1
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024:10.1038/s41440-024-01909-y. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Wang Y, Liu X. A real-world disproportionality analysis of sacubitril/valsartan: data mining of the FDA adverse event reporting system. Front Pharmacol 2024; 15:1392263. [PMID: 39193332 PMCID: PMC11347302 DOI: 10.3389/fphar.2024.1392263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Sacubitril/valsartan is extensively used in heart failure; however, there are few long-term safety studies of it in a wide range of populations. The aim of this study was to evaluate sacubitril/valsartan-induced adverse events (AEs) through data mining of the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). Methods Reports in the FAERS from the third quarter of 2015 (FDA approval of sacubitril/valsartan) to the fourth quarter of 2023 were collected and analyzed. Disproportionality analyses, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and empirical Bayesian geometric mean (EBGM) algorithms were adopted in data mining to quantify signals of sacubitril/valsartan-associated AEs. Results A total of 12,001,275 reports of sacubitril/valsartan as the "primary suspected (PS)" and 99,651 AEs induced by sacubitril/valsartan were identified. More males than females reported AEs (59.95% vs. 33.31%), with the highest number of reports in the 60-70 years age group (8.11%), and most AEs occurred < 7 days (14.13%) and ≥ 60 days (10.69%) after dosing. Sacubitril/valsartan-induced AE occurrence targeted 24 system organ classes (SOCs) and 294 preferred terms (PTs). Of these, 4 SOCs were strongly positive for all four algorithms, including cardiac disorders, vascular disorders, ear and labyrinth disorders, and respiratory, thoracic and mediastinal disorders. Among all PTs, consistent with the specification, hypotension (n = 10,078) had the highest number of reports, and dizziness, cough, peripheral swelling, blood potassium increased, and renal impairment were also reported in high numbers. Notably, this study also discovered a high frequency of side effects such as death, dyspnea, weight change, feeling abnormal, hearing loss, memory impairment, throat clearing, and diabetes mellitus. Conclusion This study identified potential new AE signals and gained a more general understanding of the safety of sacubitril/valsartan, promoting its rational adoption in the cardiovascular system.
Collapse
Affiliation(s)
- Yiwen Wang
- Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, China
| | - Xuna Liu
- Shaanxi Provincial People's Hospital, Xi’an, China
| |
Collapse
|
3
|
Sim AY, Choi DH, Kim JY, Kim ER, Goh AR, Lee YH, Lee JE. SGLT2 and DPP4 inhibitors improve Alzheimer's disease-like pathology and cognitive function through distinct mechanisms in a T2D-AD mouse model. Biomed Pharmacother 2023; 168:115755. [PMID: 37871560 DOI: 10.1016/j.biopha.2023.115755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) share common features, including insulin resistance. Brain insulin resistance has been implicated as a key factor in the pathogenesis of AD. Recent studies have demonstrated that anti-diabetic drugs sodium-glucose cotransporter-2 inhibitor (SGLT2-i) and dipeptidyl peptidase-4 inhibitor (DPP4-i) improve insulin sensitivity and provide neuroprotection. However, the effects of these two inhibitors on the brain metabolism and insulin resistance remain uninvestigated. We developed a T2D-AD mouse model using a high-fat diet (HFD) for 19 weeks along with a single dose of streptozotocin (100 mg/kg, intraperitoneally) at the fourth week of HFD initiation. Subsequently, the animals were treated with SGLT2-i (empagliflozin, 25 mg/kg/day orally [p.o.]) and DPP4-i (sitagliptin, 100 mg/kg/day p.o.) for 7 weeks. Subsequently, behavioral tests were performed, and the expression of insulin signaling, AD-related, and other signaling pathway proteins in the brain were examined. T2D-AD mice not only showed increased blood glucose levels and body weight but also insulin resistance. SGLT2-i and DPP4-i effectively ameliorated insulin sensitivity and reduced body weight in these mice. Furthermore, SGLT2-i and DPP4-i significantly improved hippocampal-dependent learning, memory, and cognitive functions in the T2D-AD mouse model. Interestingly, SGLT2-i and DPP4-i reduced the hyperphosphorylated tau (pTau) levels and amyloid β (Aβ) accumulation and enhanced brain insulin signaling. SGLT2-i reduced pTau accumulation through the angiotensin converting enzyme-2/angiotensin (1-7)/ mitochondrial assembly receptor axis, whereas DPP4-i reduced Aβ accumulation by increasing insulin-degrading enzyme levels. These findings suggest that SGLT2-i and DPP4-i prevent AD-like pathology and cognitive dysfunction in T2D mice potentially through affecting brain insulin signaling via different mechanisms.
Collapse
Affiliation(s)
- A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Da Hyun Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea.
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eun Ran Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - A-Ra Goh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea; Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Valentini A, Cardillo C, Della Morte D, Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:3006. [PMID: 38002006 PMCID: PMC10669084 DOI: 10.3390/biomedicines11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR). In this review, we describe the relationship between PVAT and ED, and we also analyse the role of PVAT in the pathogenesis of CVDs and T2DM, further assessing its potential therapeutic target with the aim of restoring normal ED and reducing global cardiovascular risk.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - David Della Morte
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| |
Collapse
|
5
|
Dallavalasa S, Tulimilli SV, Prakash J, Ramachandra R, Madhunapantula SV, Veeranna RP. COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens 2023; 12:pathogens12020184. [PMID: 36839456 PMCID: PMC9967788 DOI: 10.3390/pathogens12020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Recent evidence relating to the impact of COVID-19 on people with diabetes is limited but continues to emerge. COVID-19 pneumonia is a newly identified illness spreading rapidly throughout the world and causes many disabilities and fatal deaths. Over the ensuing 2 years, the indirect effects of the pandemic on healthcare delivery have become prominent, along with the lingering effects of the virus on those directly infected. Diabetes is a commonly identified risk factor that contributes not only to the severity and mortality of COVID-19 patients, but also to the associated complications, including acute respiratory distress syndrome (ARDS) and multi-organ failure. Diabetic patients are highly affected due to increased viral entry into the cells and decreased immunity. Several hypotheses to explain the increased incidence and severity of COVID-19 infection in people with diabetes have been proposed and explained in detail recently. On the other hand, 20-50% of COVID-19 patients reported new-onset hyperglycemia without diabetes and new-onset diabetes, suggesting the two-way interactions between COVID-19 and diabetes. A systematic review is required to confirm diabetes as a complication in those patients diagnosed with COVID-19. Diabetes and diabetes-related complications in COVID-19 patients are primarily due to the acute illness caused during the SARS-CoV-2 infection followed by the release of glucocorticoids, catecholamines, and pro-inflammatory cytokines, which have been shown to drive hyperglycemia positively. This review provides brief insights into the potential mechanisms linking COVID-19 and diabetes, and presents clinical management recommendations for better handling of the disease.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Janhavi Prakash
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - Ramya Ramachandra
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
- Correspondence:
| |
Collapse
|
6
|
Chen Q, Gao Y, Yang F, Deng H, Wang Y, Yuan L. Angiotensin-converting enzyme 2 improves hepatic insulin resistance by regulating GABAergic signaling in the liver. J Biol Chem 2022; 298:102603. [PMID: 36265585 PMCID: PMC9668738 DOI: 10.1016/j.jbc.2022.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2)/angiotensin 1-7/MAS axis and the gamma-aminobutyric acid (GABA)ergic signaling system have both been shown to have the dual potential to improve insulin resistance (IR) and hepatic steatosis associated with obesity in the liver. Recent studies have demonstrated that ACE2 can regulate the GABA signal in various tissues. Notwithstanding this evidence, the functional relationship between ACE2 and GABA signal in the liver under IR remains elusive. Here, we used high-fat diet-induced models of IR in C57BL/6 mice as well as ACE2KO and adeno-associated virus-mediated ACE2 overexpression mouse models to address this knowledge gap. Our analysis showed that glutamate decarboxylase (GAD)67/GABA signaling was weakened in the liver during IR, whereas the expression of GAD67 and GABA decreased significantly in ACE2KO mice. Furthermore, exogenous administration of angiotensin 1-7 and adeno-associated virus- or lentivirus-mediated overexpression of ACE2 significantly increased hepatic GABA signaling in models of IR both in vivo and in vitro. We found that this treatment prevented lipid accumulation and promoted fatty acid β oxidation in hepatocytes as well as inhibited the expression of gluconeogenesis- and inflammation-related genes, which could be reversed by allylglycine, a specific GAD67 inhibitor. Collectively, our findings show that signaling via the ACE2/A1-7/MAS axis can improve hepatic IR by regulating hepatic GABA signaling. We propose that this research might indicate a potential strategy for the management of diabetes.
Collapse
|
7
|
Amorim MJB, Gomes SIL, Bicho RCS, Scott-Fordsmand JJ. On virus and nanomaterials - Lessons learned from the innate immune system - ACE activation in the invertebrate model Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129173. [PMID: 35739709 PMCID: PMC9116975 DOI: 10.1016/j.jhazmat.2022.129173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/03/2023]
Abstract
Current human research on COVID-19 - SARS-CoV-2 (Severe Acute Respiratory Syndrome-Corona Virus) showed that ACE2 (Angiotensin Converting Enzyme 2) is a functional receptor to which the spike proteins attach. Invertebrates have been exposed to a wide array of threats for millennia and their immune system has evolved to deal with these efficiently. The annelid Enchytraeus crypticus, a standard ecotoxicological species, is an invertebrate species where extensive mechanisms of response studies are available, covering all levels from gene to population responses. Nanomaterials (NMs) are often perceived as invaders (e.g. virus) and can enter the cell covered by a corona, triggering similar responses. We created a database on E. crypticus ACE gene expression, aiming to analyse the potential knowledge transfer between invertebrates and vertebrates. Total exposure experiments sum 87 stress conditions for 18 different nanomaterials (NMs). ACE expression following TiO2 NM exposure was clearly different from other NMs showing a clear (6-7 fold) ACE down-regulation, not observed for any other NMs. Other NMs, notably Ag NMs, and to some extent Cu NMs, caused ACE up-regulation (up to 4 fold). The extensive knowledge from response to NMs can support the immuno-research community, especially to develop therapies for virus that trigger the innate immune system.
Collapse
Affiliation(s)
- M J B Amorim
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - S I L Gomes
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - R C S Bicho
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J J Scott-Fordsmand
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle, DK-8000, Aarhus, Denmark
| |
Collapse
|
8
|
Monteiro BL, Santos RAS, Mario EG, Araujo TS, Savergnini SSQ, Santiago AF, Muzzi RAL, Castro IC, Teixeira LG, Botion LM, Marinho BM, Santos SHS, Porto LCJ. Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides 2022; 151:170764. [PMID: 35151766 DOI: 10.1016/j.peptides.2022.170764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin-(1-7) is a biologically active product of the renin-angiotensin system cascade and exerts inhibitory effects on inflammation, vascular and cellular growth mechanisms signaling through the G protein-coupled Mas receptor. The major purpose of the present study was to investigate the use of glucose and fatty acids by cardiac tissue in Mas knockout mice models. Serum levels of glucose, lipids, and insulin were measured in Mas-deficient and wild-type FVB/N mice. To investigate the cardiac use of lipids, the lipoprotein lipase, the gene expression of peroxisome proliferator-activated receptor alpha; carnitine palmitoyltransferase I and acyl-CoA oxidase were evaluated. To investigate the cardiac use of glucose, the insulin signaling through Akt/GLUT4 pathway, glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) glycolytic intermediates, in addition to ATP, lactate and the glycogen content were measured. Despite normal body weight, cholesterol and insulin, Mas-Knockout mice presented hyperglycemia and hypertriglyceridemia, impaired insulin signaling, through reduced phosphorylation of AKT and decreased translocation of GLUT4 in response to insulin, with subsequent decrease of the cardiac G-6-P and F-6-P. Lactate production and glycogen content were not altered in Mas-KO hearts. Mas-KO presented reduced cardiac lipoprotein lipase activity and decreased translocation of CD36 in response to insulin. The expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase I genes were lower in Mas-KO animals compared to wild-type animals. The ATP content of Mas-KO hearts was smaller than in wild-type. The present results suggest that genetic deletion of Mas produced a devastating effect on cardiac use of glucose and lipids, leading to lower energy efficiency in the heart.
Collapse
Affiliation(s)
- Brenda L Monteiro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Robson A S Santos
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Erica G Mario
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Thiago S Araujo
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Silvia S Q Savergnini
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Andrezza F Santiago
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Ruthnea A L Muzzi
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| | - Isabela C Castro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Lilian G Teixeira
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Leida M Botion
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Barbhara M Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Sergio H S Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Laura C J Porto
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil; Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Liu J, Li X, Wang X, Peng L, Song G, He J. Angiotensin(1-7) Improves Islet Function in Diabetes Through Reducing JNK/Caspase-3 Signaling. Horm Metab Res 2022; 54:250-258. [PMID: 35413746 DOI: 10.1055/a-1796-9286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The aim of this study is to investigate whether Angiotensin (1-7), the physiological antagonist of Angiotensin II (AngII), has antidiabetic activity and the possible mechanism. Male Wistar rats were randomly divided into 3 groups: control group fed the normal diet, DM group fed high-fat diet and injected with STZ, and Angiotensin (1-7) group receiving injection of STZ followed by Angiotensin (1-7) treatment. Serum Ang II, fasting blood glucose, insulin, HOMA-IR, and HOMA-beta were determined in control, diabetes and Angiotensin (1-7) groups. The increased AngII and insulin resistance in diabetes group were accompanied by changes in islet histopathology. However, Angiotensin (1-7) improved the islet function and histopathology in diabetes without affecting the level of AngII. Western blot confirmed that Angiotensin (1-7) decreased the cleaved caspase 3 levels in pancreas of DM. The increased expression of JNK, Bax, and Bcl2 genes under diabetic conditions were partially reversed after Angiotensin (1-7) administration in pancreas. Immunofluorescence analysis showed that p-JNK was markedly increased in islet of DM rats, which was markedly alleviated after Angiotensin (1-7) treatment. Furthermore, Angiotensin (1-7) reversed high glucose(HG) induced mitochondrial apoptosis augments. Finally, Angiotensin (1-7) attenuated the apoptosis of INS-1 cells through reducing JNK activation in diabetes, which was blocked by anisomycin (a potent agonist of JNK). Our findings provide supporting evidence that Angiotensin (1-7) improved the islet beta-cells apoptosis by JNK-mediated mitochondrial dysfunction, which might be a novel target for the treatment and prevention of beta-cells dysfunction in DM.
Collapse
Affiliation(s)
- Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Wang
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lina Peng
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoning Song
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Junhua He
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Barbosa CM, Lima TC, Barbosa MA, Rezende A, Carneiro CM, Silva SDQ, Itabaiana YA, Carvalho Alzamora A. Progenitor with cardiometabolic disorders increases food intake, systemic inflammation and gut microbiota alterations in the second generation offspring. Food Funct 2022; 13:8685-8702. [DOI: 10.1039/d1fo02838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents the effects of the high-fat diet (H) consumed by the progenitor (G0) on cardiometabolic disorders and on intestinal microbiota in the second generation ofspring (F2). Rats submitted...
Collapse
|
11
|
Skrajnowska D, Brumer M, Kankowska S, Matysek M, Miazio N, Bobrowska-Korczak B. Covid 19: Diet Composition and Health. Nutrients 2021; 13:2980. [PMID: 34578858 PMCID: PMC8472186 DOI: 10.3390/nu13092980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the disease coronavirus disease 2019 (COVID-19). The cumulative number of cases reported globally is now nearly 197 million and the number of cumulative deaths is 4.2 million (26 July to 1 August 2021). Currently we are focusing primarily on keeping a safe distance from others, washing our hands, and wearing masks, and the question of the effects of diet and diet-dependent risk factors remains outside the center of attention. Nevertheless, numerous studies indicate that diet can play an important role in the course of COVID-19. In this paper, based on select scientific reports, we discuss the structure and replication cycle of SARS-CoV-2, risk factors, dietary standards for sick patients, and the roles of the microbiome and dietary components supporting the immune system in preventing COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Bobrowska-Korczak
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.); (M.B.); (S.K.); (M.M.); (N.M.)
| |
Collapse
|
12
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
13
|
Rodríguez-Reyes B, Tufiño C, López Mayorga RM, Mera Jiménez E, Bobadilla Lugo RA. Role of pregnancy on insulin-induced vasorelaxation: the influence of angiotensin II receptors. Can J Physiol Pharmacol 2021; 99:1026-1035. [PMID: 33857388 DOI: 10.1139/cjpp-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is a feature of pregnancy and is associated with increased levels of angiotensin II (Ang II) and insulin. Therefore, pregnancy may change insulin-induced vasodilation through changes in Ang II receptors. Insulin-induced vasorelaxation was evaluated in phenylephrine-precontracted aortic rings of pregnant and non-pregnant rats, using a conventional isolated organ preparation. Experiments were performed in thoracic or abdominal aorta rings with or without endothelium in the presence and absence of NG-nitro-L-arginine methyl ester (L-NAME) (10-5 M), losartan (10-7 M), or PD123319 (10-7 M). AT1 and AT2 receptor expressions were detected by immunohistochemistry. Insulin-induced vasodilation was endothelium- and nitric oxide-dependent and decreased in the thoracic aorta but increased in the abdominal segment of pregnant rats. The insulin's vasorelaxant effect was increased by losartan mainly on the thoracic aorta. PD123319 decreased insulin-induced vasorelaxation mainly in the pregnant rat abdominal aorta. AT1 receptor expression was decreased while AT2 receptor expression was increased by pregnancy. In conclusion, pregnancy changes insulin-induced vasorelaxation. Moreover, insulin vasodilation is tonically inhibited by AT1 receptors, while AT2 receptors appear to have an insulin-sensitizing effect. The role of pregnancy and Ang II receptors differ depending on the aorta segment. These results shed light on the role of pregnancy and Ang II receptors on the regulation of insulin-mediated vasodilation.
Collapse
Affiliation(s)
- Betzabel Rodríguez-Reyes
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Cecilia Tufiño
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Ruth M López Mayorga
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Elvia Mera Jiménez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Rosa Amalia Bobadilla Lugo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| |
Collapse
|
14
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
15
|
Nejat R, Sadr AS. Are losartan and imatinib effective against SARS-CoV2 pathogenesis? A pathophysiologic-based in silico study. In Silico Pharmacol 2020; 9:1. [PMID: 33294307 PMCID: PMC7716628 DOI: 10.1007/s40203-020-00058-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Proposing a theory about the pathophysiology of cytokine storm in COVID19, we were to find the potential drugs to treat this disease and to find any effect of these drugs on the virus infectivity through an in silico study. COVID-19-induced ARDS is linked to a cytokine storm phenomenon not explainable solely by the virus infectivity. Knowing that ACE2, the hydrolyzing enzyme of AngII and SARS-CoV2 receptor, downregulates when the virus enters the host cells, we hypothesize that hyperacute AngII upregulation is the eliciting factor of this ARDS. We were to validate this theory through reviewing previous studies to figure out the role of overzealous activation of AT1R in ARDS. According to this theory losartan may attenuate ARDS in this disease. Imatinib, has previously been elucidated to be promising in modulating lung inflammatory reactions and virus infectivity in SARS and MERS. We did an in silico study to uncover any probable other unconsidered inhibitory effects of losartan and imatinib against SARS-CoV2 pathogenesis. Reviewing the literature, we could find that over-activation of AT1R could explain precisely the mechanism of cytokine storm in COVID19. Our in silico study revealed that losartan and imatinib could probably: (1) decline SARS-CoV2 affinity to ACE2. (2) inhibit the main protease and furin, (3) disturb papain-like protease and p38MAPK functions. Our reviewing on renin-angiotensin system showed that overzealous activation of AT1R by hyper-acute excess of AngII due to acute downregulation of ACE2 by SARS-CoV2 explains precisely the mechanism of cytokine storm in COVID-19. Besides, based on our in silico study we concluded that losartan and imatinib are promising in COVID19.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shahir Sadr
- Bioinformatics Research Center, Cheragh Medical Institute and Hospital, Kabul, Afghanistan
- Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
16
|
Li L, Spranger L, Soll D, Beer F, Brachs M, Spranger J, Mai K. Metabolic impact of weight loss induced reduction of adipose ACE-2 - Potential implication in COVID-19 infections? Metabolism 2020; 113:154401. [PMID: 33065163 PMCID: PMC7552972 DOI: 10.1016/j.metabol.2020.154401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Angiotensin converting enzyme (ACE)-2 is a modulator of adipose tissue metabolism. However, human data of adipose ACE-2 is rarely available. Considering that, ACE-2 is believed to be the receptor responsible for cell entry of SARS-CoV-2, a better understanding of its regulation is desirable. We therefore characterized the modulation of subcutaneous adipose ACE-2 mRNA expression during weight loss and the impact of ACE-2 expression on weight loss induced short- and long-term improvements of glucose metabolism. METHODS 143 subjects (age > 18; BMI ≥ 27 kg/m2) were analyzed before and after a standardized 12-week dietary weight reduction program. Afterwards subjects were randomized to a 12-month lifestyle intervention or a control group (Maintain-Adults trial). Insulin sensitivity (IS) was estimated by HOMA-IR (as an estimate of liver IS) and ISIClamp (as an estimate of skeletal muscle IS). ACE-2 mRNA expression (ACE-2AT) was measured in subcutaneous adipose tissue before and after weight loss. RESULTS ACE-2AT was not affected by obesity, but was reduced in insulin resistant subjects. Weight loss resulted in a decline of ACE-2AT (29.0 (20.0-47.9) vs. 21.0 (13.0-31.0); p = 1.6 ∗ 10-7). A smaller reduction of ACE-2 AT (ΔACE-2AT) was associated with a larger improvement of ISIClamp (p = 0.013) during weight reduction over 3 months, but not with the extend of weight loss. The degree of changes in insulin resistance were preserved until month 12 and was also predicted by the weight loss induced degree of ΔACE-2AT (p = 0.011). CONCLUSIONS Our data indicate that subcutaneous adipose ACE-2 expression correlates with insulin sensitivity. Weight loss induced decline of subcutaneous adipose ACE-2 expression might affect short- and long-term improvement of myocellular insulin sensitivity, which might be also relevant in the context of ACE-2 downregulation by SARS-CoV-2. TRIAL REGISTRATION ClinicalTrials.gov number: NCT00850629, https://clinicaltrials.gov/ct2/show/NCT00850629, date of registration: February 25, 2009.
Collapse
Affiliation(s)
- Linna Li
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinical Research Unit, 10117 Berlin, Germany
| | - Leonard Spranger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany
| | - Dominik Soll
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany
| | - Finja Beer
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany
| | - Maria Brachs
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany.
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité Center for Cardiovascular Research, 10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinical Research Unit, 10117 Berlin, Germany
| |
Collapse
|
17
|
Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med Hypotheses 2020; 144:110231. [PMID: 33254538 PMCID: PMC7468676 DOI: 10.1016/j.mehy.2020.110231] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has increased exponentially in numbers with more than 20 million people infected around the globe. It is clear that COVID-19 is not a simple viral pneumonia, but presents with unusual pathophysiological effects. Of special interest is that SARS-CoV-2 utilises the angiotensin-converting enzyme-2 (ACE2) for cell entry and therefore has a direct effect on the renin angiotensin system (RAS). The RAS is primarily responsible for blood pressure control via the classic pathway. Recently numerous other pathological processes have been described due to stimulation of this classic pathway. There is also a protective RAS pathway medicated by ACE2 which may be suppressed in COVID-19. This leads to overstimulation of the classic pathway with adverse cardiovascular and respiratory effects, hypercoagulation, endothelial dysfunction, inflammation and insulin resistance. We hypothesize that overreaction of the renin-angiotensin-aldosterone may account for the myriad of unusual biochemical and clinical abnormalities noted in patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- O J Wiese
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service (NHLS) & Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - B W Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Hospital, South Africa
| | - A E Zemlin
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service (NHLS) & Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa.
| |
Collapse
|
18
|
Barbosa MA, Barbosa CM, Lima TC, dos Santos RAS, Alzamora AC. The Novel Angiotensin-(1-7) Analog, A-1317, Improves Insulin Resistance by Restoring Pancreatic β-Cell Functionality in Rats With Metabolic Syndrome. Front Pharmacol 2020; 11:1263. [PMID: 32982727 PMCID: PMC7476374 DOI: 10.3389/fphar.2020.01263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
In previous studies we have shown that oral Ang-(1-7) has a beneficial therapeutic effect on cardiometabolic disturbances present in metabolic syndrome (MetS). Based on the fact that Ang-(1-7) acts through release of nitric oxide (NO), a new peptide, A-1317 was engineered adding the amino acid L-Arginine, the NO precursor, to the N-terminal portion of the Ang-(1-7). Therefore, in a single molecule the substrate and the activator of NO are combined. In the present study, we evaluated the effect of A-1317 oral treatment on liver-glucose metabolism in MetS induced by high fat (HF) diet in rats. Rats were subjected to control (AIN-93M, CT) or HF diets for 15 weeks to induce MetS and treated with A-1317, Ang-(1-7) included into hydroxypropyl-β-cyclodextrin (HPβCD) or empty HPβCD (E), in the last 7 weeks. At the end of 15 weeks, hemodynamic, biometric, and biochemical parameters, redox process, and qRT-PCR gene expression of NO synthase and RAS components were evaluated in the liver. HF/E rats increased body mass gain, adiposity index, despite the reduction in food intake, increased plasma leptin, total cholesterol, triglycerides, ALT, fasting blood glucose, OGTT and insulin, HOMA-IR and MAP and HR. Furthermore, the MetS rats presented increased in liver angiotensinogen, AT1R, ACE mRNA gene expression and concentration of MDA and carbonylated protein. Both Ang-(1-7) and A-1317 oral treatment in MetS rats reverted most of these alterations. However, A-1317 was more efficient in reducing body mass gain, ALT, AST, total cholesterol, insulin, fasting blood glucose, ameliorating β cell capacity by increasing HOMA-β and QUICKI, whereas Ang-(1-7) reduced HOMA-β and QUICKI. In addition, Ang-(1-7) increased Mas and AKT liver mRNA gene expression, while A-1317 increased both Mas and MRGD and AMPK liver mRNA gene expression, suggesting a distinct pathway of action of Ang-(1-7) and A-1317 in MetS rats. Taken together, our data showed that treatment with A-1317 was able to ameliorate MetS disorders and suggested that this effect was mainly via MRGD via activation of AMPK and increasing β cell function.
Collapse
Affiliation(s)
- Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Claudiane Maria Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Taynara Carolina Lima
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Andréia Carvalho Alzamora
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Ouro Preto, Brazil
| |
Collapse
|
19
|
Cheema AK, Kaur P, Fadel A, Younes N, Zirie M, Rizk NM. Integrated Datasets of Proteomic and Metabolomic Biomarkers to Predict Its Impacts on Comorbidities of Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:2409-2431. [PMID: 32753925 PMCID: PMC7354282 DOI: 10.2147/dmso.s244432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objective of the current study is to accomplish a relative exploration of the biological roles of differentially dysregulated genes (DRGs) in type 2 diabetes mellitus (T2DM). The study aimed to determine the impact of these DRGs on the biological pathways and networks that are related to the associated disorders and complications in T2DM and to predict its role as prospective biomarkers. METHODS Datasets obtained from metabolomic and proteomic profiling were used for investigation of the differential expression of the genes. A subset of DRGs was integrated into IPA software to explore its biological pathways, related diseases, and their regulation in T2DM. Upon entry into the IPA, only 94 of the DRGs were recognizable, mapped, and matched within the database. RESULTS The study identified networks that explore the dysregulation of several functions; cell components such as degranulation of cells; molecular transport process and metabolism of cellular proteins; and inflammatory responses. Top disorders associated with DRGs in T2DM are related to organ injuries such as renal damage, connective tissue disorders, and acute inflammatory disorders. Upstream regulator analysis predicted the role of several transcription factors of interest, such as STAT3 and HIF alpha, as well as many kinases such as JAK kinases, which affects the gene expression of the dataset in T2DM. Interleukin 6 (IL6) is the top regulator of the DRGs, followed by leptin (LEP). Monitoring the dysregulation of the coupled expression of the following biomarkers (TNF, IL6, LEP, AGT, APOE, F2, SPP1, and INS) highlights that they could be used as potential prognostic biomarkers. CONCLUSION The integration of data obtained by advanced metabolomic and proteomic technologies has made it probable to advantage in understanding the role of these biomarkers in the identification of significant biological processes, pathways, and regulators that are associated with T2DM and its comorbidities.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | - Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | - Amina Fadel
- Biomedical Sciences Department, College of Health Sciences and Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Noura Younes
- Clinical Chemistry Lab, Hamad Medical Corporation, Doha, Qatar
| | - Mahmoud Zirie
- Endocrine Department, Hammad Medical Corporation, Doha, Qatar
| | - Nasser M Rizk
- Biomedical Sciences Department, College of Health Sciences and Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Physiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
20
|
Involvement of ACE2/Ang-(1-7)/MAS1 Axis in the Regulation of Ovarian Function in Mammals. Int J Mol Sci 2020; 21:ijms21134572. [PMID: 32604999 PMCID: PMC7369927 DOI: 10.3390/ijms21134572] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
In addition to the classic, endocrine renin-angiotensin system, local renin-angiotensin system (RAS) has been documented in many tissues and organs, including the ovaries. The localization and functional activity of the two opposing axes of the system, viz. ACE1/Ang II/AT1 and ACE2/Ang-(1-7)/MAS1, differs between animal species and varied according to the stage of follicle development. It appears that the angiotensin peptides and their receptors participate in reproductive processes such as folliculogenesis, steroidogenesis, oocyte maturation, and ovulation. In addition, changes in the constituent compounds of local RAS may contribute to pathological conditions, such as polycystic ovary syndrome, ovarian hyperstimulation syndrome, and ovarian cancer. This review article examines the expression, localization, metabolism, and activity of individual elements of the ACE2/Ang-(1-7)/MAS1 axis in the ovaries of various animal species. The manuscript also presents the relationship between the secretion of gonadotropins and sex hormones and expression of Ang-(1-7) and MAS1 receptors. It also summarizes current knowledge regarding the positive and negative impact of ACE2/Ang-(1-7)/MAS1 axis on ovarian function.
Collapse
|
21
|
Finucane FM, Davenport C. Coronavirus and Obesity: Could Insulin Resistance Mediate the Severity of Covid-19 Infection? Front Public Health 2020; 8:184. [PMID: 32574288 PMCID: PMC7247836 DOI: 10.3389/fpubh.2020.00184] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Francis M Finucane
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland.,Bariatric Medicine Service, Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Galway, Ireland
| | - Colin Davenport
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland.,Bariatric Medicine Service, Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
22
|
Echeverría-Rodríguez O, Gallardo-Ortíz IA, Del Valle-Mondragón L, Villalobos-Molina R. Angiotensin-(1-7) Participates in Enhanced Skeletal Muscle Insulin Sensitivity After a Bout of Exercise. J Endocr Soc 2020; 4:bvaa007. [PMID: 32104748 PMCID: PMC7039407 DOI: 10.1210/jendso/bvaa007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
A single bout of exercise increases subsequent insulin-stimulated glucose uptake in skeletal muscle; however, it is unknown whether angiotensin-(1-7) (Ang-(1-7)), a vasoactive peptide of the renin-angiotensin system, participates in this process. The aim of this study was to investigate the possible involvement of Ang-(1-7) in enhanced skeletal muscle insulin sensitivity after an exercise session. Male Wistar rats were forced to swim for 2.5 hours. Two hours after exercise, insulin tolerance tests and 2-deoxyglucose uptake in isolated soleus muscle were assessed in the absence or presence of the selective Mas receptor (MasR, Ang-(1-7) receptor) antagonist A779. Ang II and Ang-(1-7) levels were quantified in plasma and soleus muscle by HPLC. The protein abundance of angiotensin-converting enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and MasR was measured in soleus muscle by Western blot. Prior exercise enhanced insulin tolerance and insulin-mediated 2-deoxyglucose disposal in soleus muscle. Interestingly, these insulin-sensitizing effects were abolished by A779. After exercise, the Ang-(1-7)/Ang II ratio decreased in plasma, whereas it increased in muscle. In addition, exercise reduced ACE expression, but it did not change the protein abundance of AT1R, ACE2, and MasR. These results suggest that Ang-(1-7) acting through MasR participates in enhanced insulin sensitivity of skeletal muscle after a bout of exercise.
Collapse
Affiliation(s)
- Omar Echeverría-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090 Estado de México, México
| | - Itzell A Gallardo-Ortíz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090 Estado de México, México
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología "Ignacio Chávez", Tlalpan, 14080 Ciudad de México, México
| | - Rafael Villalobos-Molina
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090 Estado de México, México
| |
Collapse
|
23
|
Epicardial Adipose Tissue: Clinical Biomarker of Cardio-Metabolic Risk. Int J Mol Sci 2019; 20:ijms20235989. [PMID: 31795098 PMCID: PMC6929015 DOI: 10.3390/ijms20235989] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Epicardial adipose tissue (EAT) is part of the visceral adipose tissue (VAT) that surrounds the heart and it is a quantifiable, modifiable, and multifaceted tissue that has both local and systemic effects. When EAT is enlarged, EAT contributes to atherosclerotic cardiovascular disease (ASCVD) risk and plays a role in the development of metabolic syndrome (MetS). In this review, we will discuss the role of EAT in various facets of MetS, including type 2 diabetes mellitus (T2DM) and insulin resistance. We examine the association between EAT and liver steatosis. We also address the correlations of EAT with HIV therapy and with psoriasis. We discuss racial differences in baseline EAT thickness. We conclude that EAT measurement serves as a powerful potential diagnostic tool in assessing cardiovascular and metabolic risk. Measurement of EAT is made less costly, more convenient, and yet accurate and reliable by transthoracic echocardiography. Furthermore, modification of EAT thickness has therapeutic implications for ASCVD, T2DM, and MetS.
Collapse
|
24
|
Maternal high-fat diet triggers metabolic syndrome disorders that are transferred to first and second offspring generations. Br J Nutr 2019; 123:59-71. [DOI: 10.1017/s0007114519002708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA high-fat (H) diet increases metabolic disorders in offspring. However, there is great variability in the literature regarding the time of exposure, composition of the H diets offered to the genitors and/or offspring and parameters evaluated. Here, we investigated the effect of a H diet subjected to the genitors on different cardio-metabolic parameters on first (F1)- and second (F2)-generation offspring. Female Fischer rats, during mating, gestation and breast-feeding, were subjected to the H diet (G0HF) or control (G0CF) diets. Part of F1 offspring becomes G1 genitors for generating the F2 offspring. After weaning, F1 and F2 rats consumed only the C diet. Nutritional, biometric, biochemical and haemodynamic parameters were evaluated. G0HF genitors had a reduction in food intake but energy intake was similar to the control group. Compared with the control group, the F1H and F2H offspring presented increased plasma leptin, insulin and fasting glucose levels, dietary intake, energy intake, adiposity index, mean arterial pressure, sympathetic drive evidenced by the hexamethonium and insulin resistance. Our data showed that only during mating, gestation and breast-feeding, maternal H diet induced cardio-metabolic disorders characteristic of human metabolic syndrome that were transferred to both females and males of F1 and F2 offspring, even if they were fed control diet after weaning. This process probably occurs due to the disturbance in mechanisms related to leptin that increases energy intake in F1H and F2H offspring. The present data reinforce the importance of balanced diet during pregnancy and breast-feeding for the health of the F1 and F2 offspring.
Collapse
|
25
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
26
|
White MC, Miller AJ, Loloi J, Bingaman SS, Shen B, Wang M, Silberman Y, Lindsey SH, Arnold AC. Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice. Biol Sex Differ 2019; 10:36. [PMID: 31315689 PMCID: PMC6637512 DOI: 10.1186/s13293-019-0251-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background Angiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis. Previous studies have shown that in high-fat diet (HFD)-induced obese male mice, circulating angiotensin-(1-7) levels are reduced and chronic restoration of this hormone reverses diet-induced insulin resistance; however, this has yet to be examined in female mice. We hypothesized angiotensin-(1-7) would improve insulin sensitivity and glucose tolerance in obese female mice, to a similar extent as previously observed in male mice. Methods Five-week-old male and female C57BL/6J mice (8–12/group) were placed on control diet or HFD (16% or 59% kcal from fat, respectively) for 11 weeks. After 8 weeks of diet, mice were implanted with an osmotic pump for 3-week subcutaneous delivery of angiotensin-(1-7) (400 ng/kg/min) or saline vehicle. During the last week of treatment, body mass and composition were measured and intraperitoneal insulin and glucose tolerance tests were performed to assess insulin sensitivity and glucose tolerance, respectively. Mice were euthanized at the end of the study for blood and tissue collection. Results HFD increased body mass and adiposity in both sexes. Chronic angiotensin-(1-7) infusion significantly decreased body mass and adiposity and increased lean mass in obese mice of both sexes. While both sexes tended to develop mild hyperglycemia in response to HFD, female mice developed less marked hyperinsulinemia. There was no effect of angiotensin-(1-7) on fasting glucose or insulin levels among diet and sex groups. Male and female mice similarly developed insulin resistance and glucose intolerance in response to HFD feeding. Angiotensin-(1-7) improved insulin sensitivity in both sexes but corrected glucose intolerance only in obese female mice. There were no effects of sex or angiotensin-(1-7) treatment on any of the study outcomes in control diet-fed mice. Conclusions This study provides new evidence for sex differences in the impact of chronic angiotensin-(1-7) in obese mice, with females having greater changes in glucose tolerance with treatment. These findings improve understanding of sex differences in renin-angiotensin mechanisms in obesity and illustrate the potential for targeting angiotensin-(1-7) for treatment of this condition.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Amanda J Miller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Justin Loloi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah S Bingaman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Biyi Shen
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, 1430 Tulane Avenue, New Orleans, LA, #8683, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
27
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
28
|
Lelis DDF, Freitas DFD, Machado AS, Crespo TS, Santos SHS. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism 2019; 95:36-45. [PMID: 30905634 DOI: 10.1016/j.metabol.2019.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Nowadays the adipose tissue is recognized as one of the most critical endocrine organs releasing many adipokines that regulate metabolism, inflammation and body homeostasis. There are several described adipokines, including the renin-angiotensin system (RAS) components that are especially activated in some diseases with increased production of angiotensin II and several pro-inflammatory hormones. On the other hand, RAS also expresses angiotensin-(1-7), which is now recognized as the main peptide on counteracting Ang II effects. New studies have shown that increased activation of ACE2/Ang-(1-7)/MasR arm can revert and prevent local and systemic dysfunctions improving lipid profile and insulin resistance by modulating insulin actions, and reducing inflammation. In this context, the present review shows the interaction and relevance of Ang-(1-7) effects on regulating adipokines, and as one adipokine itself, modulating body homeostasis, with emphasis on its anti-inflammatory properties, especially in the context of metabolic disorders with focus on obesity and type 2 diabetes mellitus pandemic.
Collapse
Affiliation(s)
- Deborah de Farias Lelis
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Daniela Fernanda de Freitas
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Amanda Souto Machado
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Thaísa Soares Crespo
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Kuipers A, Moll GN, Wagner E, Franklin R. Efficacy of lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse models. Peptides 2019; 112:78-84. [PMID: 30529303 DOI: 10.1016/j.peptides.2018.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Native angiotensin-(1-7) exerts many therapeutic effects. However, it is rapidly degraded by ACE and other peptidases. This drawback is largely eliminated for lanthionine-stabilized angiotensin-(1-7), termed cAng-(1-7), which is fully resistant to ACE and has strongly increased resistance to other peptidases. Goal of the present study was to test whether cAng-(1-7) has therapeutic activity in diabetes mouse models: in a multiple low dose streptozotocin-induced model of type I diabetes and / or in a db/db model of type II diabetes. In the type I diabetes model cAng-(1-7) caused in an increase in the insulin level of 133% in week 4 (p < 0.001) compared to vehicle, and in the type II diabetes model an increase of 55% of the insulin level in week 8 (p < 0.05) compared to vehicle. cAng-(1-7) reduced blood glucose levels in the type I model by 37% at day 22 (p < 0.001) and in the type II diabetes model by 17% at day 63 of treatment (p < 0.001) and in an oral glucose tolerance test in a type II diabetes model, by 17% at week 4 (p < 0.01). cAng-(1-7) also caused a reduction of glycated hemoglobin levels in the type II diabetes model of 21% in week 6 (p < 0,001). These data are consistent with therapeutic potential of cAng-(1-7) in type I and II diabetes.
Collapse
Affiliation(s)
- Anneke Kuipers
- Lanthio Pharma, a MorphoSys AG company, 9727 DL, Groningen, the Netherlands
| | - Gert N Moll
- Lanthio Pharma, a MorphoSys AG company, 9727 DL, Groningen, the Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, the Netherlands.
| | - Elizabeth Wagner
- Constant Pharmaceuticals LLC, 398 Columbus Ave, PMB 507, Boston, MA, 02116, USA
| | - Rick Franklin
- Constant Pharmaceuticals LLC, 398 Columbus Ave, PMB 507, Boston, MA, 02116, USA
| |
Collapse
|
30
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
31
|
Cole-Jeffrey CT, Pepine CJ, Katovich MJ, Grant MB, Raizada MK, Hazra S. Beneficial Effects of Angiotensin-(1-7) on CD34+ Cells From Patients With Heart Failure. J Cardiovasc Pharmacol 2018; 71:155-159. [PMID: 29140957 PMCID: PMC5839943 DOI: 10.1097/fjc.0000000000000556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dysfunctional nature of CD34 cells from patients with heart failure (HF) may make them unsuitable for autologous stem-cell therapy. In view of evidence that the vasoprotective axis of the renin-angiotensin system (RAS) improves CD34 cell functions, we hypothesized that CD34 cells from patients with HF will be dysfunctional and that angiotensin-(1-7) [Ang-(1-7)] would improve their function. Peripheral blood was collected from New York Heart Association class II-IV patients with HF (n = 31) and reference subjects (n = 16). CD34 cell numbers from patients with HF were reduced by 47% (P < 0.05) and also displayed 76% reduction in migratory capacity and 56% (P < 0.05) lower production of nitric oxide. These alterations were associated with increases in RAS genes angiotensin-converting enzyme and AT2R (595%, P < 0.05) mRNA levels and 80% and 85% decreases in angiotensin-converting enzyme 2 and Mas mRNA levels, respectively. Treatment with Ang-(1-7) enhanced CD34 cell function through increased migratory potential and nitric oxide production, and reduced reactive oxygen species generation. These data show that HF CD34 cells are dysfunctional, and Ang-(1-7) improves their functions. This suggests that activation of the vasoprotective axis of the RAS may hold therapeutic potential for autologous stem-cell therapy in patients with HF.
Collapse
Affiliation(s)
- Colleen T. Cole-Jeffrey
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Carl J. Pepine
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Maria B. Grant
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Sugata Hazra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
33
|
Schinzari F, Tesauro M, Veneziani A, Mores N, Di Daniele N, Cardillo C. Favorable Vascular Actions of Angiotensin-(1-7) in Human Obesity. Hypertension 2017; 71:185-191. [PMID: 29203627 DOI: 10.1161/hypertensionaha.117.10280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/20/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022]
Abstract
Obese patients have vascular dysfunction related to impaired insulin-stimulated vasodilation and increased endothelin-1-mediated vasoconstriction. In contrast to the harmful vascular actions of angiotensin (Ang) II, the angiotensin-converting enzyme 2 product Ang-(1-7) has shown to exert cardiovascular and metabolic benefits in experimental models through stimulation of the Mas receptor. We, therefore, examined the effects of exogenous Ang-(1-7) on vasodilator tone and endothelin-1-dependent vasoconstriction in obese patients. Intra-arterial infusion of Ang-(1-7) (10 nmol/min) resulted in significant increase in unstimulated forearm flow (P=0.03), an effect that was not affected by the Mas receptor antagonist A779 (10 nmol/min; P>0.05). In the absence of hyperinsulinemia, however, forearm flow responses to graded doses of acetylcholine and sodium nitroprusside were not different during Ang-(1-7) administration compared with saline (both P>0.05). During infusion of regular insulin (0.15 mU/kg per minute), by contrast, endothelium-dependent vasodilator response to acetylcholine was significantly enhanced by Ang-(1-7) (P=0.04 versus saline), whereas endothelium-independent response to sodium nitroprusside was not modified (P=0.91). Finally, Ang-(1-7) decreased the vasodilator response to endothelin A receptor blockade (BQ-123; 10 nmol/min) compared with saline (6±1% versus 93±17%; P<0.001); nitric oxide inhibition by l-N-monomethylarginine (4 µmol/min) during concurrent endothelin A antagonism resulted in similar vasoconstriction in the absence or presence of Ang-(1-7 Ang-(1-7) (P=0.69). Our findings indicate that in obese patients Ang-(1-7) has favorable effects not only to improve insulin-stimulated endothelium-dependent vasodilation but also to blunt endothelin-1-dependent vasoconstrictor tone. These findings provide support for targeting Ang-(1-7) to counteract the hemodynamic abnormalities of human obesity.
Collapse
Affiliation(s)
- Francesca Schinzari
- From the Policlinico A. Gemelli, Rome, Italy (F.S., A.V., N.M., C.C.); Department of Internal Medicine, University of Tor Vergata, Rome, Italy (M.T., N.D.D.); and Departments of Surgery (A.V.), Pharmacology (N.M.), and Internal Medicine (C.C.), Catholic University, Rome, Italy
| | - Manfredi Tesauro
- From the Policlinico A. Gemelli, Rome, Italy (F.S., A.V., N.M., C.C.); Department of Internal Medicine, University of Tor Vergata, Rome, Italy (M.T., N.D.D.); and Departments of Surgery (A.V.), Pharmacology (N.M.), and Internal Medicine (C.C.), Catholic University, Rome, Italy
| | - Augusto Veneziani
- From the Policlinico A. Gemelli, Rome, Italy (F.S., A.V., N.M., C.C.); Department of Internal Medicine, University of Tor Vergata, Rome, Italy (M.T., N.D.D.); and Departments of Surgery (A.V.), Pharmacology (N.M.), and Internal Medicine (C.C.), Catholic University, Rome, Italy
| | - Nadia Mores
- From the Policlinico A. Gemelli, Rome, Italy (F.S., A.V., N.M., C.C.); Department of Internal Medicine, University of Tor Vergata, Rome, Italy (M.T., N.D.D.); and Departments of Surgery (A.V.), Pharmacology (N.M.), and Internal Medicine (C.C.), Catholic University, Rome, Italy
| | - Nicola Di Daniele
- From the Policlinico A. Gemelli, Rome, Italy (F.S., A.V., N.M., C.C.); Department of Internal Medicine, University of Tor Vergata, Rome, Italy (M.T., N.D.D.); and Departments of Surgery (A.V.), Pharmacology (N.M.), and Internal Medicine (C.C.), Catholic University, Rome, Italy
| | - Carmine Cardillo
- From the Policlinico A. Gemelli, Rome, Italy (F.S., A.V., N.M., C.C.); Department of Internal Medicine, University of Tor Vergata, Rome, Italy (M.T., N.D.D.); and Departments of Surgery (A.V.), Pharmacology (N.M.), and Internal Medicine (C.C.), Catholic University, Rome, Italy.
| |
Collapse
|
34
|
Moreira CCL, Lourenço FC, Mario ÉG, Santos RAS, Botion LM, Chaves VE. Long-term effects of angiotensin-(1-7) on lipid metabolism in the adipose tissue and liver. Peptides 2017; 92:16-22. [PMID: 28438644 DOI: 10.1016/j.peptides.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
The angiotensin (Ang) converting enzyme 2/Ang-(1-7)/Mas axis has been described to have a beneficial role on metabolic disorders. In the present study, the use of a transgenic rat model that chronically overexpresses Ang-(1-7) enabled us to investigate the chronic effects of this peptide on lipid accumulation in the liver and adipose tissue. The transgenic group showed a marked tendency toward increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and decreased lipoprotein lipase (LPL) expression and activity in epididymal adipose tissue. We also showed that Mas receptor-knockout mice had decreased PPARγ expression in adipose tissue, accompanied by an increase in LPL activity. These results confirm the regulation of adipose tissue LPL activity by Ang-(1-7) and suggest that this occurs independent of PPARγ expression. The reduced adiposity index of transgenic rats, due to the effect of Ang-(1-7), was accompanied by a decrease in lipogenesis. These findings suggest a direct effect of Ang-(1-7) on lipogenesis, independent of the stimulatory effect of insulin. Furthermore, the decreased concentration of triacylglycerol in the liver of transgenic rats may result from increased activity of cytosolic lipases and decreased fatty acid uptake from the adipose tissue, determined from fatty acid-binding protein expression, and hepatic de novo fatty acid synthesis, evaluated by fatty acid synthase expression. The data clearly show that Ang-(1-7) regulates lipid metabolism in the adipose tissue and liver.
Collapse
Affiliation(s)
- Carolina Campos Lima Moreira
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola Cesário Lourenço
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Érica Guilhen Mario
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leida Maria Botion
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
35
|
Felix Braga J, Ravizzoni Dartora D, Alenina N, Bader M, Santos RAS. Glucagon-producing cells are increased in Mas-deficient mice. Endocr Connect 2017; 6:27-32. [PMID: 27998954 PMCID: PMC5302165 DOI: 10.1530/ec-16-0098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
It has been shown that angiotensin(1-7) (Ang(1-7)) produces several effects related to glucose homeostasis. In this study, we aimed to investigate the effects of genetic deletion of Ang(1-7), the GPCR Mas, on the glucagon-producing cells. C57BL6/N Mas-/- mice presented a significant and marked increase in pancreatic α-cells (number of cells: 146 ± 21 vs 67 ± 8 in WT; P < 0.001) and the percentage per islet (17.9 ± 0.91 vs 12.3 ± 0.9% in WT; P < 0.0001) with subsequent reduction of β-cells percentage (82.1 ± 0.91 vs 87.7 ± 0.9% in WT; P < 0.0001). Accordingly, glucagon plasma levels were increased (516.7 ± 36.35 vs 390.8 ± 56.45 pg/mL in WT; P < 0.05) and insulin plasma levels were decreased in C57BL6/N Mas-/- mice (0.25 ± 0.01 vs 0.31 ± 56.45 pg/mL in WT; P = 0.02). In order to eliminate the possibility of a background-related phenotype, we determined the number of glucagon-producing cells in FVB/N Mas-/- mice. In keeping with the observations in C57BL6/N Mas-/- mice, the number and percentage of pancreatic α-cells were also significantly increased in these mice (number of α-cells: 260 ± 22 vs 156 ± 12 in WT, P < 0.001; percentage per islet: 16 ± 0.8 vs 10 ± 0.5% in WT, P < 0.0001). These results suggest that Mas has a previously unexpected role on the pancreatic glucagon production.
Collapse
Affiliation(s)
- Janaína Felix Braga
- Department of Physiology and BiophysicsNational Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Ravizzoni Dartora
- Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC)Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia Alenina
- Max-Delbruck Center of Molecular Medicine (MDC)Berlin-Buch, Berlin, Germany
| | - Michael Bader
- Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC)Porto Alegre, Rio Grande do Sul, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and BiophysicsNational Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Cardiology Institute of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC)Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
36
|
Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:421. [PMID: 27942512 DOI: 10.21037/atm.2016.11.03] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is an ongoing threat of epidemic or pandemic diseases that could be caused by influenza, Ebola or other emerging viruses. It will be difficult and costly to develop new drugs that target each of these viruses. Statins and angiotensin receptor blockers (ARBs) have been effective in treating patients with sepsis, pneumonia and influenza, and a statin/ARB combination appeared to dramatically reduce mortality during the recent Ebola outbreak. These drugs target (among other things) the endothelial dysfunction found in all of these diseases. Most scientists work on new drugs that target viruses, and few accept the idea of treating the host response with generic drugs. A great deal of research will be needed to show conclusively that these drugs work, and this will require the support of public agencies and foundations. Investigators in developing countries should take an active role in this research. If the next Public Health Emergency of International Concern is caused by an emerging virus, a "top down" approach to developing specific new drug treatments is unlikely to be effective. However, a "bottom up" approach to treatment that targets the host response to these viruses by using widely available and inexpensive generic drugs could reduce mortality in any country with a basic health care system. In doing so, it would make an immeasurable contribution to global equity and global security.
Collapse
Affiliation(s)
- David S Fedson
- Formerly, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
37
|
Echeverría-Rodríguez O, Gallardo-Ortíz IA, Villalobos-Molina R. Does exercise increase insulin sensitivity through angiotensin 1-7? Acta Physiol (Oxf) 2016; 216:3-6. [PMID: 26485319 DOI: 10.1111/apha.12619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- O. Echeverría-Rodríguez
- Unidad de Investigación en Biomedicina; Facultad de Estudios Superiores Iztacala (FES-Iztacala); Universidad Nacional Autónoma de México (UNAM); Tlalnepantla Edo. de México Mexico
| | - I. A. Gallardo-Ortíz
- Unidad de Investigación en Biomedicina; Facultad de Estudios Superiores Iztacala (FES-Iztacala); Universidad Nacional Autónoma de México (UNAM); Tlalnepantla Edo. de México Mexico
| | - R. Villalobos-Molina
- Unidad de Investigación en Biomedicina; Facultad de Estudios Superiores Iztacala (FES-Iztacala); Universidad Nacional Autónoma de México (UNAM); Tlalnepantla Edo. de México Mexico
| |
Collapse
|
38
|
Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101:41-55. [DOI: 10.1016/j.phrs.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022]
|
39
|
Kim K, Ahn N, Park J, Koh J, Jung S, Kim S, Moon S. Association of angiotensin-converting enzyme I/D and α-actinin-3 R577X genotypes with metabolic syndrome risk factors in Korean children. Obes Res Clin Pract 2015; 10 Suppl 1:S125-S132. [PMID: 26483160 DOI: 10.1016/j.orcp.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/29/2015] [Accepted: 09/18/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study analysed the risk factors associated with metabolic syndrome through the interaction between ACTN3 and ACE gene polymorphism in Korean children. METHODS The subjects of the study consisted of elementary school students (n=788, age 10.10±0.07 yr). The anthropometric parameters, blood lipid profiles, and metabolic markers were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. RESULTS The subjects with the DD genotype showed significantly higher systolic blood pressure than the subjects with the II and ID genotype of the ACE gene polymorphism. XX genotype had significantly lower waist-hip ratio than those with RR genotype of the ACTN3 gene polymorphism. Also, the subjects with XX genotype exhibited significantly higher blood HDL cholesterol level than those with RR or RX genotype. The interaction of ACTN3 and ACE gene polymorphism in subjects having both ACE DD and ACTN3 RR genotypes demonstrated a significantly higher metabolic syndrome score than any other groups. CONCLUSION The children having both ACTN3 RR or RX genotype and ACE DD genotype showed high systolic blood pressure and low blood HDL cholesterol level, which may be considered a high-risk in metabolic syndrome.
Collapse
Affiliation(s)
- Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea.
| | - Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Jusik Park
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Jinho Koh
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Suryun Jung
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Sanghyun Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea
| | - Sangbok Moon
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
40
|
Antagonism of angiotensin 1-7 prevents the therapeutic effects of recombinant human ACE2. J Mol Med (Berl) 2015; 93:1003-13. [PMID: 25874965 DOI: 10.1007/s00109-015-1285-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED Activation of the angiotensin 1-7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1-7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1-7 action. Wild type male C57BL/6 mice (10-12 weeks old) were infused with Ang II (1.5 mg/kg/d) and treated with rhACE2 (2 mg/kg/d). The Ang 1-7 antagonist, A779 (200 ng/kg/min), was administered to a parallel group of mice. rhACE2 prevented Ang II-induced hypertrophy and diastolic dysfunction while A779 prevented these beneficial effects and precipitated systolic dysfunction. rhACE2 effectively antagonized Ang II-mediated myocardial fibrosis which was dependent on the action of Ang 1-7. Myocardial oxidative stress and matrix metalloproteinase 2 activity was further increased by Ang 1-7 inhibition even in the presence of rhACE2. Activation of Akt and endothelial nitric oxide synthase (eNOS) by rhACE2 were suppressed by the antagonism of Ang 1-7 while the activation of pathological signaling pathways was maintained. Blocking Ang 1-7 action prevents the therapeutic effects of rhACE2 in the setting of elevated Ang II culminating in systolic dysfunction. These results highlight a key cardioprotective role of Ang 1-7, and increased Ang 1-7 action represents a potential therapeutic strategy for cardiovascular diseases. KEY MESSAGES Activation of the renin-angiotensin system (RAS) plays a key pathogenic role in cardiovascular disease. ACE2, a monocarboxypeptidase, negatively regulates pathological effects of Ang II. Antagonizing Ang 1-7 prevents the therapeutic effects of recombinant human ACE2. Our results highlight a key protective role of Ang 1-7 in cardiovascular disease.
Collapse
|
41
|
Favre GA, Esnault VLM, Van Obberghen E. Modulation of glucose metabolism by the renin-angiotensin-aldosterone system. Am J Physiol Endocrinol Metab 2015; 308:E435-49. [PMID: 25564475 DOI: 10.1152/ajpendo.00391.2014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is an enzymatic cascade functioning in a paracrine and autocrine fashion. In animals and humans, RAAS intrinsic to tissues modulates food intake, metabolic rate, adiposity, insulin sensitivity, and insulin secretion. A large array of observations shows that dysregulation of RAAS in the metabolic syndrome favors type 2 diabetes. Remarkably, angiotensin-converting enzyme inhibitors, suppressing the synthesis of angiotensin II (ANG II), and angiotensin receptor blockers, targeting the ANG II type 1 receptor, prevent diabetes in patients with hypertensive or ischemic cardiopathy. These drugs interrupt the negative feedback loop of ANG II on the RAAS cascade, which results in increased production of angiotensins. In addition, they change the tissue expression of RAAS components. Therefore, the concept of a dual axis of RAAS regarding glucose homeostasis has emerged. The RAAS deleterious axis increases the production of inflammatory cytokines and raises oxidative stress, exacerbating the insulin resistance and decreasing insulin secretion. The beneficial axis promotes adipogenesis, blocks the production of inflammatory cytokines, and lowers oxidative stress, thereby improving insulin sensitivity and secretion. Currently, drugs targeting RAAS are not given for the purpose of preventing diabetes in humans. However, we anticipate that in the near future the discovery of novel means to modulate the RAAS beneficial axis will result in a decisive therapeutic breakthrough.
Collapse
Affiliation(s)
- Guillaume A Favre
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Vincent L M Esnault
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Nephrology Department, University Hospital, Nice, France; and
| | - Emmanuel Van Obberghen
- Institut National de la Sante et de la Recherche Medicale, U 1081, Institute for Research on Cancer and Aging of Nice (IRCAN), "Aging and Diabetes" Team, Nice, France; Centre National de la Recherche Scientifique, UMR7284, IRCAN, Nice, France; University of Nice-Sophia Antipolis, Nice, France; Clinical Chemistry Laboratory, University Hospital, Nice, France
| |
Collapse
|
42
|
|
43
|
|
44
|
Mori J, Patel VB, Ramprasath T, Alrob OA, DesAulniers J, Scholey JW, Lopaschuk GD, Oudit GY. Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am J Physiol Renal Physiol 2014; 306:F812-21. [DOI: 10.1152/ajprenal.00655.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The renin-angiotensin system, especially angiotensin II (ANG II), plays a key role in the development and progression of diabetic nephropathy. ANG 1–7 has counteracting effects on ANG II and is known to exert beneficial effects on diabetic nephropathy. We studied the mechanism of ANG 1–7-induced beneficial effects on diabetic nephropathy in db/db mice. We administered ANG 1–7 (0.5 mg·kg−1·day−1) or saline to 5-mo-old db/db mice for 28 days via implanted micro-osmotic pumps. ANG 1–7 treatment reduced kidney weight and ameliorated mesangial expansion and increased urinary albumin excretion, characteristic features of diabetic nephropathy, in db/db mice. ANG 1–7 decreased renal fibrosis in db/db mice, which correlated with dephosphorylation of the signal transducer and activator of transcription 3 (STAT3) pathway. ANG 1–7 treatment also suppressed the production of reactive oxygen species via attenuation of NADPH oxidase activity and reduced inflammation in perirenal adipose tissue. Furthermore, ANG 1–7 treatment decreased lipid accumulation in db/db kidneys, accompanied by increased expressions of renal adipose triglyceride lipase (ATGL). Alterations in ATGL expression correlated with increased SIRT1 expression and deacetylation of FOXO1. The upregulation of angiotensin-converting enzyme 2 levels in diabetic nephropathy was normalized by ANG 1–7. ANG 1–7 treatment exerts renoprotective effects on diabetic nephropathy, associated with reduction of oxidative stress, inflammation, fibrosis, and lipotoxicity. ANG 1–7 can represent a promising therapy for diabetic nephropathy.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Vaibhav B. Patel
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Tharmarajan Ramprasath
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Osama Abo Alrob
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - James W. Scholey
- Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Gary D. Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|