1
|
Szczepanska-Sadowska E, Cudnoch-Jędrzejewska A, Żera T. Molecular Interaction Between Vasopressin and Insulin in Regulation of Metabolism: Impact on Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:13307. [PMID: 39769071 PMCID: PMC11678547 DOI: 10.3390/ijms252413307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin. Acting on V1a receptors in the liver, AVP stimulates glycogenolysis, reduces synthesis of glycogen, and promotes fatty acid synthesis and acetyl CoA carboxylase activity. Stimulating V1b receptors in the pancreatic islands, AVP promotes release of insulin and glucagon-like peptide-1 (GLP-1) and potentiates stimulatory effects of glucose and ACTH on secretion of insulin. Simultaneously, insulin increases AVP secretion by neurons of the paraventricular nucleus and the supraoptic nucleus. There is strong evidence that secretion of AVP and its metabolic effectiveness are significantly altered in metabolic and cardiovascular diseases. Both experimental and clinical data indicate that inappropriate interactions of AVP and insulin play an important role in the development of insulin resistance in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Hong SM, Ko JK, Moon JJ, Kim YR. Oxytocin: A Potential Therapeutic for Obesity. J Obes Metab Syndr 2021; 30:115-123. [PMID: 33820878 PMCID: PMC8277591 DOI: 10.7570/jomes20098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
Oxytocin is a neuropeptide involved in the homeostasis of food consumption and energy; it affects hedonic eating. Studies in obese or binge-eating patients reported the hypophagic effect of oxytocin, which reduced caloric intake after administration. Several studies have demonstrated the effect of oxytocin’s increasing energy intake, decreasing food consumption, and contributing to weight loss. Oxytocin’s effects on food intake and metabolism suggest its therapeutic potential for treating obesity and binge eating.
Collapse
Affiliation(s)
- Soo Min Hong
- Department of Endocrinology and Metabolism, Seoul Paik Hospital, Inje University, Seoul, Korea
| | - Jeong-Kyung Ko
- Institute of Eating Disorders and Mental Health, Inje University, Seoul, Korea
| | - Jung-Joon Moon
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Korea
| | - Youl-Ri Kim
- Institute of Eating Disorders and Mental Health, Inje University, Seoul, Korea.,Department of Psychiatry, Seoul Paik Hospital, Inje University, Seoul, Korea
| |
Collapse
|
3
|
Ali II, Al-Salam S, Howarth FC, Shmygol A. Oxytocin induces intracellular Ca 2+ release in cardiac fibroblasts from neonatal rats. Cell Calcium 2019; 84:102099. [PMID: 31614270 DOI: 10.1016/j.ceca.2019.102099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Pituitary neuropeptide oxytocin is increasingly recognised as a cardiovascular hormone, in addition to its many regulatory roles in other organ systems. Studies in atrial and ventricular myocytes from the neonatal and adult rats have identified synthesis of oxytocin and the expression of oxytocin receptors in these cells. In cardiac fibroblasts, the most populous non-myocyte cell type in mammalian heart, the oxytocin receptors have not been described before. In the present study, we have investigated the direct effects of oxytocin on intracellular Ca2+ dynamics in ventricular myocytes and fibroblasts from new born rats. In myocytes, oxytocin increased the frequency of spontaneous Ca2+ transients and decreased their amplitude. Our data suggest that oxytocin receptors are also present and functional in the majority of cardiac fibroblasts. We used selective oxytocin receptor inhibitor L-371,257 and a number of intracellular Ca 2+ release blockers to investigate the mechanism of oxytocin induced Ca2+ signalling in cardiac fibroblasts. Our findings suggest that oxytocin induces Ca2+ signals in cardiac fibroblasts by triggering endoplasmic reticulum Ca2+ release via inositol trisphosphate activated receptors. The functional significance of the oxytocin induced Ca2+ signalling in cardiac fibroblasts, especially for their activation into secretory active myofibroblasts, remains to be investigated.
Collapse
Affiliation(s)
- Ifrah I Ali
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, United Arab Emirates
| | - Suhail Al-Salam
- Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, United Arab Emirates
| | - Frank C Howarth
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, United Arab Emirates
| | - Anatoliy Shmygol
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, United Arab Emirates.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The neurohypophysial endocrine system is identified here as a potential target for therapeutic interventions toward improving obesity-related metabolic dysfunction, given its coinciding pleiotropic effects on psychological, neurological and metabolic systems that are disrupted in obesity. RECENT FINDINGS Copeptin, the C-terminal portion of the precursor of arginine-vasopressin, is positively associated with body mass index and risk of type 2 diabetes. Plasma oxytocin is decreased in obesity and several other conditions of abnormal glucose homeostasis. Recent data also show non-classical tissues, such as myocytes, hepatocytes and β-cells, exhibit responses to oxytocin and vasopressin receptor binding that may contribute to alterations in metabolic function. The modulation of anorexigenic and orexigenic pathways appears to be the dominant mechanism underlying the effects of oxytocin and vasopressin on body weight regulation; however, there are apparent limitations associated with their use in direct pharmacological applications. A clearer picture of their wider physiological effects is needed before either system can be considered for therapeutic use.
Collapse
Affiliation(s)
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports-Section of Obesity Research, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C; Building 2-85, Room H134, Copenhagen, Denmark.
| |
Collapse
|
5
|
Reiss AB, Glass DS, Lam E, Glass AD, De Leon J, Kasselman LJ. Oxytocin: Potential to mitigate cardiovascular risk. Peptides 2019; 117:170089. [PMID: 31112739 DOI: 10.1016/j.peptides.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, despite multiple treatment options. In addition to elevated lipid levels, oxidative stress and inflammation are key factors driving atherogenesis and CVD. New strategies are required to mitigate risk and most urgently for statin-intolerant patients. The neuropeptide hormone oxytocin, synthesized in the brain hypothalamus, is worthy of consideration as a CVD ancillary treatment because it moderates factors directly linked to atherosclerotic CVD such as inflammation, weight gain, food intake and insulin resistance. Though initially studied for its contribution to parturition and lactation, oxytocin participates in social attachment and bonding, associative learning, memory and stress responses. Oxytocin has shown promise in animal models of atherosclerosis and in some human studies as well. A number of properties of oxytocin make it a candidate CVD treatment. Oxytocin not only lowers fat mass and cytokine levels, but also improves glucose tolerance, lowers blood pressure and relieves anxiety. Further, it has an important role in communication in the gut-brain axis that makes it a promising treatment for obesity and type 2 diabetes. Oxytocin acts through its receptor which is a class I G-protein-coupled receptor present in cells of the vascular system including the heart and arteries. While oxytocin is not used for heart disease at present, residual CVD risk remains in a substantial portion of patients despite multidrug regimens, leaving open the possibility of using the endogenous nonapeptide as an adjunct therapy. This review discusses the possible role for oxytocin in human CVD prevention and treatment.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA.
| | - Daniel S Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Eric Lam
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Amy D Glass
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Research Institute, NYU Winthrop Hospital, Mineola NY 11501, USA
| |
Collapse
|
6
|
Wang P, Wang SC, Yang H, Lv C, Jia S, Liu X, Wang X, Meng D, Qin D, Zhu H, Wang YF. Therapeutic Potential of Oxytocin in Atherosclerotic Cardiovascular Disease: Mechanisms and Signaling Pathways. Front Neurosci 2019; 13:454. [PMID: 31178679 PMCID: PMC6537480 DOI: 10.3389/fnins.2019.00454] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is a major cardiovascular disease responsible for high morbidity and mortality worldwide. The major pathophysiological basis of CAD is atherosclerosis in association with varieties of immunometabolic disorders that can suppress oxytocin (OT) receptor (OTR) signaling in the cardiovascular system (CVS). By contrast, OT not only maintains cardiovascular integrity but also has the potential to suppress and even reverse atherosclerotic alterations and CAD. These protective effects of OT are associated with its protection of the heart and blood vessels from immunometabolic injuries and the resultant inflammation and apoptosis through both peripheral and central approaches. As a result, OT can decelerate the progression of atherosclerosis and facilitate the recovery of CVS from these injuries. At the cellular level, the protective effect of OT on CVS involves a broad array of OTR signaling events. These signals mainly belong to the reperfusion injury salvage kinase pathway that is composed of phosphatidylinositol 3-kinase-Akt-endothelial nitric oxide synthase cascades and extracellular signal-regulated protein kinase 1/2. Additionally, AMP-activated protein kinase, Ca2+/calmodulin-dependent protein kinase signaling and many others are also implicated in OTR signaling in the CVS protection. These signaling events interact coordinately at many levels to suppress the production of inflammatory cytokines and the activation of apoptotic pathways. A particular target of these signaling events is endoplasmic reticulum (ER) stress and mitochondrial oxidative stress that interact through mitochondria-associated ER membrane. In contrast to these protective effects and machineries, rare but serious cardiovascular disturbances were also reported in labor induction and animal studies including hypotension, reflexive tachycardia, coronary spasm or thrombosis and allergy. Here, we review our current understanding of the protective effect of OT against varieties of atherosclerotic etiologies as well as the approaches and underlying mechanisms of these effects. Moreover, potential cardiovascular disturbances following OT application are also discussed to avoid unwanted effects in clinical trials of OT usages.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Medicine, Albany Medical Center, Albany, NY, United States
| | - Haipeng Yang
- Department of Pediatrics, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dexin Meng
- Department of Physiology, Jiamusi University, Jiamusi, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Martinetz S, Meinung CP, Jurek B, von Schack D, van den Burg EH, Slattery DA, Neumann ID. De Novo Protein Synthesis Mediated by the Eukaryotic Elongation Factor 2 Is Required for the Anxiolytic Effect of Oxytocin. Biol Psychiatry 2019; 85:802-811. [PMID: 30826070 DOI: 10.1016/j.biopsych.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The neuropeptide oxytocin (OXT) mediates its actions, including anxiolysis, via its G protein-coupled OXT receptor. Within the paraventricular nucleus of the hypothalamus (PVN), OXT-induced anxiolysis is mediated, at least in part, via activation of the mitogen-activated protein kinase pathway following calcium influx through transient receptor potential cation channel subfamily V member 2 channels. In the periphery, OXT activates eukaryotic elongation factor 2 (eEF2), an essential mediator of protein synthesis. METHODS In order to study whether OXT activates eEF2 also in neurons to exert its anxiolytic properties in the PVN, we performed in vivo and cell culture experiments. RESULTS We demonstrate that OXT, in a protein kinase C-dependent manner, activates eEF2 both in a hypothalamic cell line and in vivo within the PVN. Next, we reveal that OXT stimulates de novo protein synthesis, while inhibition of protein synthesis within the PVN prevents the anxiolytic effect of OXT in male rats. Moreover, activation of eEF2 within the PVN conveyed an anxiolytic effect supporting a role of OXT-induced eEF2 activation and protein synthesis for its anxiolysis. Finally, we show that one of the proteins that is upregulated by OXT is the neuropeptide Y receptor 5. Infusion of a specific neuropeptide Y receptor 5 agonist into the PVN consequently led to decreased anxiety-related behavior, while pretreatment with a neuropeptide Y receptor 5 antagonist prevented the anxiolytic effect of OXT. CONCLUSIONS Taken together, these results show that OXT recruits several intracellular signaling cascades to induce protein synthesis, which mediates the anxiolytic effects of OXT within the PVN and suggests that eEF2 represents a novel target for anxiety-related disorders.
Collapse
Affiliation(s)
- Stefanie Martinetz
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Carl-Philipp Meinung
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - David von Schack
- Biotherapeutics Clinical Research and Development, Precision Medicine, New York, New York
| | | | - David A Slattery
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Ding C, Leow MKS, Magkos F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes Rev 2019; 20:22-40. [PMID: 30253045 PMCID: PMC7888317 DOI: 10.1111/obr.12757] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Oxytocin was once understood solely as a neuropeptide with a central role in social bonding, reproduction, parturition, lactation and appetite regulation. Recent evidence indicates that oxytocin enhances glucose uptake and lipid utilization in adipose tissue and skeletal muscle, suggesting that dysfunction of the oxytocin system could underlie the pathogenesis of insulin resistance and dyslipidaemia. Murine studies revealed that deficiencies in oxytocin signalling and oxytocin receptor expression lead to obesity despite normal food intake, motor activity and increased leptin levels. In addition, plasma oxytocin concentration is notably lower in obese individuals with diabetes, which may suggest an involvement of the oxytocin system in the pathogenesis of cardiometabolic disease. More recently, small scale studies demonstrated that intranasal administration of oxytocin was associated with significant weight loss as well as improvements in insulin sensitivity and pancreatic β-cell responsivity in human subjects. The multi-pronged effects of oxytocin signalling on improving peripheral insulin sensitivity, pancreatic function and lipid homeostasis strongly suggest a role for this system as a therapeutic target in obesity and diabetes management. The complexity of obesity aetiology and the pathogenesis of obesity-related metabolic complications underscore the need for a systems approach to better understand the role of oxytocin in metabolic function.
Collapse
Affiliation(s)
- C Ding
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore
| | - M K-S Leow
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - F Magkos
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
9
|
Olver TD, Grunewald ZI, Jurrissen TJ, MacPherson REK, LeBlanc PJ, Schnurbusch TR, Czajkowski AM, Laughlin MH, Rector RS, Bender SB, Walters EM, Emter CA, Padilla J. Microvascular insulin resistance in skeletal muscle and brain occurs early in the development of juvenile obesity in pigs. Am J Physiol Regul Integr Comp Physiol 2017; 314:R252-R264. [PMID: 29141949 DOI: 10.1152/ajpregu.00213.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cβ (PKCβ). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCβ inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | | | - Paul J LeBlanc
- Department of Health Sciences, Brock University , St. Catharines, Ontario , Canada
| | - Teagan R Schnurbusch
- National Swine Resource and Research Center University of Missouri , Columbia, Missouri
| | - Alana M Czajkowski
- National Swine Resource and Research Center University of Missouri , Columbia, Missouri
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Affairs Hospital , Columbia, Missouri.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri , Columbia, Missouri
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Affairs Hospital , Columbia, Missouri
| | - Eric M Walters
- National Swine Resource and Research Center University of Missouri , Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri.,Department of Child Health, University of Missouri , Columbia, Missouri
| |
Collapse
|
10
|
Thangapazham RL, Darling TN, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 2014; 15:8407-27. [PMID: 24828202 PMCID: PMC4057739 DOI: 10.3390/ijms15058407] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/19/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.
Collapse
Affiliation(s)
- Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Jon Meyerle
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| |
Collapse
|
11
|
Callier P, Calvel P, Matevossian A, Makrythanasis P, Bernard P, Kurosaka H, Vannier A, Thauvin-Robinet C, Borel C, Mazaud-Guittot S, Rolland A, Desdoits-Lethimonier C, Guipponi M, Zimmermann C, Stévant I, Kuhne F, Conne B, Santoni F, Lambert S, Huet F, Mugneret F, Jaruzelska J, Faivre L, Wilhelm D, Jégou B, Trainor PA, Resh MD, Antonarakis SE, Nef S. Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. PLoS Genet 2014; 10:e1004340. [PMID: 24784881 PMCID: PMC4006744 DOI: 10.1371/journal.pgen.1004340] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development. Disorders of gonadal development represent a clinically and genetically heterogeneous class of DSD caused by defects in gonadal development and/or a failure of testis/ovarian differentiation. Unfortunately, in many cases the genetic aetiology of DSD is unknown, indicating that our knowledge of the factors mediating sex determination is limited. Using exome sequencing on a case of autosomal recessive syndromic 46,XY DSD with testicular dysgenesis and chondrodysplasia, we found a homozygous missense mutation (G287V) within the coding sequence of the O-acetyl-transferase HHAT gene. The HHAT gene encodes an enzyme required for the attachment of palmitoyl residues that are critical for multimerization and long range signaling potency of hedgehog secreted proteins. We found that HHAT is widely expressed in human organs during fetal development, including testes and ovaries around the time of sex determination. In vitro assays show that G287V mutation impairs HHAT palmitoyl-transferase activity and mice lacking functional Hhat exhibit testicular dysgenesis as well as other skeletal, neuronal and growth defects that recapitulate most aspects of the syndromic 46,XY DSD patient. These data provide the first clinical evidence of the essential role played by lipid modification of Hedgehog proteins in human testicular organogenesis and embryonic development.
Collapse
Affiliation(s)
- Patrick Callier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; FHU-TRANSLAD, Département de Génétique, Hôpital Le Bocage, CHU, Dijon, France; EA 4271 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Pierre Calvel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Armine Matevossian
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America; Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America; Graduate Program in Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pascal Bernard
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Hiroshi Kurosaka
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anne Vannier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Christel Thauvin-Robinet
- FHU-TRANSLAD, Département de Génétique, Hôpital Le Bocage, CHU, Dijon, France; EA 4271 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Séverine Mazaud-Guittot
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1085-IRSET, Université de Rennes 1, Structure Fédérative Recherche Biosit, Campus de Beaulieu, Rennes, France
| | - Antoine Rolland
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1085-IRSET, Université de Rennes 1, Structure Fédérative Recherche Biosit, Campus de Beaulieu, Rennes, France
| | - Christèle Desdoits-Lethimonier
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1085-IRSET, Université de Rennes 1, Structure Fédérative Recherche Biosit, Campus de Beaulieu, Rennes, France
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Céline Zimmermann
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Françoise Kuhne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Sandy Lambert
- FHU-TRANSLAD, Département de Génétique, Hôpital Le Bocage, CHU, Dijon, France
| | - Frederic Huet
- FHU-TRANSLAD, Département de Génétique, Hôpital Le Bocage, CHU, Dijon, France; EA 4271 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Francine Mugneret
- FHU-TRANSLAD, Département de Génétique, Hôpital Le Bocage, CHU, Dijon, France
| | | | - Laurence Faivre
- FHU-TRANSLAD, Département de Génétique, Hôpital Le Bocage, CHU, Dijon, France; EA 4271 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Dagmar Wilhelm
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Bernard Jégou
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1085-IRSET, Université de Rennes 1, Structure Fédérative Recherche Biosit, Campus de Beaulieu, Rennes, France; EHESP School of Public Health, Rennes, France
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America; Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America; Graduate Program in Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Chaves VE, Tilelli CQ, Brito NA, Brito MN. Role of oxytocin in energy metabolism. Peptides 2013; 45:9-14. [PMID: 23628372 DOI: 10.1016/j.peptides.2013.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/16/2023]
Abstract
The basic mechanisms that lead obesity are not fully understood; however, several peptides undoubtedly play a role in regulating body weight. Obesity, a highly complex metabolic disorder, involves central mechanisms that control food intake and energy expenditure. Previous studies have shown that central or peripheral oxytocin administration induces anorexia. Recently, in an apparent discrepancy, rodents that were deficient in oxytocin or the oxytocin receptor were shown to develop late-onset obesity without changing their total food intake, which indicates the physiological importance of oxytocin to body metabolism. Oxytocin is synthesized not only within magnocellular and parvocellular neurons but also in several organs, including the ovary, uterus, placenta, testis, thymus, kidney, heart, blood vessels, and skin. The presence of oxytocin receptors in neurons, the myometrium and myoepithelial cells is well recognized; however, this receptor has also been identified in other tissues, including the pancreas and adipose tissue. The oxytocin receptor is a typical class I G protein-coupled receptor that is primarily linked to phospholipase C-β via Gq proteins but can also be coupled to other G proteins, leading to different functional effects. In this review, we summarize the present knowledge of the effects of oxytocin on controlling energy metabolism, focusing primarily on the role of oxytocin on appetite regulation, thermoregulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Valéria Ernestânia Chaves
- Laboratory of Physiology and Pharmacology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
13
|
Schäffler A, Schölmerich J, Buechler C. The role of 'adipotropins' and the clinical importance of a potential hypothalamic–pituitary–adipose axis. ACTA ACUST UNITED AC 2006; 2:374-83. [PMID: 16932320 DOI: 10.1038/ncpendmet0197] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/09/2006] [Indexed: 01/17/2023]
Abstract
Since adipocytes express specific receptors for pituitary hormones and hypothalamic releasing factors, adipose tissue has to be regarded as a fast-acting endocrine gland under the control of the brain. Expanding on this suggestion, the existence and clinical impact of a hypothalamic-pituitary-adipose axis is reviewed. The term 'adipotropins' is introduced in order to describe pituitary and hypothalamic hormones or releasing factors that directly target adipocytes by their specific receptors.
Collapse
Affiliation(s)
- Andreas Schäffler
- Department of Internal Medicine I, University of Regensburg, Germany.
| | | | | |
Collapse
|
14
|
Mohr E, Meyerhof W, Richter D. The hypothalamic hormone oxytocin: from gene expression to signal transduction. Rev Physiol Biochem Pharmacol 2005; 121:31-48. [PMID: 1336619 DOI: 10.1007/bfb0033193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- E Mohr
- Institut für Zellbiochemie und klinische Neurobiologie, UKE, Universität Hamburg, FRG
| | | | | |
Collapse
|
15
|
Ishizuka T, Kajita K, Natsume Y, Kawai Y, Kanoh Y, Miura A, Ishizawa M, Uno Y, Morita H, Yasuda K. Protein kinase C (PKC) beta modulates serine phosphorylation of insulin receptor substrate-1 (IRS-1)--effect of overexpression of PKCbeta on insulin signal transduction. Endocr Res 2004; 30:287-99. [PMID: 15473137 DOI: 10.1081/erc-120039580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro phosphorylation of 180-kDa protein, obtained by immunoprecipitation of adipocyte homogenate with anti-IRS-1 antibody was increased with the addition of conventional PKC in the presence of Ca2+, phosphatidylserine (PS) and diolein (DL). Human purified IRS-1 was phosphorylated by purified conventional PKC (cPKC) in the presence of Ca2+/PS/DL. These results suggest that PKC may have a role in the serine phosphorylation of IRS-1. In order to clarify the inhibitory effect of cPKC on glucose transport mechanism, we examined the overexpression of PKCbeta in cultured adipocytes. Overexpression of PKCbeta in adipocytes markedly induced mobility shift and serine phosphorylation of IRS-1, whereas overexpression of dominant negative PKCbeta (DNPKCbeta) blocked this mobility shift and serine phosphorylation of IRS-1. Insulin (10 nM) increased [3H]2-deoxyglucose (2-DOG) uptake to 200% from basal level (100%) in cultured adipocytes transfected with a vector alone. Overexpression of PKCbeta in adipocytes decreased insulin-induced 2-DOG uptake to 110%, whereas overexpression of DNPKCbeta increased it to 230%. These results suggest that PKCbeta negatively regulates glucose uptake via serine phosphorylation of IRS-1 in rat adipocytes.
Collapse
Affiliation(s)
- Tatsuo Ishizuka
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ghosh PM, Bedolla R, Thomas CA, Kreisberg JI. Role of protein kinase C in arginine vasopressin-stimulated ERK and p70S6 kinase phosphorylation. J Cell Biochem 2004; 91:1109-29. [PMID: 15048868 DOI: 10.1002/jcb.10789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, Gö6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.
Collapse
Affiliation(s)
- Paramita M Ghosh
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
17
|
Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor–LacZ reporter mouse. Neuroscience 2003; 122:155-67. [PMID: 14596857 DOI: 10.1016/s0306-4522(03)00283-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hypothalamic nonapeptide oxytocin (OT) has an established role as a circulating hormone but can also act as a neurotransmitter and as a neuromodulator by interacting with its central OT receptor (OTR). To understand the role of the OTR in the mouse brain we investigated the expression of the OTR gene at the cellular level. We targeted the lacZ reporter gene to the OTR gene locus downstream of the endogenous OTR regulatory elements. Using lactating mouse mammary gland as a control for OTR promoter directed specificity of lacZ gene expression, X-gal histochemistry on tissue sections confirmed that gene expression was restricted to the myoepithelial cells. We also identified for the first time in mice the expression of the OTR gene in neighbouring adipocytes. Further, investigation in the mouse brain identified numerous nuclei containing neurons expressing the OTR gene. Whilst some of these regions had been described for rat or sheep, the OTR-LacZ reporter mouse enabled the identification of novel sites of central OTR gene expression. These regions include the accessory olfactory bulb, the medial septal nucleus, the posterolateral cortical amygdala nucleus, the posterior aspect of the basomedial amygdala nucleus, the medial part of the supramammillary nucleus, the dorsotuberomammillary nucleus, the medial and lateral entorhinal cortices, as well as specific dorsal tegmental, vestibular, spinal trigeminal, and solitary tract subnuclei. By mapping the distribution of OTR gene expression, depicted through histochemical detection of beta-galactosidase, we were able to identify single OTR gene expressing neurons and small neuron clusters that would have remained undetected by conventional approaches. These novel sites of OTR gene expression suggest additional functions of the oxytocinergic system in the mouse. These results lay the foundation for future investigation into the neural role of the OTR and provide a useful model for further study of oxytocin functions in the mouse.
Collapse
Affiliation(s)
- B R Gould
- Laboratory of Molecular Endocrinology, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | |
Collapse
|
18
|
Wesolowski SR, Allan MF, Nielsen MK, Pomp D. Evaluation of hypothalamic gene expression in mice divergently selected for heat loss. Physiol Genomics 2003; 13:129-37. [PMID: 12618490 DOI: 10.1152/physiolgenomics.00184.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse lines divergently selected for heat loss were evaluated for correlated responses in the hypothalamic transcriptome. High (MH) heat loss mice have approximately 50% greater heat loss, approximately 35% less body fat, approximately 20% greater feed intake, approximately 100% greater locomotor activity levels, and higher core body temperature compared with low (ML) heat loss mice. We evaluated hypothalamic expression between inbred lines derived from MH and ML lines (IH and IL, respectively) using cDNA microarrays and selected genes previously isolated in a large differential-display PCR experiment. Northern analysis was used to confirm differences, revealing higher hypothalamic mRNA expression of oxytocin (Oxt) and tissue inhibitor of metalloproteinase 2 (Timp-2) in the IH line. Real-time PCR assays were developed for Oxt, Timp-2, and ribosomal protein L3 (Rpl3, previously found to be upregulated in IL) and confirmed differential expression of these genes with potential physiological relevance in energy balance. These results provide information on correlated responses in the transcriptome of mice selected for high and low energy expenditure and reveal new information regarding genetic regulation of energy balance.
Collapse
|
19
|
Abstract
The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the OT system is strongly steroid dependent. However, this is, unexpectedly, only partially reflected by the promoter sequences in the OT receptor gene. The classical actions of OT are stimulation of uterine smooth muscle contraction during labor and milk ejection during lactation. While the essential role of OT for the milk let-down reflex has been confirmed in OT-deficient mice, OT's role in parturition is obviously more complex. Before the onset of labor, uterine sensitivity to OT markedly increases concomitant with a strong upregulation of OT receptors in the myometrium and, to a lesser extent, in the decidua where OT stimulates the release of PGF(2 alpha). Experiments with transgenic mice suggest that OT acts as a luteotrophic hormone opposing the luteolytic action of PGF(2 alpha). Thus, to initiate labor, it might be essential to generate sufficient PGF(2 alpha) to overcome the luteotrophic action of OT in late gestation. OT also plays an important role in many other reproduction-related functions, such as control of the estrous cycle length, follicle luteinization in the ovary, and ovarian steroidogenesis. In the male, OT is a potent stimulator of spontaneous erections in rats and is involved in ejaculation. OT receptors have also been identified in other tissues, including the kidney, heart, thymus, pancreas, and adipocytes. For example, in the rat, OT is a cardiovascular hormone acting in concert with atrial natriuretic peptide to induce natriuresis and kaliuresis. The central actions of OT range from the modulation of the neuroendocrine reflexes to the establishment of complex social and bonding behaviors related to the reproduction and care of the offspring. OT exerts potent antistress effects that may facilitate pair bonds. Overall, the regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood. One has to conclude that the physiological regulation of the OT system will remain puzzling as long as the molecular mechanisms of genomic and nongenomic actions of steroids have not been clarified.
Collapse
Affiliation(s)
- G Gimpl
- Institut für Biochemie, Johannes Gutenberg Universität, Mainz, Germany.
| | | |
Collapse
|
20
|
Amano T, Matsubara T, Watanabe J, Nakayama S, Hotta N. Insulin modulation of intracellular free magnesium in heart: involvement of protein kinase C. Br J Pharmacol 2000; 130:731-8. [PMID: 10864878 PMCID: PMC1572124 DOI: 10.1038/sj.bjp.0703361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the present study of rat heart using (31)P-nuclear magnetic resonance, we examined the interaction between beta-adrenergic and insulin receptors in terms of the intracellular free Mg(2+) concentration ([Mg(2+)](i)) regulation. [Mg(2+)](i) was estimated from the separation of the chemical shifts of the alpha- and beta-adenosine triphosphate (ATP) peaks, using the dissociation constant of MgATP 87 microM (established recently). In normal (phosphate-free Krebs-Henseleit) solution, [Mg(2+)](i) was approximately 1.02 mM. Insulin at physiological and pathological concentrations increased [Mg(2+)](i) and contractility in a dose-dependent manner. Insulin (more than 100 micro(u) ml(-1)) suppressed the decrease in [Mg(2+)](i) caused by isoprenaline (100 nM), and these effects of insulin on [Mg(2+)](i) and contractility were blocked by LY333531 (macrocyclic bis (indolyl) maleimide, 100 nM), a protein kinase C (PKC) inhibitor. The isoprenaline-induced decrease in the concentrations of ATP ([ATP]) with insulin application was significantly smaller than that without insulin. Insulin modulates [Mg(2+)](i) and haemodynamics, presumably via activation of PKC, thereby antagonizing the reduction of [Mg(2+)](i) induced by beta-adrenoceptor stimulation.
Collapse
Affiliation(s)
- T Amano
- The Third Department of Internal Medicine, Nagoya University School of Medicine, Nagoya, 466-8550, Japan.
| | | | | | | | | |
Collapse
|
21
|
Sauvage M, Mazière P, Fathallah H, Giraud F. Insulin stimulates NHE1 activity by sequential activation of phosphatidylinositol 3-kinase and protein kinase C zeta in human erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:955-62. [PMID: 10672002 DOI: 10.1046/j.1432-1327.2000.01084.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The signaling cascade linking insulin receptor stimulation to the activation of Na/H exchanger (NHE) was investigated in human erythrocytes, a simple cell model expressing the NHE1 isoform and protein kinase C (PKC) alpha and zeta isoforms only. Our results demonstrate the presence of phosphatidylinositol (PtdIns) 3-kinase in these cells and its activation by insulin. With a similar time-course, insulin also promoted both the translocation and activation of PKC zeta, but had no effect on PKC alpha. Inhibition of PtdIns 3-kinase with wortmannin prevented the activation of PKC zeta by insulin. Stimulation of NHE1 was observed after 10 min of insulin treatment and persisted for at least 60 min. This effect was totally abolished by wortmannin or GF 109203X, an inhibitor of all PKC isoforms, but not by Gö 6976, a specific inhibitor of conventional and novel PKCs (e.g. PKC alpha). These data indicate that PKC zeta activation is mediated by a PtdIns 3-kinase-dependent mechanism and that NHE1 stimulation involves the sequential activation of PtdIns 3-kinase and PKC zeta. In addition, insulin stimulation of NHE1 occurred without altering the phosphorylation state of the exchanger, suggesting that the phosphorylation of an ancillary protein by PKC zeta would be responsible for activation of the transporter.
Collapse
Affiliation(s)
- M Sauvage
- Laboratoire des Biomembranes et Messagers Cellulaires, Université Paris XI, Orsay, France
| | | | | | | |
Collapse
|
22
|
Walaas O, Horn RS, Walaas SI. Inhibition of insulin-stimulated phosphorylation of the intracellular domain of phospholemman decreases insulin-dependent GLUT4 translocation in streptolysin-O-permeabilized adipocytes. Biochem J 1999; 343 Pt 1:151-157. [PMID: 10493924 DOI: 10.1042/0264-6021:3430151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A variety of studies indicate that protein kinase C might be involved in the insulin signalling cascade leading to translocation of the insulin-regulated glucose transporter GLUT4 from intracellular pools to the plasma membrane. Phospholemman is a plasma-membrane protein kinase C substrate whose phosphorylation is increased by insulin in intact muscle [Walaas, Czernik, Olstad, Sletten and Walaas (1994) Biochem. J. 304, 635-640]. The present study examined whether the inhibition of phospholemman phosphorylation modulates the effects of insulin on GLUT4 translocation. For this purpose, a synthetic peptide derived from the intracellular domain of phospholemman with the phosphorylatable serine residues replaced with alanine residues was prepared. This peptide was found to decrease the protein kinase C-catalysed phosphorylation of a synthetic phospholemman peptide in vitro. When introduced into streptolysin-O-permeabilized adipocytes, the peptide decreased the effects of insulin on both the phosphorylation of phospholemman and the recruitment of GLUT4 to the plasma membrane. Similarly, the internalization of phospholemman antibodies, which also decreased the protein kinase C-mediated phosphorylation of the synthetic phospholemman peptide in vitro, decreased the effect of insulin on GLUT4 translocation in the adipocytes. The results suggest that phosphorylation of the intracellular domain of phospholemman might be involved in modulating the insulin-induced translocation of GLUT4 to the plasma membrane.
Collapse
Affiliation(s)
- O Walaas
- Neurochemical Laboratory, University of Oslo, P.O. Box 1115-Blindern, 0317 Oslo, Norway
| | | | | |
Collapse
|
23
|
Miura A, Ishizuka T, Kanoh Y, Ishizawa M, Itaya S, Kimura M, Kajita K, Yasuda K. Effect of tumor necrosis factor-alpha on insulin signal transduction in rat adipocytes: relation to PKCbeta and zeta translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:227-38. [PMID: 10209302 DOI: 10.1016/s0167-4889(99)00016-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although much evidence has been accumulated suggesting that tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance, the precise mechanism involved is still unclear. Recently, it has been reported that insulin-induced glucose uptake is mediated by activation of second messengers such as insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and diacylglycerol (DG)-protein kinase C (PKC). We have examined the effect of TNF-alpha on insulin-induced glucose uptake and activations of tyrosine kinase, IRS-1, PI3K and PKC in rat adipocytes. Pretreatment with 0.1-100 nM TNF-alpha for 60 min resulted in a significant decrease in 10 nM insulin- or 1 microM 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced [3H]2-deoxyglucose uptake without affecting basal glucose uptake. 10 nM insulin-stimulated activation of tyrosine kinase, IRS-1 and PI3K was suppressed by preincubation with 0.1-10 nM TNF-alpha for 60 min. 10 nM TNF-alpha pretreatment also suppressed 10 nM insulin- and 1 microM TPA-induced increases in membrane-associated PKCbeta and PKCzeta. Furthermore, 10 nM TNF-alpha, by itself, altered PKCbeta translocation from the membrane to cytosol. These results suggest that TNF-alpha inhibits insulin-stimulated activation of both the tyrosine kinase-IRS-1-PI3K-PKCzeta pathway and DG-PKC pathway. Finally, TNF-alpha contributes to insulin resistance in rat adipocytes.
Collapse
Affiliation(s)
- A Miura
- The Third Department of Internal Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sánchez-Margalet V, González-Yanes C. Pancreastatin inhibits insulin action in rat adipocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E1055-60. [PMID: 9843749 DOI: 10.1152/ajpendo.1998.275.6.e1055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin (PST), a regulatory peptide with a general inhibitory effect on secretion, is derived from chromogranin A, a glycoprotein present throughout the neuroendocrine system. We have previously demonstrated the counterregulatory role of PST on insulin action in rat hepatocytes. Here, we are reporting the PST effects on rat adipocytes. PST dose dependently inhibits basal and insulin-stimulated glucose transport, lactate production, and lipogenesis, impairing the main metabolic actions of insulin in adipocytes. These effects were observed in a wide range of insulin concentrations, leading to a shift to the right in the dose-response curve. Maximal effect was observed at 10 nM PST, and the IC50 value was approximately 1 nM. Moreover, PST has a lipolytic effect in rat adipocytes (ED50 0.1 nM), although it was completely inhibited by insulin. In contrast, PST dose dependently stimulated protein synthesis and enhanced insulin-stimulated protein synthesis. In summary, these data show the lipokinetic effect of PST and the inhibitory effect of PST on insulin metabolic action within a range of physiological concentrations. Therefore, these results give new pathophysiological basis for the association of PST with insulin resistance.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Investigation Unit of the University Hospital Virgen Macarena, Seville 41009, Spain
| | | |
Collapse
|
25
|
Schaffer SW, Ballard C, Mozaffari MS. Is there a link between impaired glucose metabolism and protein kinase C activity in the diabetic heart? Mol Cell Biochem 1997; 176:219-25. [PMID: 9406165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The activity of the beta isoform of protein kinase C (PKC beta) is reduced in the diabetic heart. Since this isozyme has been implicated in insulin action, we tested the hypothesis that PKC beta contributes to the development of impaired glucose metabolism by the noninsulin-dependent diabetic heart. Exposure of the diabetic heart to buffer containing the protein kinase C activator, phorbol myristate acetate, increased PKC beta activity in the membrane. Associated with the improvement in PKC beta activity was a biphasic change in glucose metabolism. The initial phase was characterized by a breakdown in glycogen stores, a stimulation in glucose oxidation and a decrease in endogenous fatty acid oxidation. This was followed by a second phase in which the uptake of glucose was modestly stimulated. Nonetheless, since the phorbol ester did not overcome the diabetes-linked defect in pyruvate dehydrogenase, the increase in glycolytic flux was not associated with a rise in glucose oxidation. Consequently, nearly 50% of the triose units were diverted into lactate and pyruvate production and the generation of ATP from glucose was restricted. Since insulin promotes not only glucose uptake, but also glycogen synthesis and glucose oxidation, the phorbol ester and insulin effects are very different. Thus, the data do not support a role for PKC beta in the development of glucose metabolic defects in the hearts of noninsulin-dependent diabetic rats.
Collapse
Affiliation(s)
- S W Schaffer
- University of South Alabama, School of Medicine, Department of Pharmacology, Mobile 36688, USA
| | | | | |
Collapse
|
26
|
Walaas O, Horn RS, Walaas SI. The protein kinase C pseudosubstrate peptide (PKC19-36) inhibits insulin-stimulated protein kinase activity and insulin-mediated translocation of the glucose transporter glut 4 in streptolysin-O permeabilized adipocytes. FEBS Lett 1997; 413:152-6. [PMID: 9287134 DOI: 10.1016/s0014-5793(97)00898-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of insulin on protein kinase activity and plasma membrane translocation of the glucose transporter GLUT 4 has been studied in adipocytes permeabilized by Streptolysin-O. Insulin increased protein kinase activity, and this was completely inhibited by the PKC pseudosubstrate inhibitor peptide (PKC19-36). Insulin-mediated translocation of GLUT 4 was also inhibited by the PKC inhibitor peptide. Both these insulin effects were blocked by a PKCbeta neutralizing antibody. Our results are consistent with the hypothesis that insulin activates PKCbeta activity in adipocytes in situ, and that this PKC activation is a component of the system whereby insulin regulates translocation of GLUT 4 to the plasma membrane.
Collapse
Affiliation(s)
- O Walaas
- Neurochemical Laboratory, University of Oslo, Norway
| | | | | |
Collapse
|
27
|
Standaert ML, Avignon A, Yamada K, Bandyopadhyay G, Farese RV. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes. Biochem J 1996; 313 ( Pt 3):1039-46. [PMID: 8611143 PMCID: PMC1216966 DOI: 10.1042/bj3131039] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.
Collapse
|
28
|
Manganiello VC, Degerman E, Taira M, Kono T, Belfrage P. Type III cyclic nucleotide phosphodiesterases and insulin action. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:63-100. [PMID: 8646851 DOI: 10.1016/s0070-2137(96)80003-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- V C Manganiello
- Laboratory of Cellular Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- S J Lolait
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Avignon A, Standaert ML, Yamada K, Mischak H, Spencer B, Farese RV. Insulin increases mRNA levels of protein kinase C-alpha and -beta in rat adipocytes and protein kinase C-alpha, -beta and -theta in rat skeletal muscle. Biochem J 1995; 308 ( Pt 1):181-7. [PMID: 7755564 PMCID: PMC1136861 DOI: 10.1042/bj3080181] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Effects of insulin of levels of mRNA encoding protein kinase C (PKC)-alpha, PKC-beta, PKC-epsilon and PKC-theta were examined by ribonuclease protection assay in primary cultures of rat adipocytes in vitro, and in rat adipose tissue and gastrocnemius muscle in vivo. In all cases, insulin increased the levels of PKC-alpha mRNA and PKC-beta mRNA, and, in muscle, insulin also increased the level of PKC-theta mRNA. PKC-epsilon mRNA levels, on the other hand, were not altered significantly. Insulin also stimulated the apparent translocation of PKC-alpha, -beta, -epsilon and -theta, to the membrane fractions of adipocytes, adipose tissue and gastrocnemius muscles, and, in some instances, total PKC levels were diminished, e.g. PKC-alpha and PKC-beta in cultured adipocytes in vitro and/or whole adipose tissue in vivo, and PKC-alpha and PKC-theta in the gastrocnemius muscle. Thus, insulin-induced increases in PKC mRNA may have been partly compensatory in nature to restore PKC levels following translocation and proteolytic losses. However, much more severe depletion of PKC-alpha and PKC-beta by phorbol ester treatment in cultured rat adipocytes in vitro resulted in, if anything, smaller increases in PKC-alpha mRNA and PKC-beta mRNA, and it therefore appears that insulin effects on PKC mRNA levels were not simply due to decreases in respective PKC levels. In addition, effects of insulin, particularly on PKC-beta mRNA, could not be attributed to increased glucose metabolism, which alone decreased PKC-beta mRNA in cultured adipocytes in vitro. We conclude that insulin-induced translocation and degradation of PKC-alpha, PKC-beta and PKC-theta are attended by selective increases in their mRNAs. This mechanism of increasing mRNA may be important in maintaining PKC levels during the continued action of insulin.
Collapse
Affiliation(s)
- A Avignon
- Department of Internal Medicine and Biochemistry, J.A. Haley Veterans' Hospital, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
31
|
Fève B, Piétri-Rouxel F, el Hadri K, Drumare MF, Strosberg AD. Long term phorbol ester treatment down-regulates the beta 3-adrenergic receptor in 3T3-F442A adipocytes. J Biol Chem 1995; 270:10952-9. [PMID: 7738037 DOI: 10.1074/jbc.270.18.10952] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of protein kinase C (PKC) in the regulation of the beta 3-adrenergic receptor (beta 3-AR) gene was examined in murine 3T3-F442A adipocytes, which express this receptor subtype at a high level. We also investigated the involvement of this kinase in the modulation of beta 3-AR gene expression by insulin. Long term exposure of 3T3-F442A adipocytes to phorbol 12-myristate 13-acetate (PMA) decreased beta 3-AR mRNA content in a time- and concentration-dependent manner, with maximal changes observed at 6 h (6.5-fold decrease) and at 100 nM PMA. This inhibition was selective for beta 3-AR transcripts, since beta 1- and beta 2-AR mRNA content remained unchanged. Also, (-)-[125I]cyanopindolol saturation and competition binding experiments on adipocyte membranes indicated that PMA induced an approximately 2-fold decrease in beta 3-AR expression, while that of the two other subtypes was not affected. This correlated with a lower efficacy of beta 3-AR agonists to stimulate adenylyl cyclase. Conversely, long term exposure to PMA did not alter adenylyl cyclase activity in response to guanosine 5'-O-(3-thiotriphosphate) or forskolin. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not repress beta 3-AR mRNA levels. Inhibition of beta 3-AR mRNA by PMA was suppressed by the PKC-selective inhibitor bisindolylmaleimide, and was not observed in PKC-depleted cells, indicating that PKC was involved in this response. mRNA turnover experiments showed that the half-life of beta 3-AR transcripts was not affected by long term PMA exposure. When 3T3-F442A adipocytes were pretreated with PMA for 24 h to down-regulate PKC, or with bisindolylmaleimide, the insulin-induced inhibition of beta 3-AR mRNA levels was reduced by 44-67%. These findings demonstrate that sustained PKC activation exerts a specific control of beta 3-AR gene expression and is involved, at least in part, in the modulation by insulin of this adrenergic receptor subtype.
Collapse
Affiliation(s)
- B Fève
- INSERM Unité82, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | |
Collapse
|
32
|
Walaas SI, Czernik AJ, Olstad OK, Sletten K, Walaas O. Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain. Biochem J 1994; 304 ( Pt 2):635-40. [PMID: 7999001 PMCID: PMC1137538 DOI: 10.1042/bj3040635] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phospholemman, a transmembrane, 72 residue protein enriched in striated muscle and heart [Palmer, Scott and Jones (1991) J. Biol. Chem. 266, 11126-11130], is phosphorylated in response to insulin [Walaas, Horn and Walaas (1991) Biochim. Biophys. Acta 1094, 92-102]. The present study is aimed at identifying the phosphorylation sites of this protein. A synthetic peptide, GTFRSS63IRRLS68TRRR (in the single letter code) and consisting of phospholemman residues 58-72, is a substrate for both protein kinase C and cyclic AMP (cAMP)-dependent protein kinase, with Km values of 6-7 microM for both enzymes. Amino acid sequencing of the phosphopeptide shows that protein kinase C phosphorylates both Ser-63 and Ser-68, while cAMP-dependent protein kinase phosphorylates Ser-68. Thermolytic phosphopeptide mapping of 32P-labelled phospholemman from rat diaphragms shows that treatment with insulin results in labelling of phosphopeptides containing both Ser-63 and Ser-68, whereas treatment with adrenaline results in labelling of the phosphopeptide containing Ser-68. Hence, insulin and adrenaline regulate the phosphorylation of phospholemman, presumably through protein kinase C and cAMP-dependent protein kinase, respectively, on partly overlapping phosphorylation sites.
Collapse
Affiliation(s)
- S I Walaas
- Neurochemical Laboratory, Institute for Basic Medical Sciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
33
|
Farese RV, Standaert ML, Yamada K, Huang LC, Zhang C, Cooper DR, Wang Z, Yang Y, Suzuki S, Toyota T. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats. Proc Natl Acad Sci U S A 1994; 91:11040-4. [PMID: 7972005 PMCID: PMC45162 DOI: 10.1073/pnas.91.23.11040] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.
Collapse
Affiliation(s)
- R V Farese
- J. A. Haley Veterans' Hospital, Tampa, FL 33612
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishimura H, Simpson IA. Staurosporine inhibits phorbol 12-myristate 13-acetate- and insulin-stimulated translocation of GLUT1 and GLUT4 glucose transporters in rat adipose cells. Biochem J 1994; 302 ( Pt 1):271-7. [PMID: 8068015 PMCID: PMC1137219 DOI: 10.1042/bj3020271] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Staurosporine, a widely used protein kinase C inhibitor, completely inhibited both phorbol 12-myristate 13-acetate (PMA)- and insulin-stimulated glucose transport activity in isolated rat adipocytes. The inhibition was non-competitive and was attributed to a blockade of the PMA- and insulin-induced translocation of both GLUT1 and GLUT4 glucose transporters. The PMA-stimulated glucose transport activity was more sensitive to inhibition by staurosporine than was insulin-stimulated transport activity (PMA, IC50 = 1.1 +/- 0.1 microM; insulin, IC50 = 6.4 +/- 0.7 microM; P < 0.05, n = 3). At 1 microM staurosporine the insulin-sensitivity was decreased, i.e. EC50 increased from 0.12 nM to 5.4 nM, but the maximum response to insulin and the time course for stimulation were unaffected. At 6 microM staurosporine the insulin-sensitivity was further decreased, the maximal stimulation was decreased by 25%, and the apparent half-time for stimulation was extended from 2.5 min in control cells to 9.4 min. Staurosporine (30 microM) was able to block insulin's ability to stimulate glucose transport, whether added before or after insulin, by a mechanism that did not alter the rate of GLUT4 internalization. In intact adipose cells, staurosporine (30 microM) induced a slight (30%) decrease in the maximal insulin-induced receptor autophosphorylation and a similar decrease in the tyrosine phosphorylation of pp60 and pp160 (insulin-receptor substrate-1: 'IRS-1'), but was without effect on insulin binding to its receptor. Conversely, staurosporine induced a concentration-dependent inhibition of the constitutively tyrosine-phosphorylated (pp120) protein and of an insulin-stimulated protein pp53 in the cytosol. The locus of staurosporine's action appears to be distal from the initial insulin-receptor signalling, at a step that regulates the specific translocation of the glucose transporters to the plasma membranes.
Collapse
Affiliation(s)
- H Nishimura
- Metabolism and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
35
|
Macaulay SL, Larkins RG. Insulin stimulates turnover of phosphatidylcholine in rat adipocytes. Mol Cell Biochem 1994; 136:23-8. [PMID: 7854328 DOI: 10.1007/bf00931600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigated the effect of insulin on phosphatidylcholine turnover in rat adipocytes labelled to equilibrium with [14C]-choline. Insulin induced a rapid turnover of this major phospholipid that was maximal by 1 min and transient in nature. Following a 1 min stimulation of the cells with insulin at a maximally effective concentration (7 nM), a 4-6% decrease in the percentage of total cellular choline associated with this phospholipid was observed. This reflected a significant transient increase in the percentage of total cellular choline associated with phosphorylcholine, which together with diacylglycerol are the phospholipase C cleavage products of phosphatidylcholine. These effects were observed over a physiological range of insulin concentrations. No effect of insulin on any other choline phospholipid or metabolite (sphingomyelin, lysophophatidylcholine, glycerophosphocholine or choline) was seen. These results suggest that insulin stimulates a phospholipase C-mediated turnover of phosphatidylcholine in rat adipocytes. The rapid nature of this turnover suggests a potential role in signal transduction.
Collapse
Affiliation(s)
- S L Macaulay
- CSIRO Division of Biomolecular Engineering, Parkville, Victoria, Australia
| | | |
Collapse
|
36
|
Farese RV, Standaert ML, Arnold TP, Yamada K, Musunuru K, Hernandez H, Mischak H, Cooper DR. Preferential activation of microsomal diacylglycerol/protein kinase C signaling during glucose treatment (De Novo phospholipid synthesis) of rat adipocytes. J Clin Invest 1994; 93:1894-9. [PMID: 8182122 PMCID: PMC294296 DOI: 10.1172/jci117180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glucose has been reported to increase the de novo synthesis of diacylglycerol (DAG) and translocate and activate protein kinase C (PKC) in rat adipocytes. Presently, we examined the major subcellular site of PKC translocation/activation in response to glucose-induced DAG. Glucose rapidly increased DAG content and PKC enzyme activity in microsomes, but not in plasma membranes or other membranes, during a 30-min treatment of rat adipocytes. This glucose-induced increase in microsomal DAG was attended by increases in immunoreactive PKC alpha, beta, and epsilon. Glucose-induced activation of DAG/PKC signaling in microsomes was not associated with a change in the translocation of Glut-4 transporters from microsomes to the plasma membrane, a biological response that is known to be stimulated by agonists, e.g., phorbol esters, which increase DAG/PKC signaling in plasma membranes, as well as in microsomes. In conclusion, an increase in de novo phospholipid synthesis, as occurs during glucose treatment of rat adipocytes, primarily activates DAG/PKC signaling in microsomes; moreover, this signaling response and biological consequences thereof may differ from those of agonists that primarily stimulate DAG/PKC signaling in the plasma membrane.
Collapse
Affiliation(s)
- R V Farese
- James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Goodnight J, Mischak H, Mushinski JF. Selective involvement of protein kinase C isozymes in differentiation and neoplastic transformation. Adv Cancer Res 1994; 64:159-209. [PMID: 7879658 DOI: 10.1016/s0065-230x(08)60838-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Goodnight
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
38
|
Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:E783-93. [PMID: 8238505 DOI: 10.1152/ajpendo.1993.265.5.e783] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The increases in diacylglycerol (DAG) level and protein kinase C (PKC) activity have been characterized biochemically and functionally in the retina and the brain of diabetic rats as well as in cultured vascular cells. PKC specific activities were increased in the membraneous fraction of retina from streptozotocin (STZ)-induced diabetic rats and the genetically determined diabetic BB rats, respectively, after 1 or 2 wk of diabetes, compared with control. The ratio of total PKC activities from membraneous and cytosol fractions was also increased in the retina of diabetic rats. With diabetes, all the isoenzymes and the total DAG level were increased in the rat retina, whereas no changes were found in the rat brain. Insulin treatment normalized plasma glucose levels and partially prevented the increases in the membraneous PKC activity and all the isoenzymes in the retina. In the retinal endothelial cells, the total DAG level and PKC specific activities are increased by 36 and 22%, respectively, in the membraneous pool when the glucose levels are changed from 5.5 to 22 mM. Activation of PKC activity and isoform beta II by the vitreal injection of phorbol dibutyrate mimicked the abnormal retinal blood circulation observed in diabetic rats (2.22 +/- 0.24 vs. 1.83 +/- 0.40 s). Thus diabetes and elevated glucose levels will increase DAG level and PKC activities and its isoenzyme specifically in vascular cells and may affect retinal hemodynamics.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Brain/enzymology
- Brain/metabolism
- Cell Membrane/enzymology
- Cytosol/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diglycerides/metabolism
- Electrophoresis, Polyacrylamide Gel
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Insulin/pharmacology
- Isoenzymes/isolation & purification
- Isoenzymes/metabolism
- Male
- Molecular Sequence Data
- Molecular Weight
- Peptide Fragments/chemistry
- Peptide Fragments/isolation & purification
- Phorbol 12,13-Dibutyrate/pharmacology
- Protein Kinase C/isolation & purification
- Protein Kinase C/metabolism
- Rats
- Rats, Inbred BB
- Rats, Sprague-Dawley
- Retina/drug effects
- Retina/metabolism
- Retina/physiology
- Retinal Vessels/drug effects
- Retinal Vessels/physiology
- Retinal Vessels/physiopathology
Collapse
Affiliation(s)
- T Shiba
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | | | | | |
Collapse
|
39
|
Yang Y, Farese RV. Insulin activates myelin basic protein (p42 MAP) kinase by a protein kinase C-independent pathway in rat adipocytes. Dissociation from glucose transport. FEBS Lett 1993; 333:287-90. [PMID: 8224195 DOI: 10.1016/0014-5793(93)80672-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myelin basic protein kinase (MBPK) activity of rat adipocytes was measured directly or in gels after purification of p42 microtubule-associated protein kinase (MAPK). Insulin and phorbol esters provoked 2- to 3-fold increases in MBPK/MAPK activity within 5-10 min. Whereas phorbol ester effects were blocked by protein kinase C (PKC) depletion or inhibition, insulin effects were fully intact, indicating that insulin activates MBPK/MAPK independently of PKC. In contrast, PKC depletion or inhibition markedly inhibited insulin effects on [3H]2-deoxyglucose uptake, suggesting that this effect requires PKC, rather than a factor within the ras/MAPK cascade.
Collapse
Affiliation(s)
- Y Yang
- J.A. Haley Veterans' Hospital, Tampa, FL
| | | |
Collapse
|
40
|
Arnold TP, Standaert ML, Hernandez H, Watson J, Mischak H, Kazanietz MG, Zhao L, Cooper DR, Farese RV. Effects of insulin and phorbol esters on MARCKS (myristoylated alanine-rich C-kinase substrate) phosphorylation (and other parameters of protein kinase C activation) in rat adipocytes, rat soleus muscle and BC3H-1 myocytes. Biochem J 1993; 295 ( Pt 1):155-64. [PMID: 8216211 PMCID: PMC1134832 DOI: 10.1042/bj2950155] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To evaluate the question of whether or not insulin activates protein kinase C (PKC), we compared the effects of insulin and phorbol esters on the phosphorylation of the PKC substrate, i.e. myristoylated alanine-rich C-kinase substrate (MARCKS). In rat adipocytes, rat soleus muscle and BC3H-1 myocytes, maximally effective concentrations of insulin and phorbol esters provoked comparable, rapid, 2-fold (on average), non-additive increases in the phosphorylation of immunoprecipitable MARCKS. These effects of insulin and phorbol esters on MARCKS phosphorylation in intact adipocytes and soleus muscles were paralleled by similar increases in the phosphorylation of an exogenous, soluble, 85 kDa PKC substrate (apparently a MARCKS protein) during incubation of post-nuclear membrane fractions in vitro. Increases in the phosphorylation of this 85 kDa PKC substrate in vitro were also observed in assays of both plasma membranes and microsomes obtained from rat adipocytes that had been treated with insulin or phorbol esters. These insulin-induced increases in PKC-dependent phosphorylating activities of adipocyte plasma membrane and microsomes were associated with increases in membrane contents of diacylglycerol, PKC-beta 1 and PKC-beta 2. Our findings suggest that insulin both translocates and activates PKC in rat adipocytes, rat soleus muscles and BC3H-1 myocytes.
Collapse
Affiliation(s)
- T P Arnold
- James A. Haley Veterans' Hospital, Department of Internal Medicine, University of South Florida, Tampa 33612
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Farese R, Standaert M, Yu B, Hernandez H, Cooper D. 2-Hydroxypropyl-beta-cyclodextrin enhances phorbol ester effects on glucose transport and/or protein kinase C-beta translocation to the plasma membrane in rat adipocytes and soleus muscles. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80679-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Dory L. Post-transcriptional regulation of apolipoprotein E expression in mouse macrophages by phorbol ester. Biochem J 1993; 292 ( Pt 1):105-11. [PMID: 8503836 PMCID: PMC1134275 DOI: 10.1042/bj2920105] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phorbol ester-mediated differentiation of THP-1 cells (a human monocytic cell line) into mature macrophages is associated with a transcriptional induction of apolipoprotein E (apoE) expression [Auwerx, Deeb, Brunzell, Peng and Chait (1988) Biochemistry 27, 2651-2655]. Endotoxin, on the other hand, which may also act through activation of protein kinase C, is a potent inhibitor of apoE expression in mouse macrophages [Werb and Chin (1983) J. Biol. Chem. 258, 10642-10648]. The present experiments examine the effect of phorbol ester, an activator of protein kinase C, on the apoE expression in mouse thioglycollate-elicited peritoneal macrophages. Phorbol ester inhibits apoE expression in a specific, time- and dose-dependent manner. A 75% inhibition in the rate of apoE secretion, but not that of total protein, was observed following a 4.5 h incubation with 160 nM phorbol ester, although nearly full inhibition was obtained with 40 nM. The changes in apoE secretion were paralleled by similar changes in apoE synthesis, indicating synthesis as the primary site of action. The decreased rates of apoE synthesis are shown not to be due to increased apoE degradation. The profound inhibition of apoE synthesis was not accompanied by significant changes in apoE mRNA levels at any concentration of phorbol ester (up to 16 microM), or length of treatment (up to 24 h), suggesting a post-transcriptional locus of regulation of apoE expression. Although the early changes in apoE synthesis correlate with increased microsomal protein kinase C activity, the suppression of apoE expression persists even during conditions of nearly complete (> 95%) loss of protein kinase C activity, suggesting that the direct or indirect effect of protein kinase C on apoE expression is mediated by a stable phosphorylated protein, or that the observed effects are mediated through a protein kinase C species that is not readily downregulated by phorbol esters. The presented studies clearly demonstrate the potential importance of the translational regulation of apoE expression through the protein kinase C signal transduction pathway.
Collapse
Affiliation(s)
- L Dory
- University of Tennessee, Department of Pharmacology, Memphis 38163
| |
Collapse
|
43
|
Chin J, Dickens M, Tavare J, Roth R. Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53258-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Romero G, Larner J. Insulin mediators and the mechanism of insulin action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1993; 24:21-50. [PMID: 8504064 DOI: 10.1016/s1054-3589(08)60932-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- G Romero
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | |
Collapse
|
45
|
Farese RV, Standaert ML, Francois AJ, Ways K, Arnold TP, Hernandez H, Cooper DR. Effects of insulin and phorbol esters on subcellular distribution of protein kinase C isoforms in rat adipocytes. Biochem J 1992; 288 ( Pt 1):319-23. [PMID: 1445277 PMCID: PMC1132117 DOI: 10.1042/bj2880319] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effects of insulin and phorbol esters on subcellular distribution of protein kinase C (PKC) isoforms were examined in rat adipocytes. Both agonists provoked rapid decreases in cytosolic, and/or increases in membrane, immunoreactive PKC-alpha, PKC-beta, PKC-gamma, and PKC-epsilon. Effects of phorbol esters on PKC-alpha redistribution to the plasma membrane, however, were much greater than those of insulin. In contrast, insulin, but not phorbol esters, stimulated the translocation of PKC-beta to the plasma membrane, and provoked changes in PKC-zeta redistribution. Neither agonist altered subcellular distribution of PKC-delta, which was detected only in membrane fractions. Our findings indicate that insulin and phorbol esters have overlapping and distinctly different effects on the subcellular redistribution of specific PKC isoforms.
Collapse
Affiliation(s)
- R V Farese
- J. A. Haley Veterans' Hospital, Tampa, FL
| | | | | | | | | | | | | |
Collapse
|
46
|
Gumà A, Muñoz P, Camps M, Testar X, Palacín M, Zorzano A. Inhibitors such as staurosporine, H-7 or polymyxin B cannot be used in skeletal muscle to prove the role of protein kinase C on insulin action. Biosci Rep 1992; 12:413-24. [PMID: 1290805 DOI: 10.1007/bf01121505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The precise role of protein kinase C in insulin action in skeletal muscle is not well defined. Based on the fact that inhibitors of protein kinase C block some insulin effects, it has been concluded that some of the biological actions of insulin are mediated via protein kinase C. In this study, we present evidence that inhibitors of protein kinase C such as staurosporine, H-7 or polymyxin B cannot be used to ascertain the role of protein kinase C in skeletal muscle. This is based on the following experimental evidences: a) staurosporine, H-7 and polymyxin B markedly block in muscle the effect of insulin on System A transport activity; however, this effect of insulin is not mimicked in muscle by TPA-induced stimulation of protein kinase C, b) H-7 and polymyxin B block insulin action on System A transport activity in an additive manner to the inhibitory effect of phorbol esters, c) staurosporine, H-7 and polymyxin B block the effect of insulin on lactate production, a process that is activated by insulin and TPA in an additive fashion, and d) staurosporine completely blocks the tyrosine kinase activity of insulin receptors partially purified from rat skeletal muscle.
Collapse
Affiliation(s)
- A Gumà
- Department de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Cormont M, Gremeaux T, Tanti JF, Van Obberghen E, Le Marchand-Brustel Y. Polymyxin B inhibits insulin-induced glucose transporter and IGF II receptor translocation in isolated adipocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:185-93. [PMID: 1321040 DOI: 10.1111/j.1432-1033.1992.tb17036.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In isolated adipocytes, polymyxin B inhibited insulin-induced glucose incorporation into lipids in a dose-dependent manner, while polymyxin E, a structurally related antibiotic, was ineffective. To approach the mechanism of this effect, the subcellular distribution of the glucose transporter Glut 4 was investigated. Adipocytes were pretreated without or with polymyxin B before insulin stimulation, subcellular fractionation was performed and Glut 4 was detected by immunodetection. Incubation of adipocytes with polymyxin B prevented the insulin-induced appearance of Glut 4 in the plasma membranes, but did not prevent their decrease from the low-density microsomal fraction. A lower purity of the plasma membrane fractions, a detergent effect of polymyxin B on the membranes or an interference of the substance with the immunodetection of the Glut 4 molecules were excluded. These results suggest that polymyxin B was interfering with the Glut 4 translocation process stimulated by insulin in adipocytes. In a similar fashion, polymyxin B inhibited the insulin-induced increase in IGF II binding to adipocytes. This resulted from a blockade of the appearance of IGF II receptors in the plasma membranes. Since low-molecular-mass GTP-binding proteins have been implicated in the regulation of vesicular trafficking, we have used [alpha-32P]GTP binding to analyze such proteins in adipocyte fractions, after SDS/PAGE and transfer to nitrocellulose. Specific and distinct subsets of GTP-binding proteins were revealed in plasma membrane and low-density microsomal fractions of control adipocytes, whether they were stimulated or not with insulin. Polymyxin B treatment of adipocytes markedly modified the profile of the low-molecular-mass GTP-binding proteins in plasma membranes, but not in low-density microsomal fractions. Our results suggest that polymyxin B was interfering with the exocytotic process of the Glut 4 and IGF II receptor-containing vesicles, perhaps at the fusion step between vesicles and plasma membranes.
Collapse
Affiliation(s)
- M Cormont
- Institut National de la Santé et de la Recherche Médicale, U 145, Faculté de Médecine, Nice, France
| | | | | | | | | |
Collapse
|
48
|
Messina J, Standaert M, Ishizuka T, Weinstock R, Farese R. Role of protein kinase C in insulin's regulation of c-fos transcription. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50411-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Tang EK, Houslay MD. Glucagon, vasopressin and angiotensin all elicit a rapid, transient increase in hepatocyte protein kinase C activity. Biochem J 1992; 283 ( Pt 2):341-6. [PMID: 1575678 PMCID: PMC1131039 DOI: 10.1042/bj2830341] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Challenge of intact hepatocytes with one of the hormones vasopressin, angiotensin and glucagon or with the phorbol ester phorbol 12-myristate 13-acetate (PMA) led to a rapid increase in the activity of protein kinase C found in both cytosol and membrane fractions. Maximal activation by hormones occurred within 1-6 min of challenge of cells, after which activity declined. In membrane fractions protein kinase C activity return to basal levels some 15 min after exposure of cells to either angiotensin or glucagon. In cytosol fractions of cells challenged with hormones a second phase of activation ensued after about 10 min, with levels of protein kinase C activity remaining elevated above basal level 15 min afterwards. Activity changes elicited by PMA were rather different; it took about 15 min to achieve maximal activation of cytosolic protein kinase C activity. In membranes of cells challenged with PMA, an initial rapid and transient activation was followed by a sustained increase in activity occurring about 10 min after exposure of cells to this ligand. Only when hepatocytes were challenged with PMA was the translocation of protein kinase C from the cytosol to membrane fraction observed. The kinetics of PMA-induced translocation suggested that it accounted for the second phase of the increase in membrane protein kinase C activity which was unique to this ligand.
Collapse
Affiliation(s)
- E K Tang
- Department of Biochemistry, University of Glasgow, Scotland, U.K
| | | |
Collapse
|
50
|
|