1
|
Qiao Z, Chen Z, Gong H, Guo X, Yu H, Chen L. Enhancement of anaerobic digestion by adding elemental sulfur. BIORESOURCE TECHNOLOGY 2025; 416:131820. [PMID: 39547299 DOI: 10.1016/j.biortech.2024.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
In this study, a new approach to enhance methane (CH4) production from organic substrates in anaerobic digestion (AD) has been discovered. That is, the addition of elemental sulfur (S0) particles into the AD system promotes the synergistic growth of elemental sulfur disproportionation bacteria, acidogenic bacteria and methanogenic archaea, thus facilitating hydrolysis, acidogenesis and methanogenesis. The efficacy of this AD enhancement pathway was confirmed in AD experiments with glucose as a model organic substrate. The results demonstrated that CH4 production in the AD system increased considerably with S0 dosages ranging from 20 mg/L to 300 mg/L. Two gas production peaks appeared at dosages of 20 mg/L and 180 mg/L, where the total CH4 production increased by 2.1 times and 2.5 times, respectively compared with the control group. However, inhibitory effect was observed for S0 dosages above 300 mg/L. The chemical states of S, the microbial community and the abundance of key functional enzymes in the AD system were analyzed. The results showed that S0 addition increased the relative abundance of Dethiobacteraceae, Caldatribacterium, Anaerolineaceae, Methanobacterium and Methanosaeta and considerably increased the abundance of key functional enzymes, such as dehydrogenase, D-glucosidic glucosidase, pyruvate synthase and acetyl-CoA deacetylase. The enrichment of these microorganisms and functional enzymes was strongly positively correlated with the production of volatile fatty acids and CH4, demonstrating that S0 addition effectively enhances methanogenesis during AD.
Collapse
Affiliation(s)
- Zihao Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| | - Huijuan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; Center of Materials Analysis, Nanjing University, 210093 Nanjing, PR China.
| | - Xiaofeng Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiqiang Yu
- Center of Materials Analysis, Nanjing University, 210093 Nanjing, PR China
| | - Lu Chen
- Center of Materials Analysis, Nanjing University, 210093 Nanjing, PR China
| |
Collapse
|
2
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
3
|
Yamauchi S, Sugiura Y, Yamaguchi J, Zhou X, Takenaka S, Odawara T, Fukaya S, Fujisawa T, Naguro I, Uchiyama Y, Takahashi A, Ichijo H. Mitochondrial fatty acid oxidation drives senescence. SCIENCE ADVANCES 2024; 10:eado5887. [PMID: 39454000 PMCID: PMC11506141 DOI: 10.1126/sciadv.ado5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cellular senescence is a stress-induced irreversible cell cycle arrest involved in tumor suppression and aging. Many stresses, such as telomere shortening and oncogene activation, induce senescence by damaging nuclear DNA. However, the mechanisms linking DNA damage to senescence remain unclear. Here, we show that DNA damage response (DDR) signaling to mitochondria triggers senescence. A genome-wide small interfering RNA screen implicated the outer mitochondrial transmembrane protein BNIP3 in senescence induction. We found that BNIP3 is phosphorylated by the DDR kinase ataxia telangiectasia mutated (ATM) and contributes to an increase in the number of mitochondrial cristae. Stable isotope labeling metabolomics indicated that the increase in cristae enhances fatty acid oxidation (FAO) to acetyl-coenzyme A (acetyl-CoA). This promotes histone acetylation and expression of the cyclin-dependent kinase inhibitor p16INK4a. Notably, pharmacological activation of FAO alone induced senescence both in vitro and in vivo. Thus, mitochondrial energy metabolism plays a critical role in senescence induction and is a potential intervention target to control senescence.
Collapse
Affiliation(s)
- Shota Yamauchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8507, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Satoshi Takenaka
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeru Odawara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shunsuke Fukaya
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
4
|
Hernández-Melgar AG, Guerrero A, Moreno-Ulloa A. Chronic Exposure to Petroleum-Derived Hydrocarbons Alters Human Skin Microbiome and Metabolome Profiles: A Pilot Study. J Proteome Res 2024; 23:4273-4285. [PMID: 39024464 DOI: 10.1021/acs.jproteome.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Petroleum-derived substances, like industrial oils and grease, are ubiquitous in our daily lives. Comprised of petroleum hydrocarbons (PH), these substances can come into contact with our skin, potentially causing molecular disruptions and contributing to the development of chronic disease. In this pilot study, we employed mass spectrometry-based untargeted metabolomics and 16S rRNA gene sequencing analyses to explore these effects. Superficial skin samples were collected from subjects with and without chronic dermal exposure to PH at two anatomical sites: the fingers (referred to as the hand) and arms (serving as an intersubject variability control). Exposed hands exhibited higher bacterial diversity (Shannon and Simpson indices) and an enrichment of oil-degrading bacteria (ODB), including Dietzia, Paracoccus, and Kocuria. Functional prediction suggested enriched pathways associated with PH degradation in exposed hands vs non-exposed hands, while no differences were observed when comparing the arms. Furthermore, carboxylic acids, glycerophospholipids, organooxygen compounds, phenol ethers, among others, were found to be more abundant in exposed hands. We observed positive correlations among multiple ODB and xenobiotics, suggesting a chemical remodeling of the skin favorable for ODB thriving. Overall, our study offers insights into the complex dysregulation of bacterial communities and the chemical milieu induced by chronic dermal exposure to PH.
Collapse
Affiliation(s)
- Alan G Hernández-Melgar
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
- Posgrado en Ciencias de la Vida, CICESE, Ensenada 22860, Baja California, Mexico
| | - Abraham Guerrero
- CONAHCyT Research, Research Center in Food & Development A.C. (CIAD), Mazatlán 82112, Sinaloa, Mexico
| | - Aldo Moreno-Ulloa
- MS2 Laboratory, Biomedical Innovation Department, Ensenada Center for Scientific Research and Higher Education, Baja California (CICESE), No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| |
Collapse
|
5
|
Jiang X, Sun S, Shi C, Liu K, Yang Y, Cao J, Gu J, Liu J. Rsad2 mediates Bisphenol A-induced actin cytoskeletal disruption in mouse spermatocytes. J Appl Toxicol 2024; 44:1478-1488. [PMID: 38828519 DOI: 10.1002/jat.4649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Bisphenol A (BPA) is widely exposed in populations worldwide and has negative effects on spermatogenesis both in animals and humans. The homeostasis of the actin cytoskeleton in the spermatogenic epithelium is crucial for spermatogenesis. Actin cytoskeleton destruction in the seminiferous epithelium is one of the important reasons for BPA-induced spermatogenesis disorder. However, the underlying molecular mechanisms remain largely unexplored. Herein, we explored the role and mechanism of Rsad2, an interferon-stimulated gene in BPA-induced actin cytoskeleton disorder in mouse GC-2 spermatocyte cell lines. After BPA exposure, the actin cytoskeleton was dramatically disrupted and the cell morphology was markedly altered accompanied by a significant increase in Rsad2 expression both in mRNA and protein levels in GC-2 cells. Furthermore, the phalloidin intensities and cell morphology were restored obviously when interfering with the expression of Rsad2 in BPA-treated GC-2 cells. In addition, we observed a significant decrease in intracellular ATP levels after BPA treatment, while the ATP level was obviously upregulated when knocking down the expression of Rsad2 in BPA-treated cells compared to cells treated with BPA alone. Moreover, Rsad2 relocated to mitochondria after BPA exposure in GC-2 cells. BPA promoted Rsad2 expression by activating type I IFN-signaling in GC-2 cells. In summary, Rsad2 mediated BPA-induced actin cytoskeletal disruption in GC-2 cells, which provided data to reveal the mechanism of BPA-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Shengqi Sun
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chaofeng Shi
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Kangle Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yurui Yang
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jia Cao
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Gu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jinyi Liu
- State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Prifti KK, McCarthy R, Ma X, Finck BN, England SK, Frolova AI. Obese mice have decreased uterine contractility and altered energy metabolism in the uterus at term gestation†. Biol Reprod 2024; 111:678-693. [PMID: 38857377 PMCID: PMC11402524 DOI: 10.1093/biolre/ioae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Over 35% of reproductive-age women in the USA have obesity, putting them at increased risk for numerous obstetric complications due to abnormal labor. While the association between maternal obesity and abnormal labor has been well documented, the mechanisms responsible for this remain understudied. The uterine smooth muscle, myometrium, has high energy needs in order to fuel regular uterine contractions during parturition. However, the precise mechanisms by which the myometrium meets its energy demands has not been defined. Here, our objective was to define the effects of obesity on energy utilization in the myometrium during labor. We generated a mouse model of maternal diet-induced obesity and found that these mice had a higher rate of dystocia than control chow-fed mice. Moreover, compared to control chow-fed mice, DIO mice at term, both before and during labor had lower in vivo spontaneous uterine contractility. Untargeted transcriptomic and metabolomic analyses suggest that diet-induced obesity is associated with elevated long-chain fatty acid uptake and utilization in the uterus, but also an accumulation of medium-chain fatty acids. Diet-induced obesity uteri also had an increase in the abundance of long chain-specific beta-oxidation enzymes, which may be responsible for the observed increase in long-chain fatty acid utilization. This altered energy substrate utilization may be a contributor to the observed contractile dysfunction.
Collapse
Affiliation(s)
- Kevin K Prifti
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ronald McCarthy
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaofeng Ma
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah K England
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| | - Antonina I Frolova
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Sahay S, Pulvender P, Rami Reddy MVSR, McCullumsmith RE, O’Donovan SM. Metabolic Insights into Neuropsychiatric Illnesses and Ketogenic Therapies: A Transcriptomic View. Int J Mol Sci 2024; 25:8266. [PMID: 39125835 PMCID: PMC11312282 DOI: 10.3390/ijms25158266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The disruption of brain energy metabolism, leading to alterations in synaptic signaling, neural circuitry, and neuroplasticity, has been implicated in severe mental illnesses such as schizophrenia, bipolar disorder, and major depressive disorder. The therapeutic potential of ketogenic interventions in these disorders suggests a link between metabolic disturbances and disease pathology; however, the precise mechanisms underlying these metabolic disturbances, and the therapeutic effects of metabolic ketogenic therapy, remain poorly understood. In this study, we conducted an in silico analysis of transcriptomic data to investigate perturbations in metabolic pathways in the brain across severe mental illnesses via gene expression profiling. We also examined dysregulation of the same pathways in rodent or cell culture models of ketosis, comparing these expression profiles to those observed in the disease states. Our analysis revealed significant perturbations across all metabolic pathways, with the greatest perturbations in glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport chain (ETC) across all three disorders. Additionally, we observed some discordant gene expression patterns between disease states and ketogenic intervention studies, suggesting a potential role for ketone bodies in modulating pathogenic metabolic changes. Our findings highlight the importance of understanding metabolic dysregulation in severe mental illnesses and the potential therapeutic benefits of ketogenic interventions in restoring metabolic homeostasis. This study provides insights into the complex relationship between metabolism and neuropsychiatric disorders and lays the foundation for further experimental investigations aimed at appreciating the implications of the present transcriptomic findings as well as developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Priyanka Pulvender
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | | | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Neuroscience Institute, ProMedica, Toledo, OH 43614, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
9
|
Wei LJ, Wei K, Lu SY, Wang M, Chen CX, Huang HQ, Pan X, Tao PY. Mild hypothermia pretreatment improves hepatic ischemia-reperfusion injury: A systematic review and meta-analysis of animal experiments. PLoS One 2024; 19:e0305213. [PMID: 38954712 PMCID: PMC11218962 DOI: 10.1371/journal.pone.0305213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND AIM Mild hypothermia in hepatic ischemia-reperfusion injury is increasingly being studied. This study aimed to conduct a systematic evaluation of the effectiveness of mild hypothermia in improving hepatic ischemia-reperfusion injury. METHODS We systematically searched CNKI, WanFang Data, PubMed, Embase, and Web of Science for original studies that used animal experiments to determine how mild hypothermia(32-34°C) pretreatment improves hepatic ischemia-reperfusion injury(in situ 70% liver IR model). The search period ranged from the inception of the databases to May 5, 2023. Two researchers independently filtered the literature, extracted the data, and assessed the risk of bias incorporated into the study. The meta-analysis was performed using RevMan 5.4.1 and Stata 15 software. RESULTS Eight randomized controlled trials (RCTs) involving a total of 117 rats/mice were included. The results showed that the ALT levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [Standardized Mean Difference (SMD) = -5.94, 95% CI(-8.09, -3.78), P<0.001], and AST levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [SMD = -4.45, 95% CI (-6.10, -2.78), P<0.001]. The hepatocyte apoptosis rate in the mild hypothermia pretreatment group was significantly lower than that in the normothermic control group [SMD = -6.86, 95% CI (-10.38, -3.33), P<0.001]. Hepatocyte pathology score in the mild hypothermia pretreatment group was significantly lower than that in the normothermic control group [SMD = -4.36, 95% CI (-5.78, -2.95), P<0.001]. There was no significant difference in MPO levels between the mild hypothermia preconditioning group and the normothermic control group [SMD = -4.83, 95% CI (-11.26, 1.60), P = 0.14]. SOD levels in the mild hypothermia preconditioning group were significantly higher than those in the normothermic control group [SMD = 3.21, 95% CI (1.27, 5.14), P = 0.001]. MDA levels in the mild hypothermia pretreatment group were significantly lower than those in the normothermic control group [SMD = -4.06, 95% CI (-7.06, -1.07) P = 0.008]. CONCLUSION Mild hypothermia can attenuate hepatic ischemia-reperfusion injury, effectively reduce oxidative stress and inflammatory response, prevent hepatocyte apoptosis, and protect liver function.
Collapse
Affiliation(s)
- Li-juan Wei
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Wei
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shu-yu Lu
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Min Wang
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chun-xi Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui-qiao Huang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Pan
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pin-yue Tao
- Department of Anaesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Ma X, Liu Y, Han F, Cheng T, Wang K, Xu Y. Effect of short-term moderate intake of ice wine on hepatic glycolipid metabolism in C57BL/6J mice. Food Funct 2024; 15:5063-5072. [PMID: 38656306 DOI: 10.1039/d3fo05665a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As the correlation between high fructose intake and metabolism-related diseases (e.g., obesity, fatty liver, and type 2 diabetes) has been increasingly reported, the health benefits of consuming ice wine high in fructose have been called into question. In this study, 6-week-old male C57BL/6J mice were divided into control (pure water), fructose (130 g L-1 fructose solution), alcohol (11% alcohol solution), low-dose (50% diluted ice wine) and high-dose ice wine (100% ice wine) groups to investigate the effects and mechanisms of short-term (4 weeks) ice wine intake on hepatic glycolipid metabolism in mice. The results showed that short-term consumption of ice wine suppressed the elevation of low-density lipoprotein cholesterol content and did not cause hepatic lipid accumulation compared with those of the fructose group. Meanwhile, ice wine had no significant effect on lipogenesis although it inhibited fatty acid oxidation via the PPARα/CPT-1α pathway. Compared with the control group, ice wine interfered with the elevation of fasting glucose and the insulin resistance index in a dose-dependent manner, and led to an increase in plasma uric acid levels, which may further contribute to the disruption of glucolipid metabolism. Overall, short-term moderate intake of ice wine over a 4-week period may not significantly affect hepatic glycolipid metabolism in C57BL/6J mice for the time being.
Collapse
Affiliation(s)
- Xinyuan Ma
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| | - Tiantian Cheng
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Kaixian Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yiwen Xu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Lin J, Zhang J, Dai W, Li X, Mohsen M, Li X, Lu K, Song K, Wang L, Zhang C. Low phosphorus increases hepatic lipid deposition, oxidative stress and inflammatory response via Acetyl-CoA carboxylase-dependent manner in zebrafish liver cells. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109387. [PMID: 38272331 DOI: 10.1016/j.fsi.2024.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid β-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid β-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid β-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Jilei Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Weiwei Dai
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, PR China
| | - Xiao Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Mohamed Mohsen
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
12
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
13
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|
14
|
Nolen RM, Prouse A, Russell ML, Bloodgood J, Díaz Clark C, Carmichael RH, Petersen LH, Kaiser K, Hala D, Quigg A. Evaluation of fatty acids and carnitine as biomarkers of PFOS exposure in biota (fish and dolphin) from Galveston Bay and the northwestern Gulf of Mexico. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109817. [PMID: 38101762 DOI: 10.1016/j.cbpc.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid β-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.
Collapse
Affiliation(s)
- Rayna M Nolen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Mackenzie L Russell
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Jennifer Bloodgood
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA; Cornell Wildlife Health Lab, Cornell University College of Veterinary Medicine, 240 Farrier Rd, Ithaca, NY 14853, USA
| | - Cristina Díaz Clark
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Ruth H Carmichael
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA
| | - Lene H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Karl Kaiser
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| |
Collapse
|
15
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
16
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
17
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
18
|
Tian Q, Mitchell BA, Erus G, Davatzikos C, Moaddel R, Resnick SM, Ferrucci L. Sex differences in plasma lipid profiles of accelerated brain aging. Neurobiol Aging 2023; 129:178-184. [PMID: 37336172 PMCID: PMC10527719 DOI: 10.1016/j.neurobiolaging.2023.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Lipids are essential components of brain structure and shown to affect brain function. Previous studies have shown that aging men undergo greater brain atrophy than women, but whether the associations between lipids and brain atrophy differ by sex is unclear. We examined sex differences in the associations between circulating lipids by liquid chromatography-tandem mass spectrometry and the progression of MRI-derived brain atrophy index Spatial Patterns of Atrophy for Recognition of Brain Aging (SPARE-BA) over an average of 4.7 (SD = 2.3) years in 214 men and 261 women aged 60 or older who were initially cognitively normal using multivariable linear regression, adjusted for age, race, education, and baseline SPARE-BA. We found significant sex interactions for beta-oxidation rate, short-chain acylcarnitines, long-chain ceramides, and very long-chain triglycerides. Lower beta-oxidation rate and short-chain acylcarnitines in women and higher long-chain ceramides and very long-chain triglycerides in men were associated with faster increases in SPARE-BA (accelerated brain aging). Circulating lipid profiles of accelerated brain aging are sex-specific and vary by lipid classes and structure. Mechanisms underlying these sex-specific lipid profiles of brain aging warrant further investigation.
Collapse
Affiliation(s)
- Qu Tian
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
| | - Brendan A Mitchell
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Guray Erus
- Radiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Radiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
19
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
20
|
Hu Y, Li J, Li X, Wang D, Xiang R, Liu W, Hou S, Zhao Q, Yu X, Xu M, Zhao D, Li T, Chi Y, Yang J. Hepatocyte-secreted FAM3D ameliorates hepatic steatosis by activating FPR1-hnRNP U-GR-SCAD pathway to enhance lipid oxidation. Metabolism 2023:155661. [PMID: 37454871 DOI: 10.1016/j.metabol.2023.155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide; however, the underlying mechanisms remain poorly understood. FAM3D is a member of the FAM3 family; however, its role in hepatic glycolipid metabolism remains unknown. Serum FAM3D levels are positively correlated with fasting blood glucose levels in patients with diabetes. Hepatocytes express and secrete FAM3D, and its expression is increased in steatotic human and mouse livers. Hepatic FAM3D overexpression ameliorated hyperglycemia and steatosis in obese mice, whereas FAM3D-deficient mice exhibited exaggerated hyperglycemia and steatosis after high-fat diet (HFD)-feeding. In cultured hepatocytes, FAM3D overexpression or recombinant FAM3D protein (rFAM3D) treatment reduced gluconeogenesis and lipid deposition, which were blocked by anti-FAM3D antibodies or inhibition of its receptor, formyl peptide receptor 1 (FPR1). FPR1 overexpression suppressed gluconeogenesis and reduced lipid deposition in wild hepatocytes but not in FAM3D-deficient hepatocytes. The addition of rFAM3D restored FPR1's inhibitory effects on gluconeogenesis and lipid deposition in FAM3D-deficient hepatocytes. Hepatic FPR1 overexpression ameliorated hyperglycemia and steatosis in obese mice. RNA sequencing and DNA pull-down revealed that the FAM3D-FPR1 axis upregulated the expression of heterogeneous nuclear ribonucleoprotein U (hnRNP U), which recruits the glucocorticoid receptor (GR) to the promoter region of the short-chain acyl-CoA dehydrogenase (SCAD) gene, promoting its transcription to enhance lipid oxidation. Moreover, FAM3D-FPR1 axis also activates calmodulin-Akt pathway to suppress gluconeogenesis in hepatocytes. In conclusion, hepatocyte-secreted FAM3D activated the FPR1-hnRNP U-GR-SCAD pathway to enhance lipid oxidation in hepatocytes. Under obesity conditions, increased hepatic FAM3D expression is a compensatory mechanism against dysregulated glucose and lipid metabolism.
Collapse
Affiliation(s)
- Yuntao Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100027, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Qinghe Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing 100191, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Tao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China; Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China; Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
21
|
Jing Z, Iba T, Naito H, Xu P, Morishige JI, Nagata N, Okubo H, Ando H. L-carnitine prevents lenvatinib-induced muscle toxicity without impairment of the anti-angiogenic efficacy. Front Pharmacol 2023; 14:1182788. [PMID: 37089945 PMCID: PMC10116043 DOI: 10.3389/fphar.2023.1182788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Lenvatinib is an oral tyrosine kinase inhibitor that acts on multiple receptors involved in angiogenesis. Lenvatinib is a standard agent for the treatment of several types of advanced cancers; however, it frequently causes muscle-related adverse reactions. Our previous study revealed that lenvatinib treatment reduced carnitine content and the expression of carnitine-related and oxidative phosphorylation (OXPHOS) proteins in the skeletal muscle of rats. Therefore, this study aimed to evaluate the effects of L-carnitine on myotoxic and anti-angiogenic actions of lenvatinib. Co-administration of L-carnitine in rats treated with lenvatinib for 2 weeks completely prevented the decrease in carnitine content and expression levels of carnitine-related and OXPHOS proteins, including carnitine/organic cation transporter 2, in the skeletal muscle. Moreover, L-carnitine counteracted lenvatinib-induced protein synthesis inhibition, mitochondrial dysfunction, and cell toxicity in C2C12 myocytes. In contrast, L-carnitine had no influence on either lenvatinib-induced inhibition of vascular endothelial growth factor receptor 2 phosphorylation in human umbilical vein endothelial cells or angiogenesis in endothelial tube formation and mouse aortic ring assays. These results suggest that L-carnitine supplementation could prevent lenvatinib-induced muscle toxicity without diminishing its antineoplastic activity, although further clinical studies are needed to validate these findings.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomohiro Iba
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Vascular Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisamichi Naito
- Department of Vascular Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Pingping Xu
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun-ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironao Okubo
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Bunkyō, Tokyo, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- *Correspondence: Hitoshi Ando,
| |
Collapse
|
22
|
Inci MK, Park SH, Helsley RN, Attia SL, Softic S. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. J Nutr Biochem 2023; 114:109224. [PMID: 36403701 PMCID: PMC11042502 DOI: 10.1016/j.jnutbio.2022.109224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial β-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.
Collapse
Affiliation(s)
| | - Se-Hyung Park
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Robert N Helsley
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Suzanna L Attia
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Samir Softic
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Vos M, Klein C, Hicks AA. Role of Ceramides and Sphingolipids in Parkinson's Disease. J Mol Biol 2023:168000. [PMID: 36764358 DOI: 10.1016/j.jmb.2023.168000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine (affiliated to the University of Luebeck, Luebeck, Germany), Eurac Research, 39100 Bolzano, Italy. https://twitter.com/andrewhicks
| |
Collapse
|
24
|
Hippo pathway inhibition promotes metabolic adaptability and antioxidant response in myoblasts. Sci Rep 2023; 13:2232. [PMID: 36755041 PMCID: PMC9908881 DOI: 10.1038/s41598-023-29372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Metabolic plasticity in a hostile environment ensures cell survival. We investigated whether Hippo pathway inhibition contributed to cell adaptations under challenging conditions. We examined metabolic profiles and fuel substrate choices and preferences in C2C12 myoblasts after Hippo pathway inhibition via Salvador knockdown (SAV1 KD). SAV1 KD induced higher ATP production and a more energetic phenotype. Bioenergetic profiling showed enhanced key mitochondrial parameters including spare respiratory capacity. SAV1 KD cells showed markedly elevated glycolysis and glycolytic reserves; blocking other fuel-oxidation pathways enhanced mitochondrial flexibility of glucose oxidation. Under limited glucose, endogenous fatty acid oxidation increased to cope with bioenergetic stress. Gene expression patterns after SAV1 KD suggested transcriptional upregulation of key metabolic network regulators to promote energy production and free radical scavenging that may prevent impaired lipid and glucose metabolism. In SAV1 KD cells, sirtuin signaling was the top enriched canonical pathway linked with enhanced mitochondrial ATP production. Collectively, we demonstrated that Hippo pathway inhibition in SAV1 KD cells induces multiple metabolic properties, including enhancing mitochondrial spare respiratory capacity or glycolytic reserve to cope with stress and upregulating metabolic pathways supporting elevated ATP demand, bioenergetics, and glycolysis and counteracting oxidative stress. In response to metabolic challenges, SAV1 KD cells can increase fatty acid oxidation or glucose-coupled oxidative phosphorylation capacity to compensate for substrate limitations or alternative fuel oxidation pathway inhibition.
Collapse
|
25
|
King DE, Sparling AC, Lloyd D, Satusky MJ, Martinez M, Grenier C, Bergemann CM, Maguire R, Hoyo C, Meyer JN, Murphy SK. Sex-specific DNA methylation and associations with in utero tobacco smoke exposure at nuclear-encoded mitochondrial genes. Epigenetics 2022; 17:1573-1589. [PMID: 35238269 PMCID: PMC9620986 DOI: 10.1080/15592294.2022.2043591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sex-linked differences in mitochondrial ATP production, enzyme activities, and reactive oxygen species generation have been reported in multiple tissue and cell types. While the effects of reproductive hormones underlie many of these differences, regulation of sexually dimorphic mitochondrial function has not been fully characterized. We hypothesized that sex-specific DNA methylation contributes to sex-specific expression of nuclear genes that influence mitochondrial function. Herein, we analysed DNA methylation data specifically focused on nuclear-encoded mitochondrial genes in 191 males and 190 females. We found 596 differentially methylated sites (DMSs) (FDR p < 0.05), corresponding to 324 genes, with at least a 1% difference in methylation between sexes. To investigate the potential functional significance, we utilized gene expression microarray data. Of the 324 genes containing DMSs, 17 showed differences in gene expression by sex. Particularly striking was that ATP5G2, encoding subunit C of ATP synthase, contains seven DMSs and exhibits a sex difference in expression (p = 0.04). Finally, we also found that alterations in DNA methylation associated with in utero tobacco smoke exposure were sex-specific in these nuclear-encoded mitochondrial genes. Interestingly, the level of sex differences in DNA methylation at nuclear-encoded mitochondrial genes and the level of methylation changes associated with smoke exposure were less prominent than that of other genes. This suggests more conservative regulation of DNA methylation at these nuclear-encoded mitochondrial genes as compared to others. Overall, our findings suggest that sex-specific DNA methylation may help establish sex differences in expression and function and that sex-specific alterations in DNA methylation in response to exposures could contribute to sex-variable toxicological responses.
Collapse
Affiliation(s)
- Dillon E. King
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Anna Clare Sparling
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Dillon Lloyd
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Matthew Joseph Satusky
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie Martinez
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Rachel Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Joel Newman Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Susan K. Murphy
- Nicholas School of the Environment, Duke University, Durham, NC, USA,Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA,CONTACT Susan K. Murphy 701 W. Main Street, Suite 510, Durham, NC27701, USA Department of Obstetrics and Gynecology, Duke University Medical Center
| |
Collapse
|
26
|
Sun Q, Wang X, Xin X, An Z, Hu Y, Feng Q. Qushi Huayu decoction attenuated hepatic lipid accumulation via JAK2/STAT3/CPT-1A-related fatty acid β-oxidation in mice with non-alcoholic steatohepatitis. PHARMACEUTICAL BIOLOGY 2022; 60:2124-2133. [PMID: 36308318 PMCID: PMC9629123 DOI: 10.1080/13880209.2022.2134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Qushi Huayu decoction (QHD) has been clinically used for treating non-alcoholic steatohepatits (NASH). However, little is known about the effect of QHD on fatty acid β-oxidation (FAO)-dependent lipid consumption. OBJECTIVE To investigate the mechanism of QHD on FAO-related hepatic lipid accumulation. MATERIALS AND METHODS Male C57BL/6J mice were randomly divided into 5 groups (n = 8): normal diet and drinking water (CON), high-fat and high-carbohydrate diet (HFHC), QHD-L (2.875 g/kg), QHD-H (11.5 g/kg) and obeticholic acid (OCA) (10 mg/kg/day) groups. All mice freely consumed an appropriate diet for 18 weeks, and QHD was orally administered in the last 6 weeks. Measurements of general condition, hepatic histopathology, and JAK2/STAT3 signalling pathway were taken. RESULTS QHD significantly improved NASH in mice, as reflected by improving serum glucolipid metabolism, decreasing enzymes activities, reducing hepatic triglyceride (HFHC: 70.07 ± 2.81 mg/g; QHD-H: 34.06 ± 5.74 mg/g) and ameliorating hepatic steatosis, inflammation in pathology. Further, both the mRNA and protein level of hepatic CPT-1A (p < 0.05), a rate-limiting enzyme of FAO, increased drastically following QHD treatment. Meanwhile, the content of hepatic ATP (p < 0.05) increased significantly after treatment with QHD. Further mechanistic results revealed that both the total protein and nuclear p-STAT3 in the liver were significantly down-regulated after QHD treatment. The protein level of hepatic p-JAK2 was significantly inhibited by QHD (p < 0.05 or p < 0.01). CONCLUSIONS QHD could attenuate lipid accumulation by increasing JAK2/STAT3/CPT-1A-related FAO, which provides a scientific basis for the clinical application of QHD in treating NASH.
Collapse
Affiliation(s)
- QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - ZiMing An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiYang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
28
|
Guerra IMS, Ferreira HB, Melo T, Rocha H, Moreira S, Diogo L, Domingues MR, Moreira ASP. Mitochondrial Fatty Acid β-Oxidation Disorders: From Disease to Lipidomic Studies-A Critical Review. Int J Mol Sci 2022; 23:13933. [PMID: 36430419 PMCID: PMC9696092 DOI: 10.3390/ijms232213933] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Inês M. S. Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena B. Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Sónia Moreira
- Internal Medicine, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Luísa Diogo
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana S. P. Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic View on the Effects of SGLT2 Inhibitors on Lipid Metabolism in Diabetic Milieu. J Clin Med 2022; 11:6544. [PMID: 36362772 PMCID: PMC9653639 DOI: 10.3390/jcm11216544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic hyperglycemia induces pathophysiologic pathways with negative effects on the metabolism of most substrates as well as lipids and lipoproteins, and thereby induces dyslipidemia. Thus, the diabetic milieu is commonly accompanied by different levels of atherogenic dyslipidemia, which is per se a major risk factor for subsequent complications such as atherosclerosis, coronary heart disease, acute myocardial infarction, ischemic stroke, and nephropathy. Therefore, readjusting lipid metabolism in the diabetic milieu is a major goal for preventing dyslipidemia-induced complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a class of relatively newly introduced antidiabetes drugs (including empagliflozin, canagliflozin, dapagliflozin, etc.) with potent hypoglycemic effects and can reduce blood glucose by inducing glycosuria. However, recent evidence suggests that they could also provide extra-glycemic benefits in lipid metabolism. It seems that they can increase fat burning and lipolysis, normalizing the lipid metabolism and preventing or improving dyslipidemia. Nevertheless, the exact mechanisms involved in this process are not well-understood. In this review, we tried to explain how these drugs could regulate lipid homeostasis and we presented the possible involved cellular pathways supported by clinical evidence.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, 1000 Zagreb, Croatia
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Tiwari P, Dwyer K, Siegfried B, Schrier Vergano SA. Rare Cause of Arrhythmia and Seizures in a Late-Preterm Newborn. Neoreviews 2022; 23:e696-e698. [PMID: 36180729 DOI: 10.1542/neo.23-10-e696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Priya Tiwari
- Eastern Virginia Medical School, Norfolk, VA.,Children's Hospital of the King's Daughters, Norfolk, VA
| | - Katerina Dwyer
- Eastern Virginia Medical School, Norfolk, VA.,Children's Hospital of the King's Daughters, Norfolk, VA
| | - Brett Siegfried
- Eastern Virginia Medical School, Norfolk, VA.,Children's Hospital of the King's Daughters, Norfolk, VA.,Children's Specialty Group, Children's Hospital of the King's Daughters, Norfolk, VA.,Neonatal-Perinatal Medicine, Children's Hospital of the King's Daughters, Norfolk, VA
| | - Samantha A Schrier Vergano
- Eastern Virginia Medical School, Norfolk, VA.,Children's Hospital of the King's Daughters, Norfolk, VA.,Children's Specialty Group, Children's Hospital of the King's Daughters, Norfolk, VA
| |
Collapse
|
32
|
MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers (Basel) 2022; 14:cancers14174113. [PMID: 36077650 PMCID: PMC9455056 DOI: 10.3390/cancers14174113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a pediatric cancer responsible for approximately 15% of all childhood cancer deaths. Aberrant MYCN activation, as a result of genomic MYCN amplification, is a major driver of high-risk neuroblastoma, which has an overall survival rate of less than 50%, despite the best treatments currently available. Metabolic reprogramming is an integral part of the growth-promoting program driven by MYCN, which fuels cell growth and proliferation by increasing the uptake and catabolism of nutrients, biosynthesis of macromolecules, and production of energy. This reprogramming process also generates metabolic vulnerabilities that can be exploited for therapy. In this review, we present our current understanding of metabolic reprogramming in neuroblastoma, focusing on transcriptional regulation as a key mechanism in driving the reprogramming process. We also highlight some important areas that need to be explored for the successful development of metabolism-based therapy against high-risk neuroblastoma.
Collapse
|
33
|
Stork BA, Dean A, Ortiz AR, Saha P, Putluri N, Planas-Silva MD, Mahmud I, Rajapakshe K, Coarfa C, Knapp S, Lorenzi PL, Kemp BE, Turk BE, Scott JW, Means AR, York B. Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism. Mol Metab 2022; 62:101513. [PMID: 35562082 PMCID: PMC9157561 DOI: 10.1016/j.molmet.2022.101513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.
Collapse
Affiliation(s)
- Brittany A Stork
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam Dean
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea R Ortiz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pradip Saha
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John W Scott
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Prew MS, Camara CM, Botzanowski T, Moroco JA, Bloch NB, Levy HR, Seo HS, Dhe-Paganon S, Bird GH, Herce HD, Gygi MA, Escudero S, Wales TE, Engen JR, Walensky LD. Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Nat Commun 2022; 13:3669. [PMID: 35760926 PMCID: PMC9237092 DOI: 10.1038/s41467-022-31466-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.
Collapse
Affiliation(s)
- Michelle S. Prew
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Christina M. Camara
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Thomas Botzanowski
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - Jamie A. Moroco
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - Noah B. Bloch
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Hannah R. Levy
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Hyuk-Soo Seo
- grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Sirano Dhe-Paganon
- grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Gregory H. Bird
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Henry D. Herce
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Micah A. Gygi
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Silvia Escudero
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Thomas E. Wales
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - John R. Engen
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - Loren D. Walensky
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| |
Collapse
|
35
|
Stork BA, Dean A, York B. Methodology for measuring oxidative capacity of isolated peroxisomes in the Seahorse assay. J Biol Methods 2022; 9:e160. [PMID: 35733440 PMCID: PMC9208851 DOI: 10.14440/jbm.2022.374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
The regulation of cellular energetics is a complex process that requires the coordinated function of multiple organelles. Historically, studies focused on understanding cellular energy utilization and production have been overwhelmingly concentrated on the mitochondria. While mitochondria account for the majority of intracellular energy production, they alone are incapable of maintaining the variable energetic demands of the cell. The peroxisome has recently emerged as a secondary metabolic organelle that complements and improves mitochondrial performance. Although mitochondria and peroxisomes are structurally distinct organelles, they share key functional similarities that allows for the potential to repurpose readily available tools initially developed for mitochondrial assessment to interrogate peroxisomal metabolic function in a novel manner. To this end, we report here on procedures for the isolation, purification and real-time metabolic assessment of peroxisomal β-oxidation using the Agilent Seahorse® system. When used together, these protocols provide a straightforward, reproducible and highly quantifiable method for measuring the contributions of peroxisomes to cellular and organismal metabolism.
Collapse
Affiliation(s)
- Brittany A Stork
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Dean
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian York
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Santoleri D, Lim HW, Emmett MJ, Stoute J, Gavin MJ, Sostre-Colón J, Uehara K, Welles JE, Liu KF, Lazar MA, Titchenell PM. Global-run on sequencing identifies Gm11967 as an Akt-dependent long noncoding RNA involved in insulin sensitivity. iScience 2022; 25:104410. [PMID: 35663017 PMCID: PMC9156944 DOI: 10.1016/j.isci.2022.104410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling. Further, we identified several feeding-regulated lncRNAs, including the lncRNA Gm11967, whose expression was dependent upon the liver Akt-FoxO1 axis. Restoring Gm11967 expression in mice lacking liver Akt improved insulin sensitivity and induced glucokinase protein expression, indicating that Akt-dependent control of Gm11967 contributes to the translational control of glucokinase. More broadly, we have generated a unique genome-wide dataset that defines the feeding and Akt/FoxO1-dependent transcriptional changes in response to nutrient availability.
Collapse
Affiliation(s)
- Dominic Santoleri
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Matthew J. Emmett
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julian Stoute
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J. Gavin
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Jaimarie Sostre-Colón
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Kahealani Uehara
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Jaclyn E. Welles
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M. Titchenell
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Tian J, Du Y, Yu E, Lei C, Xia Y, Jiang P, Li H, Zhang K, Li Z, Gong W, Xie J, Wang G. Prostaglandin 2α Promotes Autophagy and Mitochondrial Energy Production in Fish Hepatocytes. Cells 2022; 11:1870. [PMID: 35740999 PMCID: PMC9220818 DOI: 10.3390/cells11121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Fatty liver, characterized by excessive lipid droplet (LD) accumulation in hepatocytes, is a common physiological condition in humans and aquaculture species. Lipid mobilization is an important strategy for modulating the number and size of cellular LDs. Cyclooxygenase (COX)-mediated arachidonic acid derivatives are known to improve lipid catabolism in fish; however, the specific derivatives remain unknown. In the present study, we showed that serum starvation induced LD degradation via autophagy, lipolysis, and mitochondrial energy production in zebrafish hepatocytes, accompanied by activation of the COX pathway. The cellular concentration of PGF2α, but not other prostaglandins, was significantly increased. Administration of a COX inhibitor or interference with PGF2α synthase abolished serum deprivation-induced LD suppression, LD-lysosome colocalization, and expression of autophagic genes. Additionally, exogenous PGF2α suppressed the accumulation of LDs, promoted the accumulation of lysosomes with LD and the autophagy marker protein LC3A/B, and augmented the expression of autophagic genes. Moreover, PGF2α enhanced mitochondrial accumulation and ATP production, and increased the transcript levels of β-oxidation- and mitochondrial respiratory chain-related genes. Collectively, these findings demonstrate that the COX pathway is implicated in lipid degradation induced by energy deprivation, and that PGF2α is a key molecule triggering autophagy, lipolysis, and mitochondrial development in zebrafish hepatocytes.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yihui Du
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ermeng Yu
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Caixia Lei
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yun Xia
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Peng Jiang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongyan Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kai Zhang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
38
|
Zhang L, Wang Z, Wu H, Gao Y, Zheng J, Zhang J. Maternal High-Fat Diet Impairs Placental Fatty Acid β-Oxidation and Metabolic Homeostasis in the Offspring. Front Nutr 2022; 9:849684. [PMID: 35495939 PMCID: PMC9050107 DOI: 10.3389/fnut.2022.849684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Maternal overnutrition can affect fetal growth and development, thus increasing susceptibility to obesity and diabetes in later life of the offspring. Placenta is the central organ connecting the developing fetus with the maternal environment. It is indicated placental fatty acid metabolism plays an essential role in affecting the outcome of the pregnancy and fetus. However, the role of placental fatty acid β-oxidation (FAO) in maternal overnutrition affecting glucose metabolism in the offspring remains unclear. In this study, C57BL/6J female mice were fed with normal chow or high-fat diet before and during pregnancy and lactation. The placenta and fetal liver were collected at gestation day 18.5, and the offspring's liver was collected at weaning. FAO-related genes and AMP-activated protein kinase (AMPK) signaling pathway were examined both in the placenta and in the human JEG-3 trophoblast cells. FAO-related genes were further examined in the liver of the fetuses and in the offspring at weaning. We found that dams fed with high-fat diet showed higher fasting blood glucose, impaired glucose tolerance at gestation day 14.5 and higher serum total cholesterol (T-CHO) at gestation day 18.5. The placental weight and lipid deposition were significantly increased in maternal high-fat diet group. At weaning, the offspring mice of high-fat diet group exhibited higher body weight, impaired glucose tolerance, insulin resistance and increased serum T-CHO, compared with control group. We further found that maternal high-fat diet downregulated mRNA and protein expressions of carnitine palmitoyltransferase 2 (CPT2), a key enzyme in FAO, by suppressing the AMPK/Sirt1/PGC1α signaling pathway in the placenta. In JEG-3 cells, protein expressions of CPT2 and CPT1b were both downregulated by suppressing the AMPK/Sirt1/PGC1α signaling pathway under glucolipotoxic condition, but were later restored by the AMPK agonist 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR). However, there was no difference in CPT2 and CPT1 gene expression in the liver of fetuses and offspring at weaning age. In conclusion, maternal high-fat diet can impair gene expression involved in FAO in the placenta by downregulating the AMPK signaling pathway, and can cause glucose and lipid dysfunction of offspring at weaning, indicating that placental FAO may play a crucial role in regulating maternal overnutrition and metabolic health in the offspring.
Collapse
|
39
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
40
|
Zheng Y, Wang Y, Zheng M, Wang G, Zhao H. Exposed to Sulfamethoxazole induced hepatic lipid metabolism disorder and intestinal microbiota changes on zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109245. [PMID: 34801728 DOI: 10.1016/j.cbpc.2021.109245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
Antibiotics are widely used around the world. Pollution of Sulfamethoxazole (SMX) in water poses a great threat to aquatic life. In this study, the toxic effects of SMX on the liver were assessed through RNA sequencing analysis and 16S rRNA sequencing analysis was conducted to determine the influence of SMX on gut microbiota of zebrafish (Danio rerio). Adult male zebrafish were exposed to 0, 5, 90 and 450 μg/L of environmentally relevant concentrations of SMX for 21 days respectively. The results showed that the liver had severe histopathological damages including pyknotic nuclei, cytoplasmic hyalinization and vacuolization and deformed hepatocytes with loose cell-to-cell contact. Transcriptomic analysis revealed that liver function was seriously affected by SMX exposure. Meanwhile, SMX exposure significantly inhibited the expression of genes associated with fatty acid synthesis, oxidation and transport. Besides, exfoliated and dissolved epithelial cells were observed in the gut after SMX treatment. Although there was no significant change on richness and species diversity of intestinal microbial community, the relative abundance of phylum and genus of SMX treatments were significantly different from that of control group. The present study implied that SMX may cause potential health risks to fish through inducing histopathological damages, genetic expression alterations, disorder of fatty acid metabolism and intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Ying Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yufei Wang
- AP Center Changzhou Senior High School of Jiangsu Province, Changzhou, China
| | - Mutang Zheng
- AP Center Changzhou Senior High School of Jiangsu Province, Changzhou, China
| | - Gang Wang
- AP Center Changzhou Senior High School of Jiangsu Province, Changzhou, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
41
|
Lu D, Liu Y, Luo Y, Zhao J, Feng C, Xue L, Xu J, Wang Q, Yan T, Xiao P, Krausz KW, Gonzalez FJ, Xie C. Intestinal farnesoid X receptor signaling controls hepatic fatty acid oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159089. [PMID: 34856412 PMCID: PMC8864892 DOI: 10.1016/j.bbalip.2021.159089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
In addition to maintaining bile acid, cholesterol and glucose homeostasis, farnesoid X receptor (FXR) also regulates fatty acid β-oxidation (FAO). To explore the different roles of hepatic and intestinal FXR in liver FAO, FAO-associated metabolites, including acylcarnitines and fatty acids, and FXR target gene mRNAs were profiled using an integrated metabolomic and transcriptomic analysis in control (Fxrfl/fl), liver-specific Fxr-null (FxrΔHep) and intestine-specific Fxr-null (FxrΔIE) mice, treated either with the FXR agonist obeticholic acid (OCA) or vehicle (VEH). Activation of FXR by OCA treatment significantly increased fatty acyl-CoA hydrolysis (Acot1) and decreased FAO-associated mRNAs in Fxrfl/fl mice, resulting in reduced levels of total acylcarnitines and relative accumulation of long/medium chain acylcarnitines and fatty acids in liver. FxrΔHep mice responded to OCA treatment in a manner similar to Fxrfl/fl mice while FxrΔIE mice responded differently, thus illustrating that intestinal FXR plays a critical role in the regulation of hepatic FAO. A significant negative-correlation between intestinal FXR-FGF15 and hepatic CREB-PGC1A pathways was observed after both VEH and OCA treatment, suggesting that OCA-induced activation of the intestinal FXR-FGF15 axis downregulates hepatic PGC1α signaling via inactivation of hepatic CREB, thus repressing FAO. This mechanism was confirmed in experiments based on human recombinant FGF19 treatment and intestinal Fgf15-null mice. This study revealed an important role for the intestinal FXR-FGF15 pathway in hepatic FAO repression.
Collapse
Affiliation(s)
- Dasheng Lu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America; Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jie Zhao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Liming Xue
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Jiale Xu
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Qiong Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, PR China
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America.
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
42
|
Ravindranath A, Sarma MS. Mitochondrial hepatopathy: Anticipated difficulties in management of fatty acid oxidation defects and urea cycle defects. World J Hepatol 2022; 14:180-194. [PMID: 35126847 PMCID: PMC8790400 DOI: 10.4254/wjh.v14.i1.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acid oxidation defects (FAOD) and urea cycle defects (UCD) are among the most common metabolic liver diseases. Management of these disorders is dotted with challenges as the strategies differ based on the type and severity of the defect. In those with FAOD the cornerstone of management is avoiding hypoglycemia which in turn prevents the triggering of fatty acid oxidation. In this review, we discuss the role of carnitine supplementation, dietary interventions, newer therapies like triheptanoin, long-term treatment and approach to positive newborn screening. In UCD the general goal is to avoid excessive protein intake and indigenous protein breakdown. However, one size does not fit all and striking the right balance between avoiding hyperammonemia and preventing deficiencies of essential nutrients is a formidable task. Practical issues during the acute presentation including differential diagnosis of hyperammonemia, dietary dilemmas, the role of liver transplantation, management of the asymptomatic individual and monitoring are described in detail. A multi-disciplinary team consisting of hepatologists, metabolic specialists and dieticians is required for optimum management and improvement in quality of life for these patients.
Collapse
Affiliation(s)
- Aathira Ravindranath
- Division of Pediatric Gastroenterology, Institute of Gastrointestinal Sciences, Apollo BGS Hospitals, Mysore 570023, Karnataka, India
| | - Moinak Sen Sarma
- Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
43
|
Vike NL, Bari S, Stetsiv K, Walter A, Newman S, Kawata K, Bazarian JJ, Martinovich Z, Nauman EA, Talavage TM, Papa L, Slobounov SM, Breiter HC. A preliminary model of football-related neural stress that integrates metabolomics with transcriptomics and virtual reality. iScience 2022; 25:103483. [PMID: 35106455 PMCID: PMC8786649 DOI: 10.1016/j.isci.2021.103483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2022] Open
Abstract
Research suggests contact sports affect neurological health. This study used permutation-based mediation statistics to integrate measures of metabolomics, neuroinflammatory miRNAs, and virtual reality (VR)-based motor control to investigate multi-scale relationships across a season of collegiate American football. Fourteen significant mediations (six pre-season, eight across-season) were observed where metabolites always mediated the statistical relationship between miRNAs and VR-based motor control (pSobelperm≤ 0.05; total effect > 50%), suggesting a hypothesis that metabolites sit in the statistical pathway between transcriptome and behavior. Three results further supported a model of chronic neuroinflammation, consistent with mitochondrial dysfunction: (1) Mediating metabolites were consistently medium-to-long chain fatty acids, (2) tricarboxylic acid cycle metabolites decreased across-season, and (3) accumulated head acceleration events statistically moderated pre-season metabolite levels to directionally model post-season metabolite levels. These preliminary findings implicate potential mitochondrial dysfunction and highlight probable peripheral blood biomarkers underlying repetitive head impacts in otherwise healthy collegiate football athletes. Permutation-based mediation statistics can be applied to multi-scale biology problems Fatty acids were a critical link between elevated miRNAs and motor control HAEs interacted with pre-season metabolite levels to model post-season levels Together, our observations point to brain-related mitochondrial dysfunction
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexa Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA.,Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Zoran Martinovich
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL 32806, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA 02114, USA
| |
Collapse
|
44
|
Geng J, Liu Y, Dai H, Wang C. Fatty Acid Metabolism and Idiopathic Pulmonary Fibrosis. Front Physiol 2022; 12:794629. [PMID: 35095559 PMCID: PMC8795701 DOI: 10.3389/fphys.2021.794629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.
Collapse
Affiliation(s)
- Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Huaping Dai,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chen Wang,
| |
Collapse
|
45
|
Yang Y, Qian J, Li B, Lu M, Le G, Xie Y. Metabolomics Based on 1H-NMR Reveal the Regulatory Mechanisms of Dietary Methionine Restriction on Splenic Metabolic Dysfunction in Obese Mice. Foods 2021; 10:foods10102439. [PMID: 34681487 PMCID: PMC8535630 DOI: 10.3390/foods10102439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Methionine restriction (MR) has been reported to have many beneficial health effects, including stress resistance enhancement and lifespan extension. However, the effects of MR on the splenic metabolic dysfunction induced by obesity in mice remain unknown. This study aimed to investigate the scientific problem and clarify its possible mechanisms. C57BL/6J mice in the control group were fed a control diet (0.86% methionine, 4.2% fat) for 34 weeks, and others were fed a high-fat diet (0.86% methionine, 24% fat) for 10 weeks to establish diet-induced obese (DIO) mouse models. Then, the obtained DIO mice were randomly divided into two groups: the DIO group (DIO diet), the DIO + MR group (0.17% methionine, 24% fat) for 24 weeks. Our results indicated that MR decreased spleen weight, and spleen and plasma lipid profiles, promoted lipid catabolism and fatty acid oxidation, glycolysis and tricarboxylic acid cycle metabolism, and improved mitochondrial function and ATP generation in the spleen. Moreover, MR normalized the splenic redox state and inflammation-related metabolite levels, and increased plasma levels of immunoglobulins. Furthermore, MR increased percent lean mass and splenic crude protein levels, activated the autophagy pathway and elevated nucleotide synthesis to maintain protein synthesis in the spleen. These findings indicate that MR can ameliorate metabolic dysfunction by reducing lipid accumulation, oxidative stress, and inflammation in the spleen, and the mechanism may be the activation of autophagy pathway.
Collapse
Affiliation(s)
- Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Jing Qian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Manman Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.L.); (G.L.)
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.Y.); (J.Q.); (M.L.)
- Correspondence: ; Tel.: +86-371-6775-8022
| |
Collapse
|
46
|
Wu A, Yu Q, Lu H, Lou Z, Zhao Y, Luo T, Fu Z, Jin Y. Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109081. [PMID: 34004283 DOI: 10.1016/j.cbpc.2021.109081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
As a broad-spectrum with low toxicity, procymidone (PCM), is widely used in agriculture and frequently observed in aquatic system, which may cause some impacts on aquatic organisms. Here, to determine the developmental toxicity of PCM, embryonic and larval zebrafish were exposed to PCM at 0, 1, 10, 100 μg/L in dehydrogenated natural water containing 0.01% acetone for 7 days. The results showed that high concentration of PCM could cause the pericardial edema and increase the heart rates in larval zebrafish, suggesting that PCM had developmental toxicity to zebrafish. We also observed that PCM exposure not only changed the physiological parameters including TBA, GLU and pyruvic acid, but also changed the transcriptional levels of glycolipid metabolism related genes. In addition, after transcriptomics analysis, a total of 1065 differentially expressed genes, including 456 up-regulated genes and 609 down-regulated genes, changed significantly in 100 μg/L PCM treated larval zebrafish. Interestingly, after GO (Gene Ontology) analysis, the different expression genes (DEGs) were mainly enriched to the three different biology processes including GABA-nervous, lipid Metabolism and response to drug. We also observed that the levels of GABA receptor related genes including gabrg2, gabbr1α, gabbr1 and gabra6α were inhibited by PCM exposure. Interestingly, the swimming distance of larval zebrafish had the tendency to decrease after PCM exposure, indicating that the nervous system was affected by PCM. Taken together, the results confirmed that the fungicide PCM could cause developmental toxicity by influencing the lipid metabolism and GABA mediated nervous system and behavior in larval zebrafish. We believed that the results could provide an important data for the influence of PCM on aquatic animals.
Collapse
Affiliation(s)
- Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
47
|
Abegaz F, Martines ACMF, Vieira-Lara MA, Rios-Morales M, Reijngoud DJ, Wit EC, Bakker BM. Bistability in fatty-acid oxidation resulting from substrate inhibition. PLoS Comput Biol 2021; 17:e1009259. [PMID: 34383741 PMCID: PMC8396765 DOI: 10.1371/journal.pcbi.1009259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/27/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
In this study we demonstrated through analytic considerations and numerical studies that the mitochondrial fatty-acid β-oxidation can exhibit bistable-hysteresis behavior. In an experimentally validated computational model we identified a specific region in the parameter space in which two distinct stable and one unstable steady state could be attained with different fluxes. The two stable states were referred to as low-flux (disease) and high-flux (healthy) state. By a modular kinetic approach we traced the origin and causes of the bistability back to the distributive kinetics and the conservation of CoA, in particular in the last rounds of the β-oxidation. We then extended the model to investigate various interventions that may confer health benefits by activating the pathway, including (i) activation of the last enzyme MCKAT via its endogenous regulator p46-SHC protein, (ii) addition of a thioesterase (an acyl-CoA hydrolysing enzyme) as a safety valve, and (iii) concomitant activation of a number of upstream and downstream enzymes by short-chain fatty-acids (SCFA), metabolites that are produced from nutritional fibers in the gut. A high concentration of SCFAs, thioesterase activity, and inhibition of the p46Shc protein led to a disappearance of the bistability, leaving only the high-flux state. A better understanding of the switch behavior of the mitochondrial fatty-acid oxidation process between a low- and a high-flux state may lead to dietary and pharmacological intervention in the treatment or prevention of obesity and or non-alcoholic fatty-liver disease.
Collapse
Affiliation(s)
- Fentaw Abegaz
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Statistics and Probability Unit, University of Groningen, Groningen, The Netherlands
| | - Anne-Claire M. F. Martines
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A. Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ernst C. Wit
- Statistics and Probability Unit, University of Groningen, Groningen, The Netherlands
- Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Barbara M. Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
48
|
Kim YJ, Park SY, Lee JH. Berteroin ameliorates lipid accumulation through AMPK-mediated regulation of hepatic lipid metabolism and inhibition of adipocyte differentiation. Life Sci 2021; 282:119668. [PMID: 34087283 DOI: 10.1016/j.lfs.2021.119668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
AIMS Berteroin (5-methylthiopentyl isothiocyanate) is a naturally occurring sulforaphane analog containing a non-oxidized sulfur atom in cruciferous vegetables. The objectives of the present study were to determine the effects of berteroin on lipid metabolism in hepatocytes and adipocytes and to elucidate the mechanisms involved. MAIN METHODS The effect of berteroin on lipid metabolism were evaluated in liver X receptor α agonist-stimulated HepG2 cells and adipocyte differentiation-induced 3T3-L1 cells using MTT assay, western blot, real time polymerase chain reaction, oil red O staining, and triglyceride assay. KEY FINDINGS T0901317 treatment increased the expression of sterol regulatory element binding protein (SREBP)-1c, a major transcription factor that mediates lipogenesis, and berteroin pretreatment significantly inhibited the expressions of T0901317-induced SREBP-1c and lipogenic genes. Especially, berteroin had a greater inhibitory effect on T0901317-induced SREBP-1c activation than sulforaphane, AICAR, or metformin. Berteroin also markedly suppressed lipid droplet formations and triglyceride accumulations caused by both T0901317 stimulation in HepG2 hepatocytes and differentiation induction in 3T3-L1 preadipocytes. However, berteroin significantly increased the expression of mitochondrial fatty acid oxidation-related genes (carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator-activated receptor gamma coactivator-1α) and the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in HepG2 cells. Interestingly, effects of berteroin on the expressions of SREBP-1c protein and CPT-1 mRNA were remarkably prevented by compound C (an AMPK inhibitor). SIGNIFICANCE Our results suggest berteroin-inhibited hepatic lipid accumulation and adipocyte differentiation might be mediated by AMPK activation and that berteroin might be useful for the prevention, amelioration, and treatment of metabolic diseases, including hepatic steatosis.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea.
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
49
|
Honeder S, Tomin T, Nebel L, Gindlhuber J, Fritz-Wallace K, Schinagl M, Heininger C, Schittmayer M, Ghaffari-Tabrizi-Wizsy N, Birner-Gruenberger R. Adipose Triglyceride Lipase Loss Promotes a Metabolic Switch in A549 Non-Small Cell Lung Cancer Cell Spheroids. Mol Cell Proteomics 2021; 20:100095. [PMID: 33992777 PMCID: PMC8214150 DOI: 10.1016/j.mcpro.2021.100095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo complex metabolic adaptations to survive and thrive in challenging environments. This is particularly prominent for solid tumors, where cells in the core of the tumor are under severe hypoxia and nutrient deprivation. However, such conditions are often not recapitulated in the typical 2D in vitro cancer models, where oxygen as well as nutrient exposure is quite uniform. The aim of this study was to investigate the role of a key neutral lipid hydrolase, namely adipose triglyceride lipase (ATGL), in cancer cells that are exposed to more tumor-like conditions. To that end, we cultured lung cancer cells lacking ATGL as multicellular spheroids in 3D and subjected them to comprehensive proteomics analysis and metabolic phenotyping. Proteomics data are available via ProteomeXchange with identifier PXD021105. As a result, we report that loss of ATGL enhanced growth of spheroids and facilitated their adaptation to hypoxia, by increasing the influx of glucose and endorsing a pro-Warburg effect. This was followed by changes in lipid metabolism and an increase in protein production. Interestingly, the observed phenotype was also recapitulated in an even more "in vivo like" setup, when cancer spheroids were grown on chick chorioallantoic membrane, but not when cells were cultured as a 2D monolayer. In addition, we demonstrate that according to the publicly available cancer databases, an inverse relation between ATGL expression and higher glucose dependence can be observed. In conclusion, we provide indications that ATGL is involved in regulation of glucose metabolism of cancer cells when grown in 3D (mimicking solid tumors) and as such could be an important factor of the treatment outcome for some cancer types. Finally, we also ratify the need for alternative cell culture models, as the majority of phenotypes observed in 3D and spheroids grown on chick chorioallantoic membrane were not observed in 2D cell culture.
Collapse
Affiliation(s)
- Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Tamara Tomin
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Laura Nebel
- Otto Loewi Research Center - Immunology and Pathophysiology, Medical University of Graz, Graz, Austria; QPS Austria GmbH, Grambach, Austria
| | - Jürgen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Katarina Fritz-Wallace
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Maximilian Schinagl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | | | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
50
|
Jain P, Singh S, Arya A. A student centric method for calculation of fatty acid energetics: Integrated formula and web tool. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:492-499. [PMID: 33427394 DOI: 10.1002/bmb.21486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Mitochondrial beta-oxidation is one of the most common modes of fatty acids' oxidation in most organisms, particularly mammals. Biochemistry undergraduate curriculum often contains the description of the process, with emphasis on ATP calculations for various types of fatty acids. During our decade long teaching experience in biochemistry, we observed the difficulty faced by students in calculating energetics of several fatty acids beyond palmitic acid. We developed a canonical formula by mathematical transformations and logical derivation to aid the calculation in a much simpler manner to ease both teaching and learning experience. ATP yield of even-numbered fatty acids may be calculated using a formula [(7C - 6 - 1.5 D) - 2(D-2)], andadenosine triphosphate (ATP) yield for odd-numbered fatty acids can be calculated using [(7C - 19 - 1.5 D) - 2(D-2)], where C is the number of carbon atoms in fatty acids, D is the number of double bonds. The unbold part of the formulae is limited to polyunsaturated fatty acids. Moreover, we integrated these formulae into an HTML based web-interface for handily calculations, which is likely to augment fatty acids oxidation learning-teaching processes easier. This tool has been recently tested in our classroom programs on biochemistry and received an excellent feedback from the learners. Also, the mathematical formula is ready for being incorporated into standard biochemistry textbooks. The webtool as an opensource biochemical calculator can be effectively used in classrooms by both instructors and students while solving comprehension based questions on lipid metabolism.
Collapse
Affiliation(s)
- Paras Jain
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Sneha Singh
- Amazing Biotech Pvt Ltd, Chennai, Tamil Nadu, India
| | - Aditya Arya
- Amazing Biotech Pvt Ltd, Chennai, Tamil Nadu, India
| |
Collapse
|