1
|
Kaur P, Mahajan M, Gambhir H, Khan A, Khan MIR. Rare earth metallic elements in plants: assessing benefits, risks and mitigating strategies. PLANT CELL REPORTS 2024; 43:216. [PMID: 39145796 DOI: 10.1007/s00299-024-03305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Rare earth elements (REEs) comprises of a uniform group of lanthanides and scandium (Sc) and yttrium (Y) finding their key importance in agriculture sectors, electronic and defense industries, and renewable energy production. The immense application of REEs as plant growth promoters has led to their undesirable accumulation in the soil system raising concerns for REE pollution as upcoming stresses. This review mainly addresses the chemistry of REEs, uptake and distribution and their biphasic responses in plant systems and possible plausible techniques that could mitigate/alleviate REE contamination. It extends beyond the present understanding of the biphasic impacts of rare earth elements (REEs) on physio-biochemical attributes. It not only provides landmarks for further exploration of the interrelated phytohormonal and molecular biphasic nature but also introduces novel approaches aimed at mitigating their toxicities. By delving into innovative strategies such as recycling, substitution, and phytohormone-assisted mitigation, the review expands upon existing knowledge of REEs whilst also offering pathways to tackle the challenges associated with REE utilization.
Collapse
Affiliation(s)
- Pravneet Kaur
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India
| | | | - Adiba Khan
- Department of Botany, University of Lucknow, Lucknow, U. P., India
| | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
3
|
Jamali ZH, Ali S, Qasim M, Song C, Anwar M, Du J, Wang Y. Assessment of molybdenum application on soybean physiological characteristics in maize-soybean intercropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1240146. [PMID: 37841600 PMCID: PMC10570528 DOI: 10.3389/fpls.2023.1240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Soybean is a leguminous crop known for its efficient nitrogen utilization and ease of cultivation. However, its intercropping with maize may lead to severe reduction in its growth and yield due to shading effect of maize. This issue can be resolved by the appropriate application of essential plant nutrient such as molybdenum (Mo). Aim of this study was to assess the effect of Mo application on the morphological and physiological characteristics of soybean intercropped with maize. A two-year field experiment was conducted for this purpose, and Mo was applied in the form of sodium molybdate (Na2MoO4), and four different levels were maintained i.e., 0, 60, 120 and 180 g ha-1. Soybean exhibited varying responses to different levels of molybdenum (Mo) application. Notably, in both sole and intercropped cropping systems, the application of Mo at a rate of 120 g ha-1 demonstrated the highest level of promise compared to other application levels. However, most significant outcomes were pragmatic in soybean-maize intercropping, as application of Mo @ 120 g ha-1 significantly improved soybean growth and yield attributes, including leaf area index (LAI; 434 and 441%), total plant biomass (430 and 461%), transpiration rate (15 and 18%), stomatal conductance (9 and 11%), and yield (15 and 20%) during year 2020 and 2021 respectively, as compared to control treatment. Similarly, Mo @ 120 g ha-1 application resulted in highest total grain yield (626.0 and 725.3 kg ha-1) during 2020 and 2021 respectively, which exceeded the grain yields of other Mo levels under intercropping. Moreover, under Mo application level (120 g ha-1), grain NPK and Mo contents during years 2020 and 2021 were found to be 1.15, 0.22, 0.83 and 68.94 mg kg-1, and 1.27, 0.25, 0.90 and 72.18 mg kg-1 under intercropping system increased the value as compared to control treatment. Findings of current study highlighted the significance of Mo in enhancing soybean growth, yield, and nutrient uptake efficiency in maize-soybean intercropping systems.
Collapse
Affiliation(s)
| | - Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czechia
| | - Muhammad Qasim
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chun Song
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Anwar
- School of Tropical Agriculture and forestry, Hainan University, Haikou, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Milenkovic I, Baruh Krstic M, Spasic SZ, Radotic K. Trans-generational effect of cerium oxide-nanoparticles (nCeO 2) on Chenopodium rubrum L. and Sinapis alba L. seeds. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:303-313. [PMID: 36914588 DOI: 10.1071/fp22213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cerium oxide nanoparticles (nCeO2 ) are interesting nanomaterials due to their redox properties. Their wide application could result in unexpected consequences to environmental safety. Unlike acute toxicity, the trans-generational effects of carbohydrate-coated nCeO2 in the environment are still unknown. The main aim of this study was to investigate the effect of treating maternal plants of Chenopodium rubrum L. (red goosefoot) and Sinapis alba L. (white mustard) with uncoated (CeO2 ) and glucose-, levan-, or pullulan-coated nCeO2 (G-, L-, or P-CeO2 ) during seed germination on morphological and physiological characteristics of produced seeds in two subsequent generations. The plant response was studied by measuring germination percentage (Ger), total protein content (TPC), total phenolic content (TPhC), total antioxidative activity (TAA), and catalase (CAT) activity. Results showed that maternal effects of the different nCeO2 treatments persist to at least the second generation in seeds. Generally, C. rubrum was more sensitive to nCeO2 treatments than S. alba . The coated nCeO2 were more effective than uncoated ones in both plant species; L- and P-CeO2 were the most effective in S. alba , while CeO2 and G-CeO2 had a dominant impact in C. rubrum . Enhanced germination in all tested generations of S. alba seeds recommends nCeO2 for seed priming.
Collapse
Affiliation(s)
- Ivana Milenkovic
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade 11030, Serbia
| | - Maria Baruh Krstic
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade 11030, Serbia
| | - Sladana Z Spasic
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade 11030, Serbia; and Singidunum University, Danijelova 32, Belgrade 11010, Serbia
| | - Ksenija Radotic
- University of Belgrade - Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade 11030, Serbia
| |
Collapse
|
5
|
Mitra D, Adhikari P, Djebaili R, Thathola P, Joshi K, Pellegrini M, Adeyemi NO, Khoshru B, Kaur K, Priyadarshini A, Senapati A, Del Gallo M, Das Mohapatra PK, Nayak AK, Shanmugam V, Panneerselvam P. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:103-120. [PMID: 36706690 DOI: 10.1016/j.plaphy.2023.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, West Bengal, India; Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Priyanka Adhikari
- Centre for excellence on GMP extraction facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Pooja Thathola
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, 263643, Uttarakhand, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nurudeen O Adeyemi
- Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Ankita Priyadarshini
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | | | - Amaresh Kumar Nayak
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, 160062, Punjab, India
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR - National Rice Research Institute, Cuttack, 753006, Odisha, India.
| |
Collapse
|
6
|
Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorg Chem Appl 2022; 2022:4348149. [PMID: 35959228 PMCID: PMC9357770 DOI: 10.1155/2022/4348149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022] Open
Abstract
The manufacturing rate of nanoparticles (10–100 nm) is steadily increasing due to their extensive applications in the fabrication of nanoproducts related to pharmaceuticals, cosmetics, medical devices, paints and pigments, energy storage etc. An increase in research related to nanotechnology is also a cause for the production and disposal of nanomaterials at the lab scale. As a result, contamination of environmental matrices with nanoparticles becomes inevitable, and the understanding of the risk of nanoecotoxicology is getting larger attention. In this context, focusing on the environmental hazards is essential. Hence, this manuscript aims to review the toxic effects of nanoparticles on soil, water, aquatic, and terrestrial organisms. The effects of toxicity on vertebrates, invertebrates, and plants and the source of exposure, environmental and biological dynamics, and the adverse effects of some nanoparticles are discussed.
Collapse
|
7
|
Khan MN, Li Y, Fu C, Hu J, Chen L, Yan J, Khan Z, Wu H, Li Z. CeO 2 Nanoparticles Seed Priming Increases Salicylic Acid Level and ROS Scavenging Ability to Improve Rapeseed Salt Tolerance. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200025. [PMID: 35860396 PMCID: PMC9284644 DOI: 10.1002/gch2.202200025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Indexed: 05/05/2023]
Abstract
Soil salinity is a major issue limiting efficient crop production. Seed priming with nanomaterials (nanopriming) is a cost-effective technology to improve seed germination under salinity; however, the underlying mechanisms still need to be explored. Here, polyacrylic acid coated nanoceria (cerium oxide nanoparticles) (PNC, 9.2 nm, -38.7 mV) are synthesized and characterized. The results show that under salinity, PNC priming significantly increases rapeseed shoot length (41.5%), root length (93%), and seedling dry weight (78%) compared to the no-nanoparticle (NNP) priming group. Confocal imaging results show that compared with NNP group, PNC priming significantly reduces reactive oxygen species (ROS) level in leaf (94.3% of H2O2, 56.4% of •O2 -) and root (38.4% of H2O2, 41.3% of •O2 -) of salt stressed rapeseed seedlings. Further, the results show that compared with the NNP group, PNC priming not only increases salicylic acid (SA) content in shoot (51.3%) and root (78.4%), but also upregulates the expression of SA biosynthesis related genes in salt stressed rapeseed. Overall, PNC nanopriming improved rapeseed salt tolerance is associated with both the increase of ROS scavenging ability and the increase of salicylic acid. The results add more information to understand the complexity of mechanisms behind nanoceria priming improved plant salt tolerance.
Collapse
Affiliation(s)
- Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yanhui Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Chengcheng Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Linlin Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jiasen Yan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zaid Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Hongshan LaboratoryWuhanHubei430070China
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100083China
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Hongshan LaboratoryWuhanHubei430070China
- College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100083China
| |
Collapse
|
8
|
Morphological, Histological and Ultrastructural Changes in Hordeum vulgare (L.) Roots That Have Been Exposed to Negatively Charged Gold Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, there has been an impressive development of nanotechnology. This has resulted in the increasing release of nanomaterials (NM) into the environment, thereby causing the risk of an uncontrolled impact on living organisms, including plants. More studies indicated the biotoxic effect of NM on plants, including crops. The interaction of nanoparticles (NP) with food crops is extremely important as they are a link to the food chain. The objective of this study was to investigate the effect of negatively charged gold nanoparticles (-) AuNP (at two concentrations; 25 µg/mL or 50 µg/mL) on barley (Hordeum vulgare L.) root development. Morphological, histological and ultrastructural analyses (with the use of stereomicroscope, bright filed microscope and transmission electron microscope) revealed that regardless of the concentration, (-) AuNP did not enter into the plant body. However, the dose of (-) AuNP proved to be important for the plant’s response because different morphological, histological and ultrastructural changes were observed in the treated roots. The NP treatment caused: red root colouration, a local increase in the root diameter and a decreased formation of the root hair cells (on morphological level), damage to the rhizodermal cells, vacuolisation of the cortical cells, a detachment of the cell files between the cortical cells, atypical divisions of the cells, disorder of the meristem organisation (on the histological level), the appearance of periplasmic space, numerous vesicles and multivesicular bodies, electron-dense spots in cytoplasm, alterations in the structure of the mitochondria, breakdown of the tonoplast and the plasmalemma (on the ultrastructural level).
Collapse
|
9
|
Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Alomary MN, Alshamrani M, Salawi A, Almoshari Y, Ansari MA, Amruthesh KN. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152249. [PMID: 34896497 DOI: 10.1016/j.scitotenv.2021.152249] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 05/27/2023]
Abstract
The main focus of this review is to discuss the current advancement in nano-metallic caused phytotoxicity on living organisms and current challenges in crops. Nanostructured materials provide new tools in agriculture to boost sustainable food production, but the main concern is that large-scale production and release of nanomaterials (NMs) into the ecosystem is a rising threat to the surrounding environment that is an urgent challenge to be addressed. The usage of NMs directly influences the transport pathways within plants, which directly relates to their stimulatory/ inhibitory effects. Because of the unregulated nanoparticles (NMs) exposure to soil, they are adsorbed at the root surface, followed by uptake and inter/intracellular mobility within the plant tissue, while the aerial exposure is taken up by foliage, mostly through cuticles, hydathodes, stigma, stomata, and trichomes, but the actual mode of NMs absorption into plants is still unclear. NMs-plant interactions may have stimulatory or inhibitory effects throughout their life cycle depending on their composition, size, concentration, and plant species. Although many publications on NMs interactions with plants have been reported, the knowledge on their uptake, translocation, and bioaccumulation is still a question to be addressed by the scientific community. One of the critical aspects that must be discovered and understood is detecting NMs in soil and the uptake mechanism in plants. Therefore, the nanopollution in plants has yet to be completely understood regarding its impact on plant health, making it yet another artificial environmental influence of unknown long-term consequences. The present review summarizes the uptake, translocation, and bioaccumulation of NMs in plants, focusing on their inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- M Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - H G Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - S Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - K N Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
10
|
Zhao X, Liu Y, Jiao C, Dai W, Song Z, Li T, He X, Yang F, Zhang Z, Ma Y. Effects of surface modification on toxicity of CeO 2 nanoparticles to lettuce. NANOIMPACT 2021; 24:100364. [PMID: 35559823 DOI: 10.1016/j.impact.2021.100364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 11/06/2021] [Indexed: 06/15/2023]
Abstract
Phytotoxicity of nanoceria (nCeO2) has been reported, but there are few studies on how to reduce its phytotoxicity. In the present study, we modified nCeO2 with two organophosphates (nCeO2@ATMP and nCeO2@EDTMP) and compared their toxicity to lettuce with that of uncoated nCeO2. The results showed that bare nCeO2 significantly inhibited the root growth of lettuce, leading to oxidative damages and root cell death. In contrast, after surface modification, the toxicity of nCeO2@ATMP to lettuce was weakened, while nCeO2@EDTMP was nontoxic to lettuce. It was found that the surface properties of the modified materials have been changed, resulting in sharp decreases in their bioavailability. Although nCeO2 with and without surface coatings were all transformed when interacting with plants, the absolute contents of Ce(III) in roots treated with modified nCeO2 decreased significantly, which may be the main reason for the reduction of toxicity. This study indicates that it is feasible to reduce the phytotoxicity of nanomaterials through surface coating.
Collapse
Affiliation(s)
- Xuepeng Zhao
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yabo Liu
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chunlei Jiao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Khan MN, Li Y, Khan Z, Chen L, Liu J, Hu J, Wu H, Li Z. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. J Nanobiotechnology 2021; 19:276. [PMID: 34530815 PMCID: PMC8444428 DOI: 10.1186/s12951-021-01026-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. RESULTS Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2- in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. CONCLUSIONS Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.
Collapse
Affiliation(s)
- Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhui Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaid Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linlin Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahao Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- School of Agriculture and Technology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
12
|
Prakash V, Peralta-Videa J, Tripathi DK, Ma X, Sharma S. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112403. [PMID: 34147863 DOI: 10.1016/j.ecoenv.2021.112403] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 05/09/2023]
Abstract
The advent of the nanotechnology era offers a unique opportunity for sustainable agriculture provided that the exposure and toxicity are adequately assessed and properly controlled. The global production and application of cerium oxide nanoparticles (CeO2-NPs) in various industrial sectors have tremendously increased. Most of the nanoparticles end up in water and soil where they interact with soil microorganisms and plants. Investigating the uptake, translocation and accumulation of CeO2-NPs is critical for its safe application in agriculture. Plant uptake of CeO2-NPs may lead to their accumulation in different plant tissues and interference with key metabolic processes of plants. Soil microbes can also be affected by increasing CeO2-NPs in soil, leading to changes in the physiology and enzymatic activity of soil microorganisms. The interactions between CeO2-NPs, microbes and plants in the agricultural system need systemic research in ecologically relevant conditions. In the present review, The uptake pathways and in-planta translocation of CeO2-NPs,and their impact on plant morphology, nutritional values, antioxidant enzymes and molecular determinants are presented. The role of CeO2-NPs in modifying soil microbial community in plant rhizosphere is also discussed. Overall, the review aims to provide a comprehensive account on the behaviour of CeO2-NPs in soil-plant systems and their potential impacts on the soil microbial community and plant health.
Collapse
Affiliation(s)
- Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, 211004 Prayagraj, India
| | - Jose Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, USA.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, 211004 Prayagraj, India.
| |
Collapse
|
13
|
Basavegowda N, Baek KH. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech 2021; 11:357. [PMID: 34268065 DOI: 10.1007/s13205-021-02907-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Over the last century, the demand for food resources has been continuously increasing with the rapid population growth. Therefore, it is critically important to adopt sustainable farming practices that can enhance crop production without the excessive use of fertilizers. In this regard, there is a growing interest in the use of nanomaterials for improving plant nutrition as an alternative to traditional chemical or mineral fertilizers. Using this technology, the efficiency of micro- and macro-nutrients in plants can increase. Various nanomaterials have been successfully applied in agricultural production, compared to conventional fertilizers. Among the major plant nutrients, phosphorus (P) is the least accessible since most farmlands are frequently P deficient. Hence, P use efficiency should be maximized to conserve the resource base and maintain agricultural productivity. This review summarizes the current research and the future possibilities of nanotechnology in the biofortification of plant nutrition, with a focus on P fertilizers. In addition, it covers the challenges, environmental impacts, and toxic effects that have been explored in the area of nanotechnology to improve crop production. The potential uses and benefits of nanoparticle-based fertilizers in precision and sustainable agriculture are also discussed.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| |
Collapse
|
14
|
Pérez-Hernández H, Pérez-Moreno A, Sarabia-Castillo CR, García-Mayagoitia S, Medina-Pérez G, López-Valdez F, Campos-Montiel RG, Jayanta-Kumar P, Fernández-Luqueño F. Ecological Drawbacks of Nanomaterials Produced on an Industrial Scale: Collateral Effect on Human and Environmental Health. WATER, AIR, AND SOIL POLLUTION 2021; 232:435. [PMID: 34658457 PMCID: PMC8507508 DOI: 10.1007/s11270-021-05370-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
Currently, hundreds of different nanomaterials with a broad application in products that make daily lives a little bit easier, in every aspect, are being produced on an industrial scale at thousands of tons per year. However, several scientists, researchers, politics, and ordinary citizens have stated their concern regarding the life cycle, collateral effects, and final disposal of these cutting-edge materials. This review summarizes, describes, and discusses all manuscripts published in the Journal Citation Reports during the last 10 years, which studied the toxicity or the effects of nanomaterials on human and environmental health. It was observed that 23.62% of the manuscripts analyzed found no ecological or human risks; 54.39% showed that several nanomaterials have toxicological effects on the ecosystems, human, or environmental health. In comparison, only 21.97% stated the nanomaterials had a beneficial impact on those. Although only 54.39% of the manuscripts reported unfavorable effects of nanomaterials on ecosystems, human, or environmental health, it is relevant because the potential damage is invaluable. Therefore, it is imperative to make toxicological studies of nanomaterials with holistic focus under strictly controlled real conditions before their commercialization, to deliver to the market only innocuous and environmentally friendly products.
Collapse
Affiliation(s)
- H. Pérez-Hernández
- El Colegio de la Frontera Sur, Agroecología, Unidad Campeche, 24500 Campeche, Mexico
| | - A. Pérez-Moreno
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - C. R. Sarabia-Castillo
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - S. García-Mayagoitia
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| | - G. Medina-Pérez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo C. P. 43000 México
| | - F. López-Valdez
- Agricultural Biotechnology Group, Research Center for Applied Biotechnology (CIBA), Instituto Politécnico Nacional, 90700 Tlaxcala, Mexico
| | - R. G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo C. P. 43000 México
| | - P. Jayanta-Kumar
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326 Republic of Korea
| | - F. Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900 Coahuila, Mexico
| |
Collapse
|
15
|
Wei CC, Yen PL, Chaikritsadakarn A, Huang CW, Chang CH, Liao VHC. Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111001. [PMID: 32888585 DOI: 10.1016/j.ecoenv.2020.111001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/04/2020] [Indexed: 05/21/2023]
Abstract
Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Amornrat Chaikritsadakarn
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
16
|
Iftikhar A, Rizwan M, Adrees M, Ali S, Ur Rehman MZ, Qayyum MF, Hussain A. Effect of gibberellic acid on growth, biomass, and antioxidant defense system of wheat (Triticum aestivum L.) under cerium oxide nanoparticle stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33809-33820. [PMID: 32535824 DOI: 10.1007/s11356-020-09661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 05/25/2023]
Abstract
Recently nanoparticles (NPs) are ubiquitous in the environment because they have unique characteristics which are the reason of their wide use in various fields. The release of NPs into various environmental compartments mainly ends up in the soil through water bodies which is a serious threat to living things especially plants. When present in soil, NPs may cause toxicity in plants which increase significance to minimize NPs stress in plants. Although gibberellic acid (GA) is one of the phytohormones that has the potential to alleviate abiotic/biotic stresses in crops plant, GA-mediated alleviation of cerium oxide (CeO2) NPs in plants is still unknown, despite the large-scale application of CeO2-NPs in various fields. The present study was performed to highlight the ability of foliar-applied GA in reducing CeO2-NPs toxicity in wheat under soil exposure of CeO2-NPs. We observed that CeO2-NPs alone adversely affected the dry weights, chlorophyll contents, and nutrients and caused oxidative stress in plants, thereby reducing plant yield. GA coupled with CeO2-NPs reversed the changes caused by CeO2-NPs alone as indicated by the increase in plant growth, chlorophylls, nutrients, and yield. Furthermore, GA alleviated the oxidative stress in plants by enhancing antioxidant enzyme activities under CeO2-NPs exposure than the NPs alone which further provided the evidence of reduction in oxidative damage in plants by GA. Overall, evaluating the potential of GA in reducing CeO2-NPs toxicity in wheat could provide important information for improving food safety under CeO2-NPs exposure.
Collapse
Affiliation(s)
- Azka Iftikhar
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
- Department of the Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| |
Collapse
|
17
|
Yu X, Cao X, Yue L, Zhao J, Chen F, Wang Z, Xing B. Phosphate induced surface transformation alleviated the cytotoxicity of Y 2O 3 nanoparticles to tobacco BY-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139276. [PMID: 32438156 DOI: 10.1016/j.scitotenv.2020.139276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 05/09/2023]
Abstract
The wide applications of rare earth oxide nanoparticles (REO NPs) in various fields and their subsequent release into the environment have attracted the research of their effects on organisms. In this study, the toxicity of yttrium oxide (Y2O3) NPs to tobacco BY-2 cells was evaluated and the importance of phosphate in the medium on the toxicity of Y2O3 NPs was revealed. 50 mg L-1 Y2O3 NPs induced 52.4% cellular growth inhibition after 24-h exposure. Phosphate inhibited the release of Y3+ from Y2O3 NPs from 6.00 to 0.04 mg L-1 at 24 h, thus reduced the toxicity of Y2O3 NPs. The surface charge of Y2O3 NPs changed from 24.0 mV (in deionized water) to -7.6 mV (in phosphate solution), which induced the aggregation of Y2O3 NPs. The change of surface properties reduced the direct nanotoxicity of Y2O3 NPs. High-resolution transmission electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray diffraction results demonstrated that phosphate transformed the surface of Y2O3 NPs to amorphous YPO4. This surface transformation decreased phosphate concentration in the medium. The dialysis membrane encapsulation experiment further identified the contribution percentage of direct nanotoxicity and indirect toxicity (i.e., phosphate depletion) of Y2O3 NPs to tobacco BY-2 cells in the presence of phosphate to be 68.3% and 31.7%, respectively. This study highlights the significant role of phosphate in altering the environmental behavior and toxicity of REO NPs.
Collapse
Affiliation(s)
- Xiaoyu Yu
- College of Environmental Science and Engineering, Ministry of Education, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Zhao
- College of Environmental Science and Engineering, Ministry of Education, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
18
|
Ovais M, Khalil AT, Ayaz M, Ahmad I. Metal oxide nanoparticles and plants. PHYTONANOTECHNOLOGY 2020:123-141. [DOI: 10.1016/b978-0-12-822348-2.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Singh A, Hussain I, Singh NB, Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109410. [PMID: 31284122 DOI: 10.1016/j.ecoenv.2019.109410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 05/27/2023]
Abstract
Cerium oxide nanoparticles (nanoceria) were synthesized by a novel, simple green chemistry procedure using Elaeagnus angustifolia leaf extract as a reducing and capping agent. The crystalline nature of nanoceria was confirmed by XRD analysis. FTIR analysis revealed that phytochemicals are present on the surface of nanoceria. SEM and TEM images revealed that the nanoceria are well dispersed, spherical in shape with a particle size range in between 30 and 75 nm. Thereafter, the effects of various concentrations of cerium oxide (CeO2) and green synthesized nanoceria on growth and metabolism of Solanum lycopersicum (tomato) were investigated. The bio-accumulation of Ce in tomato seedlings was found to be dose dependent and the results showed that with the increase in exposure concentrations, the accumulation of Ce contents in both root and shoots augmented. However, unlike nanoceria treated seedlings, Ce contents in the roots with CeO2 treatments were negligible than that in the shoots at lower concentrations and this suggested the immobilization of Ce in CeO2 treatment at lower concentrations. Nanoceria at 500 and 1000 mg/L resulted in inhibitory effect on growth of test plant as compared to CeO2 component. The exposure of plants to nanoceria and CeO2 has resulted in significant reduction in pigment content, increased LP, EL and H2O2 content. The activities of antioxidant enzymes viz. SOD, CAT, APX and GPX were significantly up regulated on exposure of nanoceria and CeO2. It is concluded that plant exposure with nanoceria at concentrations of 20 and 100 mg/L were more beneficial for growth and metabolism of tomato plants than that of CeO2 at equivalent concentrations.
Collapse
Affiliation(s)
- Ajey Singh
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, Uttar Pradesh, India
| | - Imtiyaz Hussain
- Department of Botany, Government Degree College, Kargil, 194103, Jammu and Kashmir, India.
| | - N B Singh
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, Uttar Pradesh, India.
| | - Himani Singh
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, 225003, Uttar Pradesh, India
| |
Collapse
|
20
|
Coman V, Oprea I, Leopold LF, Vodnar DC, Coman C. Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. NANOMATERIALS 2019; 9:nano9091248. [PMID: 31484310 PMCID: PMC6780927 DOI: 10.3390/nano9091248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
With a continuous increase in the production and use in everyday life applications of engineered nanomaterials, concerns have appeared in the past decades related to their possible environmental toxicity and impact on edible plants (and therefore, upon human health). Soybean is one of the most commercially-important crop plants, and a perfect model for nanomaterials accumulation studies, due to its high biomass production and ease of cultivation. In this review, we aim to summarize the most recent research data concerning the impact of engineered nanomaterials on the soya bean, covering both inorganic (metal and metal-oxide nanoparticles) and organic (carbon-based) nanomaterials. The interactions between soybean plants and engineered nanomaterials are discussed in terms of positive and negative impacts on growth and production, metabolism and influences on the root-associated microbiota. Current data clearly suggests that under specific conditions, nanomaterials can negatively influence the development and metabolism of soybean plants. Moreover, in some cases, a possible risk of trophic transfer and transgenerational impact of engineered nanomaterials are suggested. Therefore, comprehensive risk-assessment studies should be carried out prior to any mass productions of potentially hazardous materials.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Ioana Oprea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Loredana Florina Leopold
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Cristina Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Liu M, Feng S, Ma Y, Xie C, He X, Ding Y, Zhang J, Luo W, Zheng L, Chen D, Yang F, Chai Z, Zhao Y, Zhang Z. Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO 2 Nanoparticles in Cucumber Plants. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16905-16913. [PMID: 30993970 DOI: 10.1021/acsami.9b01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The physiochemical properties of nanoparticles (NPs), including surface charge, will affect their uptake, transformation, translocation, and final fate in the environment. In this study, we compared the phytoxoxicity and transport behaviors of nano CeO2 (nCeO2) functionalized with positively charged (Cs-nCeO2) and negatively charged (PAA-nCeO2) coatings. Cucumber seedlings were hydroponically exposed to 0-1000 mg/L of Cs-nCeO2 and PAA-nCeO2 for 14 days and the contents, distribution, translocation, and transformation of Ce in plants were analyzed using inductively coupled plasma mass spectrometry, micro X-ray fluorescence (μ-XRF), and X-ray absorption near-edge spectroscopy (XANES), respectively. Results showed that the seedling growth and Ce contents in plant tissues were functions of exposure concentrations and surface charge. Cs-nCeO2 was adsorbed strongly on a negatively charged root surface, which led to significantly higher Ce contents in the roots and lower translocation factors of Ce from the roots to shoots in Cs-nCeO2 group than in PAA-nCeO2 group. The results of μ-XRF showed that Ce elements were mainly accumulated at the root tips and lateral roots, as well as in the veins and at the edge of leaves. XANES results revealed that the proportion of Ce(III) was comparable in the plant tissues of the two groups. We speculated that Cs-nCeO2 and PAA-nCeO2 were partially dissolved under the effect of root exudates, releasing Ce3+ ions as a result. Then, the Ce3+ ions were transported upward in the form of Ce(III) complexes along the vascular bundles and eventually accumulated in the veins. The other portion of Cs-nCeO2 and PAA-nCeO2 entered the roots through the gap of a Casparian strip at root tips/lateral roots and was transported upward as intact NPs and finally accumulated at the edge of the blade. This study will greatly advance our information on how the properties of NPs influence their phytotoxicity, uptake, and subsequent trophic transfer in terrestrial food webs.
Collapse
Affiliation(s)
- Mengyao Liu
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Sheng Feng
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Dongliang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
- School of Physical Sciences , University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
22
|
Verma ML, Kumar P, Sharma D, Verma AD, Jana AK. Advances in Nanobiotechnology with Special Reference to Plant Systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-12496-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
23
|
Jhanzab HM, Razzaq A, Bibi Y, Yasmeen F, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S. Proteomic Analysis of the Effect of Inorganic and Organic Chemicals on Silver Nanoparticles in Wheat. Int J Mol Sci 2019; 20:E825. [PMID: 30769865 PMCID: PMC6412406 DOI: 10.3390/ijms20040825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
Production and utilization of nanoparticles (NPs) are increasing due to their positive and stimulating effects on biological systems. Silver (Ag) NPs improve seed germination, photosynthetic efficiency, plant growth, and antimicrobial activities. In this study, the effects of chemo-blended Ag NPs on wheat were investigated using the gel-free/label-free proteomic technique. Morphological analysis revealed that chemo-blended Ag NPs resulted in the increase of shoot length, shoot fresh weight, root length, and root fresh weight. Proteomic analysis indicated that proteins related to photosynthesis and protein synthesis were increased, while glycolysis, signaling, and cell wall related proteins were decreased. Proteins related to redox and mitochondrial electron transport chain were also decreased. Glycolysis associated proteins such as glyceraldehyde-3-phosphate dehydrogenase increased as well as decreased, while phosphoenol pyruvate carboxylase was decreased. Antioxidant enzyme activities such as superoxide dismutase, catalase, and peroxidase were promoted in response to the chemo-blended Ag NPs. These results suggested that chemo-blended Ag NPs promoted plant growth and development through regulation of energy metabolism by suppression of glycolysis. Number of grains/spike, 100-grains weight, and yield of wheat were stimulated with chemo-blended Ag NPs. Morphological study of next generational wheat plants depicted normal growth, and no toxic effects were observed. Therefore, morphological, proteomic, yield, and next generation results revealed that chemo-blended Ag NPs may promote plant growth and development through alteration in plant metabolism.
Collapse
Affiliation(s)
- Hafiz Muhammad Jhanzab
- Faculty of Life and Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Abdul Razzaq
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Farhat Yasmeen
- Department of Botany, Women University, Swabi 23340, Pakistan.
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Setsuko Komatsu
- Faculty of Life and Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
24
|
Plant cell nanomaterials interaction: Growth, physiology and secondary metabolism. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Roy Choudhury S. Genome-wide alterations of epigenomic landscape in plants by engineered nanomaterial toxicants. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Kim SW, Moon J, An YJ. Matricidal hatching can induce multi-generational effects in nematode Caenorhabditis elegans after dietary exposure to nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36394-36402. [PMID: 30368709 DOI: 10.1007/s11356-018-3535-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated multi-generational effects and generation particle transfer in Caenorhabditis elegans following maternal food exposure to core-shell quantum dots. We found that that the Bag of Worms (BOW) phenotype in aged worms induces changes in quantum dot distribution in the parental body, which is related to the inter-generation transfer of these nanoparticles and to their effects in the offspring. To confirm these results we examined a variety of endpoints, namely, survival, reproduction, aging phenotype, oxidative stress, and intestinal fat metabolism. We show that worms born to parents at different times after exposure show different phenotypic effects as a consequence of quantum dot transfer. This evidence of trans-generational transfer and the effects of nanoparticles highlights the complex multi-generational effects and potential safety hazards that can occur under real environmental conditions.
Collapse
Affiliation(s)
- Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Jongmin Moon
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
27
|
Tan W, Du W, Darrouzet-Nardi AJ, Hernandez-Viezcas JA, Ye Y, Peralta-Videa JR, Gardea-Torresdey JL. Effects of the exposure of TiO 2 nanoparticles on basil (Ocimum basilicum) for two generations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:240-248. [PMID: 29705436 DOI: 10.1016/j.scitotenv.2018.04.263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/27/2023]
Abstract
There is a lack of information about the transgenerational effects of titanium dioxide nanoparticles (nano-TiO2) in plants. This study aimed to evaluate the impacts of successive exposure of nano-TiO2 with different surface properties to basil (Ocimum basilicum). Seeds from plants exposed or re-exposed to pristine, hydrophobic, or hydrophilic nano-TiO2 were cultivated for 65 days in soil unamended or amended with 750 mg·kg-1 of the respective particles. Plant growth, concentration of titanium and essential elements, as well as content of carbohydrates and chlorophyll were evaluated. There were no differences on Ti concentration in roots of plants sequentially exposed to pristine or hydrophobic nano-TiO2, or in roots of plants exposed to the corresponding particle, only in the second cycle. However, sequential exposure to hydrophilic particles resulted in 65.2% less Ti in roots, compared to roots of plants exposed the same particles, only in the second cycle. The Ti concentrations in shoots were similar in all treatments. On the other hand, pristine and hydrophilic particles reduced Mg in root by 115% and 81%, respectively, while pristine and hydrophobic particles reduced Ni in shoot by 84% and 75%, respectively, compared to unexposed plants in both cycles. Sequential exposure to pristine nano-TiO2 increased stomatal conductance (214%, p ≤ 0.10), compared to plants that were never exposed. Hydrophobic and hydrophilic nano-TiO2 reduced chlorophyll b (52%) and total chlorophyll (30%) but increased total sugar (186%) and reducing sugar (145%), compared to unexposed plants in both cycles. Sequential exposure to hydrophobic or hydrophilic nano-TiO2 resulted in more adverse effects on photosynthesis but in positive effects on plant growth, compared to pristine nano-TiO2.
Collapse
Affiliation(s)
- Wenjuan Tan
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Wenchao Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Anthony J Darrouzet-Nardi
- Biological Sciences Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Jose A Hernandez-Viezcas
- Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Yuqing Ye
- Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Jose R Peralta-Videa
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States.
| |
Collapse
|
28
|
Park K, Park J, Lee H, Choi J, Yu WJ, Lee J. Toxicity and tissue distribution of cerium oxide nanoparticles in rats by two different routes: single intravenous injection and single oral administration. Arch Pharm Res 2018; 41:1108-1116. [PMID: 30178439 DOI: 10.1007/s12272-018-1074-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
Abstract
Toxicity and target organ distribution of cerium oxide nanoparticles (CeNPs) were investigated via single intravenous injection and single oral administration, respectively. Rats were sacrificed at 24 h after treatment with doses of 30 and 300 mg/kg, and cerium concentrations were measured in liver, kidney, spleen, lung, blood, urine and feces. Results revealed cerium levels in blood and tissues were considerably low in oral treated groups and most cerium was detected in feces, meaning CeNPs would not be absorbed in the gastro-intestinal system. Conversely, high concentrations of cerium were detected in all tissues of rats after intravenous injection. Liver and spleen were main target organs. Cerium levels in liver were 594.9 ± 95.3 μg/g tissue in 30 mg/kg treat group and 3741.7 ± 932.7 μg/g tissue in 300 mg/kg treat group. Cerium levels in spleen reached almost levels of liver. Cerium was also detected, that is relatively low compared to oral administration, in feces of rats treated via intravenous injection, that supports biliary excretion of CeNPs. Urine excretion of CeNPs was not detected in oral treatment and intravenous injection. In accordance with level of cerium distribution, toxicities based on hematology, serum biochemistry and histopathology were observed in rats treated by intravenous injection while no significance was revealed in orally treated groups.
Collapse
Affiliation(s)
- Kwangsik Park
- College of Pharmacy, Dongduk Women's University, 60, Hwarang-ro, 13-gil Seongbuk-gu, Seoul, 02748, Korea.
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, 60, Hwarang-ro, 13-gil Seongbuk-gu, Seoul, 02748, Korea
| | - Handule Lee
- College of Pharmacy, Dongduk Women's University, 60, Hwarang-ro, 13-gil Seongbuk-gu, Seoul, 02748, Korea
| | - Jonghye Choi
- College of Pharmacy, Dongduk Women's University, 60, Hwarang-ro, 13-gil Seongbuk-gu, Seoul, 02748, Korea
| | - Wook-Joon Yu
- Korea Institute of Toxicology, KIT, Daejeon, 34114, Korea
| | - Jinsoo Lee
- Korea Institute of Toxicology, KIT, Daejeon, 34114, Korea
| |
Collapse
|
29
|
Abstract
Engineered nanoparticles are materials between 1 and 100 nm and exist as metalloids, metallic oxides, nonmetals, and carbon nanomaterials and as functionalized dendrimers, liposomes, and quantum dots. Their small size, large surface area, and high reactivity have enabled their use as bactericides/ fungicides and nanofertilizers. Nanoparticles can be designed as biosensors for plant disease diagnostics and as delivery vehicles for genetic material, probes, and agrichemicals. In the past decade, reports of nanotechnology in phytopathology have grown exponentially. Nanomaterials have been integrated into disease management strategies and diagnostics and as molecular tools. Most reports summarized herein are directed toward pathogen inhibition using metalloid/metallic oxide nanoparticles as bactericides/fungicides and as nanofertilizers to enhance health. The use of nanoparticles as biosensors in plant disease diagnostics is also reviewed. As global demand for food production escalates against a changing climate, nanotechnology could sustainably mitigate many challenges in disease management by reducing chemical inputs and promoting rapid detection of pathogens.
Collapse
Affiliation(s)
- Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA;
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, USA
| |
Collapse
|
30
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: A perspective analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1413-1435. [PMID: 29554761 DOI: 10.1016/j.scitotenv.2018.02.313] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post-transcriptional modifications, especially, aberrant miRNA expressions. In addition, underlying mechanisms of various ENM-plant cell interactions have been discussed.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India.
| | - Ashok Kumar Das
- Center for Superfunctional Materials, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Manoj Kumar Patel
- School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ashish Shah
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India; Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India
| | - Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia 741235, West Bengal, India; Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
32
|
Raliya R, Saharan V, Dimkpa C, Biswas P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6487-6503. [PMID: 28835103 DOI: 10.1021/acs.jafc.7b02178] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increasing food demand as a result of the rising global population has prompted the large-scale use of fertilizers. As a result of resource constraints and low use efficiency of fertilizers, the cost to the farmer is increasing dramatically. Nanotechnology offers great potential to tailor fertilizer production with the desired chemical composition, improve the nutrient use efficiency that may reduce environmental impact, and boost the plant productivity. Furthermore, controlled release and targeted delivery of nanoscale active ingredients can realize the potential of sustainable and precision agriculture. A review of nanotechnology-based smart and precision agriculture is discussed in this paper. Scientific gaps to be overcome and fundamental questions to be answered for safe and effective development and deployment of nanotechnology are addressed.
Collapse
Affiliation(s)
- Ramesh Raliya
- Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| | - Vinod Saharan
- Maharana Pratap University of Agriculture and Technology , Udaipur , Rajasthan 313001 , India
| | - Christian Dimkpa
- International Fertilizer Development Center , Muscle Shoals , Alabama 35662 , United States
| | - Pratim Biswas
- Washington University in St. Louis , St. Louis , Missouri 63130 , United States
| |
Collapse
|
33
|
Ruotolo R, Maestri E, Pagano L, Marmiroli M, White JC, Marmiroli N. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2451-2467. [PMID: 29377685 DOI: 10.1021/acs.est.7b04121] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The increasing use of engineered nanomaterials (ENMs) raises questions regarding their environmental impact. Improving the level of understanding of the genetic and molecular basis of the response to ENM exposure in biota is necessary to accurately assess the true risk to sensitive receptors. The aim of this Review is to compare the plant response to several metal-based ENMs widely used, such as quantum dots, metal oxides, and silver nanoparticles (NPs), integrating available "omics" data (transcriptomics, miRNAs, and proteomics). Although there is evidence that ENMs can release their metal components into the environment, the mechanistic basis of both ENM toxicity and tolerance is often distinct from that of metal ions and bulk materials. We show that the mechanisms of plant defense against ENM stress include the modification of root architecture, involvement of specific phytohormone signaling pathways, and activation of antioxidant mechanisms. A critical meta-analysis allowed us to identify relevant genes, miRNAs, and proteins involved in the response to ENMs and will further allow a mechanistic understanding of plant-ENM interactions.
Collapse
Affiliation(s)
| | - Elena Maestri
- Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy
| | | | | | - Jason C White
- Department of Analytical Chemistry , The Connecticut Agricultural Experiment Station (CAES) , New Haven , Connecticut 06504 , United States
| | - Nelson Marmiroli
- Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy
| |
Collapse
|
34
|
Singh D, Kumar A. Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:23-31. [PMID: 29043473 DOI: 10.1007/s10646-017-1867-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In the past decade, there has been an unprecedented growth in the application of nanoparticles (NPs) worldwide. Even though the acute toxicity of CuO and ZnO NPs to plants has been investigated in past, the trans-generational effects of these NPs in the environment are still unknown. In this study, we investigated whether the treatment of radish plants with CuO and ZnO NPs as single compound and as a binary mixture (10, 100 and 1000 mg/Kg soil) through their lifecycle would affect the seed quality and the development of second-generation seedlings or not. Results showed reduced root length, shoot length and biomass in F1 seedlings of NPs treated plants. The treated F1 seeds had smaller seed weight with accumulated Cu and Zn. The effect of toxic interaction between CuO and ZnO on plant growth was antagonistic in nature. Evaluation of the trans-generational impact is important to understand the long-term effect of NPs on the environment.
Collapse
Affiliation(s)
- Divya Singh
- Indian Institute of Technology, New Delhi, 110016, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| |
Collapse
|
35
|
Ahmed B, Shahid M, Khan MS, Musarrat J. Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb. Metallomics 2018; 10:1315-1327. [DOI: 10.1039/c8mt00093j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, we assess the phytotoxicity of various-sized metal oxide nanoparticles on cell cycle progression and induction of oxidative stress in onions.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Shahid
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Javed Musarrat
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
36
|
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:250-267. [PMID: 28662490 DOI: 10.1016/j.envpol.2017.06.064] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Pinchuk AP. THE INFLUENCE OF CERIUM DIOXIDE NANOPARTICLES ON GERMINATION OF SEEDS AND PLASTIC EXCHANGE OF PINE SEEDLINGS (Pinus sylvestris L.). BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.05.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Shaw JLA, Judy JD, Kumar A, Bertsch P, Wang MB, Kirby JK. Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9433-9445. [PMID: 28745897 DOI: 10.1021/acs.est.7b01094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chronic exposure to environmental contaminants can induce heritable "transgenerational" modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed "direct exposure" to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current "EC10-20" or "Lowest Observable Effect Concentrations" for the organism's most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.
Collapse
Affiliation(s)
- Jennifer L A Shaw
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| | - Jonathan D Judy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
- University of Florida , Soil and Water Sciences Department, 1692 McCarthy Drive, Gainesville, Florida 32611, United States
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| | - Paul Bertsch
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water , Brisbane, Queensland Australia , 4001
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Agriculture and Food Unit, Black Mountain, Canberra, Australian Capital Territory, Australia , 2601
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Waite Road, Urrbrae, Adelaide Australia , 5064
| |
Collapse
|
39
|
Wang G, Ma Y, Zhang P, He X, Zhang Z, Qu M, Ding Y, Zhang J, Xie C, Luo W, Zhang J, Chu S, Chai Z, Zhang Z. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:392-399. [PMID: 28237306 DOI: 10.1016/j.envpol.2017.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Fate and toxicity of manufactured nanoparticles (NPs) in the living organisms and the environment are highly related to their transformation. In the present study, the effect of phosphate on the phytotoxicity and transformation of CeO2 NPs was investigated in an agar medium using head lettuce plants that are sensitive to Ce3+ ions. Plants were treated by CeO2 NPs with or without phosphate for 10 days. Results suggest that the treatments of P deficiency (P(-)) and CeO2 NPs (P(+)&Ce) could separately induce significant inhibition on the growth of lettuce seedlings and cause oxidative stress, but the inhibition was the most serious when the two conditions were combined (P(-)&Ce). In the absence of phosphate, more CeO2 NPs were transformed to Ce(III) in the roots and more Ce3+ ions were translocated to the shoots, which induced higher toxicity to head lettuce. Phosphates could alleviate the phytotoxic effect of CeO2 NPs through the precipitation of dissociated Ce3+ ions. Considering the wide existence of phosphate in the environment, phosphate-related transformation may be a critical factor in evaluating the toxicity and fate of many other metal-based NPs.
Collapse
Affiliation(s)
- Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Zhang
- School of Public Health, University of South China, Hunan, 421001, China
| | - Meihua Qu
- Weifang Medical University, Shandong, 261042, China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:2-16. [PMID: 27267650 DOI: 10.1016/j.jhazmat.2016.05.061] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 05/18/2023]
Abstract
The concentrations of engineered metal and metal oxide nanoparticles (NPs) have increased in the environment due to increasing demand of NPs based products. This is causing a major concern for sustainable agriculture. This review presents the effects of NPs on agricultural crops at biochemical, physiological and molecular levels. Numerous studies showed that metal and metal oxide NPs affected the growth, yield and quality of important agricultural crops. The NPs altered mineral nutrition, photosynthesis and caused oxidative stress and induced genotoxicity in crops. The activities of antioxidant enzymes increased at low NPs toxicity while decreased at higher NPs toxicity in crops. Due to exposure of crop plants to NPs, the concentration of NPs increased in different plant parts including fruits and grains which could transfer to the food chain and pose a threat to human health. In conclusion, most of the NPs have both positive and negative effects on crops at physiological, morphological, biochemical and molecular levels. The effects of NPs on crop plants vary greatly with plant species, growth stages, growth conditions, method, dose, and duration of NPs exposure along with other factors. Further research orientation is also discussed in this review article.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Yong Sik Ok
- Korea Biochar Research Centre and Department of Biological Environment, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| |
Collapse
|
41
|
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2017; 110:194-209. [PMID: 0 DOI: 10.1016/j.plaphy.2016.05.038] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 05/21/2023]
|
42
|
Bradfield SJ, Kumar P, White JC, Ebbs SD. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:128-137. [PMID: 27102448 DOI: 10.1016/j.plaphy.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 05/23/2023]
Abstract
The potential release of metal oxide engineered nanoparticles (ENP) into agricultural systems has created the need to evaluate the impact of these materials on crop yield and food safety. The study here grew sweet potato (Ipomoea batatas) to maturity in field microcosms using substrate amended with three concentrations (100, 500 or 1000 mg kg DW-1) of either nZnO, nCuO, or nCeO2 or equivalent amounts of Zn2+, Cu2+, or Ce4+. Adverse effects on tuber biomass were observed only for the highest concentration of Zn or Cu applied. Exposure to both forms of Ce had no adverse effect on yield and a slight positive benefit at higher concentrations on tuber diameter. The three metals accumulated in both the peel and flesh of the sweet potato tubers, with concentrations higher in the peel than the flesh for each element. For Zn, >70% of the metal was in the flesh and for Cu >50%. The peels retained 75-95% of Ce in the tubers. The projected dietary intake of each metal by seven age-mass classes from child to adult only exceeded the oral reference dose for chronic toxicity in a scenario where children consumed tubers grown at the highest metal concentration. The results throughout were generally not different between the ENP- and ionic-treatments, suggesting that the added ENPs underwent dissolution to release their component ions prior to accumulation. The results offer insight into the fate and impact of these ENPs in soils.
Collapse
Affiliation(s)
- Scott J Bradfield
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Pawan Kumar
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Stephen D Ebbs
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
43
|
Barrios AC, Medina-Velo IA, Zuverza-Mena N, Dominguez OE, Peralta-Videa JR, Gardea-Torresdey JL. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:100-107. [PMID: 27117792 DOI: 10.1016/j.plaphy.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO2, nCeO2+CA), cerium acetate (CeAc), bulk cerium oxide (bCeO2) and citric acid (CA) at 0-500 mg kg-1. Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO2+CA at 62.5, 250 and 500 mg kg-1 reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg-1 nCeO2+CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg-1 reduced starch by 78%, compared to control. The bCeO2 at 250 and 500 mg kg-1, increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO2 at 500 mg kg-1 reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg-1 decreased Al by 24%; while nCeO2+CA at 125 and 500 mg kg-1 increased B by 33%. On the other hand, bCeO2 at 62.5 mg kg-1 increased Ca (267%), but at 250 mg kg-1 reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO2+CA, while nutritional elements by nCeO2; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality.
Collapse
Affiliation(s)
- Ana Cecilia Barrios
- Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States
| | - Illya A Medina-Velo
- Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States
| | - Nubia Zuverza-Mena
- Metallurgical and Materials Engineering Department, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States
| | - Osvaldo E Dominguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States
| | - Jose R Peralta-Videa
- Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States
| | - Jorge L Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
44
|
Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, Pignatello J, Uchimiya M, White JC. Exposure of agricultural crops to nanoparticle CeO 2 in biochar-amended soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:147-157. [PMID: 27288265 DOI: 10.1016/j.plaphy.2016.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains unknown. Corn, lettuce, soybean and zucchini were grown for 28 d in two different soils (agricultural, residential) amended with 0-2000 mg engineered nanoparticle (ENP) CeO2 kg-1 and biochar (350 °C or 600 °C) at application rates of 0-5% (w/w). At harvest, plants were analyzed for biomass, Ce content, chlorophyll and lipid peroxidation. Biomass from the four species grown in residential soil varied with species and biochar type. However, biomass in the agricultural soil amended with biochar 600 °C was largely unaffected. Biochar co-exposure had minimal impact on Ce accumulation, with reduced or increased Ce content occurring at the highest (5%) biochar level. Soil-specific and biochar-specific effects on Ce accumulation were observed in the four species. For example, zucchini grown in agricultural soil with 2000 mg CeO2 kg-1 and 350 °C biochar (0.5-5%) accumulated greater Ce than the control. However, for the 600 °C biochar, the opposite effect was evident, with decreased Ce content as biochar increased. A principal component analysis showed that biochar type accounted for 56-99% of the variance in chlorophyll and lipid peroxidation across the plants. SEM and μ-XRF showed Ce association with specific biochar and soil components, while μ-XANES analysis confirmed that after 28 d in soil, the Ce remained largely as CeO2. The current study demonstrates that biochar synthesis conditions significantly impact interactions with ENP, with subsequent effects on particle fate and effects.
Collapse
Affiliation(s)
- Alia D Servin
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | - Roberto De la Torre-Roche
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | | | - Luca Pagano
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States; Department of Life Sciences, University of Parma, 43124, Parma, Italy
| | - Joseph Hawthorne
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | - Craig Musante
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | - Joseph Pignatello
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States
| | | | - Jason C White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, 06511, United States.
| |
Collapse
|
45
|
Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:210-225. [PMID: 27137632 DOI: 10.1016/j.plaphy.2016.04.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 05/21/2023]
Abstract
Multiple applications of metal oxide nanoparticles (MONPs) could result in their accumulation in soil, threatening higher terrestrial plants. Several reports have shown the effects of MONPs on plants. In this review, we analyze the most recent reports about the physiological and biochemical responses of plants to stress imposed by MONPs. Findings demonstrate that MONPs may be taken up and accumulated in plant tissues causing adverse or beneficial effects on seed germination, seedling elongation, photosynthesis, antioxidative stress response, agronomic, and yield characteristics. Given the importance of determining the potential risks of MONPs on crops and other terrestrial higher plants, research questions about field long-term conditions, transgenernational phytotoxicity, genotype specific sensitivity, and combined pollution problems should be considered.
Collapse
Affiliation(s)
- Wenchao Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Wenjuan Tan
- Department of Chemistry, The University of Texas, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Jose R Peralta-Videa
- Department of Chemistry, The University of Texas, El Paso, TX 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Jorge L Gardea-Torresdey
- Department of Chemistry, The University of Texas, El Paso, TX 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China.
| |
Collapse
|
46
|
Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:71-82. [PMID: 27212052 PMCID: PMC6135101 DOI: 10.1002/etc.3500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to 2 widely used engineered metal oxide nanoparticles, titanium dioxide (nano-titania) and cerium dioxide (nano-ceria). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes found under nano-titania exposure. Nano-titania induced more differentially expressed genes in rosette leaves, whereas roots had more differentially expressed genes under nano-ceria exposure. MapMan analyses indicated that although nano-titania up-regulated overall metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level, possibly because of functional and genomic redundancy in Arabidopsis, which may mask expression of morphological changes, despite discernable responses at the transcriptome level. In addition, transcriptomic changes often relate to transgenerational phenotypic development, and hence it may be productive to direct further experimental work to integrate high-throughput genomic results with longer term changes in subsequent generations. Environ Toxicol Chem 2017;36:71-82. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Research Council, Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon USA
- To whom correspondence may be addressed:
| | - Christian P. Andersen
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon USA
| | - Paul T. Rygiewicz
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon USA
| | - Jay R. Reichman
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon USA
| |
Collapse
|
47
|
Rico CM, Johnson MG, Marcus MA, Andersen CP. Intergenerational responses of wheat ( Triticum aestivum L.) to cerium oxide nanoparticles exposure. ENVIRONMENTAL SCIENCE. NANO 2017; 4:700-711. [PMID: 30147938 PMCID: PMC6104651 DOI: 10.1039/c7en00057j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs/kg soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, isotopic, and synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) data were collected on second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). Plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). In addition, synchrotron XRF elemental chemistry maps of soil/plant thin-sections revealed limited transformation of CeO2-NPs with no evidence of plant uptake or accumulation. The findings demonstrated that first generation exposure of wheat to CeO2-NPs affects the physiology and nutrient profile of the second generation plants. However, the lack of concentration-dependent responses indicate that complex physiological processes are involved which alter uptake and metabolism of CeO2-NPs in wheat.
Collapse
Affiliation(s)
- Cyren M. Rico
- National Research Council, Research Associateship Program, 500 Fifth Street, NW, Washington, DC 20001, USA
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| | - Mark G. Johnson
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christian P. Andersen
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| |
Collapse
|
48
|
Zhang W, Musante C, White JC, Schwab P, Wang Q, Ebbs SD, Ma X. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:185-193. [PMID: 26754029 DOI: 10.1016/j.plaphy.2015.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Cerium oxide nanoparticles (CeO2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO2 NPs concentration increased. CeO2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r2 = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r2 = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO2 NPs in soil and subsequent bioavailability to plants.
Collapse
Affiliation(s)
- Weilan Zhang
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Craig Musante
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06504, USA
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06504, USA
| | - Paul Schwab
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Qiang Wang
- Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| | - Stephen D Ebbs
- Department of Plant Biology and Center for Ecology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Xingmao Ma
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
49
|
Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:904-11. [PMID: 26351199 DOI: 10.1016/j.scitotenv.2015.08.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/24/2023]
Abstract
There is lack of information about the effects of foliar applied nanoparticles on fruit quality. In this study, three week-old soil grown cucumber seedlings were foliar-exposed to nCeO2, nCuO, and corresponding bulk counterparts at 50, 100, and 200mg/L. Respective suspensions/solutions were sprayed to experimental units in a volume of 250ml. Net photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (E) were measured 15days after treatment application and in 74day-old plants. Yield, fruit characteristics (size, weight, and firmness), Ce, Cu, and nutritional elements were also measured. Results showed a nano-specific decrement on Pn (22% and 30%) and E (11% and 17%) in seedling leaves exposed to nCeO2 and nCuO at 200mg/L, respectively, compared with control. nCeO2 at 50mg/L, bCeO2 at 200mg/L, and all Cu treatments, except nCuO at 100mg/L, significantly reduced fruit firmness (p≤0.05), compared with control. However, nCuO at 200mg/L and bCuO at 50mg/L significantly increased fruit fresh weight (p≤0.05). At 200mg/L, nCeO2 and bCeO2 reduced fruit Zn by 25%, while nCuO and bCuO reduced fruit Mo by 51% and 44%, respectively, compared with control. This study has shown that when the route of exposure is the foliage, differences in particle size are less significant, compared to root-based exposure. To the authors' knowledge, this is the first report on the effect of foliar application of nCeO2 and nCuO upon yield and nutritional quality of cucumber.
Collapse
Affiliation(s)
- Jie Hong
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States
| | - Lina Wang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Youping Sun
- Texas A&M Agrilife Research Center at El Paso, Texas A&M University System, 1380 A&M Circle, El Paso, TX 79927, United States
| | - Lijuan Zhao
- Chemistry Department, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States
| | - Genhua Niu
- Texas A&M Agrilife Research Center at El Paso, Texas A&M University System, 1380 A&M Circle, El Paso, TX 79927, United States
| | - Wenjuan Tan
- Chemistry Department, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States
| | - Cyren M Rico
- Chemistry Department, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States; UC Center for Environmental Implication of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States
| | - Jose R Peralta-Videa
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States; UC Center for Environmental Implication of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States; UC Center for Environmental Implication of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500W. Univ. Av., El Paso, TX 79968, United States.
| |
Collapse
|
50
|
Ma X, Wang Q, Rossi L, Zhang W. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6793-802. [PMID: 26691446 DOI: 10.1021/acs.est.5b04111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants.
Collapse
Affiliation(s)
- Xingmao Ma
- Zachry Department of Civil Engineering, Texas A&M University , 3136 TAMU, College Station, Texas 77843-3136, United States
| | - Qiang Wang
- Department of Civil and Environmental Engineering, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Lorenzo Rossi
- Zachry Department of Civil Engineering, Texas A&M University , 3136 TAMU, College Station, Texas 77843-3136, United States
| | - Weilan Zhang
- Zachry Department of Civil Engineering, Texas A&M University , 3136 TAMU, College Station, Texas 77843-3136, United States
| |
Collapse
|