1
|
Chaudhuri D, Datta J, Majumder S, Giri K. Peptide based vaccine designing against endemic causing mammarenavirus using reverse vaccinology approach. Arch Microbiol 2024; 206:217. [PMID: 38619666 DOI: 10.1007/s00203-024-03942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
2
|
Bostedt L, Fénéant L, Leske A, Holzerland J, Günther K, Waßmann I, Bohn P, Groseth A. Alternative translation contributes to the generation of a cytoplasmic subpopulation of the Junín virus nucleoprotein that inhibits caspase activation and innate immunity. J Virol 2024; 98:e0197523. [PMID: 38294249 PMCID: PMC10878266 DOI: 10.1128/jvi.01975-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.
Collapse
Affiliation(s)
- Linus Bostedt
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lucie Fénéant
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Leske
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia Holzerland
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Karla Günther
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Irke Waßmann
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Patrick Bohn
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Allison Groseth
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Sänger L, Williams HM, Yu D, Vogel D, Kosinski J, Rosenthal M, Uetrecht C. RNA to Rule Them All: Critical Steps in Lassa Virus Ribonucleoparticle Assembly and Recruitment. J Am Chem Soc 2023; 145:27958-27974. [PMID: 38104324 PMCID: PMC10755698 DOI: 10.1021/jacs.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.
Collapse
Affiliation(s)
- Lennart Sänger
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Harry M. Williams
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
| | - Dingquan Yu
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
| | - Dominik Vogel
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Jan Kosinski
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Maria Rosenthal
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
- Faculty
V: School of Life Sciences, University of
Siegen, Am Eichenhang 50, 57076 Siegen, Germany
- Deutsches
Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Rodrigues Dutra JV, Santos IA, Grosche VR, Jardim ACG, de Aguiar RS, Junior NN, José DP. L protein characterization and in silico screening of putative broad range target molecules for pathogenic mammarenaviruses from South America. J Biomol Struct Dyn 2023:1-19. [PMID: 37817533 DOI: 10.1080/07391102.2023.2268186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Abstract
The genus Mammarenavirus belonging to the family Arenaviridae encompasses pathogenic viral species capable of triggering severe diseases in humans, causing concern for the health system due to the high fatality rate associated with them. Currently, there is a dearth of specific therapies against pathogens of the genus. Natural products isolated from plants have impacted the development of drugs against several diseases. The Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) database offers several natural compounds with antimicrobial activities that can be used in the development of new antiviral drugs. In this context, here we modeled the arenavirus L protein, multifunctional machinery essential for the viral replicative cycle, making this enzyme a potential candidate for targeting the development of antivirals against genus pathogens. Using the modeled L protein, a virtual screening was performed, which suggested eleven molecules from the NuBBE database that binds to the active site of the L protein, which was promising in the in silico predictions of absorption and toxicity analysis. The NuBBE 1642 molecule proved to be the best candidate for four of the five species evaluated, acting as a possible broad-spectrum molecule. Additionally, our results showed that the L protein is highly conserved among species of the genus, as well as presenting close phylogenetic relationships between many of the species studied, strengthening its candidacy as a therapeutic target. The data presented here demonstrate that some NuBBE molecules are potential ligands for the L protein of arenaviruses, which may help to contain possible outbreaks.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- João Victor Rodrigues Dutra
- Federal University of Triângulo Mineiro, Iturama, Minas Gerais, Brazil
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
- São Paulo State University, São José do Rio Preto, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
- São Paulo State University, São José do Rio Preto, Brazil
| | - Renato Santana de Aguiar
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nilson Nicolau Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
5
|
Saito T, Reyna RA, Taniguchi S, Littlefield K, Paessler S, Maruyama J. Vaccine Candidates against Arenavirus Infections. Vaccines (Basel) 2023; 11:635. [PMID: 36992218 PMCID: PMC10057967 DOI: 10.3390/vaccines11030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirsten Littlefield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Malet H, Williams HM, Cusack S, Rosenthal M. The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 2023; 19:e1011060. [PMID: 36634042 PMCID: PMC9836281 DOI: 10.1371/journal.ppat.1011060] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bunyaviruses are negative sense, single-strand RNA viruses that infect a wide range of vertebrate, invertebrate and plant hosts. WHO lists three bunyavirus diseases as priority diseases requiring urgent development of medical countermeasures highlighting their high epidemic potential. While the viral large (L) protein containing the RNA-dependent RNA polymerase is a key enzyme in the viral replication cycle and therefore a suitable drug target, our knowledge on the structure and activities of this multifunctional protein has, until recently, been very limited. However, in the last few years, facilitated by the technical advances in the field of cryogenic electron microscopy, many structures of bunyavirus L proteins have been solved. These structures significantly enhance our mechanistic understanding of bunyavirus genome replication and transcription processes and highlight differences and commonalities between the L proteins of different bunyavirus families. Here, we provide a review of our current understanding of genome replication and transcription in bunyaviruses with a focus on the viral L protein. Further, we compare within bunyaviruses and with the related influenza virus polymerase complex and highlight open questions.
Collapse
Affiliation(s)
- Hélène Malet
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Harry M. Williams
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| |
Collapse
|
7
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
8
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
9
|
Banete A, Barilo J, Whittaker R, Basta S. The Activated Macrophage - A Tough Fortress for Virus Invasion: How Viruses Strike Back. Front Microbiol 2022; 12:803427. [PMID: 35087503 PMCID: PMC8787342 DOI: 10.3389/fmicb.2021.803427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages (Mφ) are innate immune cells with a variety of functional phenotypes depending on the cytokine microenvironment they reside in. Mφ exhibit distinct activation patterns that are found within a wide array of activation states ranging from the originally discovered classical pro-inflammatory (M1) to the anti-inflammatory (M2) with their multi-facades. M1 cells are induced by IFNγ + LPS, while M2 are further subdivided into M2a (IL-4), M2b (Immune Complex) and M2c (IL-10) based on their inducing stimuli. Not surprisingly, Mφ activation influences the outcome of viral infections as they produce cytokines that in turn activate cells of the adaptive immune system. Generally, activated M1 cells tend to restrict viral replication, however, influenza and HIV exploit inflammation to support their replication. Moreover, M2a polarization inhibits HIV replication at the post-integration level, while HCMV encoded hrIL-10 suppresses inflammatory reactions by facilitating M2c formation. Additionally, viruses such as LCMV and Lassa Virus directly suppress Mφ activation leading to viral chronicity. Here we review how Mφ activation affects viral infection and the strategies by which viruses manipulate Mφ polarization to benefit their own fitness. An understanding of these mechanisms is important for the development of novel immunotherapies that can sway Mφ phenotype to inhibit viral replication.
Collapse
Affiliation(s)
- Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Reese Whittaker
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
10
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
11
|
Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nat Commun 2021; 12:7018. [PMID: 34857749 PMCID: PMC8639829 DOI: 10.1038/s41467-021-27305-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Lassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3' and 5' promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.
Collapse
|
12
|
Abstract
Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.
Collapse
|
13
|
Structure of Machupo virus polymerase in complex with matrix protein Z. Nat Commun 2021; 12:6163. [PMID: 34697302 PMCID: PMC8546121 DOI: 10.1038/s41467-021-26432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
The Arenaviridae family includes several viruses that cause severe human hemorrhagic fevers with high mortality, with no effective countermeasures currently available. The arenavirus multi-domain L protein is involved in viral transcription and replication and represents a promising target for antiviral drugs. The arenavirus matrix protein Z is a small multi-functional protein that inhibits the activities of the L protein. Here we report the structure of Machupo virus L protein in complex with Z determined by cryo-electron microscopy. The Z protein acts as a staple and binds the L protein with 1:1 stoichiometry at the intersection between the PA-C-like region, RNA-dependent RNA polymerase and PB2-N-like region. Binding of the Z protein may lock the multiple domains of L into a fixed arrangement leading to loss of catalytic activity. These results further our understanding of the inhibitory mechanism of arenavirus replication machinery and provide a novel perspective to develop antiviral drugs. The RNA polymerase L of arenaviruses is of interest for drug design and its activity is inhibited by the matrix protein Z. Here, the authors present the cryo-EM structure of the Machupo virus polymerase L in complex with matrix protein Z and discuss the inhibitory mechanism.
Collapse
|
14
|
Reuther P, Martin K, Kreutzfeldt M, Ciancaglini M, Geier F, Calabrese D, Merkler D, Pinschewer DD. Persistent RNA virus infection is short-lived at the single-cell level but leaves transcriptomic footprints. J Exp Med 2021; 218:212556. [PMID: 34398180 PMCID: PMC8493862 DOI: 10.1084/jem.20210408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Several RNA viruses can establish life-long persistent infection in mammalian hosts, but the fate of individual virus-infected cells remains undefined. Here we used Cre recombinase-encoding lymphocytic choriomeningitis virus to establish persistent infection in fluorescent cell fate reporter mice. Virus-infected hepatocytes underwent spontaneous noncytolytic viral clearance independently of type I or type II interferon signaling or adaptive immunity. Viral clearance was accompanied by persistent transcriptomic footprints related to proliferation and extracellular matrix remodeling, immune responses, and metabolism. Substantial overlap with persistent epigenetic alterations in HCV-cured patients suggested a universal RNA virus-induced transcriptomic footprint. Cell-intrinsic clearance occurred in cell culture, too, with sequential infection, reinfection cycles separated by a period of relative refractoriness to infection. Our study reveals that systemic persistence of a prototypic noncytolytic RNA virus depends on continuous spread and reinfection. Yet undefined cell-intrinsic mechanisms prevent viral persistence at the single-cell level but give way to profound transcriptomic alterations in virus-cleared cells.
Collapse
Affiliation(s)
- Peter Reuther
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Katrin Martin
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Geneva University and University Hospital, Geneva, Switzerland
| | - Matias Ciancaglini
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Histology Core Facility, University Hospital Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Geneva University and University Hospital, Geneva, Switzerland
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Kang H, Cong J, Wang C, Ji W, Xin Y, Qian Y, Li X, Chen Y, Rao Z. Structural basis for recognition and regulation of arenavirus polymerase L by Z protein. Nat Commun 2021; 12:4134. [PMID: 34226547 PMCID: PMC8257661 DOI: 10.1038/s41467-021-24458-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Junin virus (JUNV) causes Argentine hemorrhagic fever, a debilitating human disease of high mortality rates and a great risk to public health worldwide. Studying the L protein that replicates and transcribes the genome of JUNV, and its regulator Z protein should provide critical clues to identify therapeutic targets for disrupting the life cycle of JUNV. Here we report the 3.54 Å cryo-EM structure of the JUNV L protein complexed with regulator Z protein. JUNV L structure reveals a conserved architecture containing signature motifs found in other L proteins. Structural analysis shows that L protein is regulated by binding of Z protein at the RNA product exit site. Based on these findings, we propose a model for the role of Z protein as a switch to turn on/off the viral RNA synthesis via its interaction with L protein. Our work unveils the mechanism of JUNV transcription, replication and regulation, which provides a framework for the rational design of antivirals for combating viral infections. Junin virus (JUNV) causes Argentine hemorrhagic fever and encodes the large protein (L) of the RNA dependent RNA polymerase (RdRp) and its regulator, the matrix zinc-binding protein (Z). Here, the authors present the 3.54 Å cryo-EM structure of the complex of JUNV L with Z, and they propose a model of how JUNV L is regulated by Z during the viral life cycle and RNA synthesis.
Collapse
Affiliation(s)
- Huiling Kang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenlong Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenxin Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhui Xin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nat Microbiol 2021; 6:921-931. [PMID: 34127846 DOI: 10.1038/s41564-021-00916-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/05/2021] [Indexed: 02/05/2023]
Abstract
Zoonotic arenaviruses can lead to life-threating diseases in humans. These viruses encode a large (L) polymerase that transcribes and replicates the viral genome. At the late stage of replication, the multifunctional Z protein interacts with the L polymerase to shut down RNA synthesis and initiate virion assembly. However, the mechanism by which the Z protein regulates the activity of L polymerase is unclear. Here, we used cryo-electron microscopy to resolve the structures of both Lassa and Machupo virus L polymerases in complex with their cognate Z proteins, and viral RNA, to 3.1-3.9 Å resolutions. These structures reveal that Z protein binding induces conformational changes in two catalytic motifs of the L polymerase, and restrains their conformational dynamics to inhibit RNA synthesis, which is supported by hydrogen-deuterium exchange mass spectrometry analysis. Importantly, we show, by in vitro polymerase reactions, that Z proteins of Lassa and Machupo viruses can cross-inhibit their L polymerases, albeit with decreased inhibition efficiencies. This cross-reactivity results from a highly conserved determinant motif at the contacting interface, but is affected by other variable auxiliary motifs due to the divergent evolution of Old World and New World arenaviruses. These findings could provide promising targets for developing broad-spectrum antiviral drugs.
Collapse
|
17
|
Kim YJ, Venturini V, de la Torre JC. Progress in Anti-Mammarenavirus Drug Development. Viruses 2021; 13:v13071187. [PMID: 34206216 PMCID: PMC8310104 DOI: 10.3390/v13071187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mammarenaviruses are prevalent pathogens distributed worldwide, and several strains cause severe cases of human infections with high morbidity and significant mortality. Currently, there is no FDA-approved antiviral drugs and vaccines against mammarenavirus and the potential treatment option is limited to an off-label use of ribavirin that shows only partial protective effect and associates with side effects. For the past few decades, extensive research has reported potential anti-mammarenaviral drugs and their mechanisms of action in host as well as vaccine candidates. This review describes current knowledge about mammarenavirus virology, progress of antiviral drug development, and technical strategies of drug screening.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
| | - Victor Venturini
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
- Department of Biotechnology, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Carretera Pozuelo-Majadahonda, Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
- Correspondence:
| |
Collapse
|
18
|
Fearns R. Negative‐strand RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Hallam SJ, Manning JT, Maruyama J, Seregin A, Huang C, Walker DH, de la Torre JC, Paessler S. A single mutation (V64G) within the RING Domain of Z attenuates Junin virus. PLoS Negl Trop Dis 2020; 14:e0008555. [PMID: 32976538 PMCID: PMC7540883 DOI: 10.1371/journal.pntd.0008555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/07/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Junin virus (JUNV) is a New World arenavirus that is the causative agent of Argentine hemorrhagic fever (AHF). Candid#1 (Can) is a live-attenuated vaccine strain of JUNV that since its introduction has resulted in a marked decrease in AHF incidence within the endemic regions of the Pampas in Argentina. Originally, the viral determinants and mechanisms of Can attenuation were not well understood. Recent work has identified the glycoprotein as the major attenuating factor for Can. The establishment of attenuating strategies based on any of the other viral proteins, however, has not been pursued. Here, we document the role of Can Z resulting in incompatibilities with wild type JUNV that results in decreased growth in vitro. In addition, this incompatibility results in attenuation of the virus in the guinea pig model. Further, we identify a single mutation (V64G) in the Z protein that is able to confer this demonstrated attenuation. By establishing and characterizing a novel attenuation strategy for New World mammarenaviruses, we hope to aid future vaccine development for related emerging pathogens including Machupo virus (MACV), Guanarito virus (GTOV), and Sabia virus (SABV). The continual development of safe, effective vaccines against emerging diseases is one of the greatest challenges facing the scientific community. The New World group of mammarenaviruses contains multiple human pathogens, each capable of causing severe hemorrhagic disease. Among these, only Junin virus has a distributed vaccine. By utilizing this vaccine, we are able to determine vaccine development strategies for related New World viruses that represent an emerging threat. Here we demonstrate that manipulation of the viral Z protein is able to produce an incompatibility that ultimately attenuates the virus. This provides yet another tool for future vaccine development to further global public health.
Collapse
Affiliation(s)
- Steven J. Hallam
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexey Seregin
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps University, La Jolla, California, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Institute for Human Infections and Immunity, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Huang Q, Liu X, Brisse M, Ly H, Liang Y. Effect of Strain Variations on Lassa Virus Z Protein-Mediated Human RIG-I Inhibition. Viruses 2020; 12:E907. [PMID: 32824946 PMCID: PMC7551410 DOI: 10.3390/v12090907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 11/21/2022] Open
Abstract
Mammarenaviruses include several known human pathogens, such as the prototypic lymphocytic choriomeningitis virus (LCMV) that can cause neurological diseases and Lassa virus (LASV) that causes endemic hemorrhagic fever infection. LASV-infected patients show diverse clinical manifestations ranging from asymptomatic infection to hemorrhage, multi-organ failures and death, the mechanisms of which have not been well characterized. We have previously shown that the matrix protein Z of pathogenic arenaviruses, including LASV and LCMV, can strongly inhibit the ability of the innate immune protein RIG-I to suppress type I interferon (IFN-I) expression, which serves as a mechanism of viral immune evasion and virulence. Here, we show that Z proteins of diverse LASV isolates derived from rodents and humans have a high degree of sequence variations at their N- and C-terminal regions and produce variable degrees of inhibition of human RIG-I (hRIG-I) function in an established IFN-β promoter-driven luciferase (LUC) reporter assay. Additionally, we show that Z proteins of four known LCMV strains can also inhibit hRIG-I at variable degrees of efficiency. Collectively, our results confirm that Z proteins of pathogenic LASV and LCMV can inhibit hRIG-I and suggest that strain variations of the Z proteins can influence their efficiency to suppress host innate immunity that might contribute to viral virulence and disease heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Yuying Liang
- Correspondence: ; Tel.: +1-612-625-3376; Fax: +1-612-625-0204
| |
Collapse
|
21
|
Vogel D, Thorkelsson SR, Quemin ERJ, Meier K, Kouba T, Gogrefe N, Busch C, Reindl S, Günther S, Cusack S, Grünewald K, Rosenthal M. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res 2020; 48:5749-5765. [PMID: 32313945 PMCID: PMC7261188 DOI: 10.1093/nar/gkaa253] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/29/2022] Open
Abstract
The Bunyavirales order contains several emerging viruses with high epidemic potential, including Severe fever with thrombocytopenia syndrome virus (SFTSV). The lack of medical countermeasures, such as vaccines and antivirals, is a limiting factor for the containment of any virus outbreak. To develop such antivirals a profound understanding of the viral replication process is essential. The L protein of bunyaviruses is a multi-functional and multi-domain protein performing both virus transcription and genome replication and, therefore, is an ideal drug target. We established expression and purification procedures for the full-length L protein of SFTSV. By combining single-particle electron cryo-microscopy and X-ray crystallography, we obtained 3D models covering ∼70% of the SFTSV L protein in the apo-conformation including the polymerase core region, the endonuclease and the cap-binding domain. We compared this first L structure of the Phenuiviridae family to the structures of La Crosse peribunyavirus L protein and influenza orthomyxovirus polymerase. Together with a comprehensive biochemical characterization of the distinct functions of SFTSV L protein, this work provides a solid framework for future structural and functional studies of L protein-RNA interactions and the development of antiviral strategies against this group of emerging human pathogens.
Collapse
Affiliation(s)
- Dominik Vogel
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany
| | - Sigurdur Rafn Thorkelsson
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Kristina Meier
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany
| | - Tomas Kouba
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Nadja Gogrefe
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany
| | - Carola Busch
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany
| | - Sophia Reindl
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg - Lübeck - Borstel - Riems, Hamburg 20359, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Maria Rosenthal
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Hamburg 20359, Germany
| |
Collapse
|
22
|
Zadeh VR, Urata S, Sakaguchi M, Yasuda J. Human BST-2/tetherin inhibits Junin virus release from host cells and its inhibition is partially counteracted by viral nucleoprotein. J Gen Virol 2020; 101:573-586. [PMID: 32375950 DOI: 10.1099/jgv.0.001414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bone marrow stromal cell antigen-2 (BST-2), also known as tetherin, is an interferon-inducible membrane-associated protein. It effectively targets enveloped viruses at the release step of progeny viruses from host cells, thereby restricting the further spread of viral infection. Junin virus (JUNV) is a member of Arenaviridae, which causes Argentine haemorrhagic fever that is associated with a high rate of mortality. In this study, we examined the effect of human BST-2 on the replication and propagation of JUNV. The production of JUNV Z-mediated virus-like particles (VLPs) was significantly inhibited by over-expression of BST-2. Electron microscopy analysis revealed that BST-2 functions by forming a physical link that directly retains VLPs on the cell surface. Infection using JUNV showed that infectious JUNV production was moderately inhibited by endogenous or exogenous BST-2. We also observed that JUNV infection triggers an intense interferon response, causing an upregulation of BST-2, in infected cells. However, the expression of cell surface BST-2 was reduced upon infection. Furthermore, the expression of JUNV nucleoprotein (NP) partially recovered VLP production from BST-2 restriction, suggesting that the NP functions as an antagonist against antiviral effect of BST-2. We further showed that JUNV NP also rescued the production of Ebola virus VP40-mediated VLP from BST-2 restriction as a broad spectrum BST-2 antagonist. To our knowledge, this is the first report showing that an arenavirus protein counteracts the antiviral function of BST-2.
Collapse
Affiliation(s)
- Vahid Rajabali Zadeh
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
23
|
Jenni S, Bloyet LM, Diaz-Avalos R, Liang B, Whelan SPJ, Grigorieff N, Harrison SC. Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor. Cell Rep 2020; 30:53-60.e5. [PMID: 31914397 PMCID: PMC7049099 DOI: 10.1016/j.celrep.2019.12.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 11/15/2022] Open
Abstract
The large (L) proteins of non-segmented, negative-strand RNA viruses are multifunctional enzymes that produce capped, methylated, and polyadenylated mRNA and replicate the viral genome. A phosphoprotein (P), required for efficient RNA-dependent RNA polymerization from the viral ribonucleoprotein (RNP) template, regulates the function and conformation of the L protein. We report the structure of vesicular stomatitis virus L in complex with its P cofactor determined by electron cryomicroscopy at 3.0 Å resolution, enabling us to visualize bound segments of P. The contacts of three P segments with multiple L domains show how P induces a closed, compact, initiation-competent conformation. Binding of P to L positions its N-terminal domain adjacent to a putative RNA exit channel for efficient encapsidation of newly synthesized genomes with the nucleoprotein and orients its C-terminal domain to interact with an RNP template. The model shows that a conserved tryptophan in the priming loop can support the initiating 5' nucleotide.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Louis-Marie Bloyet
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ruben Diaz-Avalos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bo Liang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sean P J Whelan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
[Arenavirus research and antiviral candidate]. Uirusu 2019; 68:51-62. [PMID: 31105135 DOI: 10.2222/jsv.68.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arenavirus is a genetic term for viruses belonging to the family Arenaviridae and is presented from lymphocytic choriomeningitis virus (LCMV), which shows almost no pathogenicity to humans, to Lassa virus, Junin virus, Machupo virus, Chapare virus, Lujo virus, Sabia virus, and Guanarito virus, which shows high pathogenicity to humans. These viruses except for LCMV are risk group 4 pathogens specified by World Health Organization. Based on this designation, it is designated as Class I pathogens in Japan. Although there have been no reports excluding one imported case of the Lassa fever patient, it is not surprising whenever imported cases occur in our country. Considering the disease severity and mortality rate, it is an urgent matter to develop vaccines and therapeutic drugs in endemic areas, and maintenances of these are also important in countries other than endemic areas. However, basic research on highly pathogenic arenavirus infections and development of therapeutic drugs are not easily progressed, because handling in highly safe research facilities is indispensable. In this article, we will outline the current knowledge from the recent basic research on arenavirus to the development situation of antivirals against arenaviruses.
Collapse
|
25
|
Abstract
Atomic structures of the polymerase–endonuclease complex of the orthomyxovirus influenza and the orthobunyavirus La Crosse—two distinct segmented negative-sense (SNS) RNA viruses—demonstrate that binding of the genomic 5′ RNA rearranges the catalytic residues of the RNA-dependent RNA-polymerase (RdRP). Working with the arenavirus, Machupo, we demonstrate that 5′ RNAs from the genomic and antigenomic copies of both segments activate the RdRP in conjunction with a specific promoter. This study builds upon structural studies with two different SNS RNA viruses to reveal a previously unappreciated mechanism of RNA-guided promoter-specific polymerase regulation in SNS RNA viruses. The conservation of activating RNA elements among the polymerase–endonuclease complexes of SNS RNA viruses suggests new avenues for developing antiviral therapeutics. Segmented negative-sense (SNS) RNA viruses initiate infection by delivering into cells a suite of genomic RNA segments, each sheathed by the viral nucleocapsid protein and bound by the RNA-dependent RNA-polymerase (RdRP). For the orthomyxovirus influenza and the bunyavirus La Crosse, the 5′ end of the genomic RNA binds as a hook-like structure proximal to the active site of the RdRP. Using an in vitro assay for the RNA-dependent RNA-polymerase (RdRP) of the arenavirus Machupo (MACV), we demonstrate that the 5′ genomic and antigenomic RNAs of both small and large genome segments stimulate activity in a promoter-specific manner. Functional probing of the activating RNAs identifies intramolecular base-pairing between positions +1 and +7 and a pseudotemplated 5′ terminal guanine residue as key for activation. Binding of structured 5′ RNAs is a conserved feature of all SNS RNA virus polymerases, implying that promoter-specific RdRP activation extends beyond the arenaviruses. The 5′ RNAs and the RNA binding pocket itself represent targets for therapeutic intervention.
Collapse
|
26
|
Vogel D, Rosenthal M, Gogrefe N, Reindl S, Günther S. Biochemical characterization of the Lassa virus L protein. J Biol Chem 2019; 294:8088-8100. [PMID: 30926610 PMCID: PMC6527160 DOI: 10.1074/jbc.ra118.006973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
The L protein of arena- and bunyaviruses is structurally and functionally related to the orthomyxovirus polymerase complex. It plays a central role in the viral life cycle, as it replicates the virus genome and generates viral mRNA via a cap-snatching mechanism. Here, we aimed to biochemically characterize the L protein of Lassa virus, a human-pathogenic arenavirus endemic in West Africa. Full-length 250-kDa L protein was expressed using a baculovirus expression system. A low-resolution structure calculated from small-angle X-ray scattering data revealed a conformation similar to that in the crystal structure of the orthomyxovirus polymerase complex. Although the L protein did not exhibit cap-snatching endonuclease activity, it synthesized RNA in vitro. RNA polymerization required manganese rather than magnesium ions, was independent of nucleotide primers, and was inhibited by viral Z protein. Maximum activity was mediated by double-stranded promoter sequences with a minimum length of 17 nucleotides, containing a nontemplated 5′-G overhang, as in the natural genome context, as well as the naturally occurring base mismatches between the complementary promoter strands. Experiments with various short primers revealed the presence of two replication initiation sites at the template strand and evidence for primer translocation as proposed by the prime-and-realign hypothesis. Overall, our findings provide the foundation for a detailed understanding of the mechanistic differences and communalities in the polymerase proteins of segmented negative-strand RNA viruses and for the search for antiviral compounds targeting the RNA polymerase of Lassa virus.
Collapse
Affiliation(s)
- Dominik Vogel
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Nadja Gogrefe
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany
| | - Sophia Reindl
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany.
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, Hamburg 20359, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg 20359, Germany.
| |
Collapse
|
27
|
Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses 2019; 11:v11030293. [PMID: 30909570 PMCID: PMC6466445 DOI: 10.3390/v11030293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic mechanisms that occur during the course of pathogenic arenavirus infection. We used a yeast two-hybrid approach to identify cell partners of MOPV and LASV Z matrix protein in which two autophagy adaptors were identified, NDP52 and TAX1BP1. Autophagy has emerged as an important cellular defense mechanism against viral infections but its role during arenavirus infection has not been shown. Here, we demonstrate that autophagy is transiently induced by MOPV, but not LASV, in infected cells two days after infection. Impairment of the early steps of autophagy significantly decreased the production of MOPV and LASV infectious particles, whereas a blockade of the degradative steps impaired only MOPV infectious particle production. Our study provides insights into the role played by autophagy during MOPV and LASV infection and suggests that this process could partially explain their different pathogenicity.
Collapse
|
28
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
29
|
Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, Kranzusch PJ. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 2019; 567:194-199. [PMID: 30787435 PMCID: PMC6544370 DOI: 10.1038/s41586-019-0953-5] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells. Here we perform a systematic biochemical screen for bacterial signalling nucleotides and discover a large family of cGAS/DncV-like nucleotidyltransferases (CD-NTases) that use both purine and pyrimidine nucleotides to synthesize a diverse range of CDNs. A series of crystal structures establish CD-NTases as a structurally conserved family and reveal key contacts in the enzyme active-site lid that direct purine or pyrimidine selection. CD-NTase products are not restricted to CDNs and also include an unexpected class of cyclic trinucleotide compounds. Biochemical and cellular analyses of CD-NTase signalling nucleotides demonstrate that these cyclic di- and trinucleotides activate distinct host receptors and thus may modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.
Collapse
Affiliation(s)
- Aaron T Whiteley
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James B Eaglesham
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carina C de Oliveira Mann
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Benjamin R Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brianna Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eric A Nieminen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Olga Danilchanka
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ, USA
| | - David S King
- HHMI Mass Spectrometry Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | - Amy S Y Lee
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Loureiro ME, D'Antuono A, López N. Virus⁻Host Interactions Involved in Lassa Virus Entry and Genome Replication. Pathogens 2019; 8:pathogens8010017. [PMID: 30699976 PMCID: PMC6470645 DOI: 10.3390/pathogens8010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, a human hemorrhagic disease associated with high mortality and morbidity rates, particularly prevalent in West Africa. Over the past few years, a significant amount of novel information has been provided on cellular factors that are determinant elements playing a role in arenavirus multiplication. In this review, we focus on host proteins that intersect with the initial steps of the LASV replication cycle: virus entry and genome replication. A better understanding of relevant virus⁻host interactions essential for sustaining these critical steps may help to identify possible targets for the rational design of novel therapeutic approaches against LASV and other arenaviruses that cause severe human disease.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Alejandra D'Antuono
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Nora López
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| |
Collapse
|
31
|
Ziegler CM, Eisenhauer P, Manuelyan I, Weir ME, Bruce EA, Ballif BA, Botten J. Host-Driven Phosphorylation Appears to Regulate the Budding Activity of the Lassa Virus Matrix Protein. Pathogens 2018; 7:pathogens7040097. [PMID: 30544850 PMCID: PMC6313517 DOI: 10.3390/pathogens7040097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
Lassa mammarenavirus (LASV) is an enveloped RNA virus that can cause Lassa fever, an acute hemorrhagic fever syndrome associated with significant morbidity and high rates of fatality in endemic regions of western Africa. The arenavirus matrix protein Z has several functions during the virus life cycle, including coordinating viral assembly, driving the release of new virus particles, regulating viral polymerase activity, and antagonizing the host antiviral response. There is limited knowledge regarding how the various functions of Z are regulated. To investigate possible means of regulation, mass spectrometry was used to identify potential sites of phosphorylation in the LASV Z protein. This analysis revealed that two serines (S18, S98) and one tyrosine (Y97) are phosphorylated in the flexible N- and C-terminal regions of the protein. Notably, two of these sites, Y97 and S98, are located in (Y97) or directly adjacent to (S98) the PPXY late domain, an important motif for virus release. Studies with non-phosphorylatable and phosphomimetic Z proteins revealed that these sites are important regulators of the release of LASV particles and that host-driven, reversible phosphorylation may play an important role in the regulation of LASV Z protein function.
Collapse
Affiliation(s)
- Christopher M Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA.
| | - Philip Eisenhauer
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA.
| | - Inessa Manuelyan
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA.
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA.
| | - Marion E Weir
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Emily A Bruce
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA.
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Jason Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA.
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
32
|
Hepojoki J, Hepojoki S, Smura T, Szirovicza L, Dervas E, Prähauser B, Nufer L, Schraner EM, Vapalahti O, Kipar A, Hetzel U. Characterization of Haartman Institute snake virus-1 (HISV-1) and HISV-like viruses-The representatives of genus Hartmanivirus, family Arenaviridae. PLoS Pathog 2018; 14:e1007415. [PMID: 30427944 PMCID: PMC6261641 DOI: 10.1371/journal.ppat.1007415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/28/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
The family Arenaviridae comprises three genera, Mammarenavirus, Reptarenavirus and the most recently added Hartmanivirus. Arenaviruses have a bisegmented genome with ambisense coding strategy. For mammarenaviruses and reptarenaviruses the L segment encodes the Z protein (ZP) and the RNA-dependent RNA polymerase, and the S segment encodes the glycoprotein precursor and the nucleoprotein. Herein we report the full length genome and characterization of Haartman Institute snake virus-1 (HISV-1), the putative type species of hartmaniviruses. The L segment of HISV-1 lacks an open-reading frame for ZP, and our analysis of purified HISV-1 particles by SDS-PAGE and electron microscopy further support the lack of ZP. Since we originally identified HISV-1 in co-infection with a reptarenavirus, one could hypothesize that co-infecting reptarenavirus provides the ZP to complement HISV-1. However, we observed that co-infection does not markedly affect the amount of hartmanivirus or reptarenavirus RNA released from infected cells in vitro, indicating that HISV-1 does not benefit from reptarenavirus ZP. Furthermore, we succeeded in generating a pure HISV-1 isolate showing the virus to replicate without ZP. Immunofluorescence and ultrastructural studies demonstrate that, unlike reptarenaviruses, HISV-1 does not produce the intracellular inclusion bodies typical for the reptarenavirus-induced boid inclusion body disease (BIBD). While we observed HISV-1 to be slightly cytopathic for cultured boid cells, the histological and immunohistological investigation of HISV-positive snakes showed no evidence of a pathological effect. The histological analyses also revealed that hartmaniviruses, unlike reptarenaviruses, have a limited tissue tropism. By nucleic acid sequencing, de novo genome assembly, and phylogenetic analyses we identified additional four hartmanivirus species. Finally, we screened 71 individuals from a collection of snakes with BIBD by RT-PCR and found 44 to carry hartmaniviruses. These findings suggest that harmaniviruses are common in captive snake populations, but their relevance and pathogenic potential needs yet to be revealed.
Collapse
Affiliation(s)
- Jussi Hepojoki
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Satu Hepojoki
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Teemu Smura
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Leonóra Szirovicza
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Eva Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Elisabeth M. Schraner
- Institutes of Veterinary Anatomy and Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Olli Vapalahti
- University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
- Department of Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Boid Inclusion Body Disease Group, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary Biosciences, Helsinki, Finland
| |
Collapse
|
33
|
Hallam SJ, Koma T, Maruyama J, Paessler S. Review of Mammarenavirus Biology and Replication. Front Microbiol 2018; 9:1751. [PMID: 30123198 PMCID: PMC6085440 DOI: 10.3389/fmicb.2018.01751] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
The family Arenaviridae is divided into three genera: Mammarenavirus, Reptarenavirus, and Hartmanivirus. The Mammarenaviruses contain viruses responsible for causing human hemorrhagic fever diseases including New World viruses Junin, Machupo, Guanarito, Sabia, and Chapare virus and Old World viruses Lassa, and Lujo virus. These two groups of arenaviruses share the same genome organization composed of two ambisense RNA segments. These segments contain four open reading frames that encode for four proteins: the nucleoprotein, glycoprotein precursor, L protein, and Z. Despite their genome similarities, these groups exhibit marked differences in their replication life cycles. This includes differences in attachment, entry, and immune evasion. By understanding the intricacy of replication in each of these viral species we can work to develop counter measures against human diseases. This includes the development of vaccines and antivirals for these emerging viral threats. Currently only the vaccine against Junin virus, Candid#1, is in use as well as Ribavirin for treatment of Lassa Fever. In addition, small molecule inhibitors can be developed to target various aspects of the virus life cycle. In these ways an understanding of the arenavirus replication cycle can be used to alleviate the mortality and morbidity of these infections worldwide.
Collapse
Affiliation(s)
- Steven J. Hallam
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
34
|
A Highly Conserved Leucine in Mammarenavirus Matrix Z Protein Is Required for Z Interaction with the Virus L Polymerase and Z Stability in Cells Harboring an Active Viral Ribonucleoprotein. J Virol 2018; 92:JVI.02256-17. [PMID: 29593035 DOI: 10.1128/jvi.02256-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Mammarenaviruses cause chronic infections in their natural rodent hosts. Infected rodents shed infectious virus into excreta. Humans are infected through mucosal exposure to aerosols or direct contact of abraded skin with fomites, resulting in a wide range of manifestations from asymptomatic or mild febrile illness to severe life-threatening hemorrhagic fever. The mammarenavirus matrix Z protein has been shown to be a main driving force of virus budding and to act as a negative regulator of viral RNA synthesis. To gain a better understanding of how the Z protein exerts its several different functions, we investigated the interaction between Z and viral polymerase L protein using the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV). We found that in the presence of an active viral ribonucleoprotein (vRNP), the Z protein translocated from nonionic detergent-resistant, membrane-rich structures to a subcellular compartment with a different membrane composition susceptible to disruption by nonionic detergents. Alanine (A) substitution of a highly conserved leucine (L) at position 72 in LCMV Z protein abrogated Z-L interaction. The L72A mutation did not affect the stability or budding activity of Z when expressed alone, but in the presence of an active vRNP, mutation L72A promoted rapid degradation of Z via a proteasome- and lysosome-independent pathway. Accordingly, L72A mutation in the Z protein resulted in nonviable LCMV. Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.IMPORTANCE Several mammarenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose important public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. The mammarenavirus matrix Z protein plays critical roles in different steps of the viral life cycle by interacting with viral and host cellular components. Here we report that alanine substitution of a highly conserved leucine residue, located at position 72 in LCMV Z protein, abrogated Z-L interaction. The L72A mutation did not affect Z budding activity but promoted its rapid degradation in the presence of an active viral ribonucleoprotein (vRNP). Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.
Collapse
|
35
|
Zaza AD, Herbreteau CH, Peyrefitte CN, Emonet SF. Mammarenaviruses deleted from their Z gene are replicative and produce an infectious progeny in BHK-21 cells. Virology 2018; 518:34-44. [PMID: 29453057 DOI: 10.1016/j.virol.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/19/2022]
Abstract
Mammarenaviruses bud out of infected cells via the recruitment of the endosomal sorting complex required for transport through late domain motifs localized into their Z protein. Here, we demonstrated that mammarenaviruses lacking this protein can be rescued and are replicative, despite a 3-log reduction in virion production, in BHK-21 cells, but not in five other cell lines. Mutations of putative late domain motifs identified into the viral nucleoprotein resulted in the almost complete abolition of infectious virion production by Z-deleted mammarenaviruses. This result strongly suggested that the nucleoprotein may compensate for the deletion of Z. These observations were primarily obtained using the Lymphocytic choriomeningitis virus, and further confirmed using the Old World Lassa and New World Machupo viruses, responsible of human hemorrhagic fevers. Z-deleted viruses should prove very useful tools to investigate the biology of Mammarenaviruses.
Collapse
Affiliation(s)
- Amélie D Zaza
- Fab'entech, 24 rue Jean Baldassini, 69007 Lyon, France; Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| | | | - Christophe N Peyrefitte
- Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| | - Sébastien F Emonet
- Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
36
|
A Proteomics Survey of Junín Virus Interactions with Human Proteins Reveals Host Factors Required for Arenavirus Replication. J Virol 2018; 92:JVI.01565-17. [PMID: 29187543 DOI: 10.1128/jvi.01565-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.
Collapse
|
37
|
Shao J, Liang Y, Ly H. Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression. Methods Mol Biol 2018; 1604:217-227. [PMID: 28986837 PMCID: PMC6439471 DOI: 10.1007/978-1-4939-6981-4_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-β promoter-mediated luciferase reporter assay.
Collapse
Affiliation(s)
- Junjie Shao
- Department of Veterinary and Biomedical Sciences, University of Minnesota - Twin Cities, 1988 Fitch Ave., 295 AS/VM Bldg, Saint Paul, MN, 55108, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota - Twin Cities, 1988 Fitch Ave., 295 AS/VM Bldg, Saint Paul, MN, 55108, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota - Twin Cities, 1988 Fitch Ave., 295 AS/VM Bldg, Saint Paul, MN, 55108, USA.
| |
Collapse
|
38
|
Khamina K, Lercher A, Caldera M, Schliehe C, Vilagos B, Sahin M, Kosack L, Bhattacharya A, Májek P, Stukalov A, Sacco R, James LC, Pinschewer DD, Bennett KL, Menche J, Bergthaler A. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathog 2017; 13:e1006758. [PMID: 29261807 PMCID: PMC5738113 DOI: 10.1371/journal.ppat.1006758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host. RNA-dependent RNA-polymerases (RdRps) play a key role in the life cycle of RNA viruses. They interact with cellular proteins during replication and transcription processes and impact the immunobiology of viral infections. This study characterized the host protein interactome of the RdRp-containing L protein of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Several L protein interactors with proviral and antiviral effects were identified in vitro, and mice lacking the identified L protein interactor TRIM21 exhibited impaired control of chronic LCMV infection. Integration of the L protein interactomes with known RdRp interactomes from other RNA viruses highlighted common and virus-specific strategies to interact with the host proteome, which may indicate novel avenues for antiviral interventions.
Collapse
Affiliation(s)
- Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Christopher Schliehe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Mehmet Sahin
- University of Basel, Department of Biomedicine–Haus Petersplatz, Division of Experimental Virology, Basel, Switzerland
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Anannya Bhattacharya
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Roberto Sacco
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Leo C. James
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Daniel D. Pinschewer
- University of Basel, Department of Biomedicine–Haus Petersplatz, Division of Experimental Virology, Basel, Switzerland
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail:
| |
Collapse
|
39
|
Manning JT, Seregin AV, Yun NE, Koma T, Huang C, Barral J, de la Torre JC, Paessler S. Absence of an N-Linked Glycosylation Motif in the Glycoprotein of the Live-Attenuated Argentine Hemorrhagic Fever Vaccine, Candid #1, Results in Its Improper Processing, and Reduced Surface Expression. Front Cell Infect Microbiol 2017; 7:20. [PMID: 28220142 PMCID: PMC5292626 DOI: 10.3389/fcimb.2017.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 11/27/2022] Open
Abstract
Junin virus (JUNV), a highly pathogenic New World arenavirus, is the causative agent of Argentine hemorrhagic fever (AHF). The live-attenuated Candid #1 (Can) strain currently serves as a vaccine for at-risk populations. We have previously shown that the Can glycoprotein (GPC) gene is the primary gene responsible for attenuation in a guinea pig model of AHF. However, the mechanisms through which the GPC contributes to the attenuation of the Can strain remain unknown. A more complete understanding of the mechanisms underlying the attenuation and immunogenicity of the Can strain will potentially allow for the rational design of additional safe and novel vaccines. Here, we provide a detailed comparison of both RNA and protein expression profiles between both inter- and intra-segment chimeric JUNV recombinant clones expressing combinations of genes from the Can strain and the pathogenic Romero (Rom) strain. The recombinant viruses that express Can GPC, which were shown to be attenuated in guinea pigs, displayed different RNA levels and GPC processing patterns as determined by Northern and Western blot analyses, respectively. Analysis of recombinant viruses containing amino acid substitutions selected at different mouse brain passages during the generation of Can revealed that altered Can GPC processing was primarily due to the T168A substitution within G1, which eliminates an N-linked glycosylation motif. Incorporation of the T168A substitution in the Rom GPC resulted in a Can-like processing pattern of Rom GPC. In addition, JUNV GPCs containing T168A substitution were retained within the endoplasmic reticulum (ER) and displayed significantly lower cell surface expression than wild-type Rom GPC. Interestingly, the reversion A168T in Can GPC significantly increased GPC expression at the cell surface. Our results demonstrate that recombinant JUNV (rJUNV) expressing Can GPC display markedly different protein expression and elevated genomic RNA expression when compared to viruses expressing Rom GPC. Additionally, our findings indicate that the N-linked glycosylation motif at amino acid positions 166–168 is important for trafficking of JUNV GPC to the cell surface, and the elimination of this motif interferes with the GPC release from the ER.
Collapse
Affiliation(s)
- John T Manning
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Alexey V Seregin
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Nadezhda E Yun
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Takaaki Koma
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - José Barral
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Juan C de la Torre
- Department of Immunology and Microbial Science, Scripps Research Institute La Jolla, CA, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
40
|
Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res 2017; 234:118-134. [PMID: 28137457 PMCID: PMC7114536 DOI: 10.1016/j.virusres.2017.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
Abstract
Bunyavirus and arenavirus are important public health threats. Bunyavirus and arenavirus molecular biology, common and differential features. Implications of LACV L protein structure for understanding viral RNA synthesis. Current state and future perspectives on bunya- and arenavirus antivirals.
Bunyaviridae and Arenaviridae virus families include an important number of highly pathogenic viruses for humans. They are enveloped viruses with negative stranded RNA genomes divided into three (bunyaviruses) or two (arenaviruses) segments. Each genome segment is coated by the viral nucleoproteins (NPs) and the polymerase (L protein) to form a functional ribonucleoprotein (RNP) complex. The viral RNP provides the necessary context on which the L protein carries out the biosynthetic processes of RNA replication and gene transcription. Decades of research have provided a good understanding of the molecular processes underlying RNA synthesis, both RNA replication and gene transcription, for these two families of viruses. In this review we will provide a global view of the common features, as well as differences, of the molecular biology of Bunyaviridae and Arenaviridae. We will also describe structures of protein and protein-RNA complexes so far determined for these viral families, mainly focusing on the L protein, and discuss their implications for understanding the mechanisms of viral RNA replication and gene transcription within the architecture of viral RNPs, also taking into account the cellular context in which these processes occur. Finally, we will discuss the implications of these structural findings for the development of antiviral drugs to treat human diseases caused by members of the Bunyaviridae and Arenaviridae families.
Collapse
Affiliation(s)
- François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Juan Reguera
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France; INSERM, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
41
|
Abstract
INTRODUCTION Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective. AREAS COVERED LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.
Collapse
Affiliation(s)
- Igor S Lukashevich
- a Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases , University of Louisville , Louisville , KY , USA
| | | |
Collapse
|
42
|
Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z. J Virol 2016; 90:4556-62. [PMID: 26912609 DOI: 10.1128/jvi.02896-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The arenavirus matrix protein Z is highly multifunctional and occurs in both monomeric and oligomeric forms. The crystal structure of a dodecamer of Z from Lassa virus, presented here, illustrates a ring-like structure with a highly basic center. Mutagenesis demonstrates that the dimeric interface within the dodecamer and a Lys-Trp-Lys triad at the center of the ring are important for oligomerization. This structure provides an additional template to explore the many functions of Z. IMPORTANCE The arenavirus Lassa virus causes hundreds of thousands of infections each year, many of which develop into fatal hemorrhagic fever. The arenavirus matrix protein Z is multifunctional, with at least four distinct roles. Z exists in both monomeric and oligomeric forms, each of which likely serves a specific function in the viral life cycle. Here we present the dodecameric form of Lassa virus Z and demonstrate that Z forms a "wreath" with a highly basic center. This structure and that of monomeric Z now provide a pair of critical templates by which the multiple roles of Z in the viral life cycle may be interpreted.
Collapse
|
43
|
Abstract
Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options.
Collapse
Affiliation(s)
- Bjoern Meyer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
44
|
Abstract
Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Benson Yee Hin Cheng
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
45
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
46
|
Abstract
Until recently, members of the monogeneric family Arenaviridae (arenaviruses) have been known to infect only muroid rodents and, in one case, possibly phyllostomid bats. The paradigm of arenaviruses exclusively infecting small mammals shifted dramatically when several groups independently published the detection and isolation of a divergent group of arenaviruses in captive alethinophidian snakes. Preliminary phylogenetic analyses suggest that these reptilian arenaviruses constitute a sister clade to mammalian arenaviruses. Here, the members of the International Committee on Taxonomy of Viruses (ICTV) Arenaviridae Study Group, together with other experts, outline the taxonomic reorganization of the family Arenaviridae to accommodate reptilian arenaviruses and other recently discovered mammalian arenaviruses and to improve compliance with the Rules of the International Code of Virus Classification and Nomenclature (ICVCN). PAirwise Sequence Comparison (PASC) of arenavirus genomes and NP amino acid pairwise distances support the modification of the present classification. As a result, the current genus Arenavirus is replaced by two genera, Mammarenavirus and Reptarenavirus, which are established to accommodate mammalian and reptilian arenaviruses, respectively, in the same family. The current species landscape among mammalian arenaviruses is upheld, with two new species added for Lunk and Merino Walk viruses and minor corrections to the spelling of some names. The published snake arenaviruses are distributed among three new separate reptarenavirus species. Finally, a non-Latinized binomial species name scheme is adopted for all arenavirus species. In addition, the current virus abbreviations have been evaluated, and some changes are introduced to unequivocally identify each virus in electronic databases, manuscripts, and oral proceedings.
Collapse
|
47
|
Human hemorrhagic Fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 2015; 4:283-306. [PMID: 26011826 PMCID: PMC4493475 DOI: 10.3390/pathogens4020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens.
Collapse
|
48
|
Abstract
The Arenaviridae are enveloped, negative-sense RNA viruses with several family members that cause hemorrhagic fevers. This work provides immunofluorescence evidence that, unlike those of New World arenaviruses, the replication and transcription complexes (RTC) of lymphocytic choriomeningitis virus (LCMV) colocalize with eukaryotic initiation factor 4E (eIF4E) and that eIF4E may participate in the translation of LCMV mRNA. Additionally, we identify two residues in the LCMV nucleoprotein (NP) that are conserved in every mammalian arenavirus and are required for recombinant LCMV recovery. One of these sites, Y125, was confirmed to be phosphorylated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). NP Y125 is located in the N-terminal region of NP that is disordered when RNA is bound. The other site, NP T206, was predicted to be a phosphorylation site. Immunofluorescence analysis demonstrated that NP T206 is required for the formation of the punctate RTC that are typically observed during LCMV infection. A minigenome reporter assay using NP mutants, as well as Northern blot analysis, demonstrated that although NP T206A does not form punctate RTC, it can transcribe and replicate a minigenome. However, in the presence of matrix protein (Z) and glycoprotein (GP), translation of the minigenome message with NP T206A was inhibited, suggesting that punctate RTC formation is required to regulate viral replication. Together, these results highlight a significant difference between New and Old World arenaviruses and demonstrate the importance of RTC formation and translation priming in RTC for Old World arenaviruses. Several members of the Arenaviridae cause hemorrhagic fevers and are classified as category A pathogens. Arenavirus replication-transcription complexes (RTC) are nucleated by the viral nucleoprotein. This study demonstrates that the formation of these complexes is required for virus viability and suggests that RTC nucleation is regulated by the phosphorylation of a single nucleoprotein residue. This work adds to the body of knowledge about how these key viral structures are formed and participate in virus replication. Additionally, the fact that Old World arenavirus complexes colocalize with the eukaryotic initiation factor 4E, while New World arenaviruses do not, is only the second notable difference observed between New and Old World arenaviruses, the first being the difference in the glycoprotein receptor.
Collapse
|
49
|
Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 Å resolution. Protein Cell 2015; 6:351-62. [PMID: 25910597 PMCID: PMC4417675 DOI: 10.1007/s13238-015-0163-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Ebola virus (EBOV) is a key member of Filoviridae family and causes severe human infectious diseases with high morbidity and mortality. As a typical negative-sense single-stranded RNA (-ssRNA) viruses, EBOV possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation to form viral ribonucleoprotein complex (RNP) together with genome RNA and polymerase, which plays the most essential role in virus proliferation cycle. However, the mechanism of EBOV RNP formation remains unclear. In this work, we solved the high resolution structure of core domain of EBOV NP. The polypeptide of EBOV NP core domain (NP(core)) possesses an N-lobe and C-lobe to clamp a RNA binding groove, presenting similarities with the structures of the other reported viral NPs encoded by the members from Mononegavirales order. Most strikingly, a hydrophobic pocket at the surface of the C-lobe is occupied by an α-helix of EBOV NP(core) itself, which is highly conserved among filoviridae family. Combined with other biochemical and biophysical evidences, our results provides great potential for understanding the mechanism underlying EBOV RNP formation via the mobility of EBOV NP element and enables the development of antiviral therapies targeting EBOV RNP formation.
Collapse
|
50
|
Xing J, Ly H, Liang Y. The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-I-like receptor-dependent interferon production. J Virol 2015; 89:2944-55. [PMID: 25552708 PMCID: PMC4325705 DOI: 10.1128/jvi.03349-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/22/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions.
Collapse
Affiliation(s)
- Junji Xing
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|