1
|
Ozkara G, Aslan EI, Malikova F, Aydogan C, Ser OS, Kilicarslan O, Dalgic SN, Yildiz A, Ozturk O, Yilmaz-Aydogan H. Endothelin-converting Enzyme-1b Genetic Variants Increase the Risk of Coronary Artery Ectasia. Biochem Genet 2025; 63:1806-1823. [PMID: 38625594 DOI: 10.1007/s10528-024-10810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Coronary artery ectasia (CAE), defined as a 1.5-fold or greater enlargement of a coronary artery segment compared to the adjacent normal coronary artery, is frequently associated with atherosclerotic coronary artery disease (CAD). Membrane-bound endothelin converting enzyme-1 (ECE-1) is involved in the maturation process of the most potent vasoconstrictor ET-1. Polymorphisms in the endothelin (ET) gene family have been shown associated with the development of atherosclerosis. This study aims to investigate the effects of rs213045 and rs2038089 polymorphisms in the ECE-1 gene which have been previously shown to be associated with atherosclerosis and hypertension (HT), in CAE patients. Ninety-six CAE and 175 patients with normal coronary arteries were included in the study. ECE-1b gene variations rs213045 and rs2038089 were determined by real-time PCR. The frequencies of rs213045 C > A (C338A) CC genotype (60.4% vs. 35.4%, p < 0.001) and rs2038089 T > C T allele (64.58% vs. 35.42%, p = 0.017) were higher in the CAE group compared to the control group. The multivariate regression analysis showed that the ECE-1b rs213045 CC genotype (p = 0.001), rs2038089 T allele (p = 0.017), and hypercholesterolemia (HC) (p = 0.001) are risk factors for CAE. Moreover, in nondiabetic individuals of the CAE and control groups, it was observed that the rs213045 CC genotype (p < 0.001), and rs2038089 T allele (p = 0.003) were a risk factor for CAE, but this relationship was not found in the diabetic subgroups of the study groups (p > 0.05). These results show that ECE-1b polymorphisms may be associated with the risk of CAE and this relationship may change according to the presence of type II diabetes.
Collapse
Affiliation(s)
- Gulcin Ozkara
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Medical Biology, Bezmialem Vakif University, Faculty of Medicine, Topkapi Mahallesi, Adnan Menderes Vatan Bulvari, No:113, Istanbul, Turkey.
| | - Ezgi Irmak Aslan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Medical Biochemistry, Istanbul Nisantasi University, Faculty of Medicine, Istanbul, Turkey
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozgur Selim Ser
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Onur Kilicarslan
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadiye Nur Dalgic
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Yildiz
- Department of Cardiology, Institute of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Flam E, Haas JT, Staels B. Liver metabolism in human MASLD: A review of recent advancements using human tissue metabolomics. Atherosclerosis 2025; 400:119054. [PMID: 39586140 DOI: 10.1016/j.atherosclerosis.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Global incidence of Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is on the rise while treatments remain elusive. MASLD is a disease of dysregulated systemic and hepatic metabolism. Current understanding of disease pathophysiology as it relates to metabolome changes largely comes from studies on animal models and human plasma. However, human tissue data are crucial for transitioning from mechanisms to clinical therapies. The close relationship between MASLD and comorbidities like obesity, type 2 diabetes and dyslipidemia make it difficult to determine the contribution from liver disease itself. Here, we review recent metabolomics studies in liver tissue from human MASLD patients, which have predominately focused on lipid metabolism, but also include bile acid, tricarboxylic acid (TCA) cycle, and branched chain amino acid (BCAA) metabolism. Several clinical trials are underway to target various of these lipid-related pathways in MASLD. Although only the β-selective thyroid hormone receptor agonist resmetirom has so far been approved for use, many metabolism-targeting pharmaceuticals show promising results for halting disease progression, if not promoting outright reversal. Ultimately, the scarcity of human tissue data and the variability of confounding factors, like obesity, within and between cohorts are impediments to the pathophysiological understanding required for efficient development of metabolic treatments.
Collapse
Affiliation(s)
- Emily Flam
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
3
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Jiang Y, Wu L, Zhu X, Bian H, Gao X, Xia M. Advances in management of metabolic dysfunction-associated steatotic liver disease: from mechanisms to therapeutics. Lipids Health Dis 2024; 23:95. [PMID: 38566209 PMCID: PMC10985930 DOI: 10.1186/s12944-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.
Collapse
Affiliation(s)
- Yuxiao Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Lili Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Department of Integrated Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Habibullah M, Jemmieh K, Ouda A, Haider MZ, Malki MI, Elzouki AN. Metabolic-associated fatty liver disease: a selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front Med (Lausanne) 2024; 11:1291501. [PMID: 38323033 PMCID: PMC10845138 DOI: 10.3389/fmed.2024.1291501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Background Metabolic associated fatty liver disease (MAFLD) is a novel terminology introduced in 2020 to provide a more accurate description of fatty liver disease associated with metabolic dysfunction. It replaces the outdated term nonalcoholic fatty liver disease (NAFLD) and aims to improve diagnostic criteria and tailored treatment strategies for the disease. NAFLD, the most prevalent liver disease in western industrialized nations, has been steadily increasing in prevalence and is associated with serious complications such as cirrhosis and hepatocellular carcinoma. It is also linked to insulin resistance syndrome and cardiovascular diseases. However, current studies on NAFLD have limitations in meeting necessary histological endpoints. Objective This literature review aims to consolidate recent knowledge and discoveries concerning MAFLD, integrating the diverse aspects of the disease. Specifically, it focuses on analyzing the diagnostic criteria for MAFLD, differentiating it from NAFLD and alcoholic fatty liver disease (AFLD), and exploring the epidemiology, clinical manifestations, pathogenesis, and management approaches associated with MAFLD. The review also explores the associations between MAFLD and other conditions. It discusses the heightened mortality risk associated with MAFLD and its link to chronic kidney disease (CKD), showing that MAFLD exhibits enhanced diagnostic accuracy for identifying patients with CKD compared to NAFLD. The association between MAFLD and incident/prevalent CKD is supported by cohort studies and meta-analyses. Conclusion This literature review highlights the importance of MAFLD as a distinct terminology for fatty liver disease associated with metabolic dysfunction. The review provides insights into the diagnostic criteria, associations with CKD, and management approaches for MAFLD. Further research is needed to develop more accurate diagnostic tools for advanced fibrosis in MAFLD and to explore the underlying mechanisms linking MAFLD with other conditions. This review serves as a valuable resource for researchers and healthcare professionals seeking a comprehensive understanding of MAFLD.
Collapse
Affiliation(s)
| | - Khaleed Jemmieh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | - Abdel-Naser Elzouki
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Internal Medicine Department, Hamad General Hospital, Doha, Qatar
- Weill Cornell Medical Qatar, Doha, Qatar
| |
Collapse
|
6
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
7
|
Rao G, Peng X, Li X, An K, He H, Fu X, Li S, An Z. Unmasking the enigma of lipid metabolism in metabolic dysfunction-associated steatotic liver disease: from mechanism to the clinic. Front Med (Lausanne) 2023; 10:1294267. [PMID: 38089874 PMCID: PMC10711211 DOI: 10.3389/fmed.2023.1294267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly defined as non-alcoholic fatty liver disease (NAFLD), is a disorder marked by the excessive deposition of lipids in the liver, giving rise to a spectrum of liver pathologies encompassing steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. Despite the alarming increase in its prevalence, the US Food and Drug Administration has yet to approve effective pharmacological therapeutics for clinical use. MASLD is characterized by the accretion of lipids within the hepatic system, arising from a disarray in lipid provision (whether through the absorption of circulating lipids or de novo lipogenesis) and lipid elimination (via free fatty acid oxidation or the secretion of triglyceride-rich lipoproteins). This disarray leads to the accumulation of lipotoxic substances, cellular pressure, damage, and fibrosis. Indeed, the regulation of the lipid metabolism pathway is intricate and multifaceted, involving a myriad of factors, such as membrane transport proteins, metabolic enzymes, and transcription factors. Here, we will review the existing literature on the key process of lipid metabolism in MASLD to understand the latest progress in this molecular mechanism. Notably, de novo lipogenesis and the roles of its two main transcription factors and other key metabolic enzymes are highlighted. Furthermore, we will delve into the realm of drug research, examining the recent progress made in understanding lipid metabolism in MASLD. Additionally, we will outline prospective avenues for future drug research on MASLD based on our unique perspectives.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Xinqiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kang An
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
9
|
Dandan M, Han J, Mann S, Kim R, Li K, Mohammed H, Chuang JC, Zhu K, Billin AN, Huss RS, Chung C, Myers RP, Hellerstein M. Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: prevention by fenofibrate. J Lipid Res 2023; 64:100339. [PMID: 36737040 PMCID: PMC10017426 DOI: 10.1016/j.jlr.2023.100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Treatment with acetyl-CoA carboxylase inhibitors (ACCi) in nonalcoholic steatohepatitis (NASH) may increase plasma triglycerides (TGs), with variable changes in apoB concentrations. ACC is rate limiting in de novo lipogenesis and regulates fatty acid oxidation, making it an attractive therapeutic target in NASH. Our objectives were to determine the effects of the ACCi, firsocostat, on production rates of plasma LDL-apoB in NASH and the effects of combined therapy with fenofibrate. Metabolic labeling with heavy water and tandem mass spectrometric analysis of LDL-apoB enrichments was performed in 16 NASH patients treated with firsocostat for 12 weeks and in 29 NASH subjects treated with firsocostat and fenofibrate for 12 weeks. In NASH on firsocostat, plasma TG increased significantly by 17% from baseline to week 12 (P = 0.0056). Significant increases were also observed in LDL-apoB fractional replacement rate (baseline to week 12: 31 ± 20.2 to 46 ± 22.6%/day, P = 0.03) and absolute synthesis rate (ASR) (30.4-45.2 mg/dl/day, P = 0.016) but not plasma apoB concentrations. The effect of firsocostat on LDL-apoB ASR was restricted to patients with cirrhosis (21.0 ± 9.6 at baseline and 44.2 ± 17 mg/dl/day at week 12, P = 0.002, N = 8); noncirrhotic patients did not change (39.8 ± 20.8 and 46.3 ± 14.8 mg/dl/day, respectively, P = 0.51, N = 8). Combination treatment with fenofibrate and firsocostat prevented increases in plasma TG, LDL-apoB fractional replacement rate, and ASR. In summary, in NASH with cirrhosis, ACCi treatment increases LDL-apoB100 production rate and this effect can be prevented by concurrent fenofibrate therapy.
Collapse
Affiliation(s)
- Mohamad Dandan
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Julia Han
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sabrina Mann
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Rachael Kim
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin Li
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | | | - Kaiyi Zhu
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
11
|
Jamil OK, Sandikçi B, Faust N, Cotter TG, Paul S, di Sabato D, Fung J, Charlton M. Relatively Poor Long-term Outcomes Following Liver Transplantation for NASH in the United States. Transplantation 2022; 106:2006-2018. [PMID: 35765128 DOI: 10.1097/tp.0000000000004208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) continues to increase in frequency as an indication for liver transplantation (LT). Data on long-term outcomes for these patients are limited. We aimed to compare long-term patient and graft survival in patients undergoing LT for NASH in the United States to other indications. METHODS We analyzed data from the Scientific Registry of Transplant Recipients of adult patients who underwent primary deceased-donor LT from January 1, 2005, to December 31, 2019. RESULTS NASH has increased as an indication for LT by 4.5-fold, from 5.2% in 2005 to 23.4% in 2019. Patient (61.2%) and graft survival (59.2%) at 10 y are significantly poorer for NASH than for all other indications other than alcohol. Patients transplanted for NASH have higher body mass index (32.2 versus 27.6) and greater frequency of diabetes (13% versus 11.6%) than any other indication (P < 0.001). Portal vein thrombosis, location in intensive care unit, dialysis, and pre-LT diabetes (P < 0.001 for all) are independently predictive of patient death and graft loss. Body mass index is not predictive. NASH patients undergoing simultaneous liver kidney have markedly worse 10-y patient and graft survival than liver-only (52.3% versus 62.1%). Graft loss was attributed to recurrence of NASH in <1% of patients. CONCLUSIONS LT for NASH is associated with relatively poor long-term patient and graft survival when compared with patients transplanted for other indications, NASH patients undergoing simultaneous liver kidney have the worst long-term outcomes.
Collapse
Affiliation(s)
- Omar K Jamil
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, The University of Chicago, Chicago, IL
| | - Burhaneddin Sandikçi
- Department of Industrial Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Nolan Faust
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, IL
| | - Thomas G Cotter
- Division of Digestive and Liver Disease, Department of Internal Medicine, UT Southwestern, Dallas, TX
| | - Sonali Paul
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, The University of Chicago, Chicago, IL
| | - Diego di Sabato
- Section of Abdominal Organ Transplantation, Department of Surgery, The University of Chicago Medicine, Chicago, IL
| | - John Fung
- Section of Abdominal Organ Transplantation, Department of Surgery, The University of Chicago Medicine, Chicago, IL
| | - Michael Charlton
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
12
|
NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules 2022; 12:biom12060824. [PMID: 35740949 PMCID: PMC9221336 DOI: 10.3390/biom12060824] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is one of the most common causes of liver diseases worldwide. NAFLD is growing in parallel with the obesity epidemic. No pharmacological treatment is available to treat NAFLD, specifically. The reason might be that NAFLD is a multi-factorial disease with an incomplete understanding of the mechanisms involved, an absence of accurate and inexpensive imaging tools, and lack of adequate non-invasive biomarkers. NAFLD consists of the accumulation of excess lipids in the liver, causing lipotoxicity that might progress to metabolic-associated steatohepatitis (NASH), liver fibrosis, and hepatocellular carcinoma. The mechanisms for the pathogenesis of NAFLD, current interventions in the management of the disease, and the role of sirtuins as potential targets for treatment are discussed here. In addition, the current diagnostic tools, and the role of non-coding RNAs as emerging diagnostic biomarkers are summarized. The availability of non-invasive biomarkers, and accurate and inexpensive non-invasive diagnosis tools are crucial in the detection of the early signs in the progression of NAFLD. This will expedite clinical trials and the validation of the emerging therapeutic treatments.
Collapse
|
13
|
Ichimura-Shimizu M, Tsuchiyama Y, Morimoto Y, Matsumoto M, Kobayashi T, Sumida S, Kakimoto T, Oya T, Ogawa H, Yamashita M, Matsuda S, Omagari K, Taira S, Tsuneyama K. A Novel Mouse Model of Nonalcoholic Steatohepatitis Suggests that Liver Fibrosis Initiates around Lipid-Laden Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:31-42. [PMID: 34710382 DOI: 10.1016/j.ajpath.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
While the interaction of cells such as macrophages and hepatic stellate cells is known to be involved in the generation of fibrosis in nonalcoholic steatohepatitis (NASH), the mechanism remains unclear. This study employed a high-fat/cholesterol/cholate (HFCC) diet to generate a model of NASH-related fibrosis to investigate the pathogenesis of fibrosis. Two mouse strains: C57BL/6J, the one susceptible to obesity, and A/J, the one relatively resistant to obesity, developed hepatic histologic features of NASH, including fat deposition, intralobular inflammation, hepatocyte ballooning, and fibrosis, after 9 weeks of HFCC diet. The severity of hepatic inflammation and fibrosis was greater in A/J mice than in the C57BL/6J mice. A/J mice fed HFCC diet exhibited characteristic CD204-positive lipid-laden macrophage aggregation in hepatic parenchyma. Polarized light was used to visualize the Maltese cross, cholesterol crystals within the aggregated macrophages. Fibrosis developed in a ring shape from the periphery of the aggregated macrophages such that the starting point of fibrosis could be visualized histologically. Matrix-assisted laser desorption/ionization mass spectrometry imaging analysis detected a molecule at m/z 772.462, which corresponds to the protonated ion of phosphatidylcholine [P-18:1 (11Z)/18:0] and phosphatidylethanolamine [18:0/20:2 (11Z, 14Z)], in aggregated macrophages adjacent to the fibrotic lesions. In conclusion, the HFCC diet-fed A/J model provides an ideal tool to study fibrogenesis and enables novel insights into the pathophysiology of NASH-related fibrosis.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Yosuke Tsuchiyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Minoru Matsumoto
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoko Kobayashi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Sumida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takumi Kakimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Michiko Yamashita
- Morphological Laboratory Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Molecular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
14
|
Xu Y, Hu S, Jadhav K, Zhu Y, Pan X, Bawa FC, Yin L, Zhang Y. Hepatocytic Activating Transcription Factor 3 Protects Against Steatohepatitis via Hepatocyte Nuclear Factor 4α. Diabetes 2021; 70:2506-2517. [PMID: 34475098 PMCID: PMC8564409 DOI: 10.2337/db21-0181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Activating transcription factor 3 (ATF3) has been shown to play an important role in HDL metabolism; yet, the role of hepatocytic ATF3 in the development of steatohepatitis remains elusive. Here we show that adenoassociated virus-mediated overexpression of human ATF3 in hepatocytes prevents diet-induced steatohepatitis in C57BL/6 mice and reverses steatohepatitis in db/db mice. Conversely, global or hepatocyte-specific loss of ATF3 aggravates diet-induced steatohepatitis. Mechanistically, hepatocytic ATF3 induces hepatic lipolysis and fatty acid oxidation and inhibits inflammation and apoptosis. We further show that hepatocyte nuclear factor 4α (HNF4α) is required for ATF3 to improve steatohepatitis. Thus, the current study indicates that ATF3 protects against steatohepatitis through, at least in part, hepatic HNF4α. Targeting hepatic ATF3 may be useful for treatment of steatohepatitis.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
15
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50:101122. [PMID: 33220492 PMCID: PMC8324683 DOI: 10.1016/j.molmet.2020.101122] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) comprises hepatic alterations with increased lipid accumulation (steatosis) without or with inflammation (nonalcoholic steatohepatitis, NASH) and/or fibrosis in the absence of other causes of liver disease. NAFLD is developing as a burgeoning health challenge, mainly due to the worldwide obesity and diabetes epidemics. SCOPE OF REVIEW This review summarizes the knowledge on the pathogenesis underlying NAFLD by focusing on studies in humans and on hypercaloric nutrition, including effects of saturated fat and fructose, as well as adipose tissue dysfunction, leading to hepatic lipotoxicity, abnormal mitochondrial function, and oxidative stress, and highlights intestinal dysbiosis. These mechanisms are discussed in the context of current treatments targeting metabolic pathways and the results of related clinical trials. MAJOR CONCLUSIONS Recent studies have provided evidence that certain conditions, for example, the severe insulin-resistant diabetes (SIRD) subgroup (cluster) and the presence of an increasing number of gene variants, seem to predispose for excessive risk of NAFLD and its accelerated progression. Recent clinical trials have been frequently unsuccessful in halting or preventing NAFLD progression, perhaps partly due to including unselected cohorts in later stages of NAFLD. On the basis of this literature review, this study proposed screening in individuals with the highest genetic or acquired risk of disease progression, for example, the SIRD subgroup, and developing treatment concepts targeting the earliest pathophysiolgical alterations, namely, adipocyte dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Shi Y, Pizzini J, Wang H, Das F, Abdul Azees PA, Ghosh Choudhury G, Barnes JL, Zang M, Weintraub ST, Yeh CK, Katz MS, Kamat A. β2-Adrenergic receptor agonist induced hepatic steatosis in mice: modeling nonalcoholic fatty liver disease in hyperadrenergic states. Am J Physiol Endocrinol Metab 2021; 321:E90-E104. [PMID: 34029162 PMCID: PMC8321826 DOI: 10.1152/ajpendo.00651.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging from hepatic steatosis [excessive accumulation of triglycerides (TG)] to nonalcoholic steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The molecular pathogenesis of steatosis and progression to more severe NAFLD remains unclear. Obesity and aging, two principal risk factors for NAFLD, are associated with a hyperadrenergic state. β-Adrenergic responsiveness in liver increases in animal models of obesity and aging, and in both is linked to increased hepatic expression of β2-adrenergic receptors (β2-ARs). We previously showed that in aging rodents intracellular signaling from elevated hepatic levels of β2-ARs may contribute to liver steatosis. In this study we demonstrate that injection of formoterol, a highly selective β2-AR agonist, to mice acutely results in hepatic TG accumulation. Further, we have sought to define the intrahepatic mechanisms underlying β2-AR mediated steatosis by investigating changes in hepatic expression and cellular localization of enzymes, transcription factors, and coactivators involved in processes of lipid accrual and disposition-and also functional aspects thereof-in livers of formoterol-treated animals. Our results suggest that β2-AR activation by formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, increased but incomplete β-oxidation of fatty acids with accumulation of potentially toxic long-chain acylcarnitine intermediates, and reduced TG secretion-all previously invoked as contributors to fatty liver disease. Experiments are ongoing to determine whether sustained activation of hepatic β2-AR signaling by formoterol might be utilized to model fatty liver changes occurring in hyperadrenergic states of obesity and aging, and thereby identify novel molecular targets for the prevention or treatment of NAFLD.NEW & NOTEWORTHY Results of our study suggest that β2-adrenergic receptor (β2-AR) activation by agonist formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, incomplete β-oxidation of fatty acids with accumulation of long-chain acylcarnitine intermediates, and reduced TG secretion. These findings may, for the first time, implicate a role for β2-AR responsive dysregulation of hepatic lipid metabolism in the pathogenetic processes underlying NAFLD in hyperadrenergic states such as obesity and aging.
Collapse
Affiliation(s)
- Yun Shi
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jason Pizzini
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Parveez Ahamed Abdul Azees
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jeffrey L Barnes
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Mengwei Zang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Michael S Katz
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| | - Amrita Kamat
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Geriatric Research, Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
18
|
Xu Y, Zhu Y, Hu S, Xu Y, Stroup D, Pan X, Bawa FC, Chen S, Gopoju R, Yin L, Zhang Y. Hepatocyte Nuclear Factor 4α Prevents the Steatosis-to-NASH Progression by Regulating p53 and Bile Acid Signaling (in mice). Hepatology 2021; 73:2251-2265. [PMID: 33098092 PMCID: PMC8062586 DOI: 10.1002/hep.31604] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of nonalcoholic liver steatosis (NAFL) to NASH has not been elucidated. In this study, we investigated the effect of gain or loss of HNF4α function on the development and progression of NAFLD in mice. APPROACH AND RESULTS Overexpression of human HNF4α protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of Hnf4α had opposite effects. HNF4α prevented hepatic triglyceride accumulation by promoting hepatic triglyceride lipolysis, fatty acid oxidation, and VLDL secretion. Furthermore, HNF4α suppressed the progression of NAFL to NASH. Overexpression of human HNF4α inhibited HFCF diet-induced steatohepatitis in control mice but not in hepatocyte-specific p53-/- mice. In HFCF diet-fed mice lacking hepatic Hnf4α, recapitulation of hepatic expression of HNF4α targets cholesterol 7α-hydroxylase and sterol 12α-hydroxylase and normalized hepatic triglyceride levels and attenuated steatohepatitis. CONCLUSIONS The current study indicates that HNF4α protects against diet-induced development and progression of NAFLD by coordinating the regulation of lipolytic, p53, and bile acid signaling pathways. Targeting hepatic HNF4α may be useful for treatment of NASH.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA,Present address: Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Diane Stroup
- Department of Chemistry and Biochemistry, Kent State University, OH 44272, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
19
|
Role of Insulin Resistance in MAFLD. Int J Mol Sci 2021; 22:ijms22084156. [PMID: 33923817 PMCID: PMC8072900 DOI: 10.3390/ijms22084156] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies have reported that metabolic dysfunction is closely involved in the complex mechanism underlying the development of non-alcoholic fatty liver disease (NAFLD), which has prompted a movement to consider renaming NAFLD as metabolic dysfunction-associated fatty liver disease (MAFLD). Metabolic dysfunction in this context encompasses obesity, type 2 diabetes mellitus, hypertension, dyslipidemia, and metabolic syndrome, with insulin resistance as the common underlying pathophysiology. Imbalance between energy intake and expenditure results in insulin resistance in various tissues and alteration of the gut microbiota, resulting in fat accumulation in the liver. The role of genetics has also been revealed in hepatic fat accumulation and fibrosis. In the process of fat accumulation in the liver, intracellular damage as well as hepatic insulin resistance further potentiates inflammation, fibrosis, and carcinogenesis. Increased lipogenic substrate supply from other tissues, hepatic zonation of Irs1, and other factors, including ER stress, play crucial roles in increased hepatic de novo lipogenesis in MAFLD with hepatic insulin resistance. Herein, we provide an overview of the factors contributing to and the role of systemic and local insulin resistance in the development and progression of MAFLD.
Collapse
|
20
|
Effect of Central Corticotropin-Releasing Factor on Hepatic Lipid Metabolism and Inflammation-Related Gene Expression in Rats. Int J Mol Sci 2021; 22:ijms22083940. [PMID: 33920431 PMCID: PMC8069855 DOI: 10.3390/ijms22083940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) in the brain acts on physiological and pathophysiological modulation of the hepatobiliary system. Central CRF administration aggravates experimental acute liver injury by decreasing hepatic blood flow. Conversely, minimal evidence is available regarding the effect of centrally acting CRF on hepatic lipid metabolism and inflammation. We examined whether central CRF affects hepatic lipid metabolism and inflammation-related gene expression in rats. Male Long Evans rats were intracisternally injected with CRF (10 μg) or saline. Rats were sacrificed 2 h, 6 h, and 24 h after the CRF injection, the liver was isolated, and mRNA was extracted. Next, hepatic lipid metabolism and inflammation-related gene expression were examined. Hepatic SREBF1 (sterol regulatory element-binding transcription factor 1) mRNA levels were significantly increased 6 h and 24 h after intracisternal CRF administration when compared with those in the control group. Hepatic TNFα and IL1β mRNA levels increased significantly 6 h after intracisternal CRF administration. Hepatic sympathectomy or guanethidine treatment, not hepatic branch vagotomy or atropine treatment, inhibited central CRF-induced increase in hepatic SREBF1, TNFα and IL1β mRNA levels. These results indicated that central CRF affects hepatic de novo lipogenesis and inflammation-related gene expression through the sympathetic-noradrenergic nervous system in rats.
Collapse
|
21
|
New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother 2021; 137:111326. [PMID: 33556870 DOI: 10.1016/j.biopha.2021.111326] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Over the years, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased year by year; however, due to its complicated pathogenesis, there is no effective treatment so far. It is reported that Cytochrome P450 2E1 (CYP2E1) plays an indispensable role in the development of NAFLD, and numerous studies have shown that flavonoids have a hepatoprotective effect and can exert a beneficial effect on NAFLD by regulating the activity of CYP2E1. Therefore, flavonoids may become effective drugs for the treatment of NAFLD in the future. This prompted us to review the research progress of the pathological mechanism of NAFLD and the impact of CYP2E1 activity changes during the pathological process, and to summarize the protective effect of flavonoids against CYP2E1 activity.
Collapse
|
22
|
Gao B, Sakaguchi K, Ogawa T, Kagawa Y, Kubo H, Shimizu T. Functional Analysis of Induced Human Ballooned Hepatocytes in a Cell Sheet-Based Three Dimensional Model. Tissue Eng Regen Med 2021; 18:217-224. [PMID: 33517537 DOI: 10.1007/s13770-020-00297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ballooned hepatocytes (BH) are a key histological hallmark of nonalcoholic steatohepatitis (NASH), yet their consequences for liver-specific functions are unknown. METHODS In our previous study, an experimental model of human induced-BHs (iBH) has been successfully developed based on cell sheet technology. This study aimed to determine the functions of iBHs in the primary human hepatocyte/normal human dermal fibroblast (PHH/NHDF) co-culture cell sheets. Normal hepatocytes in the PHH/3T3-J2 co-culture cell sheets were set as a control, since 3T3-J2 murine embryonic fibroblasts have exhibited previously long term maintenance of PHH functions. RESULTS It was found that, albumin secretion was not affected in iBHs, but urea synthesis as well as cytochrome P450 enzyme (CYP) activities including CYP1A2 and CYP3A4, were significantly reduced in iBHs. Besides, loss of bile canaliculi was observed in iBHs. These findings are consistent with clinical studies of human NASH. In addition, PHH/NHDF cell sheets demonstrated two fold higher TGF-β1 secretion compared with PHH/3T3-J2 cell sheets. Furthermore, treatment with a TGF-β inhibitor and a semi-synthetic bile acid analogue (obeticholic acid, phase 3 trial of NASH therapy) ameliorated the histological appearance of established iBHs. CONCLUSION In summary, this study demonstrates the priority of iBHs in recapitulating not only histology but also clinically relevant hepatic dysfunctions in human NASH and suggests TGF-β and bile acid related signal pathway may play important roles in the formation of iBHs.
Collapse
Affiliation(s)
- Botao Gao
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, Guangzhou, 510550, China.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tetsuya Ogawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuki Kagawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
23
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
24
|
Effect of Adrenergic Agonists on High-Fat Diet-Induced Hepatic Steatosis in Mice. Int J Mol Sci 2020; 21:ijms21249392. [PMID: 33321735 PMCID: PMC7764675 DOI: 10.3390/ijms21249392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system, consisting of sympathetic and parasympathetic branches, plays an important role in regulating metabolic homeostasis. The sympathetic nervous system (SNS) regulates hepatic lipid metabolism by regulating adrenergic receptor activation, resulting in the stimulation of hepatic very-low-density lipoprotein-triglyceride (TG) production in vivo. However, only a few studies on the relationship between SNS and hepatic steatosis have been reported. Here, we investigate the effect of adrenergic receptor agonists on hepatic steatosis in mice fed a high-fat diet (HFD). The α-adrenergic receptor agonist phenylephrine (10 mg/kg/d) or the β-adrenergic receptor agonist isoproterenol (30 mg/kg/d) was coadministered with HFD to male mice. After five weeks, hepatic steatosis, TG levels, and hepatic fat metabolism-related biomarkers were examined. HFD treatment induced hepatic steatosis, and cotreatment with phenylephrine, but not isoproterenol, attenuated this effect. Phenylephrine administration upregulated the mRNA levels of hepatic peroxisome proliferator-activated receptor alpha and its target genes (such as carnitine palmitoyltransferase 1) and increased hepatic β-hydroxybutyrate levels. Additionally, phenylephrine treatment increased the expression of the autophagosomal marker LC3-II but decreased that of p62, which is selectively degraded during autophagy. These results indicate that phenylephrine inhibits hepatic steatosis through stimulation of β-oxidation and autophagy in the liver.
Collapse
|
25
|
Germinated Soybean Embryo Extract Ameliorates Fatty Liver Injury in High-Fat Diet-Fed Obese Mice. Pharmaceuticals (Basel) 2020; 13:ph13110380. [PMID: 33187321 PMCID: PMC7696473 DOI: 10.3390/ph13110380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Soybean is known to have diverse beneficial effects against human diseases, including obesity and its related metabolic disorders. Germinated soybean embryos are enriched with bioactive phytochemicals and known to inhibit diet-induced obesity in mice, but their effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Here, we germinated soybean embryos for 24 h, and their ethanolic extract (GSEE, 15 and 45 mg/kg) was administered daily to mice fed with a high-fat diet (HFD) for 10 weeks. HFD significantly increased the weight of the body, liver and adipose tissue, as well as serum lipid markers, but soyasaponin Ab-rich GSEE alleviated these changes. Hepatic injury and triglyceride accumulation in HFD-fed mice were attenuated by GSEE via decreased lipid synthesis (SREBP1c) and increased fatty acid oxidation (p-AMPKα, PPARα, PGC1α, and ACOX) and lipid export (MTTP and ApoB). HFD-induced inflammation (TNF-α, IL-6, IL-1β, CD14, F4/80, iNOS, and COX2) was normalized by GSEE in mice livers. In adipose tissue, GSEE downregulated white adipose tissue (WAT) differentiation and lipogenesis (PPARγ, C/EBPα, and FAS) and induced browning genes (PGC1α, PRDM16, CIDEA, and UCP1), which could also beneficially affect the liver via lowering adipose tissue-related circulating lipid levels. Thus, our results suggest that GSEE can prevent HFD-induced NAFLD via inhibition of hepatic inflammation and restoration of lipid metabolisms in both liver and adipose tissue.
Collapse
|
26
|
Yang M, Liu Q, Huang T, Tan W, Qu L, Chen T, Pan H, Chen L, Liu J, Wong CW, Lu WW, Guan M. Dysfunction of estrogen-related receptor alpha-dependent hepatic VLDL secretion contributes to sex disparity in NAFLD/NASH development. Theranostics 2020; 10:10874-10891. [PMID: 33042259 PMCID: PMC7532682 DOI: 10.7150/thno.47037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Men and postmenopausal women are more prone to developing non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) than premenopausal women. However, the pathological links and underlying mechanisms of this disparity are still elusive. The sex-difference in hepatic very low-density lipoprotein (VLDL) assembly and secretion may contribute to NAFLD development. Estrogen-related receptor alpha (ERRα) is a key regulator of several metabolic processes. We hypothesized that ERRα plays a role contributing to the sex-difference in hepatic VLDL assembly and secretion. Methods: VLDL secretion and essential genes governing said process were assessed in male and female mice. Liver-specific ERRα-deficient (ERRαLKO) mice were generated to assess the rate of hepatic VLDL secretion and alteration in target gene expression. Overexpression of either microsomal triglyceride transfer protein (Mttp) or phospholipase A2 G12B (Pla2g12b) by adenovirus was performed to test if the fatty liver phenotype in male ERRαLKO mice was due to defects in hepatic VLDL secretion. Female ERRαLKO mice were put on a diet high in saturated fat, fructose and cholesterol (HFHC) to promote NASH development. Wild type female mice were either ovariectomized or treated with tamoxifen to induce a state of estrogen deficiency or disruption in estrogen signaling. Adenovirus was used to overexpress ERRα in these mice to test if ERRα was sufficient to rescue the suppressed VLDL secretion due to estrogen dysfunction. Finally, wild type male mice on a high-fat diet (HFD) were treated with an ERRα inverse agonist to assess if suppressing ERRα activity pharmacologically would lead to fatty liver development. Results: ERRα is an indispensable mediator modulating hepatic triglyceride-rich very low-density lipoprotein (VLDL-TG) assembly and secretion through coordinately controlling target genes apolipoprotein B (Apob), Mttp and Pla2g12b in a sex-different manner. Hepatic VLDL-TG secretion is blunted in ERRαLKO mice, leading to hepatosteatosis which exacerbates endoplasmic reticulum stress and inflammation paving ways for NASH development. Importantly, ERRα acts downstream of estrogen/ERα signaling in contributing to the sex-difference in hepatic VLDL secretion effecting hepatic lipid homeostasis. Conclusions: Our results highlight ERRα as a key mediator which contributes to the sex disparity in NAFLD development, suggesting that selectively restoring ERRα activity in the liver may be a novel strategy for treating NAFLD/NASH.
Collapse
Affiliation(s)
- Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Liu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Tongling Huang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wenjuan Tan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Linbing Qu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Tianke Chen
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - William W. Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
27
|
Meroni M, Longo M, Fracanzani AL, Dongiovanni P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine 2020; 57:102866. [PMID: 32629394 PMCID: PMC7339032 DOI: 10.1016/j.ebiom.2020.102866] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, which include steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, that is a critical risk factor for hepatocellular carcinoma (HCC) development. Its pathogenesis is intertwined with obesity and type 2 diabetes (T2D). However, the predisposition to develop MAFLD is severely influenced by environmental and inherited cues. The rs641738 variant close to MBOAT7 gene has been identified by a genome-wide association screening in heavy drinkers. Although this variant has been associated with the entire spectrum of MAFLD, these results have not been completely replicated and the debate is still opened. Thus, functional studies that unravel the biological mechanisms underlying the genetic association with fatty liver are required. This review aims to summarize the clinical and experimental findings regarding the rs641738 variation and MBOAT7 function, with the purpose to shed light to its role as novel player in MAFLD pathophysiology.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Anna L Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy.
| |
Collapse
|
28
|
Lee H, Kong G, Tran Q, Kim C, Park J, Park J. Relationship Between Ginsenoside Rg3 and Metabolic Syndrome. Front Pharmacol 2020; 11:130. [PMID: 32161549 PMCID: PMC7052819 DOI: 10.3389/fphar.2020.00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is an important public health issue and is associated with a more affluent lifestyle. Many studies of metabolic syndrome have been reported, but its pathogenesis remains unclear and there is no effective treatment. The ability of natural compounds to ameliorate metabolic syndrome is currently under investigation. Unlike synthetic chemicals, such natural products have proven utility in various fields. Recently, ginsenoside extracted from ginseng and ginseng root are representative examples. For example, ginseng is used in dietary supplements and cosmetics. In addition, various studies have reported the effects of ginsenoside on metabolic syndromes such as obesity, diabetes, and hypertension. In this review, we describe the potential of ginsenoside Rg3, a component of ginseng, in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Gyeyeong Kong
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Quangdon Tran
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon, South Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
29
|
Ægidius HM, Veidal SS, Feigh M, Hallenborg P, Puglia M, Pers TH, Vrang N, Jelsing J, Kornum BR, Blagoev B, Rigbolt KTG. Multi-omics characterization of a diet-induced obese model of non-alcoholic steatohepatitis. Sci Rep 2020; 10:1148. [PMID: 31980690 PMCID: PMC6981216 DOI: 10.1038/s41598-020-58059-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
To improve the understanding of the complex biological processes underlying the development of non-alcoholic steatohepatitis (NASH), a multi-omics approach combining bulk RNA-sequencing based transcriptomics, quantitative proteomics and single-cell RNA-sequencing was used to characterize tissue biopsies from histologically validated diet-induced obese (DIO) NASH mice compared to chow-fed controls. Bulk RNA-sequencing and proteomics showed a clear distinction between phenotypes and a good correspondence between mRNA and protein level regulations, apart from specific regulatory events discovered by each technology. Transcriptomics-based gene set enrichment analysis revealed changes associated with key clinical manifestations of NASH, including impaired lipid metabolism, increased extracellular matrix formation/remodeling and pro-inflammatory responses, whereas proteomics-based gene set enrichment analysis pinpointed metabolic pathway perturbations. Integration with single-cell RNA-sequencing data identified key regulated cell types involved in development of NASH demonstrating the cellular heterogeneity and complexity of NASH pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, Hørsholm, Denmark
| | | | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
30
|
Ganbold M, Owada Y, Ozawa Y, Shimamoto Y, Ferdousi F, Tominaga K, Zheng YW, Ohkohchi N, Isoda H. Isorhamnetin Alleviates Steatosis and Fibrosis in Mice with Nonalcoholic Steatohepatitis. Sci Rep 2019; 9:16210. [PMID: 31700054 PMCID: PMC6838085 DOI: 10.1038/s41598-019-52736-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most severe and progressive form of nonalcoholic fatty liver disease (NAFLD), which can lead to life-threatening conditions, however, there is still no approved drug for the treatment of NASH. In this study we used human-like NASH mouse model and treated orally with isorhamnetin at a dose of 50 mg/kg to analyze the effect of isorhamnetin on the progression of NASH. NASH-induced mice represented severe steatosis with inflammation, and fibrosis in liver accompanied with high level of liver injury markers in serum. Isorhamnetin treatment reduced intrahepatic lipid accumulation and TG content by inhibiting de novo lipogenic pathway in NASH-induced mice. Consistent with this, isorhamnetin-treated NASH mice showed improved liver injury markers, reduced collagen deposition as well as decreased gene expression of fibrogenic markers. Taken together, here we showed for the first time that synthesized isorhamnetin alleviates pathologic features of NASH and thus can potentially contribute to NASH drug development.
Collapse
Affiliation(s)
- Munkhzul Ganbold
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yohei Owada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yusuke Ozawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuhiro Shimamoto
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kenichi Tominaga
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. .,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan. .,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan. .,Faculty of Life and Environment Science, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
31
|
Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells 2019; 8:cells8101259. [PMID: 31619023 PMCID: PMC6835656 DOI: 10.3390/cells8101259] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) caused by fat accumulation in the liver is globally the most common cause of chronic liver disease. Simple steatosis can progress to nonalcoholic steatohepatitis (NASH), a more severe form of NAFLD. The most potent driver for NASH is hepatocyte death induced by lipotoxicity, which triggers inflammation and fibrosis, leading to cirrhosis and/or liver cancer. Despite the significant burden of NAFLD, there is no therapy for NAFLD/NASH. Accumulating evidence indicates gender-related NAFLD progression. A higher incidence of NAFLD is found in men and postmenopausal women than premenopausal women, and the experimental results, showing protective actions of estradiol in liver diseases, suggest that estrogen, as the main female hormone, is associated with the progression of NAFLD/NASH. However, the mechanism explaining the functions of estrogen in NAFLD remains unclear because of the lack of reliable animal models for NASH, the imbalance between the sexes in animal experiments, and subsequent insufficient results. Herein, we reviewed the pathogenesis of NAFLD/NASH focused on gender and proposed a feasible association of estradiol with NAFLD/NASH based on the findings reported thus far. This review would help to expand our knowledge of the gender differences in NAFLD and for developing gender-based treatment strategies for NAFLD/NASH.
Collapse
|
32
|
Dong XF, Zhai QH, Tong JM. Dietary choline supplementation regulated lipid profiles of egg yolk, blood, and liver and improved hepatic redox status in laying hens. Poult Sci 2019; 98:3304-3312. [PMID: 30941414 DOI: 10.3382/ps/pez139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Five hundred and forty 19-wk-old HyLine Brown laying hens were randomly distributed to 6 dietary treatments and fed 1of 6 corn-soybean meal-based diets added into choline with 0, 425, 850, 1,700, 3,400, and 6,800 mg/kg to investigate effects of dietary choline supplementation on lipid profiles of egg yolk, serum and liver, and hepatic redox status of laying hens. Yolk weight and total lipid, triglyceride, cholesterol and phosphatidylcholine, serum triglyceride, cholesterol, apolipoprotein B 100 (apoB 100), and very low density lipoprotein (VLDL), and liver relative weight, total lipid, triglyceride and apoB 100 as well as hepatic total superoxide dismutase and glutathione peroxidase (GSH-Px) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) in laying hens at weeks 58 and 68 of age were determined. The differences (P < 0.001) were caused by choline treatments in yolk phosphatidylcholine (at 850 mg/kg or more choline), serum VLDL, and liver triglyceride (at 1,700 and 3,400 mg/kg choline) of birds, at weeks 58 and 68 of age, and yolk total lipids were elevated (P < 0.05) by supplemental choline at 3,400 mg/kg whereas liver total lipids were reduced (P < 0.05) by 1,700 and 3,400 mg/kg choline addition. Hens fed diets supplemented choline had higher (P = 0.005) liver GSH-Px activity (with 3,400 mg/kg choline) and greater (P = 0.014) T-AOC (with 1,700 mg/kg choline) than those fed diets with 0 and 425 mg/kg choline addition. Choline affected serum VLDL, liver total lipid, triglyceride and apoB 100 at weeks 58 and 68 of age and hepatic GSH-Px activity, T-AOC and MDA at week 68 of age quadratically (P < 0.05), whereas it influenced total lipid and phosphatidylcholine of egg yolk linearly (P < 0.05) and quadratically (P < 0.05). In conclusion, dietary choline supplementation elevated yolk total lipid and phosphatidylcholine and serum VLDL, reduced liver total lipid and triglyceride, and enhanced hepatic GSH-Px activity and T-AOC in laying hens.
Collapse
Affiliation(s)
- X F Dong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Q H Zhai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The liver is the central hub of lipoprotein metabolism. A complex relationship exists between dyslipidemia and chronic liver diseases (CLDs). Recent advances in the genetics of nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) exemplify the pivotal role of lipoprotein metabolism in the pathogenesis of CLD. We review these relationships in four quintessential forms of CLD: NAFLD, ALD, cholestatic liver disease and cirrhosis, with a focus on recent discoveries. RECENT FINDINGS An I148 M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3) and an E167K variant in transmembrane 6 superfamily 2 (TM6SF2) are major genetic risk factors for the development and progression of NAFLD. These genetic variants also increase the risk of ALD. Both PNPLA3 and TM6SF2 are involved in the hepatic assembly of very low-density lipoprotein. The discovery of these two genetic variants highlights the risk of CLD when environmental factors are combined with functional modifications in the lipoprotein metabolism pathway. SUMMARY The relationship between CLD and lipoprotein metabolism is reciprocal. On the one hand, the progression of CLD impairs lipoprotein metabolism; on the other hand, modifications in lipoprotein metabolism can substantially increase the risk of CLD. These relationships are at play among the most common forms of CLD affecting a significant proportion of the population.
Collapse
Affiliation(s)
- Maria Camila Perez-Matos
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bynvant Sandhu
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alan Bonder
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenghui Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Nseir WB, Mograbi JM, Amara AE, Abu Elheja OH, Mahamid MN. Non-alcoholic fatty liver disease and 30-day all-cause mortality in adult patients with community-acquired pneumonia. QJM 2019; 112:95-99. [PMID: 30325458 DOI: 10.1093/qjmed/hcy227] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common and serious form of chronic liver disease. Risk factors of NAFLD include obesity and type 2 diabetes which are associated with infections. AIM We aimed to determine the association of NAFLD with 30-day all-cause mortality in adult patients with community-acquired pneumonia (CAP). METHODS A retrospective cohort study on hospitalized patients with CAP that was conducted during a period of 4 years. We included patients aged ≥18 years with CAP who underwent abdominal ultrasonography. We compared between patients with and without NAFLD in term of age, gender, body mass index (BMI), comorbidities, CURB-65, pneumonia severity index (PSI), liver enzymes, C-reactive protein (CRP) and 30-day all-cause mortality. We used fibrosis score to distinguish between patients with NAFLD who have advanced fibrosis (F3-F4) and do not have (F0-F2). RESULTS A total of 561 patients were included in this study. The overall prevalence of NAFLD was 200/561 (35.6%). Significant differences were found between the groups with and without NAFLD in term of BMI, CURB-65, ALT, GGT and CRP. The 30-day all-cause mortality rate was 9.8% (55/561). Among the NAFLD group 34/200 (17%) subjects died vs. 21/361 (5.82%) among patients without NAFLD, P < 0.001. Multi-variate logistic regression analysis after adjusting for other multiple covariates showed that NAFLD with fibrosis score 0-2 [odds ratio (OR) 1.38, 95% confidence interval (CI) 1.12-1.51, P = 0.04], NAFLD with fibrosis score> 2 (1.52; 1.25-1.70, P = 0.03) were associated with 30-day all-cause mortality among patients with CAP. CONCLUSIONS NAFLD was associated with 30-day all-cause mortality in patients with CAP. This association was more significant in patients with advanced hepatic fibrosis.
Collapse
Affiliation(s)
- W B Nseir
- From the Division of Internal Medicine, EMMS, The Nazareth Hospital, P.O.B 8, Nazareth, Israel
- The Azrieli Faculty of Medicine, The Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O.B 1589, Safed, Israel
| | - J M Mograbi
- From the Division of Internal Medicine, EMMS, The Nazareth Hospital, P.O.B 8, Nazareth, Israel
| | - A E Amara
- From the Division of Internal Medicine, EMMS, The Nazareth Hospital, P.O.B 8, Nazareth, Israel
| | - O H Abu Elheja
- Department of Internal Medicine, Holy Family Hospital, P.O.B 11, Nazareth, Israel
| | - M N Mahamid
- From the Division of Internal Medicine, EMMS, The Nazareth Hospital, P.O.B 8, Nazareth, Israel
- The Azrieli Faculty of Medicine, The Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O.B 1589, Safed, Israel
| |
Collapse
|
35
|
Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS One 2019; 14:e0210068. [PMID: 30689650 PMCID: PMC6349312 DOI: 10.1371/journal.pone.0210068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Conophylline (CnP), a vinca alkaloid extracted from the leaves of the tropical plant Tabernaemontana divaricate, attenuates hepatic fibrosis in mice. We have previously shown that CnP inhibits non-alcoholic steatohepatitis (NASH) using a methionine-choline-deficient (MCD) diet-fed mouse model. However, little is known about the CnP mediated inhibition of hepatic steatosis in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) mouse models. CnP (0.5 and 1 μg/g/body weight) was co-administered along with a high-fat diet to male BALB/c mice. After nine weeks of administering the high-fat diet, hepatic steatosis, triglyceride, and hepatic fat metabolism-related markers were examined. Administration of a high-fat diet for 9 weeks was found to induce hepatic steatosis. CnP dose-dependently attenuated the high-fat diet-induced hepatic steatosis. The diet also attenuated hepatic peroxisome proliferator-activated receptor alpha (PPARA) mRNA levels. PPARA is known to be involved in β-oxidation. CnP upregulated the mRNA levels of hepatic PPARA and its target genes, such as carnitine palmitoyl transferase 1 (CPT1) and CPT2, in a dose-dependent manner in the liver. Furthermore, levels of hepatic β-hydroxybutyrate, which is a type of ketone body, were increased by CnP in a dose-dependent manner. Finally, CnP increased the expression of the autophagosomal marker LC3-II and decreased the expression of p62, which are known to be selectively degraded during autophagy. These results indicate that CnP inhibits hepatic steatosis through the stimulation of β-oxidation and autophagy in the liver. Therefore, CnP might prove to be a suitable therapeutic target for NAFLD.
Collapse
|
36
|
Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 2019; 76:99-128. [PMID: 30343320 PMCID: PMC11105781 DOI: 10.1007/s00018-018-2947-0] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the "first hit" for NAFLD development. NAFLD progression seems to involve the occurrence of "parallel, multiple-hit" injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
37
|
Gurzeler E, Aavik E, Laine A, Valkama T, Niskanen H, Huusko J, Kaikkonen MU, Ylä-Herttuala S. Therapeutic effects of rosuvastatin in hypercholesterolemic prediabetic mice in the absence of low density lipoprotein receptor. Biochim Biophys Acta Gen Subj 2018; 1863:481-490. [PMID: 30508567 DOI: 10.1016/j.bbagen.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/27/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Statins are effective drugs used to prevent and treat cardiovascular diseases but their effects in the absence of low density lipoprotein receptor (LDLR) and on the risk of diabetes are not yet well characterized. The aim of this study was to clarify systemic and pleiotropic effects of rosuvastatin on cardiovascular and diabetic phenotypes. IGF-II/LDLR-/-ApoB100/100 hypercholesterolemic prediabetic mice were used to test the effects of rosuvastatin on plasma glucose, insulin, lipids, atherosclerosis and liver steatosis. To get a more comprehensive view about changes in gene expression RNA-sequencing was done from the liver. Rosuvastatin significantly reduced plasma cholesterol in hypercholesterolemic mice in the absence of LDLR but had no effects on atherosclerosis at aortic sinus level or in coronary arteries. Rosuvastatin also significantly reduced liver steatosis without any harmful effects on glucose or insulin metabolism. RNA-sequencing showed relatively specific effects of rosuvastatin on genes involved in cholesterol metabolism together with a significant anti-inflammatory gene expression profile in the liver. In addition, significant changes were found in the expression of Perilipin 4 and 5 which are involved in lipid droplet formation in the liver. For the first time it could be shown that Tribbles proteins are affected by rosuvastatin treatment in the hyperlipidemic mice. Rosuvastatin had several positive effects on hypercholesterolemic mice showing early signs of diabetes, many of which are unrelated to cholesterol and lipoprotein metabolism. These results increase our understanding about the systemic and pleiotropic effects of rosuvastatin in the absence of LDLR expression.
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Laine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Teemu Valkama
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jenni Huusko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, 70211 Kuopio, Finland; Heart Center, Kuopio University Hospital, 70211 Kuopio, Finland.
| |
Collapse
|
38
|
Kim K, Kim DS, Kim KN. Serum Alanine Aminotransferase Level as a Risk Factor for Coronary Heart Disease Prediction in Koreans: Analysis of the Korea National Health and Nutrition Examination Survey (V-1, 2010 and V-2, 2011). Korean J Fam Med 2018; 40:124-128. [PMID: 30419632 PMCID: PMC6444088 DOI: 10.4082/kjfm.17.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/12/2017] [Indexed: 01/14/2023] Open
Abstract
Background The blood level of alanine aminotransferase (ALT) is associated with increased coronary heart disease (CHD) risk. However, its use as an independent factor for CHD risk prediction remains unclear in Asian populations. The purpose of this study was to examine the association between serum ALT levels and CHD risk in Koreans. Methods This was a cross-sectional study using data from the Korea National Health and Nutrition Examination Survey (V-1, 2010 and V-2, 2011). The ALT levels of 3,215 individuals were analyzed. The Framingham Risk Score (FRS) modified by the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) was used to compute the 10-year CHD risk prediction. Results Positive correlations were established between log-transformed ALT concentration and FRS (r=0.433, P<0.001). After adjusting for body mass index, low-density lipoprotein cholesterol, the amount of alcohol intake, and gamma-glutamyl transferase, the odds ratio (95% confidence interval) for intermediate or greater risk of 10-year CHD prediction (10-year risk ≥10%) for the lowest quartile of participants was 2.242 (1.405–3.577) for the second quartile, 2.879 (1.772–4.679) for the third quartile, and 3.041 (1.789–5.170) for the highest quartile. Conclusion In Koreans, a higher serum ALT concentration was significantly correlated with 10-year CHD risk prediction according to NCEP ATP III guidelines.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Dong Sun Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Kyu-Nam Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
39
|
Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharmacol Ther 2018; 48:892-913. [PMID: 30194708 DOI: 10.1111/apt.14952] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonalcoholic fatty disease (NAFLD) is the most common liver disease, since it is strongly associated with obesity and metabolic syndrome pandemics. NAFLD may affect drug disposal and has common pathophysiological mechanisms with drug-induced liver injury (DILI); this may predispose to hepatoxicity induced by certain drugs that share these pathophysiological mechanisms. In addition, drugs may trigger fatty liver and inflammation per se by mimicking NAFLD pathophysiological mechanisms. AIMS To provide a comprehensive update on (a) potential mechanisms whereby certain drugs can be more hepatotoxic in NAFLD patients, (b) the steatogenic effects of drugs, and (c) the mechanism involved in drug-induced steatohepatitis (DISH). METHODS A language- and date-unrestricted Medline literature search was conducted to identify pertinent basic and clinical studies on the topic. RESULTS Drugs can induce macrovesicular steatosis by mimicking NAFLD pathogenic factors, including insulin resistance and imbalance between fat gain and loss. Other forms of hepatic fat accumulation exist, such as microvesicular steatosis and phospholipidosis, and are mostly associated with acute mitochondrial dysfunction and defective lipophagy, respectively. Drug-induced mitochondrial dysfunction is also commonly involved in DISH. Patients with pre-existing NAFLD may be at higher risk of DILI induced by certain drugs, and polypharmacy in obese individuals to treat their comorbidities may be a contributing factor. CONCLUSIONS The relationship between DILI and NAFLD may be reciprocal: drugs can cause NAFLD by acting as steatogenic factors, and pre-existing NAFLD could be a predisposing condition for certain drugs to cause DILI. Polypharmacy associated with obesity might potentiate the association between this condition and DILI.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Dirchwolf
- Unidad de Transplante Hepático, Servicio de Hepatología, Hospital Privado de Rosario, Rosario, Argentina
| | - María Agustina Rodil
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
40
|
Nonalcoholic fatty liver disease: current concepts, epidemiology and management strategies. Eur J Gastroenterol Hepatol 2018; 30:1103-1115. [PMID: 30113367 DOI: 10.1097/meg.0000000000001235] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent liver disease in the world. It involves a spectrum of conditions from hepatic steatosis to nonalcoholic steatohepatitis and liver fibrosis, and is a major cause of cirrhosis and hepatocellular carcinoma. It is defined by presence of steatosis in 5% of hepatocytes or more in the absence of other causes of fatty liver. The metabolic syndrome is the major known risk factor for NAFLD. Dietary contributors such as high fructose intake and coffee consumption appear to increase and decrease the risk of disease respectively, but these links are unclear. Genetic associations have also been identified. The estimated prevalence of the disease varies according to diagnostic method and population demographics. It appears to be a major issue in Europe with population studies showing up to 50% of the individuals are affected while in the USA one in three adults are estimated to have NAFLD. Laboratory investigations and ultrasound are typically first-line investigations. Fibrosis may be assessed noninvasively through transient elastography and biomarkers but liver biopsy remains the gold standard to quantify hepatic damage. Associated comorbidities include cardiovascular disease and chronic kidney disease. Weight loss, dietary changes and exercise are recommended in management. Medications should be considered to manage underlying risk factors including insulin resistance. Surgical options include bariatric procedures and liver transplantation. The combination of rising prevalence and significant potential complications warrant further research into NAFLD, particularly in areas with research gaps including Eastern Europe.
Collapse
|
41
|
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 2018; 75:3313-3327. [PMID: 29936596 PMCID: PMC6105174 DOI: 10.1007/s00018-018-2860-6] [Citation(s) in RCA: 907] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the world's most common liver disease, estimated to affect up to one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focusing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current life-style-related diseases.
Collapse
Affiliation(s)
- David Højland Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
42
|
Shtriker MG, Peri I, Taieb E, Nyska A, Tirosh O, Madar Z. Galactomannan More than Pectin Exacerbates Liver Injury in Mice Fed with High-Fat, High-Cholesterol Diet. Mol Nutr Food Res 2018; 62:e1800331. [DOI: 10.1002/mnfr.201800331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/15/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Miriam G. Shtriker
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Irena Peri
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Elise Taieb
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Abraham Nyska
- Sackler School of Medicine; Tel Aviv University, and Consultant in Toxicologic Pathology; Timrat 36576 Israel
| | - Oren Tirosh
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Zecharia Madar
- Institute of Biochemistry; Food Science and Nutrition; Robert H. Smith Faculty of Agriculture; Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| |
Collapse
|
43
|
Ipsen DH, Rolin B, Rakipovski G, Skovsted GF, Madsen A, Kolstrup S, Schou-Pedersen AM, Skat-Rørdam J, Lykkesfeldt J, Tveden-Nyborg P. Liraglutide Decreases Hepatic Inflammation and Injury in Advanced Lean Non-Alcoholic Steatohepatitis. Basic Clin Pharmacol Toxicol 2018; 123:704-713. [PMID: 29953740 DOI: 10.1111/bcpt.13082] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Although commonly associated with obesity, non-alcoholic fatty liver disease (NAFLD) is also present in the lean population representing a unique disease phenotype. Affecting 25% of the world's population, NAFLD is associated with increased mortality especially when progressed to non-alcoholic steatohepatitis (NASH). However, no approved pharmacological treatments exist. Current research focuses mainly on NASH associated with obesity, leaving the effectiveness of promising treatments in lean NASH virtually unknown. This study therefore aimed to evaluate the effect of liraglutide (glucagon-like peptide 1 analogue) and dietary intervention, alone and in combination, in guinea pigs with non-obese NASH. After 20 weeks of high-fat feeding (20% fat, 15% sucrose, 0.35% cholesterol), 40 female guinea pigs were block-randomized based on weight into four groups receiving one of four treatments for 4 weeks: continued high-fat diet (HF, control), high-fat diet and liraglutide treatment (HFL), chow diet (4% fat, 0% sucrose, 0% cholesterol; HFC) or chow diet and liraglutide treatment (HFCL). High-fat feeding induced NASH with severe fibrosis. Liraglutide decreased inflammation (p < 0.05) and hepatocyte ballooning (p < 0.05), while increasing hepatic α-tocopherol (p = 0.0154). Dietary intervention did not improve liver histopathology significantly, but decreased liver weight (p = 0.004), plasma total cholesterol (p = 0.0175), LDL-cholesterol (p = 0.0063), VLDL-cholesterol (p = 0.0034), hepatic cholesterol (p < 0.0001) and increased hepatic vitamin C (p = 0.0099). Combined liraglutide and dietary intervention induced a rapid weight loss, necessitating periodical liraglutide dose adjustment/discontinuation, limiting the strength of the findings from this group. Collectively, this pre-clinical study supports the beneficial effect of liraglutide on NASH and extends this notion to lean NASH.
Collapse
Affiliation(s)
- David H Ipsen
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bidda Rolin
- Diabetes and Cardiovascular Pharmacology, Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - Günaj Rakipovski
- Diabetes and Cardiovascular Pharmacology, Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - Gry F Skovsted
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anette Madsen
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stefanie Kolstrup
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Marie Schou-Pedersen
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Josephine Skat-Rørdam
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary & Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
44
|
Cunningham RP, Moore MP, Moore AN, Healy JC, Roberts MD, Rector RS, Martin JS. Curcumin supplementation mitigates NASH development and progression in female Wistar rats. Physiol Rep 2018; 6:e13789. [PMID: 30009570 PMCID: PMC6046645 DOI: 10.14814/phy2.13789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a naturally occurring plant polyphenolic compound, may have beneficial effects in nonalcoholic steatohepatitis (NASH) development. We examined whether curcumin supplementation could be used in both prevention and treatment of NASH with fibrosis. Female Wistar rats were provided ad libitum access to a "western diet" (WD) high in fat (43% kcal), sucrose (29% kcal), and cholesterol (2% w/v), as well as 15% fructose drinking water. Intraperitoneal CC14 injections (0.5 mL/kg) were also administered at weeks 1, 2, 4, and 6 to accelerate development of a NASH with fibrosis phenotype. Rats were randomized to four groups (n = 9-12/group) and fed ad libitum: (1) WD for 8-weeks (8WD), (2) WD enriched with curcumin for 8-weeks (8WD+C; 0.2% curcumin, BCM-95, DolCas Biotech) to assess prevention, (3) WD for 12-weeks (12WD), (4) WD for 8-weeks followed by 4-weeks WD+C (12WD+C) to assess treatment. Curcumin prevention (8WD vs. 8WD+C) attenuated (P < 0.05) histological liver inflammation, molecular markers of fibrosis (Col1a1 mRNA) and a serum marker of liver injury (AST). Curcumin treatment (12WD vs. 12WD+C) reduced (P < 0.05) hepatocellular inflammation, steatosis, NAFLD Activity Scores, and serum markers of liver injury (AST, ALP). Moreover, curcumin treatment also increased hepatic pACC/ACC, ApoB100, and SOD1 protein, and decreased hepatic FGF-21 levels; whereas, curcumin prevention increased hepatic glutathione levels. Both curcumin prevention and treatment reduced molecular markers of hepatic fibrosis (Col1a1 mRNA) and inflammation (TNF-α, SPP1 mRNA). Curcumin supplementation beneficially altered the NASH phenotype in female Wistar rats, particularly the reversal of hepatocellular inflammation.
Collapse
Affiliation(s)
- Rory P. Cunningham
- Research Service‐Harry S Truman Memorial VA HospitalColumbiaMissouri
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouri
| | - Mary P. Moore
- Research Service‐Harry S Truman Memorial VA HospitalColumbiaMissouri
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouri
| | - Angelique N. Moore
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
| | - James C. Healy
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
| | - Michael D. Roberts
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
- School of KinesiologyAuburn UniversityAuburnAlabama
| | - R. Scott Rector
- Research Service‐Harry S Truman Memorial VA HospitalColumbiaMissouri
- Department of Nutrition and Exercise PhysiologyUniversity of MissouriColumbiaMissouri
- Department of Medicine‐GIUniversity of MissouriColumbiaMissouri
| | - Jeffrey S. Martin
- Department of Biomedical SciencesEdward Via College of Osteopathic Medicine – Auburn CampusAuburnAlabama
- School of KinesiologyAuburn UniversityAuburnAlabama
| |
Collapse
|
45
|
Boeckmans J, Natale A, Buyl K, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Human-based systems: Mechanistic NASH modelling just around the corner? Pharmacol Res 2018; 134:257-267. [PMID: 29964161 DOI: 10.1016/j.phrs.2018.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by excessive triglyceride accumulation in the liver accompanied by inflammation, cell stress and apoptosis. It is the tipping point to the life-threatening stages of non-alcoholic fatty liver disease (NAFLD). Despite the high prevalence of NASH, up to five percent of the global population, there are currently no approved drugs to treat this disease. Animal models, mostly based on specific diets and genetic modifications, are often employed in anti-NASH drug development. However, due to interspecies differences and artificial pathogenic conditions, they do not represent the human situation accurately and are inadequate for testing the efficacy and safety of potential new drugs. Human-based in vitro models provide a more legitimate representation of the human NASH pathophysiology and can be used to investigate the dysregulation of cellular functions associated with the disease. Also in silico methodologies and pathway-based approaches using human datasets, may contribute to a more accurate representation of NASH, thereby facilitating the quest for new anti-NASH drugs. In this review, we describe the molecular components of NASH and how human-based tools can contribute to unraveling the pathogenesis of this disease and be used in anti-NASH drug development. We also propose a roadmap for the development and application of human-based approaches for future investigation of NASH.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Alessandra Natale
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Karolien Buyl
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Vera Rogiers
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Joery De Kock
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Robim M Rodrigues
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
46
|
Abstract
BACKGROUND Recent genome-wide association studies have identified 2 genetic polymorphisms in association with nonalcoholic fatty liver disease (NAFLD): patatin-like phospholipase domain containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), both of which appear to influence the production of very low density lipoprotein (VLDL). The impact of these genetic variations on lipoprotein metabolism in the setting of nonalcoholic steatohepatitis and liver fibrosis are not fully characterized. MATERIALS AND METHODS We measured comprehensive lipoprotein profiles by nuclear magnetic resonance among 170 serially recruited patients in an NAFLD registry, and determined their relationships with PNPLA3 and TM6SF2 genotypes. RESULTS In this cohort, 72% patients had at least 1 allele of either PNPLA3 I148M or TM6SF2 E167K, and 30% carried 2 alleles. In multivariate models adjusting for histologic features of nonalcoholic steatohepatitis and liver fibrosis, PNPLA3 I148M is associated with a decrease in VLDL particle size. Both PNPLA3 I148M and TM6SF2 E167K genotypes were associated with increases in the size of low density lipoprotein (LDL) and high density lipoprotein particles, phenotypes considered atheroprotective. When adjusted for both genotypes, NAFLD activity score, in particular the degree of hepatic steatosis was strongly associated with increases in the size of VLDL particles, the concentration of LDL, especially small LDL particles, and a decrease in the size of high density lipoprotein particles, all of which are linked with a proatherogenic phenotype. CONCLUSIONS PNPLA3 and TM6SF2 are common genetic variants among NAFLD patients and impact lipoprotein profiles in slightly different ways. The interactions between genotypes, hepatic steatosis, and lipoprotein metabolism shed lights on the pathophysiology of NAFLD, and provide opportunities for personalized treatment in the era of emerging NAFLD therapeutics.
Collapse
|
47
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Ter Horst KW, Serlie MJ. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients 2017; 9:E981. [PMID: 28878197 PMCID: PMC5622741 DOI: 10.3390/nu9090981] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be used for gluconeogenesis and de novo lipogenesis (DNL). Fructose-derived precursors also act as nutritional regulators of the transcription factors, including ChREBP and SREBP1c, that regulate the expression of hepatic gluconeogenesis and DNL genes. In support of these mechanisms, fructose intake increases hepatic gluconeogenesis and DNL and raises plasma glucose and triglyceride levels in humans. However, epidemiological and fructose-intervention studies have had inconclusive results with respect to liver fat, and there is currently no good human evidence that fructose, when consumed in isocaloric amounts, causes more liver fat accumulation than other energy-dense nutrients. In this review, we aim to provide an overview of the seemingly contradicting literature on fructose and NAFLD. We outline fructose physiology, the mechanisms that link fructose to NAFLD, and the available evidence from human studies. From this framework, we conclude that the cellular mechanisms underlying hepatic fructose metabolism will likely reveal novel targets for the treatment of NAFLD, dyslipidemia, and hepatic insulin resistance. Finally, fructose-containing sugars are a major source of excess calories, suggesting that a reduction of their intake has potential for the prevention of NAFLD and other obesity-related diseases.
Collapse
Affiliation(s)
- Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
49
|
McCullough A, Previs S, Kasumov T. Stable isotope-based flux studies in nonalcoholic fatty liver disease. Pharmacol Ther 2017; 181:22-33. [PMID: 28720429 DOI: 10.1016/j.pharmthera.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with the worldwide epidemics of obesity, diabetes and cardiovascular diseases. NAFLD ranges from benign fat accumulation in the liver (steatosis) to non-alcoholic steatohepatitis (NASH), and cirrhosis which can progress to hepatocellular carcinoma and liver failure. Mass spectrometry and magnetic resonance spectroscopy-coupled stable isotope-based flux studies provide new insights into the understanding of NAFLD pathogenesis and the disease progression. This review focuses mainly on the utilization of mass spectrometry-based methods for the understanding of metabolic abnormalities in the different stages of NAFLD. For example, stable isotope-based flux studies demonstrated multi-organ insulin resistance, dysregulated glucose, lipids and lipoprotein metabolism in patients with NAFLD. We also review recent developments in the stable isotope-based technologies for the study of mitochondrial dysfunction, oxidative stress and fibrogenesis in NAFLD. We highlight the limitations of current methodologies, discuss the emerging areas of research in this field, and future directions for the applications of stable isotopes to study NAFLD and its complications.
Collapse
Affiliation(s)
- Arthur McCullough
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takhar Kasumov
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
50
|
Nass KJ, van den Berg EH, Faber KN, Schreuder TCMA, Blokzijl H, Dullaart RPF. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: The lifelines cohort study. Metabolism 2017. [PMID: 28641782 DOI: 10.1016/j.metabol.2017.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Cardiovascular disease (CVD) is a major adverse consequence of non-alcoholic fatty liver disease (NAFLD). The association of NAFLD with various apolipoprotein B (apoB) dyslipoproteinemias is unclear. We determined the prevalence of specific apoB dyslipoproteinemias in subjects with suspected NAFLD. METHODS This study was conducted among 22,865 fasting adults living in the northern part of the Netherlands (Lifelines Cohort Study). Six apoB dyslipoproteinemias were defined using an algorithm derived from apoB, total cholesterol and triglycerides. NAFLD was defined as Fatty Liver Index (FLI) ≥60. Advanced hepatic fibrosis was defined as NAFLD fibrosis score (NFS) ≥0.676. RESULTS 4790 participants (20.9%) had an FLI≥60. NAFLD subjects were older, more likely to be men, more obese and more often had diabetes and metabolic syndrome (P<0.001 for each). Among NAFLD subjects, any apoB dyslipoproteinemia was present in 61.5% vs. 16.5% in subjects without NAFLD (P<0.001). Elevated chylomicrons were not observed in NAFLD. In univariate analysis, NAFLD was associated with a higher prevalence of each apoB dyslipoproteinemia vs. subjects with an FLI<60 (P<0.001), except for low density lipoprotein (LDL) dyslipoproteinemia. Additionally, each apoB dyslipoproteinemia was independently associated with NAFLD in age- and sex-adjusted logistic regression analysis, including the apoB dyslipoproteinemias together (P<0.001). The prevalence of apoB dyslipoproteinemias was not altered in subjects with NFS ≥0.676. CONCLUSIONS NAFLD rather than advanced hepatic fibrosis is independently associated with increased prevalence of chylomicrons+very low-density lipoproteins (VLDL) remnants, VLDL, LDL and VLDL+LDL dyslipoproteinemias. ApoB dyslipoproteinemias may contribute to increased CVD risk associated with NAFLD.
Collapse
Affiliation(s)
- Karlijn J Nass
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands; Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eline H van den Berg
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|