1
|
Yu C, Zhang Z, Xiao L, Ai M, Qing Y, Zhang Z, Xu L, Yu OY, Cao Y, Liu Y, Song K. IRE1α pathway: A potential bone metabolism mediator. Cell Prolif 2024; 57:e13654. [PMID: 38736291 PMCID: PMC11471397 DOI: 10.1111/cpr.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.
Collapse
Affiliation(s)
- Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ollie Yiru Yu
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
2
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
3
|
Choi HJ, Wu Y, McDaniel Mims B, Pugel A, Tang CHA, Tian L, Hu CCA, Yu XZ. Endoplasmic Reticulum Stress Response Mediator IRE-1α Promotes Host Dendritic Cells in Graft-versus-Host Disease Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:384-393. [PMID: 38864663 PMCID: PMC11415232 DOI: 10.4049/jimmunol.2300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Brianyell McDaniel Mims
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Allison Pugel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Chih-Hang Anthony Tang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX
| | - Linlu Tian
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Chih-Chi Andrew Hu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
4
|
Yang Z, Li S, Zhao C, Zhao Z, Tan J, Zhang L, Huang Y. X-Box binding protein 1 downregulates SIRT6 to promote injury in pancreatic ductal epithelial cells. Immun Inflamm Dis 2024; 12:e1301. [PMID: 38967361 PMCID: PMC11225082 DOI: 10.1002/iid3.1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/19/2024] [Accepted: 05/19/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE Acute pancreatitis (AP) stands as a frequent cause for clinical emergency hospital admissions. The X-box binding protein 1 (XBP1) was found to be implicated in pancreatic acinar cell apoptosis. The objective is to unveil the potential mechanisms governed by XBP1 and SIRT6 in the context of AP. METHODS Caerulein-treated human pancreatic duct epithelial (HPDE) cells to establish an in vitro research model. The levels and regulatory role of SIRT6 in the treated cells were evaluated, including its effects on inflammatory responses, oxidative stress, apoptosis, and endoplasmic reticulum stress. The relationship between XBP1 and SIRT6 was explored by luciferase and ChIP experiments. Furthermore, the effect of XBP1 overexpression on the regulatory function of SIRT6 on cells was evaluated. RESULTS Caerulein promoted the decrease of SIRT6 and the increase of XBP1 in HPDE cells. Overexpression of SIRT6 slowed down the secretion of inflammatory factors, oxidative stress, apoptosis level, and endoplasmic reticulum stress in HPDE cells. However, XBP1 negatively regulated SIRT6, and XBP1 overexpression partially reversed the regulation of SIRT6 on the above aspects. CONCLUSION Our study illuminates the role of XBP1 in downregulating SIRT6 in HPDE cells, thereby promoting cellular injury. Inhibiting XBP1 or augmenting SIRT6 levels holds promise in preserving cell function and represents a potential therapeutic avenue in the management of AP.
Collapse
Affiliation(s)
- Zhuo Yang
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Shaojun Li
- Acupuncture and Rehabilitation DepartmentBazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Chuan Zhao
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Zongzheng Zhao
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Juan Tan
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Lu Zhang
- Acupuncture and Rehabilitation DepartmentBazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Yuanqing Huang
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| |
Collapse
|
5
|
Dabsan S, Twito G, Biadsy S, Igbaria A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J 2024. [PMID: 38865586 DOI: 10.1111/febs.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle that controls the intracellular and extracellular environments. The ER is responsible for folding almost one-third of the total protein population in the eukaryotic cell. Disruption of ER-protein folding is associated with numerous human diseases, including metabolic disorders, neurodegenerative diseases, and cancer. During ER perturbations, the cells deploy various mechanisms to increase the ER-folding capacity and reduce ER-protein load by minimizing the number of substrates entering the ER to regain homeostasis. These mechanisms include signaling pathways, degradation mechanisms, and other processes that mediate the reflux of ER content to the cytosol. In this review, we will discuss the recent discoveries of five different ER quality control mechanisms, including the unfolded protein response (UPR), ER-associated-degradation (ERAD), pre-emptive quality control, ER-phagy and ER to cytosol signaling (ERCYS). We will discuss the roles of these processes in decreasing ER-protein load and inter-mechanism crosstalk.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gal Twito
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Suma Biadsy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aeid Igbaria
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Mbara KC, Fotsing MC, Ndinteh DT, Mbeb CN, Nwagwu CS, Khan R, Mokhetho KC, Baijnath H, Nlooto M, Mokhele S, Leonard CM, Tembu VJ, Tarirai C. Endoplasmic reticulum stress in pancreatic β-cell dysfunction: The potential therapeutic role of dietary flavonoids. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100184. [PMID: 38846008 PMCID: PMC11153890 DOI: 10.1016/j.crphar.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Diabetes mellitus (DM) is a global health burden that is characterized by the loss or dysfunction of pancreatic β-cells. In pancreatic β-cells, endoplasmic reticulum (ER) stress is a fact of life that contributes to β-cell loss or dysfunction. Despite recent advances in research, the existing treatment approaches such as lifestyle modification and use of conventional therapeutics could not prevent the loss or dysfunction of pancreatic β-cells to abrogate the disease progression. Therefore, targeting ER stress and the consequent unfolded protein response (UPR) in pancreatic β-cells may be a potential therapeutic strategy for diabetes treatment. Dietary phytochemicals have therapeutic applications in human health owing to their broad spectrum of biochemical and pharmacological activities. Flavonoids, which are commonly obtained from fruits and vegetables worldwide, have shown promising prospects in alleviating ER stress. Dietary flavonoids including quercetin, kaempferol, myricetin, isorhamnetin, fisetin, icariin, apigenin, apigetrin, vitexin, baicalein, baicalin, nobiletin hesperidin, naringenin, epigallocatechin 3-O-gallate hesperidin (EGCG), tectorigenin, liquiritigenin, and acacetin have shown inhibitory effects on ER stress in pancreatic β-cells. Dietary flavonoids modulate ER stress signaling components, chaperone proteins, transcription factors, oxidative stress, autophagy, apoptosis, and inflammatory responses to exert their pharmacological effects on pancreatic β-cells ER stress. This review focuses on the role of dietary flavonoids as potential therapeutic adjuvants in preserving pancreatic β-cells from ER stress. Highlights of the underlying mechanisms of action are also presented as well as possible strategies for clinical translation in the management of DM.
Collapse
Affiliation(s)
- Kingsley C. Mbara
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Marthe C.D. Fotsing
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Claudine N. Mbeb
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chinekwu S. Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Kopang C. Mokhetho
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Himansu Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, KwaZulu-Natal, South Africa
| | - Manimbulu Nlooto
- Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, South Africa
| | - Shoeshoe Mokhele
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Carmen M. Leonard
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Vuyelwa J. Tembu
- Natural Products Chemistry Research Laboratory, Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clemence Tarirai
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
7
|
Blanc M, Habbouche L, Xiao P, Lebeaupin C, Janona M, Vaillant N, Irondelle M, Gilleron J, Murcy F, Rousseau D, Luci C, Barouillet T, Marchetti S, Lacas-Gervais S, Yvan-Charvet L, Gual P, Cardozo AK, Bailly-Maitre B. Bax Inhibitor-1 preserves pancreatic β-cell proteostasis by limiting proinsulin misfolding and programmed cell death. Cell Death Dis 2024; 15:334. [PMID: 38744890 PMCID: PMC11094198 DOI: 10.1038/s41419-024-06701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to β-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving β-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production. BI-1-deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, β-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that BI-1 deletion overburdens unfolded proinsulin in the ER of β-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to β-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in β-cells limited IRE1α RNase activity from triggering programmed β-cell death through apoptosis and pyroptosis (caspase-1, IL-1β) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed β-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic β-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on β-cell function and insulin secretion. In pancreatic β-cells, BI-1-/- deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, β-cell programmed cell death, and diabetes.
Collapse
Affiliation(s)
- Marina Blanc
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Lama Habbouche
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Peng Xiao
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles (ULB), Bruxelles, Belgique
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys, La Jolla, CA, 92037, USA
| | - Marion Janona
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Nathalie Vaillant
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Marie Irondelle
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Jérôme Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Adipo-Cible Research Study Group, Centre Méditerranéen de Médecine Moléculaire (C3M), Team «Insulin Resistance in Obesity and type 2 Diabetes», Nice, France
| | - Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Déborah Rousseau
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Team «Chronic Liver Diseases Associated with Obesity and Alcohol», Nice, France
| | - Carmelo Luci
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Team «Chronic Liver Diseases Associated with Obesity and Alcohol», Nice, France
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Sandrine Marchetti
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Team «Metabolism, cancer and immune responses», Nice, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, CCMA, Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France
| | - Philippe Gual
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Team «Chronic Liver Diseases Associated with Obesity and Alcohol», Nice, France
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles (ULB), Bruxelles, Belgique
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Team "Hematometabolism and Metainflammation (HEMAMETABO), 06204, Nice, France.
| |
Collapse
|
8
|
McFadden MJ, Reynolds MB, Michmerhuizen BC, Ólafsson EB, Anderson FM, Schultz TL, O’Riordan MX, O’Meara TR. Non-canonical activation of IRE1α during Candida albicans infection enhances macrophage fungicidal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560560. [PMID: 37873171 PMCID: PMC10592910 DOI: 10.1101/2023.10.02.560560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
While the canonical function of IRE1α is to detect misfolded proteins and activate the unfolded protein response (UPR) to maintain cellular homeostasis, microbial pathogens can also activate IRE1α, which modulates innate immunity and infection outcomes. However, how infection activates IRE1α and its associated inflammatory functions have not been fully elucidated. Recognition of microbe-associated molecular patterns can activate IRE1α, but it is unclear whether this depends on protein misfolding. Here, we report that a common and deadly fungal pathogen, Candida albicans, activates macrophage IRE1α through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. This activation did not depend on protein misfolding in response to C. albicans infection. Moreover, lipopolysaccharide treatment was also able to activate IRE1α prior to protein misfolding, suggesting that pathogen-mediated activation of IRE1α occurs through non-canonical mechanisms. During C. albicans infection, we observed that IRE1α activity promotes phagolysosomal fusion that supports the fungicidal activity of macrophages. Consequently, macrophages lacking IRE1α activity displayed inefficient phagosome maturation, enabling C. albicans to lyse the phagosome, evade fungal killing, and drive aberrant inflammatory cytokine production. Mechanistically, we show that IRE1α activity supports phagosomal calcium flux after phagocytosis of C. albicans, which is crucial for phagosome maturation. Importantly, deletion of IRE1α activity decreased the fungicidal activity of phagocytes in vivo during systemic C. albicans infection. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.
Collapse
Affiliation(s)
- Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Einar B. Ólafsson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X.D. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Huang D, Li Y, Han J, Zuo H, Liu H, Chen Z. Xbp1 promotes odontoblastic differentiation through modulating mitochondrial homeostasis. FASEB J 2024; 38:e23600. [PMID: 38572599 DOI: 10.1096/fj.202400186r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.
Collapse
Affiliation(s)
- Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahao Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Pelizzari-Raymundo D, Maltret V, Nivet M, Pineau R, Papaioannou A, Zhou X, Caradec F, Martin S, Le Gallo M, Avril T, Chevet E, Lafont E. IRE1 RNase controls CD95-mediated cell death. EMBO Rep 2024; 25:1792-1813. [PMID: 38383861 PMCID: PMC11014915 DOI: 10.1038/s44319-024-00095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.
Collapse
Affiliation(s)
- Diana Pelizzari-Raymundo
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Victoria Maltret
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Manon Nivet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Raphael Pineau
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Alexandra Papaioannou
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Flavie Caradec
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sophie Martin
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
11
|
Touvier T, Veneri FA, Claessens A, Ferri C, Mastrangelo R, Sorgiati N, Bianchi F, Valenzano S, Del Carro U, Rivellini C, Duong P, Shy ME, Kelly JW, Svaren J, Wiseman RL, D'Antonio M. Activation of XBP1s attenuates disease severity in models of proteotoxic Charcot-Marie-Tooth type 1B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.577760. [PMID: 38352425 PMCID: PMC10862880 DOI: 10.1101/2024.01.31.577760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.
Collapse
Affiliation(s)
- Thierry Touvier
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Francesca A Veneri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Anke Claessens
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Rosa Mastrangelo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Noémie Sorgiati
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Serena Valenzano
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
- University of Camerino, Center for Neuroscience, 62032 Camerino, Italy
| | - Ubaldo Del Carro
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cristina Rivellini
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Phu Duong
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
12
|
Gao Y, Ryu H, Lee H, Kim YJ, Lee JH, Lee J. ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets. Mol Cells 2024; 47:100004. [PMID: 38376482 PMCID: PMC10880082 DOI: 10.1016/j.mocell.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 02/21/2024] Open
Abstract
Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R's Gq utilization rather than reversing GLP-1R's signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R's signaling, which can be used in type 2 diabetes treatment.
Collapse
Affiliation(s)
- Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyejin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- New Biology Research Center, DGIST, Daegu 42988, Republic of Korea
- Well Aging Research Center, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
13
|
Lee JH, Ryu H, Lee H, Yu HR, Gao Y, Lee KM, Kim YJ, Lee J. Endoplasmic reticulum stress in pancreatic β cells induces incretin desensitization and β-cell dysfunction via ATF4-mediated PDE4D expression. Am J Physiol Endocrinol Metab 2023; 325:E448-E465. [PMID: 37729023 DOI: 10.1152/ajpendo.00156.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Pancreatic β-cell dysfunction and eventual loss are key steps in the progression of type 2 diabetes (T2D). Endoplasmic reticulum (ER) stress responses, especially those mediated by the protein kinase RNA-like ER kinase and activating transcription factor 4 (PERK-ATF4) pathway, have been implicated in promoting these β-cell pathologies. However, the exact molecular events surrounding the role of the PERK-ATF4 pathway in β-cell dysfunction remain unknown. Here, we report our discovery that ATF4 promotes the expression of PDE4D, which disrupts β-cell function via a downregulation of cAMP signaling. We found that β-cell-specific transgenic expression of ATF4 led to early β-cell dysfunction and loss, a phenotype that resembles accelerated T2D. Expression of ATF4, rather than C/EBP homologous protein (CHOP), promoted PDE4D expression, reduced cAMP signaling, and attenuated responses to incretins and elevated glucose. Furthermore, we found that β-cells of leptin receptor-deficient diabetic (db/db) mice had elevated nuclear localization of ATF4 and PDE4D expression, accompanied by impaired β-cell function. Accordingly, pharmacological inhibition of the ATF4 pathway attenuated PDE4D expression in the islets and promoted incretin-simulated glucose tolerance and insulin secretion in db/db mice. Finally, we found that inhibiting PDE4 activity with selective pharmacological inhibitors improved β-cell function in both db/db mice and β-cell-specific ATF4 transgenic mice. In summary, our results indicate that ER stress causes β-cell failure via ATF4-mediated PDE4D production, suggesting the ATF4-PDE4D pathway could be a therapeutic target for protecting β-cell function during the progression of T2D.NEW & NOTEWORTHY Endoplasmic reticulum stress has been implied to cause multiple β-cell pathologies during the progression of type 2 diabetes (T2D). However, the precise molecular events underlying this remain unknown. Here, we discovered that elevated ATF4 activity, which was seen in T2D β cells, attenuated β-cell proliferation and impaired insulin secretion via PDE4D-mediated downregulation of cAMP signaling. Additionally, we demonstrated that pharmacological inhibition of the ATF4 pathway or PDE4D activity alleviated β-cell dysfunction, suggesting its therapeutic usefulness against T2D.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyejin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hye Ram Yu
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
14
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. Dual RNase activity of IRE1 as a target for anticancer therapies. J Cell Commun Signal 2023:10.1007/s12079-023-00784-5. [PMID: 37721642 DOI: 10.1007/s12079-023-00784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland.
| |
Collapse
|
15
|
Chen YC, Taylor AJ, Fulcher JM, Swensen AC, Dai XQ, Komba M, Wrightson KL, Fok K, Patterson AE, Klein Geltink RI, MacDonald PE, Qian WJ, Verchere CB. Deletion of Carboxypeptidase E in β-Cells Disrupts Proinsulin Processing but Does Not Lead to Spontaneous Development of Diabetes in Mice. Diabetes 2023; 72:1277-1288. [PMID: 37364047 PMCID: PMC10450824 DOI: 10.2337/db22-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic β-cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic β-cell-specific Cpe knockout mice (βCpeKO; Cpefl/fl x Ins1Cre/+) lack mature insulin granules and have elevated proinsulin in plasma; however, glucose-and KCl-stimulated insulin secretion in βCpeKO islets remained intact. High-fat diet-fed βCpeKO mice showed weight gain and glucose tolerance comparable with those of Wt littermates. Notably, β-cell area was increased in chow-fed βCpeKO mice and β-cell replication was elevated in βCpeKO islets. Transcriptomic analysis of βCpeKO β-cells revealed elevated glycolysis and Hif1α-target gene expression. On high glucose challenge, β-cells from βCpeKO mice showed reduced mitochondrial membrane potential, increased reactive oxygen species, reduced MafA, and elevated Aldh1a3 transcript levels. Following multiple low-dose streptozotocin injections, βCpeKO mice had accelerated development of hyperglycemia with reduced β-cell insulin and Glut2 expression. These findings suggest that Cpe and proper proinsulin processing are critical in maintaining β-cell function during the development of hyperglycemia. ARTICLE HIGHLIGHTS Carboxypeptidase E (Cpe) is an enzyme that removes the carboxy-terminal arginine and lysine residues from peptide precursors. Mutations in CPE lead to obesity and type 2 diabetes in humans, and whole-body Cpe knockout or mutant mice are obese and hyperglycemic and fail to convert proinsulin to insulin. We show that β-cell-specific Cpe deletion in mice (βCpeKO) does not lead to the development of obesity or hyperglycemia, even after prolonged high-fat diet treatment. However, β-cell proliferation rate and β-cell area are increased, and the development of hyperglycemia induced by multiple low-dose streptozotocin injections is accelerated in βCpeKO mice.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Austin J. Taylor
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James M. Fulcher
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Adam C. Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuhiro Komba
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Kenny Fok
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Annette E. Patterson
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ramon I. Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - C. Bruce Verchere
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Iovino M, Colonval M, Wilkin C, L’homme L, Lassence C, Campas M, Peulen O, de Tullio P, Piette J, Legrand-Poels S. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid. Front Immunol 2023; 14:1204126. [PMID: 37711626 PMCID: PMC10498766 DOI: 10.3389/fimmu.2023.1204126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.
Collapse
Affiliation(s)
- Margaud Iovino
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Megan Colonval
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Laurent L’homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | - Manon Campas
- Clinical Metabolomics Group, CIRM, ULiège, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA, ULiège, Liège, Belgium
| | | | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
17
|
Mingjie Y, Yair A, Tali G. The RIDD activity of C. elegans IRE1 modifies neuroendocrine signaling in anticipation of environment stress to ensure survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552841. [PMID: 37609168 PMCID: PMC10441387 DOI: 10.1101/2023.08.10.552841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Xbp1 splicing and regulated IRE1-dependent RNA decay (RIDD) are two RNase activities of the ER stress sensor IRE1. While Xbp1 splicing has important roles in stress responses and animal physiology, the physiological role(s) of RIDD remain enigmatic. Genetic evidence in C. elegans connects XBP1-independent IRE1 activity to organismal stress adaptation, but whether this is via RIDD, and what are the targets is yet unknown. We show that cytosolic kinase/RNase domain of C. elegans IRE1 is indeed capable of RIDD in human cells, and that sensory neurons use RIDD to signal environmental stress, by degrading mRNA of TGFβ-like growth factor DAF-7. daf-7 was degraded in human cells by both human and worm IRE1 RNAse activity with same efficiency and specificity as Blos1, confirming daf-7 as RIDD substrate. Surprisingly, daf-7 degradation in vivo was triggered by concentrations of ER stressor tunicamycin too low for xbp-1 splicing. Decrease in DAF-7 normally signals food limitation and harsh environment, triggering adaptive changes to promote population survival. Because C. elegans is a bacteriovore, and tunicamycin, like other common ER stressors, is an antibiotic secreted by Streptomyces spp., we asked whether daf-7 degradation by RIDD could signal pending food deprivation. Indeed, pre-emptive tunicamycin exposure increased survival of C. elegans populations under food limiting/high temperature stress, and this protection was abrogated by overexpression of DAF-7. Thus, C. elegans uses stress-inducing metabolites in its environment as danger signals, and employs IRE1's RIDD activity to modulate the neuroendocrine signaling for survival of upcoming environmental challenge.
Collapse
Affiliation(s)
- Ying Mingjie
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Argon Yair
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
19
|
Distefano R, Ilieva M, Madsen JH, Ishii H, Aikawa M, Rennie S, Uchida S. T2DB: A Web Database for Long Non-Coding RNA Genes in Type II Diabetes. Noncoding RNA 2023; 9:30. [PMID: 37218990 PMCID: PMC10204529 DOI: 10.3390/ncrna9030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA USP30-AS1, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.
Collapse
Affiliation(s)
- Rebecca Distefano
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.)
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.)
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan;
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (M.I.); (J.H.M.)
| |
Collapse
|
20
|
Rubio-Navarro A, Gómez-Banoy N, Stoll L, Dündar F, Mawla AM, Ma L, Cortada E, Zumbo P, Li A, Reiterer M, Montoya-Oviedo N, Homan EA, Imai N, Gilani A, Liu C, Naji A, Yang B, Chong ACN, Cohen DE, Chen S, Cao J, Pitt GS, Huising MO, Betel D, Lo JC. A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nat Cell Biol 2023; 25:565-578. [PMID: 36928765 PMCID: PMC10449536 DOI: 10.1038/s41556-023-01103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023]
Abstract
The pancreatic islets are composed of discrete hormone-producing cells that orchestrate systemic glucose homeostasis. Here we identify subsets of beta cells using a single-cell transcriptomic approach. One subset of beta cells marked by high CD63 expression is enriched for the expression of mitochondrial metabolism genes and exhibits higher mitochondrial respiration compared with CD63lo beta cells. Human and murine pseudo-islets derived from CD63hi beta cells demonstrate enhanced glucose-stimulated insulin secretion compared with pseudo-islets from CD63lo beta cells. We show that CD63hi beta cells are diminished in mouse models of and in humans with type 2 diabetes. Finally, transplantation of pseudo-islets generated from CD63hi but not CD63lo beta cells into diabetic mice restores glucose homeostasis. These findings suggest that loss of a specific subset of beta cells may lead to diabetes. Strategies to reconstitute or maintain CD63hi beta cells may represent a potential anti-diabetic therapy.
Collapse
Affiliation(s)
- Alfonso Rubio-Navarro
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Excellence Research Unit "Modeling Nature" (MNat), CTS-963-Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Stoll
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Alex M Mawla
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lunkun Ma
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Eric Cortada
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Ang Li
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Moritz Reiterer
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nathalia Montoya-Oviedo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Lipids and Diabetes Laboratory, Department of Physiological Sciences, Faculty of Medicine, National University of Colombia, Bogotá, Colombia
| | - Edwin A Homan
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Norihiro Imai
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Ankit Gilani
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Boris Yang
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - David E Cohen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Doron Betel
- Department of Physiology and Biophysics, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Division of Hematology and Medical Oncology, Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - James C Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Daniels Gatward LF, Kim Y, Loe A, Liu Y, Kristensen L, King AJF. Beta cell endoplasmic reticulum stress drives diabetes in the KINGS mouse without causing mass beta cell loss. Diabet Med 2022; 39:e14962. [PMID: 36151994 PMCID: PMC9828143 DOI: 10.1111/dme.14962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023]
Abstract
AIMS Beta cell endoplasmic reticulum (ER) stress can cause cellular death and dysfunction and has been implicated in the pathogenesis of diabetes. Animal models of beta cell ER stress are critical in further understanding this and for testing novel diabetes therapeutics. The KINGS mouse is a model of beta cell ER stress driven by a heterozygous mutation in Ins2. In this study, we investigated how beta cell ER stress in the KINGS mouse drives diabetes. METHODS We investigated whether the unfolded protein response (UPR) was activated in islets isolated from male and female KINGS mice and whether this impacted beta cell mass and turnover. RESULTS Whilst the UPR was up-regulated in KINGS islets, with increased protein expression of markers of all three UPR arms, this was not associated with a mass loss of beta cells; beta cell apoptosis rates did not increase until after the development of overt diabetes, and did not lead to substantial changes in beta cell mass. CONCLUSION We propose that the KINGS mouse represents a model where beta cell maladaptive UPR signalling drives diabetes development without causing mass beta cell loss.
Collapse
Affiliation(s)
| | - Yujin Kim
- Department of DiabetesKing's College LondonLondonUK
| | - Aerin Loe
- Department of DiabetesKing's College LondonLondonUK
| | - Yiyang Liu
- Department of DiabetesKing's College LondonLondonUK
| | | | | |
Collapse
|
22
|
Song J, Ni Q, Sun J, Xie J, Liu J, Ning G, Wang W, Wang Q. Aging Impairs Adaptive Unfolded Protein Response and Drives Beta Cell Dedifferentiation in Humans. J Clin Endocrinol Metab 2022; 107:3231-3241. [PMID: 36125175 PMCID: PMC9693768 DOI: 10.1210/clinem/dgac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaired glucose tolerance. METHODS We calculated the percentage of hormone-negative/chromogranin A-positive endocrine cells and evaluated the expressions of forkhead box O1 (FoxO1) and Urocortin 3 (UCN3) in islets from 31 nondiabetic individuals, divided into young (<40 years), middle-aged (40-60 years) and elderly (>60 years) groups. We also assessed adaptive unfolded protein response markers glucose-regulated protein 94 (GRP94), and spliced X-box binding protein 1 (XBP1s) in senescent beta cells and their possible contributions to maintaining beta cell identity and differentiation state. RESULTS We found an almost 2-fold increase in the proportion of dedifferentiated cells in elderly and middle-aged groups compared with the young group (3.1 ± 1.0% and 3.0 ± 0.9% vs 1.7 ± 0.5%, P < .001). This was accompanied by inactivation of FoxO1 and loss of UCN3 expression in senescent human beta cells. In addition, we demonstrated that the expression levels of adaptive unfolded protein response (UPR) components GRP94 and XBP1s declined with age. In vitro data showed knockdown GRP94 in Min6-triggered cells to dedifferentiate and acquire progenitor features, while restored GRP94 levels in H2O2-induced senescent Min6 cells rescued beta cell identity. CONCLUSION Our finding highlights that the failure to establish proper adaptive UPR in senescent human beta cells shifts their differentiated states, possibly representing a crucial step in the pathogenesis of age-related beta cell failure.
Collapse
Affiliation(s)
| | | | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qidi Wang
- Correspondence: Qidi Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ; or Weiqing Wang, MD, PhD, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Cabral‐Miranda F, Tamburini G, Martinez G, Ardiles AO, Medinas DB, Gerakis Y, Hung MD, Vidal R, Fuentealba M, Miedema T, Duran‐Aniotz C, Diaz J, Ibaceta‐Gonzalez C, Sabusap CM, Bermedo‐Garcia F, Mujica P, Adamson S, Vitangcol K, Huerta H, Zhang X, Nakamura T, Sardi SP, Lipton SA, Kennedy BK, Henriquez JP, Cárdenas JC, Plate L, Palacios AG, Hetz C. Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging. EMBO J 2022; 41:e111952. [PMID: 36314651 PMCID: PMC9670206 DOI: 10.15252/embj.2022111952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.
Collapse
Affiliation(s)
- Felipe Cabral‐Miranda
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Giovanni Tamburini
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Gabriela Martinez
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de ValparaísoUniversidad de ValparaisoValparaisoChile
- Centro de Neurología Traslacional, Escuela de MedicinaUniversidad de ValparaísoValparaisoChile
| | - Danilo B Medinas
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Yannis Gerakis
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Mei‐Li Diaz Hung
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - René Vidal
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Center for Integrative BiologyUniversidad MayorSantiagoChile
| | - Matias Fuentealba
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Tim Miedema
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Claudia Duran‐Aniotz
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Javier Diaz
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
| | | | - Carleen M Sabusap
- Departments of Chemistry and Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Francisca Bermedo‐Garcia
- Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - Paula Mujica
- Centro de Neurología Traslacional, Escuela de MedicinaUniversidad de ValparaísoValparaisoChile
| | | | | | - Hernan Huerta
- Center for Integrative BiologyUniversidad MayorSantiagoChile
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCAUSA
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCAUSA
| | | | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCAUSA
- Department of Neurosciences, School of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Brian K Kennedy
- Buck Institute for Research on AgingNovatoCAUSA
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore; Centre for Healthy Longevity, National University Health System; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Juan Pablo Henriquez
- Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - J Cesar Cárdenas
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Center for Integrative BiologyUniversidad MayorSantiagoChile
- Buck Institute for Research on AgingNovatoCAUSA
| | - Lars Plate
- Departments of Chemistry and Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de ValparaísoUniversidad de ValparaisoValparaisoChile
| | - Claudio Hetz
- Center for GeroscienceBrain Health and MetabolismSantiagoChile
- Biomedical Neuroscience Institute, Faculty of MedicineUniversity of ChileSantiagoChile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
- Buck Institute for Research on AgingNovatoCAUSA
| |
Collapse
|
24
|
Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology 2022; 164:bqac184. [PMID: 36317483 PMCID: PMC9667558 DOI: 10.1210/endocr/bqac184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/05/2022]
Abstract
The pathogeneses of the 2 major forms of diabetes, type 1 and type 2, differ with respect to their major molecular insults (loss of immune tolerance and onset of tissue insulin resistance, respectively). However, evidence suggests that dysfunction and/or death of insulin-producing β-cells is common to virtually all forms of diabetes. Although the mechanisms underlying β-cell dysfunction remain incompletely characterized, recent years have witnessed major advances in our understanding of the molecular pathways that contribute to the demise of the β-cell. Cellular and environmental factors contribute to β-cell dysfunction/loss through the activation of molecular pathways that exacerbate endoplasmic reticulum stress, the integrated stress response, oxidative stress, and impaired autophagy. Whereas many of these stress responsive pathways are interconnected, their individual contributions to glucose homeostasis and β-cell health have been elucidated through the development and interrogation of animal models. In these studies, genetic models and pharmacological compounds have enabled the identification of genes and proteins specifically involved in β-cell dysfunction during diabetes pathogenesis. Here, we review the critical stress response pathways that are activated in β cells in the context of the animal models.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah C May
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
25
|
De-Souza EA, Cummins N, Taylor RC. IRE-1 endoribonuclease activity declines early in C. elegans adulthood and is not rescued by reduced reproduction. FRONTIERS IN AGING 2022; 3:1044556. [PMID: 36389122 PMCID: PMC9649906 DOI: 10.3389/fragi.2022.1044556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The proteome of a cell helps to define its functional specialization. Most proteins must be translated and properly folded to ensure their biological function, but with aging, animals lose their ability to maintain a correctly folded proteome. This leads to the accumulation of protein aggregates, decreased stress resistance, and the onset of age-related disorders. The unfolded protein response of the endoplasmic reticulum (UPRER) is a central protein quality control mechanism, the function of which is known to decline with age. Here, we show that age-related UPRER decline in Caenorhabditis elegans occurs at the onset of the reproductive period and is caused by a failure in IRE-1 endoribonuclease activities, affecting both the splicing of xbp-1 mRNA and regulated Ire1 dependent decay (RIDD) activity. Animals with a defect in germline development, previously shown to rescue the transcriptional activity of other stress responses during aging, do not show restored UPRER activation with age. This underlines the mechanistic difference between age-associated loss of UPRER activation and that of other stress responses in this system, and uncouples reproductive status from the activity of somatic maintenance pathways. These observations may aid in the development of strategies that aim to overcome the proteostasis decline observed with aging.
Collapse
Affiliation(s)
| | | | - Rebecca C. Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
26
|
Chen JH, Wu CH, Jheng JR, Chao CT, Huang JW, Hung KY, Liu SH, Chiang CK. The down-regulation of XBP1, an unfolded protein response effector, promotes acute kidney injury to chronic kidney disease transition. J Biomed Sci 2022; 29:46. [PMID: 35765067 PMCID: PMC9241279 DOI: 10.1186/s12929-022-00828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background The activation of the unfolded protein response (UPR) is closely linked to the pathogenesis of renal injuries. However, the role of XBP1, a crucial regulator of adaptive UPR, remains unclear during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Methods We characterized XBP1 expressions in different mouse models of kidney injuries, including unilateral ischemia–reperfusion injury (UIRI), unilateral ureteral obstruction, and adenine-induced CKD, followed by generating proximal tubular XBP1 conditional knockout (XBP1cKO) mice for examining the influences of XBP1. Human proximal tubular epithelial cells (HK-2) were silenced of XBP1 to conduct proteomic analysis and investigate the underlying mechanism. Results We showed a tripartite activation of UPR in injured kidneys. XBP1 expressions were attenuated after AKI and inversely correlated with the severity of post-AKI renal fibrosis. XBP1cKO mice exhibited more severe renal fibrosis in the UIRI model than wide-type littermates. Silencing XBP1 induced HK-2 cell cycle arrest in G2M phase, inhibited cell proliferation, and promoted TGF-β1 secretion. Proteomic analysis identified TNF receptor associated protein 1 (Trap1) as the potential downstream target transcriptionally regulated by XBP1s. Trap1 overexpression can alleviate silencing XBP1 induced profibrotic factor expressions and cell cycle arrest. Conclusion The loss of XBP1 in kidney injury was profibrotic, and the process was mediated by autocrine and paracrine regulations in combination. The present study identified the XBP1-Trap1 axis as an instrumental mechanism responsible for post-AKI fibrosis, which is a novel regulatory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00828-9.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Jia-Rong Jheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan. .,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Duvall E, Benitez CM, Tellez K, Enge M, Pauerstein PT, Li L, Baek S, Quake SR, Smith JP, Sheffield NC, Kim SK, Arda HE. Single-cell transcriptome and accessible chromatin dynamics during endocrine pancreas development. Proc Natl Acad Sci U S A 2022; 119:e2201267119. [PMID: 35733248 PMCID: PMC9245718 DOI: 10.1073/pnas.2201267119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Delineating gene regulatory networks that orchestrate cell-type specification is a continuing challenge for developmental biologists. Single-cell analyses offer opportunities to address these challenges and accelerate discovery of rare cell lineage relationships and mechanisms underlying hierarchical lineage decisions. Here, we describe the molecular analysis of mouse pancreatic endocrine cell differentiation using single-cell transcriptomics, chromatin accessibility assays coupled to genetic labeling, and cytometry-based cell purification. We uncover transcription factor networks that delineate β-, α-, and δ-cell lineages. Through genomic footprint analysis, we identify transcription factor-regulatory DNA interactions governing pancreatic cell development at unprecedented resolution. Our analysis suggests that the transcription factor Neurog3 may act as a pioneer transcription factor to specify the pancreatic endocrine lineage. These findings could improve protocols to generate replacement endocrine cells from renewable sources, like stem cells, for diabetes therapy.
Collapse
Affiliation(s)
- Eliza Duvall
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Cecil M. Benitez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Martin Enge
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305
| | - Philip T. Pauerstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lingyu Li
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Stephen R. Quake
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Jason P. Smith
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Nathan C. Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
28
|
Lee K, Chan JY, Liang C, Ip CK, Shi YC, Herzog H, Hughes WE, Bensellam M, Delghingaro-Augusto V, Koina ME, Nolan CJ, Laybutt DR. XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and protects against diabetic beta cell failure during metabolic stress in mice. Diabetologia 2022; 65:984-996. [PMID: 35316840 PMCID: PMC9076738 DOI: 10.1007/s00125-022-05669-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cell dedifferentiation, transdifferentiation into other islet cells and apoptosis have been implicated in beta cell failure in type 2 diabetes, although the mechanisms are poorly defined. The endoplasmic reticulum stress response factor X-box binding protein 1 (XBP1) is a major regulator of the unfolded protein response. XBP1 expression is reduced in islets of people with type 2 diabetes, but its role in adult differentiated beta cells is unclear. Here, we assessed the effects of Xbp1 deletion in adult beta cells and tested whether XBP1-mediated unfolded protein response makes a necessary contribution to beta cell compensation in insulin resistance states. METHODS Mice with inducible beta cell-specific Xbp1 deletion were studied under normal (chow diet) or metabolic stress (high-fat diet or obesity) conditions. Glucose tolerance, insulin secretion, islet gene expression, alpha cell mass, beta cell mass and apoptosis were assessed. Lineage tracing was used to determine beta cell fate. RESULTS Deletion of Xbp1 in adult mouse beta cells led to beta cell dedifferentiation, beta-to-alpha cell transdifferentiation and increased alpha cell mass. Cell lineage-specific analyses revealed that Xbp1 deletion deactivated beta cell identity genes (insulin, Pdx1, Nkx6.1, Beta2, Foxo1) and derepressed beta cell dedifferentiation (Aldh1a3) and alpha cell (glucagon, Arx, Irx2) genes. Xbp1 deletion in beta cells of obese ob/ob or high-fat diet-fed mice triggered diabetes and worsened glucose intolerance by disrupting insulin secretory capacity. Furthermore, Xbp1 deletion increased beta cell apoptosis under metabolic stress conditions by attenuating the antioxidant response. CONCLUSIONS/INTERPRETATION These findings indicate that XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and is required for beta cell compensation and prevention of diabetes in insulin resistance states.
Collapse
Affiliation(s)
- Kailun Lee
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Chi Kin Ip
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
- Secteur des sciences de la santé, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Université catholique de Louvain, Brussels, Belgium
| | - Viviane Delghingaro-Augusto
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mark E Koina
- ACT Pathology, Canberra Health Services, Garran, ACT, Australia
| | - Christopher J Nolan
- Medical School and John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Endocrinology, The Canberra Hospital, Garran, ACT, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia.
| |
Collapse
|
29
|
Zhang X, Malik B, Young C, Zhang H, Larkin D, Liao XH, Refetoff S, Liu M, Arvan P. Maintaining the thyroid gland in mutant thyroglobulin-induced hypothyroidism requires thyroid cell proliferation that must continue in adulthood. J Biol Chem 2022; 298:102066. [PMID: 35618019 PMCID: PMC9213252 DOI: 10.1016/j.jbc.2022.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress–mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR–CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bhoomanyu Malik
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hao Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dennis Larkin
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xiao-Hui Liao
- Departments of Medicine, Pediatrics, and Committee on Genetics, The University of Chicago, Chicago Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics, and Committee on Genetics, The University of Chicago, Chicago Illinois, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| |
Collapse
|
30
|
Lee JH, Lee J. Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic β-Cell Dysfunction and Senescence in Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23094843. [PMID: 35563231 PMCID: PMC9104816 DOI: 10.3390/ijms23094843] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
An increased life span and accompanying nutritional affluency have led to a rapid increase in diseases associated with aging, such as obesity and type 2 diabetes, imposing a tremendous economic and health burden on society. Pancreatic β-cells are crucial for controlling glucose homeostasis by properly producing and secreting the glucose-lowering hormone insulin, and the dysfunction of β-cells determines the outcomes for both type 1 and type 2 diabetes. As the native structure of insulin is formed within the endoplasmic reticulum (ER), ER homeostasis should be appropriately maintained to allow for the proper metabolic homeostasis and functioning of β-cells. Recent studies have found that cellular senescence is critically linked with cellular stresses, including ER stress, oxidative stress, and mitochondrial stress. These studies implied that β-cell senescence is caused by ER stress and other cellular stresses and contributes to β-cells’ dysfunction and the impairment of glucose homeostasis. This review documents and discusses the current understanding of cellular senescence, β-cell function, ER stress, its associated signaling mechanism (unfolded protein response), and the effect of ER stress on β-cell senescence and dysfunction.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence:
| |
Collapse
|
31
|
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 2022; 82:1477-1491. [PMID: 35452616 PMCID: PMC9038009 DOI: 10.1016/j.molcel.2022.03.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Collapse
Affiliation(s)
- R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| | - Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda M. Hendershot
- Department of Tumor Biology, St Jude Children’s Research Hospital, Memphis, TN 38105,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| |
Collapse
|
32
|
D'Amico D, Biondi O, Januel C, Bezier C, Sapaly D, Clerc Z, Khoury ME, Sundaram VK, Houdebine L, Josse T, Gaspera BD, Martinat C, Massaad C, Weill L, Charbonnier F. Activating ATF6 in Spinal Muscular Atrophy promotes SMN expression and motor neuron survival through the IRE1α-XBP1 pathway. Neuropathol Appl Neurobiol 2022; 48:e12816. [PMID: 35338505 DOI: 10.1111/nan.12816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/27/2022]
Abstract
AIM Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by Survival of Motor Neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the Unfolded Protein Response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.
Collapse
Affiliation(s)
- Domenico D'Amico
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Olivier Biondi
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Camille Januel
- Université d'Evry-Val-d'Essonne & Inserm UMR 861, I-STEM, AFM, Corbeil-Essonne, France
| | - Cynthia Bezier
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France.,Biophytis, Sorbonne Université, Paris Cedex 05, France
| | - Delphine Sapaly
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Zoé Clerc
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | | | | | - Léo Houdebine
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Thibaut Josse
- Université de Tour &CNRS UMR 7261, Institut de Recherche sur la Biologie de l'Insecte, Tours, France
| | | | - Cécile Martinat
- Université d'Evry-Val-d'Essonne & Inserm UMR 861, I-STEM, AFM, Corbeil-Essonne, France
| | - Charbel Massaad
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Laure Weill
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | | |
Collapse
|
33
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
34
|
Miyake M, Sobajima M, Kurahashi K, Shigenaga A, Denda M, Otaka A, Saio T, Sakane N, Kosako H, Oyadomari S. Identification of an endoplasmic reticulum proteostasis modulator that enhances insulin production in pancreatic β cells. Cell Chem Biol 2022; 29:996-1009.e9. [PMID: 35143772 DOI: 10.1016/j.chembiol.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Perturbation of endoplasmic reticulum (ER) proteostasis is associated with impairment of cellular function in diverse diseases, especially the function of pancreatic β cells in type 2 diabetes. Restoration of ER proteostasis by small molecules shows therapeutic promise for type 2 diabetes. Here, using cell-based screening, we report identification of a chemical chaperone-like small molecule, KM04794, that alleviates ER stress. KM04794 prevented protein aggregation and cell death caused by ER stressors and a mutant insulin protein. We also found that this compound increased intracellular and secreted insulin levels in pancreatic β cells. Chemical biology and biochemical approaches revealed that the compound accumulated in the ER and interacted directly with the ER molecular chaperone BiP. Our data show that this corrector of ER proteostasis can enhance insulin storage and pancreatic β cell function.
Collapse
Affiliation(s)
- Masato Miyake
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Mitsuaki Sobajima
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan
| | - Kiyoe Kurahashi
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan; Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan; Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Sakane
- Pharmaceutical Frontier Research Laboratories, JT Inc., Yokohama, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Molecular Research, Diabetes Therapeutics and Research Center, Tokushima University, Tokushima, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
35
|
Madhavan A, Kok BP, Rius B, Grandjean JMD, Alabi A, Albert V, Sukiasyan A, Powers ET, Galmozzi A, Saez E, Wiseman RL. Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat Commun 2022; 13:608. [PMID: 35105890 PMCID: PMC8807832 DOI: 10.1038/s41467-022-28271-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
In obesity, signaling through the IRE1 arm of the unfolded protein response exerts both protective and harmful effects. Overexpression of the IRE1-regulated transcription factor XBP1s in liver or fat protects against obesity-linked metabolic deterioration. However, hyperactivation of IRE1 engages regulated IRE1-dependent decay (RIDD) and TRAF2/JNK pro-inflammatory signaling, which accelerate metabolic dysfunction. These pathologic IRE1-regulated processes have hindered efforts to pharmacologically harness the protective benefits of IRE1/XBP1s signaling in obesity-linked conditions. Here, we report the effects of a XBP1s-selective pharmacological IRE1 activator, IXA4, in diet-induced obese (DIO) mice. IXA4 transiently activates protective IRE1/XBP1s signaling in liver without inducing RIDD or TRAF2/JNK signaling. IXA4 treatment improves systemic glucose metabolism and liver insulin action through IRE1-dependent remodeling of the hepatic transcriptome that reduces glucose production and steatosis. IXA4-stimulated IRE1 activation also enhances pancreatic function. Our findings indicate that systemic, transient activation of IRE1/XBP1s signaling engenders multi-tissue benefits that integrate to mitigate obesity-driven metabolic dysfunction.
Collapse
Affiliation(s)
- Aparajita Madhavan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bernard P Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bibiana Rius
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Adekunle Alabi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Verena Albert
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ara Sukiasyan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrea Galmozzi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, University of Wisconsin, Madison, WI, 53705, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
36
|
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int J Mol Sci 2022; 23:780. [PMID: 35054963 PMCID: PMC8775980 DOI: 10.3390/ijms23020780] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington's disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.
Collapse
Affiliation(s)
- Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad 500078, Telangana, India; (P.K.); (V.K.); (A.S.); (A.T.); (V.C.)
| | | | | | | | | | | |
Collapse
|
37
|
Silverstein A, Dudaev A, Studneva M, Aitken J, Blokh S, Miller AD, Tanasova S, Rose N, Ryals J, Borchers C, Nordstrom A, Moiseyakh M, Herrera AS, Skomorohov N, Marshall T, Wu A, Cheng RH, Syzko K, Cotter PD, Podzyuban M, Thilly W, Smith PD, Barach P, Bouri K, Schoenfeld Y, Matsuura E, Medvedeva V, Shmulevich I, Cheng L, Seegers P, Khotskaya Y, Flaherty K, Dooley S, Sorenson EJ, Ross M, Suchkov S. Evolution of biomarker research in autoimmunity conditions for health professionals and clinical practice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:219-276. [DOI: 10.1016/bs.pmbts.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Sahin GS, Lee H, Engin F. An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol Metab 2021; 54:101365. [PMID: 34728341 PMCID: PMC8606542 DOI: 10.1016/j.molmet.2021.101365] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pancreatic β-cells are the insulin factory of an organism with a mission to regulate glucose homeostasis in the body. Due to their high secretory activity, β-cells rely on a functional and intact endoplasmic reticulum (ER). Perturbations to ER homeostasis and unmitigated stress lead to β-cell dysfunction and death. Type 1 diabetes (T1D) is a chronic inflammatory disease caused by the autoimmune-mediated destruction of β-cells. Although autoimmunity is an essential component of T1D pathogenesis, accumulating evidence suggests an important role of β-cell ER stress and aberrant unfolded protein response (UPR) in disease initiation and progression. SCOPE OF REVIEW In this article, we introduce ER stress and the UPR, review β-cell ER stress in various mouse models, evaluate its involvement in inflammation, and discuss the effects of ER stress on β-cell plasticity and demise, and islet autoimmunity in T1D. We also highlight the relationship of ER stress with other stress response pathways and provide insight into ongoing clinical studies targeting ER stress and the UPR for the prevention or treatment of T1D. MAJOR CONCLUSIONS Evidence from ex vivo studies, in vivo mouse models, and tissue samples from patients suggest that β-cell ER stress and a defective UPR contribute to T1D pathogenesis. Thus, restoration of β-cell ER homeostasis at various stages of disease presents a plausible therapeutic strategy for T1D. Identifying the specific functions and regulation of each UPR sensor in β-cells and uncovering the crosstalk between stressed β-cells and immune cells during T1D progression would provide a better understanding of the molecular mechanisms of disease process, and may reveal novel targets for development of effective therapies for T1D.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
39
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
40
|
Sharma RB, Landa-Galván HV, Alonso LC. Living Dangerously: Protective and Harmful ER Stress Responses in Pancreatic β-Cells. Diabetes 2021; 70:2431-2443. [PMID: 34711668 PMCID: PMC8564401 DOI: 10.2337/dbi20-0033] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes (T2D) is a growing cause of poor health, psychosocial burden, and economic costs worldwide. The pancreatic β-cell is a cornerstone of metabolic physiology. Insulin deficiency leads to hyperglycemia, which was fatal before the availability of therapeutic insulins; even partial deficiency of insulin leads to diabetes in the context of insulin resistance. Comprising only an estimated 1 g or <1/500th of a percent of the human body mass, pancreatic β-cells of the islets of Langerhans are a vulnerable link in metabolism. Proinsulin production constitutes a major load on β-cell endoplasmic reticulum (ER), and decompensated ER stress is a cause of β-cell failure and loss in both type 1 diabetes (T1D) and T2D. The unfolded protein response (UPR), the principal ER stress response system, is critical for maintenance of β-cell health. Successful UPR guides expansion of ER protein folding capacity and increased β-cell number through survival pathways and cell replication. However, in some cases the ER stress response can cause collateral β-cell damage and may even contribute to diabetes pathogenesis. Here we review the known beneficial and harmful effects of UPR pathways in pancreatic β-cells. Improved understanding of this stress response tipping point may lead to approaches to maintain β-cell health and function.
Collapse
Affiliation(s)
- Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism and Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY
| | - Huguet V Landa-Galván
- Division of Endocrinology, Diabetes and Metabolism and Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY
| |
Collapse
|
41
|
Wang T, Wu J, Dong W, Wang M, Zhong X, Zhang W, Dai L, Xie Y, Liu Y, He X, Liu W, Madhusudhan T, Zeng H, Wang H. The MEK inhibitor U0126 ameliorates diabetic cardiomyopathy by restricting XBP1's phosphorylation dependent SUMOylation. Int J Biol Sci 2021; 17:2984-2999. [PMID: 34421344 PMCID: PMC8375222 DOI: 10.7150/ijbs.60459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Chronic diabetes accelerates vascular dysfunction often resulting in cardiomyopathy but underlying mechanisms remain unclear. Recent studies have shown that the deregulated unfolded protein response (UPR) dependent on highly conserved IRE1α-spliced X-box- binding protein (XBP1s) and the resulting endoplasmic reticulum stress (ER-Stress) plays a crucial role in the occurrence and development of diabetic cardiomyopathy (DCM). In the present study, we determined whether targeting MAPK/ERK pathway using MEK inhibitor U0126 could ameliorate DCM by regulating IRE1α-XBP1s pathway. Method: Three groups of 8-week-old C57/BL6J mice were studied: one group received saline injection as control (n=8) and two groups were made diabetic by streptozotocin (STZ) (n=10 each). 18 weeks after STZ injection and stable hyperglycemia, one group had saline treatment while the second group was treated with U0126 (1mg/kg/day), 8 weeks later, all groups were sacrificed. Cardiac function/histopathological changes were determined by echocardiogram examination, Millar catheter system, hematoxylin-eosin staining and western blot analysis. H9C2 cardiomyocytes were employed for in vitro studies. Results: Echocardiographic, hemodynamic and histological data showed overt myocardial hypertrophy and worsened cardiac function in diabetic mice. Chronic diabetic milieu enhanced SUMOylation and impaired nuclear translocation of XBP1s. Intriguingly, U0126 treatment significantly ameliorated progression of DCM, and this protective effect was achieved through enriching XBP1s' nuclear accumulation. Mechanistically, U0126 inhibited XBP1s' phosphorylation on S348 and SUMOylation on K276 promoting XBP1s' nuclear translocation. Collectively, these results identify that MEK inhibition restores XBP1s-dependent UPR and protects against diabetes-induced cardiac remodeling. Conclusion: The current study identifies previously unknown function of MEK/ERK pathway in regulation of ER-stress in DCM. U0126 could be a therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Tao Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China.,Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Jinhua Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China.,Departments of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangzhou, 510000, PR China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, PR China.,Hubei Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, 430030, PR China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, PR China
| | - Mengwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Yujian Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Xingwei He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Wanjun Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| |
Collapse
|
42
|
Siehler J, Blöchinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 2021; 20:920-940. [PMID: 34376833 DOI: 10.1038/s41573-021-00262-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is a metabolic disorder that affects more than 460 million people worldwide. Type 1 diabetes (T1D) is caused by autoimmune destruction of β-cells, whereas type 2 diabetes (T2D) is caused by a hostile metabolic environment that leads to β-cell exhaustion and dysfunction. Currently, first-line medications treat the symptomatic insulin resistance and hyperglycaemia, but do not prevent the progressive decline of β-cell mass and function. Thus, advanced therapies need to be developed that either protect or regenerate endogenous β-cell mass early in disease progression or replace lost β-cells with stem cell-derived β-like cells or engineered islet-like clusters. In this Review, we discuss the state of the art of stem cell differentiation and islet engineering, reflect on current and future challenges in the area and highlight the potential for cell replacement therapies, disease modelling and drug development using these cells. These efforts in stem cell and regenerative medicine will lay the foundations for future biomedical breakthroughs and potentially curative treatments for diabetes.
Collapse
Affiliation(s)
- Johanna Siehler
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Meier
- Technical University of Munich, Medical Faculty, Munich, Germany.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany. .,Technical University of Munich, Medical Faculty, Munich, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
43
|
Yong J, Parekh VS, Reilly SM, Nayak J, Chen Z, Lebeaupin C, Jang I, Zhang J, Prakash TP, Sun H, Murray S, Guo S, Ayala JE, Satin LS, Saltiel AR, Kaufman RJ. Chop/ Ddit3 depletion in β cells alleviates ER stress and corrects hepatic steatosis in mice. Sci Transl Med 2021; 13:13/604/eaba9796. [PMID: 34321322 DOI: 10.1126/scitranslmed.aba9796] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia, hyperinsulinemia, and insulin resistance (IR). During the early phase of T2D, insulin synthesis and secretion by pancreatic β cells is enhanced, which can lead to proinsulin misfolding that aggravates endoplasmic reticulum (ER) protein homeostasis in β cells. Moreover, increased circulating insulin may contribute to fatty liver disease. Medical interventions aimed at alleviating ER stress in β cells while maintaining optimal insulin secretion are therefore an attractive therapeutic strategy for T2D. Previously, we demonstrated that germline Chop gene deletion preserved β cells in high-fat diet (HFD)-fed mice and in leptin receptor-deficient db/db mice. In the current study, we further investigated whether targeting Chop/Ddit3 specifically in murine β cells conferred therapeutic benefits. First, we showed that Chop deletion in β cells alleviated β cell ER stress and delayed glucose-stimulated insulin secretion (GSIS) in HFD-fed mice. Second, β cell-specific Chop deletion prevented liver steatosis and hepatomegaly in aged HFD-fed mice without affecting basal glucose homeostasis. Third, we provide mechanistic evidence that Chop depletion reduces ER Ca2+ buffering capacity and modulates glucose-induced islet Ca2+ oscillations, leading to transcriptional changes of ER chaperone profile ("ER remodeling"). Last, we demonstrated that a GLP1-conjugated Chop antisense oligonucleotide strategy recapitulated the reduction in liver triglycerides and pancreatic insulin content. In summary, our results demonstrate that Chop depletion in β cells provides a therapeutic strategy to alleviate dysregulated insulin secretion and consequent fatty liver disease in T2D.
Collapse
Affiliation(s)
- Jing Yong
- Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA. .,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Vishal S Parekh
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.,Department of Pharmacology, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Shannon M Reilly
- Department of Pharmacology, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA.,Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonamani Nayak
- Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Zhouji Chen
- Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Cynthia Lebeaupin
- Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pharmacology, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.,Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Insook Jang
- Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Jiangwei Zhang
- Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.,Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Thazha P Prakash
- Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.,Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.,Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Sue Murray
- Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.,Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Shuling Guo
- Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.,Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Julio E Ayala
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Cardiometabolic Phenotyping Core, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA.,Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie S Satin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.,Department of Pharmacology, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Alan R Saltiel
- Department of Pharmacology, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA.,Division of Metabolism and Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Yong J, Johnson JD, Arvan P, Han J, Kaufman RJ. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat Rev Endocrinol 2021; 17:455-467. [PMID: 34163039 PMCID: PMC8765009 DOI: 10.1038/s41574-021-00510-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca2+ storage organelle, generating Ca2+ signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM.
Collapse
Affiliation(s)
- Jing Yong
- Degenerative Diseases Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - James D Johnson
- Department of Cellular and Physiological Sciences & Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Arvan
- Division of Metabolism Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, Republic of Korea.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
45
|
He S, Fu T, Yu Y, Liang Q, Li L, Liu J, Zhang X, Zhou Q, Guo Q, Xu D, Chen Y, Wang X, Chen Y, Liu J, Gan Z, Liu Y. IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay. J Clin Invest 2021; 131:143737. [PMID: 34283807 PMCID: PMC8409588 DOI: 10.1172/jci143737] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which is critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1αacts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Thus, these results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering new insight into potential therapeutic strategies for muscle loss diseases.
Collapse
Affiliation(s)
- Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yue Yu
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Qinhao Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Luyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xuan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Park SM, Kang TI, So JS. Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines 2021; 9:biomedicines9070791. [PMID: 34356855 PMCID: PMC8301375 DOI: 10.3390/biomedicines9070791] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.
Collapse
|
48
|
Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 2021; 12:3117. [PMID: 34035261 PMCID: PMC8149454 DOI: 10.1038/s41467-021-23216-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria.
Collapse
|
49
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:239-278. [PMID: 34050870 DOI: 10.1007/978-3-030-67696-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Younis Hazari
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|