Collapse
Affiliation(s)
- Ciaran Murphy-Royal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) & Département de Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Leggio L, Leko A, Gregory-Flores A, Marchette R, Gomez J, Vendruscolo J, Repunte-Canonigo V, Chuong V, Deschaine S, Whiting K, Jackson S, Cornejo M, Perello M, You ZB, Eckhaus M, Janda K, Zorman B, Sumazin P, Koob G, Michaelides M, Sanna PP, Vendruscolo L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. RESEARCH SQUARE 2023:rs.3.rs-3236045. [PMID: 37886546 PMCID: PMC10602167 DOI: 10.21203/rs.3.rs-3236045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions, therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here we investigated the effects of a long-term (12 month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild type (WT) Wistar male and female rats. Our main findings were that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increased thermogenesis and brain glucose uptake in male rats and modified the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. RNA-sequencing was also used to show that GHSR-KO rats had upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuated ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating was reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
|
13
|
Pacheco-Sánchez B, Tovar R, Ben Rabaa M, Sánchez-Salido L, Vargas A, Suárez J, Rodríguez de Fonseca F, Rivera P. Sex-Dependent Altered Expression of Cannabinoid Signaling in Hippocampal Astrocytes of the Triple Transgenic Mouse Model of Alzheimer's Disease: Implications for Controlling Astroglial Activity. Int J Mol Sci 2023; 24:12598. [PMID: 37628778 PMCID: PMC10454447 DOI: 10.3390/ijms241612598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. In AD-associated neuroinflammation, astrocytes play a key role, finding glial activation both in patients and in animal models. The endocannabinoid system (ECS) is a neurolipid signaling system with anti-inflammatory and neuroprotective properties implicated in AD. Astrocytes respond to external cannabinoid signals and also have their own cannabinoid signaling. Our main objective is to describe the cannabinoid signaling machinery present in hippocampal astrocytes from 3×Tg-AD mice to determine if they are actively involved in the neurodegenerative process. Primary cultures of astrocytes from the hippocampus of 3×Tg-AD and non-Tg offspring were carried out. We analyzed the gene expression of astrogliosis markers, the main components of the ECS and Ca2+ signaling. 3×Tg-AD hippocampal astrocytes show low inflammatory activity (Il1b, Il6, and Gls) and Ca2+ flow (P2rx5 and Mcu), associated with low cannabinoid signaling (Cnr1 and Cnr2). These results were more evident in females. Our study corroborates glial involvement in AD pathology, in which cannabinoid signaling plays an important role. 3×Tg-AD mice born with hippocampal astrocytes with differential gene expression of the ECS associated with an innate attenuation of their activity. In addition, we show that there are sex differences from birth in this AD animal, which should be considered when investigating the pathogenesis of the disease.
Collapse
Affiliation(s)
- Beatriz Pacheco-Sánchez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Rubén Tovar
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Meriem Ben Rabaa
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
- Molecular Biotechnology, FH Campus Wien, University for Applied Sciences, Favoritenstraße 222, 1100 Vienna, Austria
| | - Lourdes Sánchez-Salido
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, 29010 Málaga, Spain; (B.P.-S.); (R.T.); (M.B.R.); (L.S.-S.); (A.V.); (J.S.)
| |
Collapse
|
14
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
15
|
Pasula MB, Napit PR, Alhamyani A, Roy SC, Sylvester PW, Bheemanapally K, Briski KP. Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism. Neurochem Res 2023; 48:404-417. [PMID: 36173588 PMCID: PMC9898103 DOI: 10.1007/s11064-022-03757-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5'-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.
Collapse
Affiliation(s)
- Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA.
| |
Collapse
|
16
|
Shen Z, Li ZY, Yu MT, Tan KL, Chen S. Metabolic perspective of astrocyte dysfunction in Alzheimer's disease and type 2 diabetes brains. Biomed Pharmacother 2023; 158:114206. [PMID: 36916433 DOI: 10.1016/j.biopha.2022.114206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The term type III diabetes (T3DM) has been proposed for Alzheimer's disease (AD) due to the shared molecular and cellular features between type 2 diabetes (T2DM) and insulin resistance-associated memory deficits and cognitive decline in elderly individuals. Astrocytes elicit neuroprotective or deleterious effects in AD progression and severity. Patients with T2DM are at a high risk of cognitive impairment, and targeting astrocytes might be promising in alleviating neurodegeneration in the diabetic brain. Recent studies focusing on cell-specific activities in the brain have revealed the important role of astrocytes in brain metabolism (e.g., glucose metabolism, lipid metabolism), neurovascular coupling, synapses, and synaptic plasticity. In this review, we discuss how astrocytes and their dysfunction result in multiple pathological and clinical features of AD and T2DM from a metabolic perspective and the potential comorbid mechanism in these two diseases from the perspective of astrocytes.
Collapse
Affiliation(s)
- Zheng Shen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Zheng-Yang Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Meng-Ting Yu
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Kai-Leng Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Si Chen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China.
| |
Collapse
|
17
|
Obara-Michlewska M. The contribution of astrocytes to obesity-associated metabolic disturbances. J Biomed Res 2022; 36:299-311. [PMID: 36131679 PMCID: PMC9548436 DOI: 10.7555/jbr.36.20200020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
- Marta Obara-Michlewska, Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, Warsaw 02-106, Poland. Tel/Fax: +48-22-6046416, E-mail:
| |
Collapse
|
18
|
Porniece Kumar M, Cremer AL, Klemm P, Steuernagel L, Sundaram S, Jais A, Hausen AC, Tao J, Secher A, Pedersen TÅ, Schwaninger M, Wunderlich FT, Lowell BB, Backes H, Brüning JC. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat Metab 2021; 3:1662-1679. [PMID: 34931084 PMCID: PMC8688146 DOI: 10.1038/s42255-021-00499-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022]
Abstract
Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Marta Porniece Kumar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anna Lena Cremer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Sivaraj Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - A Christine Hausen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jenkang Tao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Heiko Backes
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
19
|
Hagemann TL, Powers B, Lin NH, Mohamed AF, Dague KL, Hannah SC, Bachmann G, Mazur C, Rigo F, Olsen AL, Feany MB, Perng MD, Berman RF, Messing A. Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Sci Transl Med 2021; 13:eabg4711. [PMID: 34788075 DOI: 10.1126/scitranslmed.abg4711] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tracy L Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ahmed F Mohamed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katerina L Dague
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seth C Hannah
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Curt Mazur
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Robert F Berman
- Department of Neurological Surgery and M.I.N.D Institute, University of California, Davis, Davis, CA 95616, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
20
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Lorenzo PI, Martin Vazquez E, López-Noriega L, Fuente-Martín E, Mellado-Gil JM, Franco JM, Cobo-Vuilleumier N, Guerrero Martínez JA, Romero-Zerbo SY, Perez-Cabello JA, Rivero Canalejo S, Campos-Caro A, Lachaud CC, Crespo Barreda A, Aguilar-Diosdado M, García Fuentes E, Martin-Montalvo A, Álvarez Dolado M, Martin F, Rojo-Martinez G, Pozo D, Bérmudez-Silva FJ, Comaills V, Reyes JC, Gauthier BR. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics 2021; 11:6983-7004. [PMID: 34093866 PMCID: PMC8171100 DOI: 10.7150/thno.57237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José M. Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jaime M. Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José A. Guerrero Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
| | - Jesús A. Perez-Cabello
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sabrina Rivero Canalejo
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville, Spain
| | - Antonio Campos-Caro
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Christian Claude Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Alejandra Crespo Barreda
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Aguilar-Diosdado
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Endocrinology and Metabolism Department, University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Eduardo García Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Álvarez Dolado
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Rojo-Martinez
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José C. Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
22
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Hypothalamic Microglial Heterogeneity and Signature under High Fat Diet-Induced Inflammation. Int J Mol Sci 2021; 22:ijms22052256. [PMID: 33668314 PMCID: PMC7956484 DOI: 10.3390/ijms22052256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signaling activation. Recent data from transcriptomic analysis of microglia from rodents and humans has allowed the identification of several microglial subpopulations throughout the brain. Numerous studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data unveiling microglial heterogeneity have triggered the development of novel experimental models for studying the roles and characteristics of each microglial subtype. In this review, we explore microglial heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet-induced inflammation. We present novel currently available ex vivo and in vivo experimental models that can be useful when designing a new research project in this field of study. Last, we examine the transcriptomic data already published to identify how the hypothalamic microglial signature changes upon short-term and prolonged high-fat feeding.
Collapse
|
24
|
Kalsbeek MJT, Yi CX. The infundibular peptidergic neurons and glia cells in overeating, obesity, and diabetes. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:315-325. [PMID: 34225937 DOI: 10.1016/b978-0-12-820107-7.00019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunctional regulation of energy homeostasis results in increased bodyweight and obesity, eventually leading to type 2 diabetes mellitus. The infundibular nucleus (IFN) of the hypothalamus is the main regulator of energy homeostasis. The peptidergic neurons and glia cells of the IFN receive metabolic cues concerning energy state of the body from the circulation. The IFN can monitor hormones like insulin and leptin and nutrients like glucose and fatty acids. All these metabolic cues are integrated into an output signal regulating energy homeostasis through the release of neuropeptides. These neuropeptides are released in several inter- and extrahypothalamic brain regions involved in regulation of energy homeostasis. This review will give an overview of the peripheral signals involved in the regulation of energy homeostasis, the peptidergic neurons and glial cells of the IFN, and will highlight the main intra-hypothalamic projection sites of the IFN.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
26
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
27
|
Robb JL, Morrissey NA, Weightman Potter PG, Smithers HE, Beall C, Ellacott KLJ. Immunometabolic Changes in Glia - A Potential Role in the Pathophysiology of Obesity and Diabetes. Neuroscience 2020; 447:167-181. [PMID: 31765625 PMCID: PMC7567742 DOI: 10.1016/j.neuroscience.2019.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Chronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly. They are specialised cells which cooperate to promote and preserve neuronal health, playing important roles in regulating the activity of neuronal networks across the brain during different life stages. Increasing evidence points to a role of glia, most notably astrocytes and microglia, in the systemic regulation of energy and glucose homeostasis in the course of normal physiological control and during disease. Inflammation is an energetically expensive process that requires adaptive changes in cellular metabolism and, in turn, metabolic intermediates can also have immunomodulatory actions. Such "immunometabolic" changes in peripheral immune cells have been implicated in contributing to disease pathology in obesity and diabetes. This review will discuss the evidence for a role of immunometabolic changes in glial cells in the systemic regulation of energy and glucose homeostasis, and how this changes in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paul G Weightman Potter
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Hannah E Smithers
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
28
|
Dragano NR, Monfort-Pires M, Velloso LA. Mechanisms Mediating the Actions of Fatty Acids in the Hypothalamus. Neuroscience 2020; 447:15-27. [DOI: 10.1016/j.neuroscience.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
|
29
|
Song L, Yuan J, Liu Y, Zhang D, Zhang C, Lin Q, Li M, Su K, Li Y, Gao G, Ma R, Dong J. Ghrelin system is involved in improvements in glucose metabolism mediated by hyperbaric oxygen treatment in a streptozotocin‑induced type 1 diabetes mouse model. Mol Med Rep 2020; 22:3767-3776. [PMID: 32901885 PMCID: PMC7533472 DOI: 10.3892/mmr.2020.11481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder for which the only effective therapy is insulin replacement. Hyperbaric oxygen (HBO) therapy has demonstrated potential in improving hyperglycemia and as a treatment option for T1DM. Ghrelin and HBO have been previously reported to exert proliferative, anti-apoptotic and anti-inflammatory effects in pancreatic cells. The present study investigated the mechanism underlying HBO- and ghrelin system-mediated regulation of glucose metabolism. Male C57BL/6 mice were intraperitoneally injected with streptozotocin (STZ; 150 mg/kg) to induce T1DM before the diabetic mice were randomly assigned into the T1DM and T1DM + HBO groups. Mice in the T1DM + HBO group received HBO (1 h; 100% oxygen; 2 atmospheres absolute) daily for 2 weeks. Significantly lower blood glucose levels and food intake were observed in mice in the T1DM + HBO group. Following HBO treatment, islet β-cell area were increased whereas those of α-cell were decreased in the pancreas. In addition, greater hepatic glycogen storage in liver was observed, which coincided with higher pancreatic glucose transporter 2 (GLUT2) expression levels and reduced hepatic GLUT2 membrane trafficking. There were also substantially higher total plasma ghrelin concentrations and gastric ghrelin-O-acyl transferase (GOAT) expression levels in mice in the T1DM + HBO group. HBO treatment also abolished reductions in pancreatic GOAT expression levels in T1DM mice. Additionally, hepatic growth hormone secretagogue receptor-1a levels were found to be lower in mice in the T1DM + HBO group compared with those in the T1DM group. These results suggest that HBO administration improved glucose metabolism in a STZ-induced T1DM mouse model. The underlying mechanism involves improved insulin-release, glucose-sensing and regulation of hepatic glycogen storage, an observation that was also likely dependent on the ghrelin signalling system.
Collapse
Affiliation(s)
- Limin Song
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Junhua Yuan
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yuan Liu
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Di Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Caishun Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qian Lin
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Manwen Li
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Kaizhen Su
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yanrun Li
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Guangkai Gao
- Department of Hyperbaric Medicine, Hospital of Chinese People's Liberation Army, Qingdao, Shandong 266072, P.R. China
| | - Ruixia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, P.R. China
| | - Jing Dong
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
30
|
Breithaupt L, Chunga-Iturry N, Lyall AE, Cetin-Karayumak S, Becker KR, Thomas JJ, Slattery M, Makris N, Plessow F, Pasternak O, Holsen LM, Kubicki M, Misra M, Lawson EA, Eddy KT. Developmental stage-dependent relationships between ghrelin levels and hippocampal white matter connections in low-weight anorexia nervosa and atypical anorexia nervosa. Psychoneuroendocrinology 2020; 119:104722. [PMID: 32512249 PMCID: PMC8629489 DOI: 10.1016/j.psyneuen.2020.104722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Disruptions in homeostatic and hedonic food motivation are proposed to underlie anorexia nervosa (AN) and atypical AN, restrictive eating disorders which commonly onset in puberty. Ghrelin, a neuroprotective hormone that drives hedonic eating is increased in AN and is expressed in the hippocampus. White matter (WM) undergoes significant change during puberty in regions involved in food motivation, particularly WM tracts connected with the hippocampus. The association between ghrelin and WM region of interest (ROI) with hippocampal connections in restrictive eating disorders, particularly in adolescence during key neurodevelopmental growth, is unknown. METHODS We evaluated fasting plasma ghrelin and WM microstructure (measured by free-water corrected fractional anisotropy (FA-t)) in WM ROIs with hippocampal connections - the fornix and the hippocampal portion of the cingulum - in 56 adolescent females (age range: 11.9 - 22.1 y; mean: 19.0 y) with low-weight eating disorders including AN and atypical AN (N = 36) and healthy controls (N = 20). RESULTS FA-t in the fornix or hippocampal portion of the fornix did not differ between groups. Ghrelin was higher in AN/atypical AN vs. HC and was positively correlated with puberty stage in the AN/atypical AN group, but not the HC group. The correlation between ghrelin and FA-t in the fornix was significantly different in females with AN/atypical AN compared to controls. In AN/atypical AN, pubertal stage moderated the relation between fasting plasma ghrelin and FA-t in the fornix: higher fasting ghrelin was associated with lower FA-t in the fornix in late-post-puberty, but was not associated with FA-t in the early to mid stages of puberty. CONCLUSIONS In post-pubertal females with low-weight AN/atypical AN, higher levels of ghrelin are associated with lower FA-t in the fornix. This relationship is not evident in the early to mid stages of puberty in AN/atypical AN or in HC, and may reflect a lack of possible neuroprotective effects of ghrelin in late-post puberty only. Understanding the effects of ghrelin on WM microstructure longitudinally and following recovery from AN/Atypical AN and how this differs across pubertal stages will be an important next step. These findings could ultimately inform treatment staging and aid in diagnosis and detection of AN/atypical AN.
Collapse
Affiliation(s)
- Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Natalia Chunga-Iturry
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA
| | - Amanda E Lyall
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA
| | - Suheyla Cetin-Karayumak
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA
| | - Kendra R Becker
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nikos Makris
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA; Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Franziska Plessow
- Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ofer Pasternak
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, USA; Division of Women's Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Marek Kubicki
- Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, USA; Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Madhusmita Misra
- Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA; Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Lawson
- Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Koekkoek LL, Unmehopa UA, Eggels L, Kool T, Lamuadni K, Diepenbroek C, Mul JD, Serlie MJ, la Fleur SE. A free-choice high-fat diet modulates the effects of a sucrose bolus on the expression of genes involved in glucose handling in the hypothalamus and nucleus accumbens. Physiol Behav 2020; 222:112936. [PMID: 32417644 DOI: 10.1016/j.physbeh.2020.112936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/27/2022]
Abstract
The consumption of saturated fat and sucrose can have synergistic effects on the brain that do not occur when either nutrient is consumed by itself. In this study we hypothesize that saturated fat intake modulates glucose handling in the hypothalamus and nucleus accumbens, both brain areas highly involved in the control of food intake. To study this, male Wistar rats were given a free-choice high fat diet (fcHFD) or a control diet for two weeks. During the last seven days rats were given a daily bolus of either a 30% sucrose solution or water. Rats were sacrificed on day eight, 30 minutes after the onset of drinking. mRNA and protein levels of genes involved in glucose handling were assessed in the hypothalamus and nucleus accumbens. We found increased Glut3 and Glut4 mRNA in the hypothalamus of fcHFD-fed rats without an additional effect of the sucrose bolus. In the nucleus accumbens, the sucrose bolus increased Glut3 mRNA and decreased Glut4 mRNA independent of prior diet exposure. The ATP-sensitive potassium channel subunit Kir6.1 in the nucleus accumbens tended to be affected by the synergistic effects of a fcHFD and a sucrose bolus. These data suggest that acute glucose handling in the hypothalamus and nucleus accumbens may be affected by prior high fat exposure.
Collapse
Affiliation(s)
- L L Koekkoek
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - U A Unmehopa
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands
| | - L Eggels
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - T Kool
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - K Lamuadni
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands
| | - C Diepenbroek
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - J D Mul
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands; Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M J Serlie
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - S E la Fleur
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
32
|
Gong B, Jiao L, Du X, Li Y, Bi M, Jiao Q, Jiang H. Ghrelin promotes midbrain neural stem cells differentiation to dopaminergic neurons through Wnt/β-catenin pathway. J Cell Physiol 2020; 235:8558-8570. [PMID: 32329059 DOI: 10.1002/jcp.29699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Ghrelin plays a neuroprotective role in the process of dopaminergic (DAergic) neurons degeneration in Parkinson's disease (PD). However, it still largely unknown whether ghrelin could affect the midbrain neural stem cells (mbNSCs) from which DAergic neurons are originated. In the present study, we observed that ghrelin enhanced mbNSCs proliferation, and promoted neuronal differentiation especially DAergic neuron differentiation both in vitro and ex vivo. The messenger RNA levels of Wnt1, Wnt3a, and glial cell line-derived neurotrophic factor were increased in response to the ghrelin treatment. Results showed that Wnt/β-catenin pathway was relevant to this DAergic neuron differentiation induced by ghrelin. Our finding gave a new evidence that ghrelin may enable clinical therapies for PD by its neurogenesis role.
Collapse
Affiliation(s)
- Bing Gong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lingling Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Chowen JA, Garcia-Segura LM. Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol 2020; 184:101720. [DOI: 10.1016/j.pneurobio.2019.101720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
|
34
|
MacDonald AJ, Holmes FE, Beall C, Pickering AE, Ellacott KLJ. Regulation of food intake by astrocytes in the brainstem dorsal vagal complex. Glia 2019; 68:1241-1254. [PMID: 31880353 PMCID: PMC7187409 DOI: 10.1002/glia.23774] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
A role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high‐fat chow for 12 hr during the dark phase showed NTS astrocyte activation, reflected in an increase in the number (65%) and morphological complexity of glial‐fibrillary acidic protein (GFAP)‐immunoreactive cells adjacent to the area postrema (AP), compared to control chow fed mice. To measure the impact of astrocyte activation on food intake, we delivered designer receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes (encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno‐associated viral (AAV) vector (AAV‐GFAP‐hM3Dq_mCherry). Chemogenetic activation with clozapine‐N‐oxide (0.3 mg/kg) produced in greater morphological complexity in astrocytes and reduced dark‐phase feeding by 84% at 4 hr postinjection compared with vehicle treatment. hM3Dq‐activation of DVC astrocytes also reduced refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to AAV‐GFAP‐mCherry expressing control mice. DREADD‐mediated astrocyte activation did not impact locomotion. hM3Dq activation of DVC astrocytes induced c‐FOS in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This indicates that NTS astrocytes respond to acute nutritional excess, are involved in the integration of peripheral satiety signals, and can reduce food intake when activated.
Collapse
Affiliation(s)
- Alastair J MacDonald
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Fiona E Holmes
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Craig Beall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.,Anaesthesia, Pain and Critical Care Sciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate L J Ellacott
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
35
|
Maekawa T, Tsushima H, Kawakami F, Kawashima R, Kodo M, Imai M, Ichikawa T. Leucine-Rich Repeat Kinase 2 Is Associated With Activation of the Paraventricular Nucleus of the Hypothalamus and Stress-Related Gastrointestinal Dysmotility. Front Neurosci 2019; 13:905. [PMID: 31555076 PMCID: PMC6727664 DOI: 10.3389/fnins.2019.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a molecule associated with familial and sporadic Parkinson's disease. It regulates many central neuronal functions, such as cell proliferation, apoptosis, autophagy, and axonal extension. Recently, it has been revealed that LRRK2 is related to anxiety/depression-like behavior, implying an association between LRRK2 and stress. In the present study, we investigated for the first time the stress pathway and its relationship to gastrointestinal motility in LRRK2-knockout (KO) mice. The mice were subjected to acute restraint stress, and analyzed for activation of the paraventricular nucleus of the hypothalamus (PVN) using an immunohistochemical approach. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by Western blotting. The KO mice showed a lower number of c-Fos-positive cells and disruption of the ERK signaling pathway in the PVN in the presence of restraint stress. Stress responses in terms of both upper and lower gastrointestinal motility were alleviated in the mice, accompanied by lower c-Fos immunoreactivity in enteric excitatory neurons. Our present findings suggest that LRRK2 is a newly recognized molecule regulating the stress pathway in the PVN, playing a role in stress-related gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Tatsunori Maekawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Hiromichi Tsushima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan.,Department of Behavioral Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Masaru Kodo
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Motoki Imai
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
36
|
Dong R, Chen M, Liu J, Kang J, Zhu S. Temporospatial effects of acyl-ghrelin on activation of astrocytes after ischaemic brain injury. J Neuroendocrinol 2019; 31:e12767. [PMID: 31276248 DOI: 10.1111/jne.12767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
The protective mechanisms of astrocyte signalling are based on the release of neurotrophic factors and the clearing of toxic substances in the early stages of cerebral ischaemia. However, astrocytes are also responsible for the detrimental effects that occur during the later stages of ischaemia, in which glial scars are formed, thereby impeding neural recovery. Acyl-ghrelin has been found to be neuroprotective after stroke, although the influence of acyl-ghrelin on astrocytes after ischaemic injury is yet to be clarified. In the present study, we used permanent middle cerebral arterial occlusion to establish a brain ischaemia model in vivo, as well as oxygen and glucose deprivation (OGD) to mimic ischaemic insults in vitro. We found that acyl-ghrelin injection significantly increased the number of activated astrocytes in the peri-infarct area at day 3 after brain ischaemia and decreased the number of activated astrocytes after day 9. Moreover, the expression of fibroblast growth factor 2 (FGF2) in the ischaemic hemisphere increased markedly after day 3, and i.c.v. injection of SU5402, an inhibitor of FGF2 signalling, abolished the suppression effects of acyl-ghrelin on astrocyte activation in the peri-infarct region during the later stages of ischaemia. The results from in vitro studies also showed the dual effect of acyl-ghrelin on astrocyte viability. Acyl-ghrelin increased the viability of uninjured astrocytes in an indirect way by stimulating the secretion from OGD-injured astrocytes. It also inhibited the astrocyte viability in the presence of FGF2 in a dose-dependent manner. Furthermore, the expression of acyl-ghrelin receptors on astrocytes was increased after acyl-ghrelin and FGF2 co-treatment. In conclusion, acyl-ghrelin promoted astrocyte activation in the early stages of ischaemia but suppressed the activation in later stages of ischaemic injury. These later effects were likely to be triggered by the increased expression of endogenous FGF2 after brain ischaemia.
Collapse
Affiliation(s)
- Ruirui Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Man Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jihong Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigong Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Fuente-Martín E, Mellado-Gil JM, Cobo-Vuilleumier N, Martín-Montalvo A, Romero-Zerbo SY, Diaz Contreras I, Hmadcha A, Soria B, Martin Bermudo F, Reyes JC, Bermúdez-Silva FJ, Lorenzo PI, Gauthier BR. Dissecting the Brain/Islet Axis in Metabesity. Genes (Basel) 2019; 10:genes10050350. [PMID: 31072002 PMCID: PMC6562925 DOI: 10.3390/genes10050350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet β-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in β-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic β-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Jose M Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Alejandro Martín-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Irene Diaz Contreras
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Abdelkrim Hmadcha
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Bernat Soria
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Francisco Martin Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Jose C Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
38
|
Chowen JA, Frago LM, Fernández-Alfonso MS. Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. J Neuroendocrinol 2019; 31:e12671. [PMID: 30561077 DOI: 10.1111/jne.12671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
The role of glial cells, including astrocytes, in metabolic control has received increasing attention in recent years. Although the original interest in these macroglial cells was a result of astrogliosis being observed in the hypothalamus of diet-induced obese subjects, studies have also focused on how they participate in the physiological control of appetite and energy expenditure. Astrocytes express receptors for numerous hormones, growth factors and neuropeptides. Some functions of astrocytes include transport of nutrients and hormones from the circulation to the brain, storage of glycogen, participation in glucose sensing, synaptic plasticity, uptake and metabolism of neurotransmitters, release of substances to modify neurotransmission, and cytokine production, amongst others. In the hypothalamus, these physiological glial functions impact on neuronal circuits that control systemic metabolism to modify their outputs. The initial response of astrocytes to poor dietary habits and obesity involves activation of neuroprotective mechanisms but, with chronic exposure to these situations, hypothalamic astrocytes participate in the development of some of the damaging secondary effects. The present review discusses not only some of the physiological functions of hypothalamic astrocytes in metabolism, but also their role in the secondary complications of obesity, such as insulin resistance and cardiovascular affectations.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Soledad Fernández-Alfonso
- Instituto Pluridisciplinar UCM y Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
39
|
MacDonald AJ, Robb JL, Morrissey NA, Beall C, Ellacott KLJ. Astrocytes in neuroendocrine systems: An overview. J Neuroendocrinol 2019; 31:e12726. [PMID: 31050045 DOI: 10.1111/jne.12726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022]
Abstract
A class of glial cell, astrocytes, is highly abundant in the central nervous system (CNS). In addition to maintaining tissue homeostasis, astrocytes regulate neuronal communication and synaptic plasticity. There is an ever-increasing appreciation that astrocytes are involved in the regulation of physiology and behaviour in normal and pathological states, including within neuroendocrine systems. Indeed, astrocytes are direct targets of hormone action in the CNS, via receptors expressed on their surface, and are also a source of regulatory neuropeptides, neurotransmitters and gliotransmitters. Furthermore, as part of the neurovascular unit, astrocytes can regulate hormone entry into the CNS. This review is intended to provide an overview of how astrocytes are impacted by and contribute to the regulation of a diverse range of neuroendocrine systems: energy homeostasis and metabolism, reproduction, fluid homeostasis, the stress response and circadian rhythms.
Collapse
Affiliation(s)
- Alastair J MacDonald
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
40
|
Metabolic perturbations after pediatric TBI: It's not just about glucose. Exp Neurol 2019; 316:74-84. [PMID: 30951705 DOI: 10.1016/j.expneurol.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022]
Abstract
Improved patient survival following pediatric traumatic brain injury (TBI) has uncovered a currently limited understanding of both the adaptive and maladaptive metabolic perturbations that occur during the acute and long-term phases of recovery. While much is known about the redundancy of metabolic pathways that provide adequate energy and substrates for normal brain growth and development, the field is only beginning to characterize perturbations in these metabolic pathways after pediatric TBI. To date, the majority of studies have focused on dysregulated oxidative glucose metabolism after injury; however, the immature brain is well-equipped to use alternative substrates to fuel energy production, growth, and development. A comprehensive understanding of metabolic changes associated with pediatric TBI cannot be limited to investigations of glucose metabolism alone. All energy substrates used by the brain should be considered in developing nutritional and pharmacological interventions for pediatric head trauma. This review summarizes post-injury changes in brain metabolism of glucose, lipids, ketone bodies, and amino acids with discussion of the therapeutic potential of altering substrate utilization to improve pediatric TBI outcomes.
Collapse
|
41
|
Abstract
Astrocytes have historically been considered structural supporting cells for neurons. Thanks to new molecular tools, allowing specific cell ablation or over-expression of genes, new unexpected astrocytic functions have recently been unveiled. This review focus on emerging groundbreaking findings showing that hypothalamic astrocytes are pivotal for the regulation of whole body energy homeostasis. Hypothalamic astrocytes sense glucose and fatty acids, and express receptors for several peripheral hormones such as leptin and insulin. Furthermore, they display striking sexual dimorphism which may account, at least partially, for gender specific differences in energy homeostasis. Metabolic alterations have been shown to influence the initiation and progression of many neurodegenerative disorders. A better understanding of the roles and interplay between the different brain cells in regulating energy homeostasis could help develop new therapeutic strategies to prevent or cure neurodegenerative disorders.
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
42
|
Neurobiological characteristics underlying metabolic differences between males and females. Prog Neurobiol 2018; 176:18-32. [PMID: 30194984 DOI: 10.1016/j.pneurobio.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/24/2022]
Abstract
The hypothalamus is the main integrating center for metabolic control. Our understanding of how hypothalamic circuits function to control appetite and energy expenditure has increased dramatically in recent years, due to the rapid rise in the incidence of obesity and the search for effective treatments. Increasing evidence indicates that these treatments will most likely differ between males and females. Indeed, sex differences in metabolism have been demonstrated at various levels, including in two of the most studied neuronal populations involved in metabolic control: the anorexigenic proopiomelanocortin neurons and the orexigenic neuropeptide Y/Agouti-related protein neurons. Here we review what is known to date regarding the sex differences in these two neuronal populations, as well as other neuronal populations involved in metabolic control and glial cells.
Collapse
|
43
|
Li M, Sirko S. Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies. J Clin Med 2018. [PMID: 29538298 PMCID: PMC5867585 DOI: 10.3390/jcm7030059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Building on the seminal work by Geoffrey Harris in the 1970s, the neuroendocrinology field, having undergone spectacular growth, has endeavored to understand the mechanisms of hormonal connectivity between the brain and the rest of the body. Given the fundamental role of the brain in the orchestration of endocrine processes through interactions among neurohormones, it is thus not surprising that the structural and/or functional alterations following traumatic brain injury (TBI) can lead to endocrine changes affecting the whole organism. Taking into account that systemic hormones also act on the brain, modifying its structure and biochemistry, and can acutely and chronically affect several neurophysiological endpoints, the question is to what extent preexisting endocrine dysfunction may set the stage for an adverse outcome after TBI. In this review, we provide an overview of some aspects of three common metabolic endocrinopathies, e.g., diabetes mellitus, obesity, and thyroid dysfunction, and how these could be triggered by TBI. In addition, we discuss how the complex endocrine networks are woven into the responses to sudden changes after TBI, as well as some of the potential mechanisms that, separately or synergistically, can influence outcomes after TBI.
Collapse
Affiliation(s)
- Melanie Li
- Physiological Genomics, Biomedical Center (BMC), Institute of Physiology, Medical Faculty of the Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany.
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center (BMC), Institute of Physiology, Medical Faculty of the Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany.
| |
Collapse
|
44
|
The Protective Effects of IGF-I against β-Amyloid-related Downregulation of Hippocampal Somatostatinergic System Involve Activation of Akt and Protein Kinase A. Neuroscience 2018; 374:104-118. [PMID: 29406271 DOI: 10.1016/j.neuroscience.2018.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Somatostatin (SRIF), a neuropeptide highly distributed in the hippocampus and involved in learning and memory, is markedly reduced in the brain of Alzheimer's disease patients. The effects of insulin-like growth factor-I (IGF-I) against β amyloid (Aβ)-induced neuronal death and associated cognitive disorders have been extensively reported in experimental models of this disease. Here, we examined the effect of IGF-I on the hippocampal somatostatinergic system in Aβ-treated rats and the molecular mechanisms associated with changes in this peptidergic system. Intracerebroventricular Aβ25-35 administration during 14 days (300 pmol/day) to male rats increased Aβ25-35 levels and cell death and markedly reduced SRIF and SRIF receptor 2 levels in the hippocampus. These deleterious effects were associated with reduced Akt and cAMP response element-binding protein (CREB) phosphorylation and activation of c-Jun N-terminal kinase (JNK). Subcutaneous IGF-I co-administration (50 µg/kg/day) reduced hippocampal Aβ25-35 levels, cell death and JNK activation. In addition, IGF-I prevented the reduction in the components of the somatostatinergic system affected by Aβ infusion. Its co-administration also augmented protein kinase A (PKA) activity, as well as Akt and CREB phosphorylation. These results suggest that IGF-I co-administration may have protective effects on the hippocampal somatostatinergic system against Aβ insult through up-regulation of PKA activity and Akt and CREB phosphorylation.
Collapse
|
45
|
Sex differences in the neuroendocrine control of metabolism and the implication of astrocytes. Front Neuroendocrinol 2018; 48:3-12. [PMID: 28552663 DOI: 10.1016/j.yfrne.2017.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Males and females have distinct propensities to develop obesity and its related comorbidities, partially due to gonadal steroids. There are sex differences in hypothalamic neuronal circuits, as well as in astrocytes, that participate in metabolic control and the development of obesity-associated complications. Astrocytes are involved in nutrient transport and metabolism, glucose sensing, synaptic remodeling and modulation of neuronal signaling. They express receptors for metabolic hormones and mediate effects of these metabolic signals on neurons, with astrogliosis occurring in response to high fat diet and excess weight gain. However, most studies of obesity have focused on males. Recent reports indicate that male and female astrocytes respond differently to metabolic signals and this could be involved in the differential response to high fat diet and the onset of obesity-associated pathologies. Here we focus on the sex differences in response to obesogenic paradigms and the possible role of hypothalamic astrocytes in this phenomenon.
Collapse
|
46
|
Argente-Arizón P, Díaz F, Ros P, Barrios V, Tena-Sempere M, García-Segura LM, Argente J, Chowen JA. The Hypothalamic Inflammatory/Gliosis Response to Neonatal Overnutrition Is Sex and Age Dependent. Endocrinology 2018; 159:368-387. [PMID: 29077836 DOI: 10.1210/en.2017-00539] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/20/2017] [Indexed: 01/10/2023]
Abstract
Astrocytes participate in both physiological and pathophysiological responses to metabolic and nutrient signals. Although most studies have focused on the astrocytic response to weight gain due to high-fat/high-carbohydrate intake, surplus intake of a balanced diet also induces excess weight gain. We have accessed the effects of neonatal overnutrition, which has both age- and sex-dependent effects on weight gain, on hypothalamic inflammation/gliosis. Although both male and female Wistar rats accumulate excessive fat mass as early as postnatal day (PND) 10 with neonatal overnutrition, no increase in hypothalamic cytokine levels, markers of astrocytes or microglia, or inflammatory signaling pathways were observed. At PND 50, no effect of neonatal overnutriton was found in either sex, whereas at PND 150, males again weighed significantly more than their controls, and this was coincident with an increase in markers of inflammation and astrogliosis in the hypothalamus. Circulating triglycerides and free fatty acids were also elevated in these males, but not in females or in either sex at PND 10. Thus, the effects of fatty acids and estrogens on astrocytes in vitro were analyzed. Our results indicate that changes in circulating fatty acid levels may be involved in the induction of hypothalamic inflammation/gliosis in excess weight gain, even on a normal diet, and that estrogens could participate in the protection of females from these processes. In conclusion, the interaction of developmental influences, dietary composition, age, and sex determines the central inflammatory response and the associated long-term outcomes of excess weight gain.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Purificación Ros
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Puerto de Hierro-Majadahonda, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Luis Miguel García-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
- Instituto Madrileño de Estudios Svanzados Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Linehan V, Fang LZ, Hirasawa M. Short-term high-fat diet primes excitatory synapses for long-term depression in orexin neurons. J Physiol 2017; 596:305-316. [PMID: 29143330 DOI: 10.1113/jp275177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/09/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High-fat diet consumption is a major cause of obesity. Orexin neurons are known to be activated by a high-fat diet and in turn promote further consumption of a high-fat diet. Our study shows that excitatory synapses to orexin neurons become amenable to long-term depression (LTD) after 1 week of high-fat diet feeding. However, this effect reverses after 4 weeks of a high-fat diet. This LTD may be a homeostatic response to a high-fat diet to curb the activity of orexin neurons and hence caloric consumption. Adaptation seen after prolonged high-fat diet intake may contribute to the development of obesity. ABSTRACT Overconsumption of high-fat diets is one of the strongest contributing factors to the rise of obesity rates. Orexin neurons are known to be activated by a palatable high-fat diet and mediate the activation of the mesolimbic reward pathway, resulting in further food intake. While short-term exposure to a high-fat diet is known to induce synaptic plasticity within the mesolimbic pathway, it is unknown if such changes occur in orexin neurons. To investigate this, 3-week-old male rats were fed a palatable high-fat western diet (WD) or control chow for 1 week and then in vitro patch clamp recording was performed. In the WD condition, an activity-dependent long-term depression (LTD) of excitatory synapses was observed in orexin neurons, but not in chow controls. This LTD was presynaptic and depended on postsynaptic metabotropic glutamate receptor 5 (mGluR5) and retrograde endocannabinoid signalling. WD also increased extracellular glutamate levels, suggesting that glutamate spillover and subsequent activation of perisynaptic mGluR5 may occur more readily in the WD condition. In support of this, pharmacological inhibition of glutamate uptake was sufficient to prime chow control synapses to undergo a presynaptic LTD. Interestingly, these WD effects are transient, as extracellular glutamate levels were similar to controls and LTD was no longer observed in orexin neurons after 4 weeks of WD. In summary, excitatory synapses to orexin neurons become amenable to LTD under a palatable high-fat diet, which may represent a homeostatic mechanism to prevent overactivation of these neurons and to curtail high-fat diet consumption.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada, A1B 3V6
| | - Lisa Z Fang
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada, A1B 3V6
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada, A1B 3V6
| |
Collapse
|
48
|
Santos CL, Roppa PHA, Truccolo P, Fontella FU, Souza DO, Bobermin LD, Quincozes-Santos A. Age-Dependent Neurochemical Remodeling of Hypothalamic Astrocytes. Mol Neurobiol 2017; 55:5565-5579. [PMID: 28980158 DOI: 10.1007/s12035-017-0786-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023]
Abstract
The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.
Collapse
Affiliation(s)
- Camila Leite Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Paola Haack Amaral Roppa
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Pedro Truccolo
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Fernanda Urruth Fontella
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
49
|
Farmer WT, Murai K. Resolving Astrocyte Heterogeneity in the CNS. Front Cell Neurosci 2017; 11:300. [PMID: 29021743 PMCID: PMC5623685 DOI: 10.3389/fncel.2017.00300] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 01/30/2023] Open
Abstract
Astrocytes play essential roles in nearly all aspects of brain function from modulating synapses and neurovasculature to preserving appropriate extracellular solute concentrations. To meet the complex needs of the central nervous system (CNS), astrocytes possess highly specialized properties that are optimized for their surrounding neural circuitry. Precisely how these diverse astrocytes types are generated in vivo, however, remains poorly understood. Key to this process is a critical balance of intrinsic developmental patterning and context-dependent environmental signaling events that configures astrocyte phenotype. Indeed, emerging lines of evidence indicate that persistent cues from neighboring cells in the mature CNS cooperate with early patterning events to promote astrocyte diversity. Consistent with this, manipulating Sonic hedgehog (Shh), Notch and fibroblast growth factor (FGF) signaling in the adult brain, have profound effects on the structural, morphological and physiological state of mature astrocytes. These pathways may become disrupted in various neurological diseases and contribute to CNS pathology. This mini-review article focuses on how context-dependent environmental cues cooperate with intrinsic developmental patterning events to control astrocyte diversity in vivo in order to promote healthy brain function.
Collapse
Affiliation(s)
- W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Keith Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
50
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|