1
|
Song H, Dong M, Wang W, Wang X, Tian D, Wang X, Xu D. Sub-acute exposure of sea urchin (Strongylocentrotus intermedius) to environmentally relevant concentrations of PFOA and GenX influences gonadal development. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110104. [PMID: 39647644 DOI: 10.1016/j.cbpc.2024.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Perfluorooctanoic acid (PFOA) and its substitute, hexafluoropropylene oxide dimer acid (GenX), are widely used perfluorinated compounds (PFCs) that pose significant risks to marine ecosystems. However, the specific impacts of these contaminants on marine invertebrates, particularly echinoderms, remain poorly understood. Strongylocentrotus intermedius, a globally significant benthic aquacultural species, may be potentially affected by PFCs. This study aimed to assess the reproductive toxicity of PFOA and GenX in S. intermedius. After exposing S. intermedius to either PFOA or GenX for 7 or 14 days, it was observed that even at environmentally relevant concentrations (2 μg/L), both compounds inhibited normal growth and gonadal development in S. intermedius, with effects becoming more pronounced over time. Further analysis revealed that prolonged exposure to PFCs resulted in a significant reduction in energy reserves (glycogen, lipids, and proteins) and caused abnormal changes in metabolic enzyme activities, with PFOA exhibiting more pronounced effects compared to GenX. At the genetic level, the expression of genes related to gonadal development initially increased and then decreased as the concentrations of the compounds rose. Additionally, integrated biomarker response analysis indicated that PFOA had greater reproductive toxicity than GenX, in terms of both concentration and exposure duration. These results provided a preliminary evaluation of the impact of PFCs on marine invertebrates, offering a foundation for further research into their ecological risks and contributing to the development of more comprehensive environmental risk assessments for these contaminants.
Collapse
Affiliation(s)
- Hongce Song
- School of Fisheries, Ludong University, Yantai City, Shandong Province 264025, China
| | - Meiyun Dong
- School of Fisheries, Ludong University, Yantai City, Shandong Province 264025, China
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd., Yantai 261413, China
| | - Xiaona Wang
- School of Fisheries, Ludong University, Yantai City, Shandong Province 264025, China
| | - Deyang Tian
- Laizhou LiYang Aquatic Development Co., Ltd., Yantai 261441, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai City, Shandong Province 264025, China.
| | - Dong Xu
- Shandong Blue Ocean Technology Co., Ltd., Yantai 261413, China.
| |
Collapse
|
2
|
Sendker FL, Schlotthauer T, Mais CN, Lo YK, Girbig M, Bohn S, Heimerl T, Schindler D, Weinstein A, Metzger BPH, Thornton JW, Pillai A, Bange G, Schuller JM, Hochberg GKA. Frequent transitions in self-assembly across the evolution of a central metabolic enzyme. Nat Commun 2024; 15:10515. [PMID: 39627196 PMCID: PMC11615384 DOI: 10.1038/s41467-024-54408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assembly states and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
Collapse
Affiliation(s)
- Franziska L Sendker
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Tabea Schlotthauer
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Mathias Girbig
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Stefan Bohn
- Helmholtz Munich Cryo-Electron Microscopy Platform, Helmholtz Munich, Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- MaxGENESYS Biofoundry, Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Arielle Weinstein
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Brian P H Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Arvind Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Gert Bange
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Wolyniak MJ, Frazier RH, Gemborys PK, Loehr HE. Malate dehydrogenase: a story of diverse evolutionary radiation. Essays Biochem 2024; 68:213-220. [PMID: 38813783 PMCID: PMC11461315 DOI: 10.1042/ebc20230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Malate dehydrogenase (MDH) is a ubiquitous enzyme involved in cellular respiration across all domains of life. MDH's ubiquity allows it to act as an excellent model for considering the history of life and how the rise of aerobic respiration and eukaryogenesis influenced this evolutionary process. Here, we present the diversity of the MDH family of enzymes across bacteria, archaea, and eukarya, the relationship between MDH and lactate dehydrogenase (LDH) in the formation of a protein superfamily, and the connections between MDH and endosymbiosis in the formation of mitochondria and chloroplasts. The development of novel and powerful DNA sequencing techniques has challenged some of the conventional wisdom underlying MDH evolution and suggests a history dominated by gene duplication, horizontal gene transfer, and cryptic endosymbiosis events and adaptation to a diverse range of environments across all domains of life over evolutionary time. The data also suggest a superfamily of proteins that do not share high levels of sequential similarity but yet retain strong conservation of core function via key amino acid residues and secondary structural components. As DNA sequencing and 'big data' analysis techniques continue to improve in the life sciences, it is likely that the story of MDH will continue to refine as more examples of superfamily diversity are recovered from nature and analyzed.
Collapse
Affiliation(s)
- Michael J Wolyniak
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, U.S.A
| | - Robert H Frazier
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, U.S.A
| | - Peter K Gemborys
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, U.S.A
| | - Henry E Loehr
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, U.S.A
| |
Collapse
|
4
|
Sendker FL, Schlotthauer T, Mais CN, Lo YK, Girbig M, Bohn S, Heimerl T, Schindler D, Weinstein A, Metzger BP, Thornton JW, Pillai A, Bange G, Schuller JM, Hochberg GKA. Frequent transitions in self-assembly across the evolution of a central metabolic enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602260. [PMID: 39005358 PMCID: PMC11245102 DOI: 10.1101/2024.07.05.602260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assemblies and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
Collapse
Affiliation(s)
- Franziska L Sendker
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Tabea Schlotthauer
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Mathias Girbig
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Stefan Bohn
- Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1 Neuherberg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- MaxGENESYS Biofoundry, Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Arielle Weinstein
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Brain P Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Arvind Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Gert Bange
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology; Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg; Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg; Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| |
Collapse
|
5
|
Ni Q, Chen Y, Lu L, Liu M. C4-HSL-mediated quorum sensing regulates nitrogen removal in activated sludge process at Low temperatures. ENVIRONMENTAL RESEARCH 2024; 244:117928. [PMID: 38128597 DOI: 10.1016/j.envres.2023.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The activated sludge process faces challenges in achieving adequate nitrification ability under low-temperature conditions. Therefore, we investigated the effects of different concentrations of exogenous N-butyryl-homoserine lactone (C4-HSL) on nitrogen removal in lab-scale sequencing batch reactors (SBRs) at 10 °C. The results revealed that both 10 and 100 μg/L of C4-HSL could improve NH4+-N removal efficiency by 26% and reduce the effluent TN concentration to below 15 mg/L. Analysis of extracellular polymeric substances (EPS) revealed that adding C4-HSL (especially 100 μg/L) reduced the protein-like substance content while increasing the humic and fulvic acid-like substance content in EPS. Protein-like substances could serve as carbon sources for denitrifiers, thus promoting denitrification. Moreover, exogenous C4-HSL increased the abundance of bacteria and genes associated with nitrification and denitrification. Further analysis of quorum sensing (QS) of microorganisms indicated that exogenous C4-HSL (especially 100 μg/L) promoted regulation, transportation, and decomposition functions in the QS process. Furthermore, CS, sdh, fum, and mdh gene expressions involved in the tricarboxylic acid (TCA) cycle were enhanced by 100 μg/L C4-HSL. Exogenous C4-HSL promoted microbial communication, microbial energy metabolism, and nitrogen metabolism, thereby improving the nitrogen removal efficiency of activated sludge systems at low temperatures. This study provides a feasible strategy for enhancing denitrogenation performance at low temperatures through exogenous C4-HSL.
Collapse
Affiliation(s)
- Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lanxin Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Kuo CH, Xu ZY, Hsiao PZ, Liao PC, Liu CH, Hong MC, Chiu K. Utilizing fish wastewater in aquaponic systems to enhance anti-inflammatory and antioxidant bioactive compounds in Sarcodia suae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169958. [PMID: 38211863 DOI: 10.1016/j.scitotenv.2024.169958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Aquaculture wastewater, rich in organic nutrients, is an essential environmental factor. When applied to seaweed cultivation systems, this wastewater holds the potential to notably increase the growth rate and carbon capture of Sarcodia suae. Sarcodia suae has the potential to be a healthy food due to its various biological activities; however, its chemical composition has yet to be completely defined. In this study, we applied a UHPLC-HRMS-based foodomics strategy to determine and classify possible bioactive metabolites in S. suae. From pooled seaweed samples (S. suae cultured in filtered running, FR, aquaponic recirculation, AR systems), we identified 179 and 146 compounds in POS and NEG modes, respectively. These compounds were then classified based on their structures using the Classyfire classification. Results show that S. suae in AR exhibited higher growth performance, and ten upregulated metabolites were determined. We also validated the anti-inflammatory and antioxidative bioactivities of some selected compounds. Our study provided important insights into the potential use of fish wastewater in aquaponic systems to profile and produce bioactive compounds in S. suae comprehensively. This has significant implications for the development of sustainable food and the promotion of environmental health.
Collapse
Affiliation(s)
- Chiu-Hui Kuo
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Zi-Yan Xu
- Tungkang Aquaculture Research Center, Fisheries Research Institute, MOA, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Department of Oceanography, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
7
|
Wang X, Wang T, Yu P, Li Y, Lv X. NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1343154. [PMID: 38384762 PMCID: PMC10880190 DOI: 10.3389/fpls.2024.1343154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Introduction Eelgrass is a typical marine angiosperm that exhibits strong adaptability to high-salt environments. Previous studies have shown that various growth and physiological indicators were significantly affected after the nitrate reductase (NR) pathway for nitric oxide (NO) synthesis in eelgrass was blocked. Methods To analyze the molecular mechanism of NO on the adaptability to high-salt environment in eelgrass, we treated eelgrass with artificial seawater (control group) and artificial seawater with 1 mM/L Na2WO4 (experimental group). Based on transcriptomics and metabolomics, we explored the molecular mechanism of NO affecting the salt tolerance of eelgrass. Results We obtained 326, 368, and 859 differentially expressed genes (DEGs) by transcriptome sequencing in eelgrass roots, stems, and leaves, respectively. Meanwhile, we obtained 63, 52, and 36 differentially accumulated metabolites (DAMs) by metabolomics in roots, stems, and leaves, respectively. Finally, through the combined analysis of transcriptome and metabolome, we found that the NO regulatory mechanism of roots and leaves of eelgrass is similar to that of terrestrial plants, while the regulatory mechanism of stems has similar and unique features. Discussion NO in eelgrass roots regulates osmotic balance and antioxidant defense by affecting genes in transmembrane transport and jasmonic acid-related pathways to improve the adaptability of eelgrass to high-salt environments. NO in eelgrass leaves regulates the downstream antioxidant defense system by affecting the signal transduction of plant hormones. NO in the stems of eelgrass regulates ion homeostasis by affecting genes related to ion homeostasis to enhance the adaptability of eelgrass to high-salt environments. Differently, after the NO synthesis was inhibited, the glyoxylate and dicarboxylate metabolism, as well as the tricarboxylic acid (TCA) cycle, was regulated by glucose metabolism as a complementary effect to cope with the high-salt environment in the stems of eelgrass. These are studies on the regulatory mechanism of NO in eelgrass, providing a theoretical basis for the study of the salt tolerance mechanism of marine plants and the improvement of terrestrial crop traits. The key genes discovered in this study can be applied to increase salt tolerance in terrestrial crops through cloning and molecular breeding methods in the future.
Collapse
Affiliation(s)
- Xianyan Wang
- Marine College, Shandong University, Weihai, China
| | | | - Pei Yu
- Shandong University-Australian National University (SDU-ANU) Joint Science College, Shandong University, Weihai, China
| | - Yuchun Li
- Marine College, Shandong University, Weihai, China
| | - Xinfang Lv
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
8
|
Záhonová K, Valach M, Tripathi P, Benz C, Opperdoes FR, Barath P, Lukáčová V, Danchenko M, Faktorová D, Horváth A, Burger G, Lukeš J, Škodová-Sveráková I. Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj 2023:130419. [PMID: 37451476 DOI: 10.1016/j.bbagen.2023.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking. E1 was apparently replaced in the euglenozoan ancestor of diplonemids by an AceE protein of archaeal type, a substitution that we also document in dinoflagellates. Here we demonstrate that the mitochondrion of the model diplonemid Paradiplonema papillatum displays pyruvate and 2-oxoglutarate dehydrogenase activities. Protein mass spectrometry of mitochondria reveal that the AceE protein is as abundant as the E1 subunit of BCKDH. This corroborates the view that the AceE subunit is a functional component of the PDH complex. We hypothesize that by acquiring AceE, the diplonemid ancestor not only lost the eukaryotic-type E1, but also the E2 and E3 subunits of the PDH complex, which are present in other euglenozoans. We posit that the PDH activity in diplonemids seems to be carried out by a complex, in which the AceE protein partners with the E2 and E3 subunits from BCKDH and/or OGDH.
Collapse
Affiliation(s)
- Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia
| | | | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
9
|
Xiong Z, Zhang X, White JC, Liu L, Sun W, Zhang S, Zeng J, Deng S, Liu D, Zhao X, Wu F, Zhao Q, Xing B. Transcriptome Analysis Reveals the Growth Promotion Mechanism of Enteropathogenic Escherichia coli Induced by Black Phosphorus Nanosheets. ACS NANO 2023; 17:3574-3586. [PMID: 36602915 DOI: 10.1021/acsnano.2c09964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the extensive production and application of black phosphorus (BP) nanosheets, release to the environment is inevitable, which raises concerns about the fate and effects of this two-dimensional (2D) material on sensitive receptors such as environmental microbes. Although the bacterial toxicity of BP nanosheets has been demonstrated, whether the biological response differs in pathogenic and nonpathogenic strains of a microorganism is unknown. Here, enteropathogenic Escherichia coli (EPEC) and nonpathogenic Escherichia coli DH5α (E. coli DH5α), Escherichia coli k12 (E. coli k12), and Bacillus tropicus (B. tropicus) are used to comparatively study the microbial toxicity of BP nanosheets. Upon exposure to BP nanosheets across a range of doses from 10 to 100 μg mL-1 for 12 h, EPEC experienced enhanced growth and E. coli DH5α and E. coli k12 were not affected, whereas B. tropicus exhibited clear toxicity. By combining transcriptome sequencing, proteome analysis, and other sensitive biological techniques, the mechanism of BP-induced growth promotion for EPEC was uncovered. Briefly, BP nanosheets activate the antioxidation system to resist oxidative stress, promote protein synthesis and secretion to attenuate membrane damage, enhance the energy supply, and activate growth-related pathways. None of these impacts were evident with nonpathogenic strains. By describing the mechanism of strain-dependent microbial effects, this study not only highlights the potential risks of BP nanosheets to the environment and to human health but also calls attention to the importance of model strain selection when evaluating the hazard and toxicity of emerging nanomaterials.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Liwei Liu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Kesawat MS, Kherawat BS, Ram C, Singh A, Dey P, Gora JS, Misra N, Chung SM, Kumar M. Genome-Wide Identification and Expression Profiling of Aconitase Gene Family Members Reveals Their Roles in Plant Development and Adaptation to Diverse Stress in Triticum aestivum L. PLANTS 2022; 11:3475. [PMID: 36559588 PMCID: PMC9782157 DOI: 10.3390/plants11243475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Jagan Singh Gora
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology 13 (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| |
Collapse
|
12
|
Wang J, Zhao H, Chen T, Lin W, Lin S. Effect of Burkholderia ambifaria LK-P4 inoculation on the plant growth characteristics, metabolism, and pharmacological activity of Anoectochilus roxburghii. FRONTIERS IN PLANT SCIENCE 2022; 13:1043042. [PMID: 36531397 PMCID: PMC9755642 DOI: 10.3389/fpls.2022.1043042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plant growth-promoting bacteria (PGPB) represents a common biological fertilizer with remarkable effect in improving crop production and environmental friendliness. METHODS In the present work, we presented a detailed characterization of plant morphology and physiology, metabolism, and pharmacological activity of A. roxburghii between Burkholderia ambifaria LK-P4 inoculation and un-inoculation (CK) treatment by routine analytical techniques (include microscopy and enzymatic activity assays and so on) coupled with metabolomics approaches. RESULTS Morphological and physiological results showedthat the P4 bacteria could significantly increase plant stomatal density, freshweight, survival rate,and the content of total flavonoids in leaves but reducethe amount of free amino acid. Furthermore, metabolite data showed that fatty acids (linoleic acid, linolenic acid, stearic acid) and active substance (kyotorphin and piceatannol) were specifically up-regulated in P4 inoculation. It was also demonstrated that the differential metabolites were involved in citrate cycle, glyoxylate and dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids pathway. In addition, pharmacological efficacy found that A. roxburghii under P4 inoculation can significantly decrease (p < 0.05) blood glucose levels and protect the organs of mice with similar effect of Glibenclamide tablets. CONLUSION Overall, it can be seen that the exogenous P4 bacteria can promote the growth and increase content of special metabolites in A. roxburghii. This study provided theoretical basis and supported for the high-yield and high-quality bionic cultivation of A. roxburghii.
Collapse
Affiliation(s)
- Juanying Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-bioengineering, Institute of Agro-bioengineering/College of Life Science, Guizhou University, Guiyang, China
| | - Hanyu Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Yang Z, Zhou J, Zhu L, Chen A, Cheng Y. Label-free quantification proteomics analysis reveals acute hyper-osmotic responsive proteins in the gills of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101009. [PMID: 35777161 DOI: 10.1016/j.cbd.2022.101009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chinese mitten crab (Eriocheir sinensis) is a typical euryhaline crustacean to study osmotic regulation of crustaceans. Osmotic-regulation of Chinese mitten crab is a complex process. In order to study the osmotic-regulation related proteins of Chinese mitten crab, we domesticated Chinese mitten crab for 144 h with 25 salinity sea water (SW) and 0 salinity fresh water (FW) respectively, and then analyzed the proteome of its posterior gills. A total of 1453 proteins were identified by label free proteomics. Under the threshold of 2 fold change (FC), 242 differentially expressed proteins (DEPs) were screened, including 122 up-regulated DEPs and 120 down-regulated DEPs. GO database and KEGG database were used to annotate and enrich DEPs. It was found that DEPs were significantly enriched in energy metabolism, signal transduction, ion transport, actin cytoskeleton, immunity, lipid metabolism, amino acid metabolism and other biological functions. After 144 h of high salinity stress, the energy metabolism of Chinese mitten crab decreased and the expression of actin and cytoskeleton protein increased. In order to cope with oxidative damage caused by high salinity, Chinese mitten crab improved its immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Junyu Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Aherfi S, Brahim Belhaouari D, Pinault L, Baudoin JP, Decloquement P, Abrahao J, Colson P, Levasseur A, Lamb DC, Chabriere E, Raoult D, La Scola B. Incomplete tricarboxylic acid cycle and proton gradient in Pandoravirus massiliensis: is it still a virus? THE ISME JOURNAL 2022; 16:695-704. [PMID: 34556816 PMCID: PMC8857278 DOI: 10.1038/s41396-021-01117-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
The discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question "what is a virus?".
Collapse
Affiliation(s)
- Sarah Aherfi
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Djamal Brahim Belhaouari
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Pierre Baudoin
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Philippe Decloquement
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jonatas Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo, Horizonte, Brazil
| | - Philippe Colson
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - David C Lamb
- Faculty of Health and Life Sciences, Swansea University, Swansea, UK
| | - Eric Chabriere
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, MEPHI, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix Marseille Univ, IRD, MEPHI, Marseille, France.
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France.
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Nanjappa D, Liang Y, Bretherton L, Brown C, Quigg A, Irwin AJ, Finkel ZV. Contrasting transcriptomic responses of a microbial eukaryotic community to oil and dispersant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117774. [PMID: 34274645 DOI: 10.1016/j.envpol.2021.117774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Dispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress. In contrast, a chemically dispersed oil treatment stimulated eukaryotic genes and pathways consistent with nitrogen and oxygen depletion. These results suggest that the addition of dispersant may elevate bacterial biodegradation of crude oil, indirectly increasing competition for nitrogen between prokaryotic and eukaryotic communities as oxygen consumption induces bacterial anaerobic respiration and denitrification. Eukaryotic microbial communities may mitigate some of the negative effects of oil exposure such as reduced photosynthesis and elevated oxidative stress, through ketosis, but the addition of dispersant to the oil fundamentally alters the environmental and ecological conditions and therefore the biochemical response of the eukaryotic community.
Collapse
Affiliation(s)
- Deepak Nanjappa
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada.
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Laura Bretherton
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Chris Brown
- Environmental Science Program, Mount Allison University, Sackville, NB, Canada
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Andrew J Irwin
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada; Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
17
|
Multi-omics responses of red algae Pyropia haitanensis to intertidal desiccation during low tides. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Le XH, Lee CP, Millar AH. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. THE PLANT CELL 2021; 33:2776-2793. [PMID: 34137858 PMCID: PMC8408480 DOI: 10.1093/plcell/koab148] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.
Collapse
Affiliation(s)
- Xuyen H. Le
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Chun-Pong Lee
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
| | - A. Harvey Millar
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, Australia
- Author for correspondence:
| |
Collapse
|
19
|
Kostoláni D, Ndiffo Yemeli GB, Švubová R, Kyzek S, Machala Z. Physiological Responses of Young Pea and Barley Seedlings to Plasma-Activated Water. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081750. [PMID: 34451795 PMCID: PMC8400694 DOI: 10.3390/plants10081750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
This study demonstrates the indirect effects of non-thermal ambient air plasmas (NTP) on seed germination and plant growth. It investigates the effect of plasma-activated water (PAW) on 3-day-old seedlings of two important farm plants-barley and pea. Applying different types of PAW on pea seedlings exhibited stimulation of amylase activity and had no inhibition of seed germination, total protein concentration or protease activity. Moreover, PAW caused no or only moderate oxidative stress that was in most cases effectively alleviated by antioxidant enzymes and proved by in situ visualization of H2O2 and ˙O2-. In pea seedlings, we observed a faster turn-over from anaerobic to aerobic metabolism proved by inhibition of alcohol dehydrogenase (ADH) activity. Additionally, reactive oxygen/nitrogen species contained in PAW did not affect the DNA integrity. On the other hand, the high level of DNA damage in barley together with the reduced root and shoot length and amylase activity was attributed to the oxidative stress caused by PAW, which was exhibited by the enhanced activity of guaiacol peroxidase or ADH. Our results show the glow discharge PAW at 1 min activation time as the most promising for pea. However, determining the beneficial type of PAW for barley requires further investigation.
Collapse
Affiliation(s)
- Dominik Kostoláni
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (D.K.); (R.Š.)
| | - Gervais B. Ndiffo Yemeli
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia;
| | - Renáta Švubová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (D.K.); (R.Š.)
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia;
| |
Collapse
|
20
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
21
|
Evaluation of the Impact of Cold Atmospheric Pressure Plasma on Soybean Seed Germination. PLANTS 2021; 10:plants10010177. [PMID: 33477930 PMCID: PMC7833387 DOI: 10.3390/plants10010177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
The present study aims to define the effects of Cold Atmospheric Pressure Plasma (CAPP) exposure on seed germination of an agriculturally important crop, soybean. Seed treatment with lower doses of CAPP generated in ambient air and oxygen significantly increased the activity of succinate dehydrogenase (Krebs cycle enzyme), proving the switching of the germinating seed metabolism from anoxygenic to oxygenic. In these treatments, a positive effect on seed germination was documented (the percentage of germination increased by almost 20% compared to the untreated control), while the seed and seedling vigour was also positively affected. On the other hand, higher exposure times of CAPP generated in a nitrogen atmosphere significantly inhibited succinate dehydrogenase activity, but stimulated lactate and alcohol dehydrogenase activities, suggesting anoxygenic metabolism. It was also found that plasma exposure caused a slight increment in the level of primary DNA damage in ambient air- and oxygen-CAPP treatments, and more significant DNA damage was found in nitrogen-CAPP treatments. Although a higher level of DNA damage was also detected in the negative control (untreated seeds), this might be associated with the age of seeds followed by their lower germination capacity (with the germination percentage reaching only about 60%).
Collapse
|
22
|
Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, Ettema TJG. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. SCIENCE ADVANCES 2020; 6:eabb7258. [PMID: 32923644 PMCID: PMC7449678 DOI: 10.1126/sciadv.abb7258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
Collapse
Affiliation(s)
- Courtney W. Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jennah E. Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, France
| | - Steffen L. Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, Netherlands
| | - Thijs J. G. Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
| |
Collapse
|
23
|
Nishio K, Mizushima T. Structural and biochemical characterization of mitochondrial citrate synthase 4 from Arabidopsis thaliana. Acta Crystallogr F Struct Biol Commun 2020; 76:109-115. [PMID: 32133996 PMCID: PMC7057349 DOI: 10.1107/s2053230x20001521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 02/03/2020] [Indexed: 11/10/2022] Open
Abstract
Citrate synthase (CS) catalyzes the conversion of oxaloacetate and acetyl coenzyme A into citrate and coenzyme A in the mitochondrial tricarboxylic acid (TCA) cycle. In plants, mitochondrial metabolism, including the TCA cycle, occurs in interaction with photosynthetic metabolism. The controlled regulation of several enzymes in the TCA cycle, such as CS, is important in plants. Here, the first crystal structure of a plant mitochondrial CS, CSY4 from Arabidopsis thaliana (AtCSY4), has been determined. Structural comparison of AtCSY4 with mitochondrial CSs revealed a high level of similarity. Inhibition analysis showed a similar manner of inhibition as in mitochondrial CSs. The effect of oxidation on one of a pair of cysteine residues in AtCSY4 was speculated upon based on the folded structure.
Collapse
Affiliation(s)
- Kazuya Nishio
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
24
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:76-91. [PMID: 30658287 DOI: 10.1016/j.plaphy.2018.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The activities of TCA cycle enzymes viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase as well as levels of different organic acids viz., pyruvic acid, citric acid, succinic acid and malic acid were studied in two rice cultivars viz. cv. Nonabokra and cv. MTU 1010 differing in salt tolerance grown under 25, 50 and 100 mM NaCl salinity levels. A contrasting response to salt stress on enzyme activities of TCA cycle and accumulation of organic acid was observed between two cultivars during twenty-one days period of study. Salinity caused enhanced organic acid production and increase in all five enzyme activities in cv. Nonabokra whereas in cv. MTU 1010 decrease in both organic acid production and enzymes activities were noted. Joint application of exogenous silicon along with NaCl, altered the organic acids levels and activities of enzymes in both cultivars of rice seedlings conferring tolerance against salt induced stress. Rice cv. MTU 1010 showed better response to exogenous silicon on parameters tested compared to cv. Nonabokra.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
25
|
Yang Z, Zhou J, Wei B, Cheng Y, Zhang L, Zhen X. Comparative transcriptome analysis reveals osmotic-regulated genes in the gill of Chinese mitten crab (Eriocheir sinensis). PLoS One 2019; 14:e0210469. [PMID: 30629688 PMCID: PMC6328174 DOI: 10.1371/journal.pone.0210469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/24/2018] [Indexed: 11/19/2022] Open
Abstract
Salinity is one of the most important abiotic factors directly affecting the reproduction, molting, growth, immune, physiological and metabolic activities of Chinese mitten crab (Eriocheir sinensis). This species has strong osmoregulatory capacity and can maintain stringent internal homeostasis. However, the mechanisms conferring tolerance to salinity fluctuations are not well understood. To reveal the genes and pathways involved in osmoregulation, adult male crabs (body weight = 110 ± 5 g) were acclimated for 144 h in freshwater (FW, 0 ppt) or seawater (SW, 25 ppt). Changes in the transcriptome of crab gills were then analysed by RNA-Seq, and 174,903 unigenes were obtained. Comparison of genes between FW- SW-acclimated groups identified 932 genes that were significantly differentially expressed in the gill, comprising 433 and 499 up- and downregulated transcripts. Gene Ontology functional enrichment analysis revealed that important biological processes related to salt stress were significantly enriched, including energy metabolism, ion transport, signal transduction and antioxidant activity. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis mapped the differentially expressed genes to 241 specific metabolic pathways, and pathways related to energy metabolism, oxidative phosphorylation and the tricarboxylic acid (TCA)/citrate cycle were significantly enriched. Salinity stress altered the expression of many enzymes involved in energy metabolism, ion transport, signal transduction and antioxidant pathways, including citrate synthase (CS), Na+/K+-ATPase (NKA), Na+-K+-2Cl cotransporter-1 (NKCC1), dopamine receptor D1 (DRD1), synaptic binding protein 1 (STXBP1), Cu2+/Zn2+ superoxide dismutase (SOD1) and glutathione S-transferase (GST). Additionally, the obtained transcriptomic sequencing data provided a useful resource for identification of novel genes, and further physiological analysis of Chinese mitten crab.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- * E-mail: (ZGY); (YXC)
| | - Junyu Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Banghong Wei
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- * E-mail: (ZGY); (YXC)
| | - Long Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaomin Zhen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
26
|
Li D, Pang L, Yuan P, Zheng P, Huai B, Yao M, Kang Z, Liu J. A novel citrate synthase isoform contributes infection and stress resistance of the stripe rust fungus. Environ Microbiol 2018; 20:4037-4050. [PMID: 30307098 DOI: 10.1111/1462-2920.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 11/30/2022]
Abstract
The early development of a rust fungus is dependent on the endogenous lipids stored in the urediniospores. After it establishes a parasitic relationship with the host, sugars absorbed from the host cells by haustoria become the primary nutrients. The tricarboxylic acid (TCA) cycle is essential to oxidize these nutrients. However, few studies have addressed the role of citrate synthase (CS), a rate-limiting enzyme of the TCA cycle, during the infection process of rust fungi. In this study, a CS gene from Puccinia striiformis f. sp. tritici (Pst), PsCS1, was cloned and characterized. Transcripts of PsCS1 and the enzyme activity of the CS were increased in the early Pst infection stage. Biochemical features and subcellular localization revealed that PsCS1 encoded a mitochondrial CS. Size exclusion chromatography, yeast two-hybrid and bimolecular fluorescence complementation experiments confirmed that PsCS1 could form a functional homo-octamer. The overexpression of PsCS1 enhanced the resistance of Escherichia coli to salt stress. The knockdown of PsCS1 using a host-induced gene silencing (HIGS) system blocked Pst growth in wheat. These results indicate that PsCS1 is required for nutrient metabolism in Pst and contributes to Pst infection by regulating ATP production and the supply of carbon sources.
Collapse
Affiliation(s)
| | | | - Pu Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mohan Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Ludewig-Klingner AK, Michael V, Jarek M, Brinkmann H, Petersen J. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates). Genome Biol Evol 2018; 10:1-13. [PMID: 29202176 PMCID: PMC5755239 DOI: 10.1093/gbe/evx250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa.
Collapse
Affiliation(s)
- Ann-Kathrin Ludewig-Klingner
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Victoria Michael
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research (HZI), Group of Genome Analytics, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| |
Collapse
|
28
|
Zheng J, Huang C, Yang B, Kallio H, Liu P, Ou S. Regulation of phytochemicals in fruits and berries by environmental variation-Sugars and organic acids. J Food Biochem 2018; 43:e12642. [PMID: 31353611 DOI: 10.1111/jfbc.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/07/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Sugars and organic acids are important phytochemicals contributing to the nutrition and sensory properties of fruits and berries. Their contents are closely correlated to the genetic background of plants as well as to the environmental conditions during growth. This review focuses on the recent researches on the metabolism of these compounds in fruits and berries in response to the variation of environmental conditions, including temperature, radiation, and water supply. A great deal of investigations indicates that the influence of environmental factors on the composition of fruits/berries depended largely on the genetic background. Moreover, the metabolic regulation in response to environmental changes also varies between different plant developmental stages. Nevertheless, some general trends, like the positive correlation between light intensity and sugar content, were observed in most investigations. In grapes (Vitis vinifera L.), the content of malic acid always decreases as light intensity increases, and as the water supply decreases. PRACTICAL APPLICATIONS: The contents of sugars and organic acids, and especially their relative ratio, are important indicators determining the taste and quality of fruits and fruit products. In this review, we summarized the investigations carried out on the regulation of these sensory contributing primary metabolites in fruits and berries in relation to the variation of environmental conditions. It was indicated that various factors, such as plant genotype, growing period, and interaction between environmental factors, might contribute to the impact of environmental changes on the composition of fruits/berries. The article not only provides comprehensive knowledges in food chemistry and plant physiology but also provide important background knowledge for berry cultivation and breeding, as well as useful guidelines for utilization of fruits and berries in food industry.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China.,Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Tronconi MA, Andreo CS, Drincovich MF. Chimeric Structure of Plant Malic Enzyme Family: Different Evolutionary Scenarios for NAD- and NADP-Dependent Isoforms. FRONTIERS IN PLANT SCIENCE 2018; 9:565. [PMID: 29868045 PMCID: PMC5958461 DOI: 10.3389/fpls.2018.00565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/10/2018] [Indexed: 05/15/2023]
Abstract
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. In plants, cytosolic and plastidic enzymes share several characteristics such as NADP specificity (NADP-ME), oxaloacetate decarboxylase (OAD) activity, and homo-oligomeric assembly. However, mitochondrial counterparts are NAD-dependent proteins (mNAD-ME) lacking OAD activity, which can be structured as homo- and hetero-oligomers of two different subunits. In this study, we examined the molecular basis of these differences using multiple sequence analysis, structural modeling, and phylogenetic approaches. Plant mNAD-MEs show the lowest identity values when compared with other eukaryotic MEs with major differences including short amino acid insertions distributed throughout the primary sequence. Some residues in these exclusive segments are co-evolutionarily connected, suggesting that they could be important for enzymatic functionality. Phylogenetic analysis indicates that eukaryotes from different kingdoms used different strategies for acquiring the current set of NAD(P)-ME isoforms. In this sense, while the full gene family of vertebrates derives from the same ancestral gene, plant NADP-ME and NAD-ME isoforms have a distinct evolutionary history. Plant NADP-ME genes may have arisen from the α-protobacterial-like mitochondrial ancestor, a characteristic shared with major eukaryotic taxa. On the other hand, plant mNAD-ME genes were probably gained through an independent process involving the Archaeplastida ancestor. Finally, several residue signatures unique to all plant mNAD-MEs could be identified, some of which might be functionally connected to their exclusive biochemical properties. In light of these results, molecular evolutionary scenarios for these widely distributed enzymes in plants are discussed.
Collapse
|
30
|
Liu X, Ma Q, Sun X, Lu M, Ehsan M, Hasan MW, Xu L, Yan R, Song X, Li X. Effects of Recombinant Toxoplasma gondii Citrate Synthase I on the Cellular Functions of Murine Macrophages In vitro. Front Microbiol 2017; 8:1376. [PMID: 28785250 PMCID: PMC5520420 DOI: 10.3389/fmicb.2017.01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
Toxoplasmosis, which is one of the most widespread zoonoses worldwide, has a high incidence and infection can result in severe disease in humans and livestock. Citrate synthase (CS) is a component of nearly all living cells that plays a vital role in the citric acid cycle, which is the central metabolic pathway of aerobic organisms. In the present study, the citrate synthase I gene of Toxoplasma gondii (T. gondii) (TgCSI) was cloned and characterized. The TgCSI gene had an open reading frame of 1665 bp nucleotides encoding a 555 amino acid protein with a molecular weight of 60 kDa. Using western blotting assay, the recombinant protein was successfully recognized by the sera of rats experimentally infected with T. gondii, while the native protein in the T. gondii tachyzoites was detected in sera from rats immunized with the recombinant protein of TgCSI. Binding of the protein to murine macrophages was confirmed by immuno fluorescence assay. Following incubation of macrophages with rTgCSI, the rTgCSI protein was found to have a dual function, with low concentrations (5-10 μg/mL) enhancing phagocytosis and high levels (80 μg/mL) inhibiting phagocytosis. Investigation of murine macrophage apoptosis illustrated that 5 μg/mL rTgCSI protein can significantly induce early apoptosis and late stage apoptosis (*p < 0.05), while 10 μg/mL rTgCSI protein significantly induced early apoptosis, but had no effect on late stage of apoptosis (**p < 0.01), and 80 μg/mL rTgCSI protein inhibited late stage apoptosis of macrophages (*p < 0.05). Cytokine detection revealed that the secretion of interleukin-10, interleukin-1β, transforming growth factor-β1 and tumor necrosis factor-α of macrophages increased after the cells were incubated with all concentration of rTgCSI, with the exception that 5 μg/mL rTgCSI had no effect on the secretion of interleukin-10 and interleukin-1β. However, secretion of NO and cell proliferation of the macrophages were substantially reduced. Taken together, these results suggested that TgCSI can affect the immune functions of murine macrophages by binding to the cells in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - XiangRui Li
- Preventive Veterinary Medicine Department, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
31
|
Gründel M, Knoop H, Steuer R. Activity and functional properties of the isocitrate lyase in the cyanobacterium Cyanothece sp. PCC 7424. MICROBIOLOGY-SGM 2017; 163:731-744. [PMID: 28516845 DOI: 10.1099/mic.0.000459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are ubiquitous photoautotrophs that assimilate atmospheric CO2 as their main source of carbon. Several cyanobacteria are known to be facultative heterotrophs that are able to grow on diverse carbon sources. For selected strains, assimilation of organic acids and mixotrophic growth on acetate has been reported for decades. However, evidence for the existence of a functional glyoxylate shunt in cyanobacteria has long been contradictory and unclear. Genes coding for isocitrate lyase (ICL) and malate synthase were recently identified in two strains of the genus Cyanothece, and the existence of the complete glyoxylate shunt was verified in a strain of Chlorogloeopsis fritschii. Here, we report that the gene PCC7424_4054 of the strain Cyanothece sp. PCC 7424 encodes an enzymatically active protein that catalyses the reaction of ICL, an enzyme that is specific for the glyoxylate shunt. We demonstrate that ICL activity is induced under alternating day/night cycles and acetate-supplemented cultures exhibit enhanced growth. In contrast, growth under constant light did not result in any detectable ICL activity or enhanced growth of acetate-supplemented cultures. Furthermore, our results indicate that, despite the presence of a glyoxylate shunt, acetate does not support continued heterotrophic growth and cell proliferation. The functional validation of the ICL is supplemented with a bioinformatics analysis of enzymes that co-occur with the glyoxylate shunt. We hypothesize that the glyoxylate shunt in Cyanothece sp. PCC 7424, and possibly other nitrogen-fixing cyanobacteria, is an adaptation to a specific ecological niche and supports assimilation of nitrogen or organic compounds during the night phase.
Collapse
Affiliation(s)
- Marianne Gründel
- Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, 10115 Berlin, Germany
| | - Henning Knoop
- Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| | - Ralf Steuer
- Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
32
|
Speijer D. Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models. Bioessays 2016; 37:1268-76. [PMID: 26577075 DOI: 10.1002/bies.201500107] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Of two contending models for eukaryotic evolution the "archezoan" has an amitochondriate eukaryote take up an endosymbiont, while "symbiogenesis" states that an Archaeon became a eukaryote as the result of this uptake. If so, organelle formation resulting from new engulfments is simplified by the primordial symbiogenesis, and less informative regarding the bacterium-to-mitochondrion conversion. Gradualist archezoan visions still permeate evolutionary thinking, but are much less likely than symbiogenesis. Genuine amitochondriate eukaryotes have never been found and rapid, explosive adaptive periods characteristic of symbiogenetic models explain this. Mitochondrial proteomes, encoded by genes of "eukaryotic origin" not easily linked to host or endosymbiont, can be understood in light of rapid adjustments to new evolutionary pressures. Symbiogenesis allows "expensive" eukaryotic inventions via efficient ATP generation by nascent mitochondria. However, efficient ATP production equals enhanced toxic internal ROS formation. The synergistic combination of these two driving forces gave rise to the rapid evolution of eukaryotes. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Beckers V, Dersch LM, Lotz K, Melzer G, Bläsing OE, Fuchs R, Ehrhardt T, Wittmann C. In silico metabolic network analysis of Arabidopsis leaves. BMC SYSTEMS BIOLOGY 2016; 10:102. [PMID: 27793154 PMCID: PMC5086045 DOI: 10.1186/s12918-016-0347-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022]
Abstract
Background During the last decades, we face an increasing interest in superior plants to supply growing demands for human and animal nutrition and for the developing bio-based economy. Presently, our limited understanding of their metabolism and its regulation hampers the targeted development of desired plant phenotypes. In this regard, systems biology, in particular the integration of metabolic and regulatory networks, is promising to broaden our knowledge and to further explore the biotechnological potential of plants. Results The thale cress Arabidopsis thaliana provides an ideal model to understand plant primary metabolism. To obtain insight into its functional properties, we constructed a large-scale metabolic network of the leaf of A. thaliana. It represented 511 reactions with spatial separation into compartments. Systematic analysis of this network, utilizing elementary flux modes, investigates metabolic capabilities of the plant and predicts relevant properties on the systems level: optimum pathway use for maximum growth and flux re-arrangement in response to environmental perturbation. Our computational model indicates that the A. thaliana leaf operates near its theoretical optimum flux state in the light, however, only in a narrow range of photon usage. The simulations further demonstrate that the natural day-night shift requires substantial re-arrangement of pathway flux between compartments: 89 reactions, involving redox and energy metabolism, substantially change the extent of flux, whereas 19 reactions even invert flux direction. The optimum set of anabolic pathways differs between day and night and is partly shifted between compartments. The integration with experimental transcriptome data pinpoints selected transcriptional changes that mediate the diurnal adaptation of the plant and superimpose the flux response. Conclusions The successful application of predictive modelling in Arabidopsis thaliana can bring systems-biological interpretation of plant systems forward. Using the gained knowledge, metabolic engineering strategies to engage plants as biotechnological factories can be developed. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0347-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronique Beckers
- Institute for Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Lisa Maria Dersch
- Institute for Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | | | - Guido Melzer
- Institute of Biochemical Engineering, Technical University Braunschweig, Braunschweig, Germany
| | | | | | | | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
34
|
Zheng W, Komatsu S, Zhu W, Zhang L, Li X, Cui L, Tian J. Response and Defense Mechanisms of Taxus chinensis Leaves Under UV-A Radiation are Revealed Using Comparative Proteomics and Metabolomics Analyses. PLANT & CELL PHYSIOLOGY 2016; 57:1839-1853. [PMID: 27318281 DOI: 10.1093/pcp/pcw106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
Taxus chinensis var. mairei is a species endemic to south-eastern China and one of the natural sources for the anticancer medicine paclitaxel. To investigate the molecular response and defense mechanisms of T. chinensis leaves to enhanced ultraviolet-A (UV-A) radiation, gel-free/label-free and gel-based proteomics and gas chromatography-mass spectrometry (GC-MS) analyses were performed. The transmission electron microscopy results indicated damage to the chloroplast under UV-A radiation. Proteomics analyses in leaves and chloroplasts showed that photosynthesis-, glycolysis-, secondary metabolism-, stress-, and protein synthesis-, degradation- and activation-related systems were mainly changed under UV-A radiation. Forty-seven PSII proteins and six PSI proteins were identified as being changed in leaves and chloroplasts under UV-A treatment. This indicated that PSII was more sensitive to UV-A than PSI as the target of UV-A light. Enhanced glycolysis, with four glycolysis-related key enzymes increased, provided precursors for secondary metabolism. The 1-deoxy-d-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase were identified as being significantly increased during UV-A radiation, which resulted in paclitaxel enhancement. Additionally, mRNA expression levels of genes involved in the paclitaxel biosynthetic pathway indicated a down-regulation under UV-A irradiation and up-regulation in dark incubation. These results reveal that a short-term high dose of UV-A radiation could stimulate the plant stress defense system and paclitaxel production.
Collapse
Affiliation(s)
- Wen Zheng
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518 Japan
| | - Wei Zhu
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lin Zhang
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ximin Li
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lei Cui
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
35
|
Zhang Y, Han Q, Guo Q, Zhang S. Physiological and proteomic analysis reveals the different responses of Cunninghamia lanceolata seedlings to nitrogen and phosphorus additions. J Proteomics 2016; 146:109-21. [PMID: 27389851 DOI: 10.1016/j.jprot.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 07/01/2016] [Indexed: 01/10/2023]
Abstract
UNLABELLED Both nitrogen (N) and phosphorus (P) additions in soils can increase tree photosynthetic rate (Pn), biomass accumulation and further increase primary production of plantation. However, the improved photosynthetic ability is varied from the added nutrient types and the mechanisms are sophisticated. In this study, an iTRAQ-based quantitative proteome combined with physiological analysis of Chinese fir (Cunninghamia lanceolata) leaves was performed to determine the common and different responses on photosynthetic process to the N and P additions. The results showed that, either N or P added in soils significantly increased Pn, but N addition had more positive effects than P addition in improving photosynthetic ability. Physiologically, N addition caused more in improving photosynthetic rate than P addition, which attributes to higher leaf N and chlorophyll contents, enlarged chloroplast size and more number of thylakoids. Proteomic data revealed that the increased Pn to N and P additions may attribute to the increased abundance of proteins involved in carbon fixation and RuBP regeneration during the light-independent reactions. However, N addition increased the abundance of photosystem II related proteins and P addition increased the abundance of photosystem I related proteins. Additionally, proteomic data also gave some clues on the different metabolic processes caused by N and P additions on glycolysis and TCA cycle, which were potentially related to higher growth and developmental rates of C. lanceolata. Therefore, this study provides new insights into the different photosynthesis and metabolic processes of Chinese fir in response to N and P additions. BIOLOGICAL SIGNIFICANCE Fertilization is an important management measure to improve timber yield and primary production of Cunninghamia lanceolata, which is the largest planted coniferous species in southeast China. Nitrogen (N) and phosphorus (P) additions into soils can improve tree photosynthesis, and further increase plantation production. However, the mechanism of N and P additions in improving photosynthesis is still unclearly. In this study, a physiological measurement combined with proteomic analysis was performed on a controlled experiment in the greenhouse. These results improve understanding of the essentially photosynthetic activity and metabolic process of C. lanceolata responding to N and P fertilization.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingquan Han
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingxue Guo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
36
|
Wang YM, Yang Q, Liu YJ, Yang HL. Molecular Evolution and Expression Divergence of the Aconitase (ACO) Gene Family in Land Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1879. [PMID: 28018410 PMCID: PMC5149538 DOI: 10.3389/fpls.2016.01879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 05/07/2023]
Abstract
Aconitase (ACO) is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA) and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: Bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Biochemistry and Molecular Biology, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Qi Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yan-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Hai-Ling Yang
- Department of Biochemistry and Molecular Biology, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Hai-Ling Yang
| |
Collapse
|
37
|
Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. SCIENCE ADVANCES 2016; 2:e1501235. [PMID: 26824074 PMCID: PMC4730858 DOI: 10.1126/sciadv.1501235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Collapse
Affiliation(s)
- Markus A. Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andre Zylstra
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Alexandra V. Turchyn
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
38
|
Ge Y, Cao Z, Song P, Zhu G. Identification and characterization of a novel citrate synthase fromStreptomyces diastaticusNo. 7 strain M1033. Biotechnol Appl Biochem 2015; 62:300-8. [DOI: 10.1002/bab.1372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yadong Ge
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Zhengyu Cao
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Ping Song
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| |
Collapse
|
39
|
Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 2015; 112:10139-46. [PMID: 25733873 DOI: 10.1073/pnas.1421385112] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.
Collapse
|
40
|
Tianpei X, Li D, Qiu P, Luo J, Zhu Y, Li S. Scorpion peptide LqhIT2 activates phenylpropanoid pathways via jasmonate to increase rice resistance to rice leafrollers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 230:1-11. [PMID: 25480003 DOI: 10.1016/j.plantsci.2014.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 05/09/2023]
Abstract
LqhIT2 is an insect-specific toxin peptide identified in Leiurus quinquestriatus hebraeus that can be toxic to lepidoptera pests. However, whether LqhIT2 induces insect resistance in rice, and how the LqhIT2 influences the biochemical metabolism of rice plants remains unknown. Here, purified LqhIT2-GST fusion protein had toxicity to rice leafrollers. Meanwhile, in vitro and field trials showed that LqhIT2 transgenic rice plants were less damaged by rice leafrollers compared to the wild type plants. Introducing LqhIT2 primed the elevated expression of lipoxygenase, a key component of the jasmonic acid biosynthetic pathway, together with enhanced linolenic acid, cis-(+)-12-oxophytodienoic acid, jasmonic acid, and jasmonic acid-isoleucine levels. In addition, phenylalanine ammonia-lyase, a key gene of the phenylpropanoid pathway, was up-regulated. Correspondingly, the contents of downstream products of the phenylpropanoid pathway such as flavonoids and lignins, were also increased in LqhIT2 transgenic plants. These changes were paralleled by decreased starch, glucose, and glucose-6-phosphate accumulation, the key metabolites of glycolysis pathway that supplies the raw material and intermediate carbon products for phenylpropanoids biosyntheses. These findings suggest that, in addition to its own toxicity against pests, LqhIT2 activate the phenylpropanoid pathway via jasmonate-mediated priming, which subsequently increases flavonoid and lignin content and improves insect resistance in rice.
Collapse
Affiliation(s)
- Xiuzi Tianpei
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Dong Li
- National Key Laboratory of Genetic Crop Improvement, Huazhong Agriculture University, Wuhan 430070, China
| | - Ping Qiu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jie Luo
- National Key Laboratory of Genetic Crop Improvement, Huazhong Agriculture University, Wuhan 430070, China.
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of the Ministry of Agriculture, Engineering Research Center for Plant Biotechology and Germplasm Utilization of the Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
41
|
Simons M, Saha R, Amiour N, Kumar A, Guillard L, Clément G, Miquel M, Li Z, Mouille G, Lea PJ, Hirel B, Maranas CD. Assessing the metabolic impact of nitrogen availability using a compartmentalized maize leaf genome-scale model. PLANT PHYSIOLOGY 2014; 166:1659-74. [PMID: 25248718 PMCID: PMC4226342 DOI: 10.1104/pp.114.245787] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maize (Zea mays) is an important C4 plant due to its widespread use as a cereal and energy crop. A second-generation genome-scale metabolic model for the maize leaf was created to capture C4 carbon fixation and investigate nitrogen (N) assimilation by modeling the interactions between the bundle sheath and mesophyll cells. The model contains gene-protein-reaction relationships, elemental and charge-balanced reactions, and incorporates experimental evidence pertaining to the biomass composition, compartmentalization, and flux constraints. Condition-specific biomass descriptions were introduced that account for amino acids, fatty acids, soluble sugars, proteins, chlorophyll, lignocellulose, and nucleic acids as experimentally measured biomass constituents. Compartmentalization of the model is based on proteomic/transcriptomic data and literature evidence. With the incorporation of information from the MetaCrop and MaizeCyc databases, this updated model spans 5,824 genes, 8,525 reactions, and 9,153 metabolites, an increase of approximately 4 times the size of the earlier iRS1563 model. Transcriptomic and proteomic data have also been used to introduce regulatory constraints in the model to simulate an N-limited condition and mutants deficient in glutamine synthetase, gln1-3 and gln1-4. Model-predicted results achieved 90% accuracy when comparing the wild type grown under an N-complete condition with the wild type grown under an N-deficient condition.
Collapse
Affiliation(s)
- Margaret Simons
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Rajib Saha
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Nardjis Amiour
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Akhil Kumar
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Lenaïg Guillard
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Gilles Clément
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Martine Miquel
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Zhenni Li
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Gregory Mouille
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Peter J Lea
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Bertrand Hirel
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| | - Costas D Maranas
- Departments of Chemical Engineering (M.S., R.S., C.D.M.) and Bioinformatics and Genomics, Huck Institutes of the Life Sciences (A.K.), Pennsylvania State University, University Park, Pennsylvania 16802;Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-Agro-ParisTech, Equipe de Recherce Labellisée, Centre National de la Recherche Scientifique 3559, F-78026 Versailles cedex, France (N.A., L.G., G.C., M.M., Z.L., G.M., B.H.); andLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom (P.J.L.)
| |
Collapse
|
42
|
Cavalcanti JHF, Esteves-Ferreira AA, Quinhones CGS, Pereira-Lima IA, Nunes-Nesi A, Fernie AR, Araújo WL. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol Evol 2014; 6:2830-48. [PMID: 25274566 PMCID: PMC4224347 DOI: 10.1093/gbe/evu221] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations.
Collapse
Affiliation(s)
- João Henrique Frota Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Alberto A Esteves-Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Italo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| |
Collapse
|
43
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014; 109:400-16. [PMID: 25026440 DOI: 10.1016/j.jprot.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. BIOLOGICAL SIGNIFICANCE Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive investigation of the mitochondrial proteome in a member (A. castellanii) of the eukaryotic supergroup Amoebozoa. Through a combination of tandem mass spectrometry (MS/MS) and in silico data mining, we have retrieved 1033 candidate mitochondrial protein sequences, 709 having MS support. These data were used to reconstruct the metabolic pathways and protein complexes of A. castellanii mitochondria, and were integrated with data from other characterized mitochondrial proteomes to augment our understanding of mitochondrial proteome evolution. Our results demonstrate the power of combining direct proteomic and bioinformatic approaches in the discovery of novel mitochondrial proteins, both nucleus-encoded and mitochondrion-encoded, and highlight the compositional complexity of the A. castellanii mitochondrial proteome, which rivals that of animals, fungi and plants.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth A Chisholm
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M Pinto
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
44
|
Gray MW. The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria. Cold Spring Harb Perspect Biol 2014; 6:6/3/a016097. [PMID: 24591518 DOI: 10.1101/cshperspect.a016097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) is unquestionably the remnant of an α-proteobacterial genome, yet only ~10%-20% of mitochondrial proteins are demonstrably α-proteobacterial in origin (the "α-proteobacterial component," or APC). The evolutionary ancestry of the non-α-proteobacterial component (NPC) is obscure and not adequately accounted for in current models of mitochondrial origin. I propose that in the host cell that accommodated an α-proteobacterial endosymbiont, much of the NPC was already present, in the form of a membrane-bound metabolic organelle (the premitochondrion) that compartmentalized many of the non-energy-generating functions of the contemporary mitochondrion. I suggest that this organelle also possessed a protein import system and various ion and small-molecule transporters. In such a scenario, an α-proteobacterial endosymbiont could have been converted relatively directly and rapidly into an energy-generating organelle that incorporated the extant metabolic functions of the premitochondrion. This model (the "pre-endosymbiont hypothesis") effectively represents a synthesis of previous, contending mitochondrial origin hypotheses, with the bulk of the mitochondrial proteome (much of the NPC) having an endogenous origin and the minority component (the APC) having a xenogenous origin.
Collapse
Affiliation(s)
- Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3M 4R2, Canada
| |
Collapse
|
45
|
Plancke C, Vigeolas H, Höhner R, Roberty S, Emonds-Alt B, Larosa V, Willamme R, Duby F, Onga Dhali D, Thonart P, Hiligsmann S, Franck F, Eppe G, Cardol P, Hippler M, Remacle C. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:404-17. [PMID: 24286363 DOI: 10.1111/tpj.12392] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 05/10/2023]
Abstract
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO₂ is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by ¹⁴N/¹⁵N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β-oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.
Collapse
Affiliation(s)
- Charlotte Plancke
- Genetics of Microorganisms, Institute of Botany, B22, University of Liege, 4000, Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Perrineau MM, Zelzion E, Gross J, Price DC, Boyd J, Bhattacharya D. Evolution of salt tolerance in a laboratory reared population ofChlamydomonas reinhardtii. Environ Microbiol 2014; 16:1755-66. [DOI: 10.1111/1462-2920.12372] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/15/2013] [Indexed: 01/10/2023]
Affiliation(s)
| | - Ehud Zelzion
- Department of Ecology, Evolution and Natural Resources
| | | | - Dana C. Price
- Department of Ecology, Evolution and Natural Resources
| | - Jeffrey Boyd
- Department of Biochemistry and Microbiology; Rutgers University; New Brunswick New Jersey 08901 USA
| | | |
Collapse
|
47
|
Song P, Li L, Liu J. Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS One 2013; 8:e82188. [PMID: 24340005 PMCID: PMC3855430 DOI: 10.1371/journal.pone.0082188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/22/2013] [Indexed: 11/30/2022] Open
Abstract
The differentially co-expressed proteins in N-deprived and N-enriched I. galbana were comparatively analyzed by using two dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometry (MALDI-TOF/TOF-MS) with the aim of better understanding lipid metabolism in this oleaginous microalga. Forty-five of the 900 protein spots showed dramatic changes in N-deprived I. galbana compared with the N-enriched cells. Of these, 36 protein spots were analyzed and 27 proteins were successfully identified. The identified proteins were classified into seven groups by their molecular functions, including the proteins related to energy production and transformation, substance metabolism, signal transduction, molecular chaperone, transcription and translation, immune defense and cytoskeleton. These altered proteins slowed cell growth and photosynthesis of I. galbana directly or indirectly, but at the same time increased lipid accumulation. Eight key enzymes involved in lipid metabolism via different pathways were identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), enolase, aspartate aminotransferase (AST), fumarate hydratase (FH), citrate synthase (CS), O-acetyl-serine lyase (OAS-L) and ATP sulfurylase (ATPS). The results suggested that the glycolytic pathway and citrate transport system might be the main routes for lipid anabolism in N-deprived I. galbana, and that the tricarboxylic acid (TCA) cycle, glyoxylate cycle and sulfur assimilation system might be the major pathways involved in lipid catabolism.
Collapse
Affiliation(s)
- Pingping Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Ling Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianguo Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
48
|
Sun X, Zhu A, Liu S, Sheng L, Ma Q, Zhang L, Nishawy EME, Zeng Y, Xu J, Ma Z, Cheng Y, Deng X. Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1038-1053. [PMID: 23758915 DOI: 10.1111/jipb.12083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Citric acid plays an important role in fresh fruit flavor and its adaptability to post-harvest storage conditions. In order to explore organic acid regulatory mechanisms in post-harvest citrus fruit, systematic biological analyses were conducted on stored Hirado Buntan Pummelo (HBP; Citrus grandis) fruits. High-performance capillary electrophoresis, subcellular organelle expression microarray, real-time quantitative reverse transcription polymerase chain reaction, gas chromatography mass spectrometry (GC-MS), and conventional physiological and biochemical analyses were undertaken. The results showed that the concentration of organic acids in HBP underwent a regular fluctuation. GC-MS-based metabolic profiling indicated that succinic acid, γ-aminobutyric acid (GABA), and glutamine contents increased, but 2-oxoglutaric acid content declined, which further confirmed that the GABA shunt may have some regulatory roles in organic acid catabolism processes. In addition, the concentration of organic acids was significantly correlated with senescence-related physiological processes, such as hydrogen peroxide content as well as superoxide dismutase and peroxidase activities, which showed that organic acids could be regarded as important parameters for measuring citrus fruit post-harvest senescence processes.
Collapse
Affiliation(s)
- Xiaohua Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bohne AV, Schwarz C, Schottkowski M, Lidschreiber M, Piotrowski M, Zerges W, Nickelsen J. Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis. PLoS Biol 2013; 11:e1001482. [PMID: 23424285 PMCID: PMC3570535 DOI: 10.1371/journal.pbio.1001482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
A subunit of the chloroplast pyruvate dehydrogenase complex, which serves as a metabolic enzyme, also has a dual function as an RNA-binding protein and influences mRNA translation. Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2), a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC), which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes. Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals on a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these proteins. Here, we report an example of a protein with dual functions in gene expression and carbon metabolism. The chloroplast pyruvate dehydrogenase complex is well-known to produce activated di-carbon precursors for fatty acid, which is required for lipid synthesis. Our results show that a subunit of this enzyme forms ribonucleoprotein particles and influences chloroplast mRNA translation. Conversely, RNA binding affects pyruvate dehydrogenase (metabolic) activity. These findings offer insight into how intracellular metabolic signaling and gene expression are reciprocally regulated during membrane biogenesis. In addition, our results suggest that these dual roles of the protein might exist in evolutionary distant organisms ranging from cyanobacteria to humans.
Collapse
Affiliation(s)
- Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christian Schwarz
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marco Schottkowski
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Michael Lidschreiber
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Markus Piotrowski
- Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - William Zerges
- Biology Department and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- * E-mail:
| |
Collapse
|
50
|
Steinhauser D, Fernie AR, Araújo WL. Unusual cyanobacterial TCA cycles: not broken just different. TRENDS IN PLANT SCIENCE 2012; 17:503-9. [PMID: 22658681 DOI: 10.1016/j.tplants.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 05/03/2023]
Abstract
As a fundamental energy-conserving process common to all living organisms, respiration is responsible for the oxidation of respiratory substrates to drive ATP synthesis. Accordingly, it has long been accepted that a complete tricarboxylic acid (TCA) cycle is necessary for respiratory energy production. Cyanobacteria, similar to some other prokaryotes, appeared to have an incomplete TCA cycle because they lack the enzyme 2-oxoglutarate dehydrogenase (OGDH). However, it has recently been reported that the cycle can be completed by the action of two alternative enzymes. In this opinion article, we discuss the progress being made to elucidate the nature of the TCA cycles in cyanobacteria and plants and outline open questions concerning the functional significance of this unusual metabolic feature in a broader evolutionary context.
Collapse
Affiliation(s)
- Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | |
Collapse
|