1
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
2
|
Chauhan T, Mittal RD, Mittal B. Association of Common Single Nucleotide Polymorphisms of Candidate Genes with Gallstone Disease: A Meta-Analysis. Indian J Clin Biochem 2020; 35:290-311. [PMID: 32647408 DOI: 10.1007/s12291-019-00832-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
Abstract
Numerous studies have investigated the relationship between various candidate gene polymorphisms and gallbladder stone disease (GSD) across ethnic populations; however, the results are often inconsistent. This meta-analysis aims to comprehensively evaluate the influence of common ABCG8 T400K, ABCG8 D19H, ABCG8 C54Y, ApoB100 EcoRI, ApoB100 XbaI, ApoE HhaI, CETP TaqI, CYP7A1 Bsa, LRPAP1 I/D and TNF-α A308G polymorphisms on the risk of gallbladder stone disease. 33 Full-text articles with 9250 cases and 12,029 healthy controls (total 21,279 subjects) were analyzed using the RevMan software (V5.1) and the Comprehensive Meta-analysis software (Version 2.0, BIOSTAT, Englewood, NJ) a Random-effects model was applied. Begg's funnel plots, Fail-safe number, Egger's regression intercept and Begg and Mazumdar rank correlation tests were performed for the potential publication bias and sensitivity analysis. The studies were also sub-grouped into European and non-European groups to find out role of ethnicity, if any, on GSD risk. Studies included in quantitative synthesis were ABCG8 T400K rs4148217 (cases/controls, n = 671/1416) (4 studies), ABCG8 D19H rs11887534 (n = 1633/2306) (8 studies), ABCG8 C54Y rs4148211 (n = 445/1194) (3 studies), ApoB100 EcoRI rs1042031 (n = 503/390) (4 studies), ApoB100 XbaI rs693 (n = 1214/1389) (9 studies), ApoE HhaI rs429358 (n = 1335/1482) (12 studies), CETP TaqI rs708272 (n = 1038/1025) (5 studies), CYP7A1 Bsa rs3808607 (n = 565/514) (3 studies), LRPAP1 I/D rs11267919 (n = 849/900) (3 studies), TNF-α A308G rs1800629 (n = 997/1413) (3 studies). The combined results displayed significant association of ABCG8 D19H (GC + CC) [OR with 95%CI = 2.2(1.7-2.8); p < 0.00001], ABCG8 Y54C (GA + GG) [OR with 95%CI = 0.65(0.5-0.9); p = 0.01]. APOB100 EcoRI (GG vs. AA) [OR with 95%CI = 0.51(0.3-0.9); p = 0.05], (GG vs. GA) [OR with 95%CI = 0.6(0.4-0.9); p = 0.04], (GA + AA) [OR with 95%CI = 0.6(0.4-0.9); p = 0.006]. APOB Xba I (X- vs. X+) [OR with 95%CI = 0.53(0.3-0.8); p = 0.006. APOE Hha I (E4/E4 vs. E3/E3) [OR with 95%CI = 3.5(1.1-14.9); p = 0.04] and LRPAP1 I/D (ID + II) [OR with 95%CI = 1.27(1.0-1.6); p = 0.03] with the GSD risk. It was found that ABCG D19H was significantly associated with GSD in both European and Non-European populations. While APOB XbaI and LRPAP1 I/D markers were associated with gallstone disease only in Non- European population. Additionally, APOE HhaI and APOB 100 ECoRI were found to be associated with GSD only in European population. The results of quantitative synthesis suggest that the ABCG8 D19H polymorphism was associated with the increased risk of GSD in both European and Non-European populations, APOE Hha I and LRPAP1 I/D polymorphisms were associated with the increased risk of GSD in European and Non-European population respectively. However, no association was found in ABCG8 T400K, CETP Taq1, CYP7A1 Bsa and TNF-A308G polymorphisms with Gallstone Disease.
Collapse
Affiliation(s)
- Tripty Chauhan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP India
| | - R D Mittal
- Department of Urology, SGPGIMS, Lucknow, UP India
| | - B Mittal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP India
| |
Collapse
|
3
|
Chang CL, Garcia-Arcos I, Nyrén R, Olivecrona G, Kim JY, Hu Y, Agrawal RR, Murphy AJ, Goldberg IJ, Deckelbaum RJ. Lipoprotein Lipase Deficiency Impairs Bone Marrow Myelopoiesis and Reduces Circulating Monocyte Levels. Arterioscler Thromb Vasc Biol 2018; 38:509-519. [PMID: 29371243 DOI: 10.1161/atvbaha.117.310607] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery. APPROACH AND RESULTS We characterized blood and tissue leukocytes and inflammatory molecules in transgenic LpL knockout mice rescued from lethal hypertriglyceridemia within 18 hours of life by muscle-specific LpL expression (MCKL0 mice). LpL-deficient mice had ≈40% reduction in blood white blood cell, neutrophils, and total and inflammatory monocytes (Ly6C/Ghi). LpL deficiency also significantly decreased expression of BM macrophage-associated markers (F4/80 and TNF-α [tumor necrosis factor α]), master transcription factors (PU.1 and C/EBPα), and colony-stimulating factors (CSFs) and their receptors, which are required for monocyte and monocyte precursor proliferation and differentiation. As a result, differentiation of macrophages from BM-derived monocyte progenitors and monocytes was decreased in MCKL0 mice. Furthermore, although LpL deficiency was associated with reduced BM uptake and accumulation of triglyceride-rich particles and macrophage CSF-macrophage CSF receptor binding, triglyceride lipolysis products (eg, linoleic acid) stimulated expression of macrophage CSF and macrophage CSF receptor in BM-derived macrophage precursor cells. Arterial macrophage numbers decreased after heparin-mediated LpL cell dissociation and by genetic knockout of arterial LpL. Reconstitution of LpL-expressing BM replenished aortic macrophage density. CONCLUSIONS LpL regulates peripheral leukocyte levels and affects BM monocyte progenitor differentiation and aortic macrophage accumulation.
Collapse
Affiliation(s)
- Chuchun L Chang
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Itsaso Garcia-Arcos
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Rakel Nyrén
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Gunilla Olivecrona
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Ji Young Kim
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Yunying Hu
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Rishi R Agrawal
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Andrew J Murphy
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.)
| | - Ira J Goldberg
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.).
| | - Richard J Deckelbaum
- From Institute of Human Nutrition (C.L.C., J.Y.K., R.R.A., R.J.D.), Division of Preventive Medicine and Nutrition, Department of Medicine (I.G.-A.), Division of Molecular Medicine, Department of Medicine (Y.H., A.J.M., I.J.G.), and Department of Pediatrics (R.J.D.), College of Physicians and Surgeons, Columbia University, New York; Department of Medical Biosciences/Physiological Chemistry, Umeå University, Sweden (R.N., G.O.); Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (Y.H., I.J.G.); Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.J.M.); and Department of Immunology, Monash University, Melbourne, Victoria, Australia (A.J.M.).
| |
Collapse
|
4
|
Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use. Biochem Biophys Rep 2017; 13:1-6. [PMID: 29188234 PMCID: PMC5697731 DOI: 10.1016/j.bbrep.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022] Open
Abstract
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments. Tested stability of two commercially available radiolabeled cholesteryl ethers. One ether was hydrolyzed to free cholesterol (FC) in vitro and in vivo. FC, re-entered circulation giving questionable unexpected results in experiments. The other ether was unhydrolyzed in all model systems. Radiolabeled cholesteryl ethers should be analyzed for stability before use.
Collapse
|
5
|
Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1967-1973. [PMID: 28688796 DOI: 10.1016/j.bbamem.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein E (apoE) is a major lipid carrier of the lipoprotein transport system that plays critical roles in various pathologies. Human apoE has three common isoforms, the apoE4 being associated with Alzheimer's disease. This is the first study in the literature investigating the effects of apoE (apoE3 and apoE4 isoforms) on membrane fatty acid profile in neuroblastoma SK-N-SH cells. Fatty acid analyses were carried out by gas chromatography of the corresponding methyl esters (FAME). We observed the occurrence of membrane fatty acid remodeling in the presence of each of the two apoE isoforms. ApoE3 increased the membrane level of stearic acid and dihomo-gamma-linolenic acid (DGLA), whereas apoE4 had opposite effects. Both apoE3 and apoE4 increased saturated and monounsaturated fatty acids (SFA and MUFA), omega-6/omega-3 ratio and decreased total polyunsaturated fatty acid (PUFA) amount, but with various intensities. Moreover, both apoE isoforms decreased membrane homeostasis indexes such as PUFA balance, unsaturation index and peroxidation index. Our results highlight membrane property changes connected to the apoE isoforms suggesting membrane lipidomics to be inserted in further model studies of apolipoproteins in health and disease.
Collapse
|
6
|
Xia L, Fan C, Dong H, Wang C, Lu Y, Deckelbaum RJ, Qi K. Particle size determines effects of lipoprotein lipase on the catabolism of n-3 triglyceride-rich particles. Clin Nutr 2015; 34:767-74. [DOI: 10.1016/j.clnu.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
7
|
Abstract
Epidemiologic and experimental data suggest the involvement of cholesterol metabolism in the development and progression of Alzheimer disease and Niemann-Pick type C disease, but not of frontotemporal dementias. In these 3 neurodegenerative diseases, however, protein tau hyperphosphorylation and aggregation into neurofibrillary tangles are observed. To elucidate the relationship between cholesterol and tau, we compared sterol levels of neurons burdened with neurofibrillary tangles with those of their unaffected neighbors using semiquantitative filipin fluorescence microscopy in mice expressing P301L mutant human tau (a well-described model of FTDP-17) and in P301L transgenic mice lacking apolipoprotein E (the major cholesterol transporter in the brain). Cellular unesterified cholesterol was higher in neurons affected by tau pathology irrespective of apolipoprotein E deficiency. This argues for an impact of tau pathology on cellular cholesterol homeostasis. We suggest that there is a bidirectional mode of action: Disturbances in cellular cholesterol metabolism may promote tau pathology, but tau pathology may also alter neuronal cholesterol homeostasis; once it is established, a vicious cycle may promote neurofibrillary tangle formation.
Collapse
|
8
|
Tian Y, Wang J, Ye Y, Sun L, Fan Y, Wang L, Li J, Wang Z, Wang K. Apolipoprotein E polymorphism and colorectal neoplasm: results from a meta-analysis. PLoS One 2014; 9:e102477. [PMID: 25029444 PMCID: PMC4100903 DOI: 10.1371/journal.pone.0102477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022] Open
Abstract
To investigate the relationship of Apolipoprotein E (APOE) gene polymorphism to colorectal neoplasia (CRN), we performed a systematic review and meta-analysis. Eligible studies were identified through a systematic literature review from PubMed, EMBASE, and the Science Citation Index up to February 2014. A combined analysis was performed, followed by a subgroup analyses stratified by the study design. We used data collected from 8 prospective studies involving respectively a total of 9243 participants and 4310 CRN cases which including 438 patients with colorectal adenoma (CRA), and 3873 patients with colorectal carcinoma (CRC). The pooled data from this meta-analysis indicated there was no significant association between APOE polymorphism and CRN (ε2: P = 0.51, OR 1.04 95% CI 0.93 to 1.16; ε4: P = 0.72, OR 0.98 95% CI 0.90 to 1.07). Interestingly, subgroup analysis demonstrated there was a significant decreased risk for proximal CRN in patients with APOE ε4 (P = 0.0007, OR 0.52 95% CI 0.35 to 0.76). Data showed no significant association between APOE genotype and overall CRN. However, compared with those carry APOE ε3 alleles, persons with APOE ε4 genotype have significant decreased risk suffering from proximal CRN but not from distal CRN.
Collapse
Affiliation(s)
- Yun Tian
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jirong Wang
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Ying Ye
- Emergency Center, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Liqun Sun
- Department of Intensive Care Unit, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yingrui Fan
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Li Wang
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Juan Li
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhaoxia Wang
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Keming Wang
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- * E-mail:
| |
Collapse
|
9
|
Williams JJ, Mayurasakorn K, Vannucci SJ, Mastropietro C, Bazan NG, Ten VS, Deckelbaum RJ. N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal mice. PLoS One 2013; 8:e56233. [PMID: 23437099 PMCID: PMC3577805 DOI: 10.1371/journal.pone.0056233] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/10/2013] [Indexed: 01/22/2023] Open
Abstract
We questioned if acute administration of n-3 fatty acids (FA) carried in n-3 rich triglyceride (TG) emulsions provides neuroprotection in neonatal mice subjected to hypoxic-ischemic (H/I) brain injury. We examined specificity of FA, optimal doses, and therapeutic windows for neuroprotection after H/I. H/I insult was induced in C57BL/6J 10-day-old mice by right carotid artery ligation followed by exposure to 8% O2 for 15 minutes at 37°C. Intraperitoneal injection with n-3-rich TG emulsions, n-6 rich TG emulsions or saline for control was administered at different time points before and/or after H/I. In separate experiments, dose responses were determined with TG containing only docosahexaenoic acid (Tri-DHA) or eicosapentaenoic acid (Tri-EPA) with a range of 0.1–0.375 g n-3 TG/kg, administered immediately after H/I insult. Infarct volume and cerebral blood flow (CBF) were measured. Treatment with n-3 TG emulsions both before- and after- H/I significantly reduced total infarct volume by a mean of 43% when administered 90 min prior to H/I and by 47% when administered immediately after H/I. In post-H/I experiments Tri-DHA, but not Tri-EPA exhibited neuroprotective effects with both low and high doses (p<0.05). Moreover, delayed post-H/I treatment with Tri-DHA significantly decreased total infarct volume by a mean of 51% when administered at 0 hr, by 46% at 1 hr, and by 51% at 2 hr after H/I insult. No protective effect occurred with Tri-DHA injection at 4 hr after H/I. There were no n-3 TG related differences in CBF. A significant reduction in brain tissue death was maintained after Tri-DHA injection at 8 wk after the initial brain injury. Thus, n-3 TG, specifically containing DHA, is protective against H/I induced brain infarction when administered up to 2 hr after H/I injury. Acute administration of TG-rich DHA may prove effective for treatment of stroke in humans.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bleeding Time
- Blood Glucose/metabolism
- Brain/blood supply
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Infarction/drug therapy
- Brain Infarction/pathology
- Brain Infarction/physiopathology
- Cerebrovascular Circulation/drug effects
- Docosahexaenoic Acids/administration & dosage
- Docosahexaenoic Acids/pharmacology
- Docosahexaenoic Acids/therapeutic use
- Eicosapentaenoic Acid/administration & dosage
- Eicosapentaenoic Acid/pharmacology
- Eicosapentaenoic Acid/therapeutic use
- Emulsions
- Fatty Acids, Omega-3/administration & dosage
- Fatty Acids, Omega-3/pharmacology
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/administration & dosage
- Fatty Acids, Omega-6/pharmacology
- Fatty Acids, Omega-6/therapeutic use
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Injections, Intraperitoneal
- Mice
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Time Factors
- Triglycerides/blood
- Triglycerides/pharmacology
- Triglycerides/therapeutic use
Collapse
Affiliation(s)
- Jill J. Williams
- Institute of Human Nutrition, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Korapat Mayurasakorn
- Institute of Human Nutrition, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Susan J. Vannucci
- Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, United States of America
| | - Christopher Mastropietro
- Department of Pediatrics, Children’s Hospital of Michigan and Wayne State University, Michigan, United States of America
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vadim S. Ten
- Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Richard J. Deckelbaum
- Institute of Human Nutrition, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
A meta-analysis of apolipoprotein E gene ε2/ε3/ε4 polymorphism for gallbladder stone disease. PLoS One 2012; 7:e45849. [PMID: 23049877 PMCID: PMC3458111 DOI: 10.1371/journal.pone.0045849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023] Open
Abstract
Background Numerous studies have investigated the relationship between apolipoprotein (Apo) E gene polymorphisms and gallbladder stone disease (GSD) across ethnic populations; however, the results are often inconsistent. This meta-analysis aims to comprehensively evaluate the influence of a common ε2/ε3/ε4 polymorphism in Apo E gene on the risk of gallbladder stone disease. Method Data were analyzed using the RevMan software (V5.1) and a random-effects model was applied irrespective of between-study heterogeneity. Publication bias was weighed using the fail-safe number. Results There were 17 study populations totaling 1773 cases and 2751 controls for ε2/ε3/ε4 polymorphism of Apo E gene. Overall comparison of alleles ε2 with ε3 in all study populations yielded a 16% decreased risk for GSD (95% confidence interval [95% CI]: 0.68–1.05; P = 0.31; I2 = 13%), and comparison of alleles ε4 with ε3 yielded a 25% increased risk (95% confidence interval [95% CI]: 0.97–1.61; P = 0.0003; I2 = 63%). Subgroup analysis by study design indicated that the magnitude of association in hospital-based studies was largely significantly strengthened for ε4 allelic model (odds ratio [OR] = 1.46; 95% CI: 1.05–2.02; p = 0.0007; I2 = 65%). Subgroup analysis by age of controls indicated a remarkably significant elevation in the magnitude of association in age >50 subgroups in ε4 allelic model (OR = 1.50; 95% CI: 1.03–2.19; p = 0.0009; I2 = 72%). Moreover, subgroup analysis by cases gender indicated a reduction in the magnitude of association in male<30% studies for E2/2 genotypic model (OR = 0.32; 95% CI: 0.07–1.49; p = 0.16; I2 = 45%). Conclusions Our results reveal that Apo E gene ε4 allele is a risk factor of gallbladder stone disease, especially in elder people and Chinese population.
Collapse
|
11
|
Murray-Taylor FM, Ho YY, Densupsoontorn N, Chang CL, Deckelbaum RJ, Seo T. n-3, but not n-6 lipid particle uptake requires cell surface anchoring. Biochem Biophys Res Commun 2010; 392:135-9. [PMID: 20056109 DOI: 10.1016/j.bbrc.2009.12.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/31/2009] [Indexed: 10/20/2022]
Abstract
Omega-3 (n-3) fatty acids are emerging as bioactive agents protective against cardiovascular disease. However, their cellular delivery pathways are poorly defined. Here we questioned whether the uptake of n-3 triglyceride-rich particles (TGRP) is mediated by cell surface proteoglycans (PG) using LDL receptor (LDLR)+/+ and LDLR-/- cell models. LDLR+/+ but not LDLR-/- cells showed higher n-6 over n-3 TGRP uptake. Removal of cell surface proteins and receptors by pronase markedly enhanced the uptake of n-3 but not n-6 TGRP. Lactoferrin blockage of apoE-mediated pathways decreased the uptake of n-6 TGRP by up to 85% (p<0.05) but had insignificant effect on n-3 TGRP uptake. PG removal by sodium chlorate in LDLR+/+ cells substantially reduced n-3 TGRP uptake but had little effect on n-6 TGRP uptake. Thus, while n-6 TGRP uptake is preferentially mediated by LDLR-dependent pathways, the uptake of n-3 TGRP depends more on PG and non-LDLR cell surface anchoring.
Collapse
Affiliation(s)
- Faith M Murray-Taylor
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, USA
| | | | | | | | | | | |
Collapse
|
12
|
Greene W, Gao SJ. Actin dynamics regulate multiple endosomal steps during Kaposi's sarcoma-associated herpesvirus entry and trafficking in endothelial cells. PLoS Pathog 2009; 5:e1000512. [PMID: 19593382 PMCID: PMC2702172 DOI: 10.1371/journal.ppat.1000512] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 06/15/2009] [Indexed: 11/19/2022] Open
Abstract
The role of actin dynamics in clathrin-mediated endocytosis in mammalian cells is unclear. In this study, we define the role of actin cytoskeleton in Kaposi's sarcoma-associated herpesvirus (KSHV) entry and trafficking in endothelial cells using an immunofluorescence-based assay to visualize viral capsids and the associated cellular components. In contrast to infectivity or reporter assays, this method does not rely on the expression of any viral and reporter genes, but instead directly tracks the accumulation of individual viral particles at the nuclear membrane as an indicator of successful viral entry and trafficking in cells. Inhibitors of endosomal acidification reduced both the percentage of nuclei with viral particles and the total number of viral particles docking at the perinuclear region, indicating endocytosis, rather than plasma membrane fusion, as the primary route for KSHV entry into endothelial cells. Accordingly, a viral envelope protein was only detected on internalized KSHV particles at the early but not late stage of infection. Inhibitors of clathrin- but not caveolae/lipid raft-mediated endocytosis blocked KSHV entry, indicating that clathrin-mediated endocytosis is the major route of KSHV entry into endothelial cells. KSHV particles were colocalized not only with markers of early and recycling endosomes, and lysosomes, but also with actin filaments at the early time points of infection. Consistent with these observations, transferrin, which enters cells by clathrin-mediated endocytosis, was found to be associated with actin filaments together with early and recycling endosomes, and to a lesser degree, with late endosomes and lysosomes. KSHV infection induced dynamic actin cytoskeleton rearrangements. Disruption of the actin cytoskeleton and inhibition of regulators of actin nucleation such as Rho GTPases and Arp2/3 complex profoundly blocked KSHV entry and trafficking. Together, these results indicate an important role for actin dynamics in the internalization and endosomal sorting/trafficking of KSHV and clathrin-mediated endocytosis in endothelial cells.
Collapse
Affiliation(s)
- Whitney Greene
- Tumor Virology Program, Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shou-Jiang Gao
- Tumor Virology Program, Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Tumor Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
13
|
Densupsoontorn N, Worgall TS, Seo T, Hamai H, Deckelbaum RJ. Fatty acid supplied as triglyceride regulates SRE-mediated gene expression as efficiently as free fatty acids. Lipids 2007; 42:885-91. [PMID: 17680293 DOI: 10.1007/s11745-007-3093-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 06/26/2007] [Indexed: 01/21/2023]
Abstract
Sterol regulatory element binding proteins (SREBPs) are key transcription proteins that bind to sterol regulatory elements (SRE) of genes essential for cellular cholesterol and fatty acid homeostasis. Polyunsaturated fatty acids (PUFA) strongly inhibit SREBP processing at post-transcriptional levels. We questioned if delivering PUFA as part of a triglyceride (TG) molecule would have similar effects and efficiency as free non-esterified PUFA. CHO cells stably transfected with an SRE-promoter linked to the luciferase reporter gene were incubated for 8-24 h with linoleic acid (LA) complexed to BSA (molar ratios 0.5-4:1), VLDL-sized trilinolein emulsions (TL, 25-200 microg/ml), and chylomicron-sized soy oil emulsions in the presence and absence of apoE. Effects of LA and TL on decreasing SRE-luciferase activity were similar and dose and time dependent. Both TL and LA significantly and rapidly (<or=2-12 h) reduced SRE-mediated gene expression by up to 75%. At equal fatty acid concentrations, SRE inhibition by TL was as effective as LA. ApoE addition increased inhibition by TL. Inhibition of gene expression was highly correlated to cell TG accumulation. We conclude that TG like fatty acids are rapid and efficient modulators of SRE-mediated gene expression.
Collapse
Affiliation(s)
- Narumon Densupsoontorn
- Institute of Human Nutrition and Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 630 W. 168th St., PH1512, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
14
|
Braun NA, Mohler PJ, Weisgraber KH, Hasty AH, Linton MF, Yancey PG, Su YR, Fazio S, Swift LL. Intracellular trafficking of recycling apolipoprotein E in Chinese hamster ovary cells. J Lipid Res 2006; 47:1176-86. [PMID: 16534141 DOI: 10.1194/jlr.m500503-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated apolipoprotein E (apoE) recycling in Chinese hamster ovary (CHO) cells, a peripheral cell that does not produce lipoproteins or express apoE. Using a pulse-chase protocol in which cells were pulsed with 125I-apoE-VLDL and chased for different periods, approximately 30% of the apoE internalized during the pulse was resecreted within a 4 h chase in a relatively lipid-free state. The addition of lysosomotropic agents or brefeldin A had no effect on apoE recycling. Unlike previous results with hepatocytes and macrophages, neither apoA-I nor upregulation of ABCA1 stimulated apoE recycling. However, cyclodextrin, which extracts cholesterol from plasma membrane lipid rafts, increased recycling. Confocal studies revealed that apoE, internalized during a 1 h pulse, colocalizes with early endosomal antigen-1, Rab5, Rab11a, and lysobisphosphatidic acid but not with lysosomal-associated membrane protein-1. Colocalization of apoE and Rab11a persisted even after cells had been chased for 1 h, suggesting a pool of apoE within the endosomal recycling compartment (ERC). Our data suggest that apoE recycling in CHO cells is linked to cellular cholesterol removal via the ERC and phospholipid-containing acceptors in a pathway alternative to the ABCA1-apoA-I axis.
Collapse
Affiliation(s)
- Nicole A Braun
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nishimura SY, Vrljic M, Klein LO, McConnell HM, Moerner WE. Cholesterol depletion induces solid-like regions in the plasma membrane. Biophys J 2005; 90:927-38. [PMID: 16272447 PMCID: PMC1367117 DOI: 10.1529/biophysj.105.070524] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidylinositol-linked and transmembrane major histocompatibility complex (MHC) class II I-E(k) proteins, as well as N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Tritc-DHPE), are used as probes to determine the effect of cholesterol concentration on the organization of the plasma membrane at temperatures in the range 22 degrees C-42 degrees C. Cholesterol depletion caused a decrease in the diffusion coefficients for the MHC II proteins and also for a slow fraction of the Tritc-DHPE population. At 37 degrees C, reduction of the total cell cholesterol concentration results in a smaller suppression of the translational diffusion for I-E(k) proteins (twofold) than was observed in earlier work at 22 degrees C (five sevenfold) Vrljic, M., S. Y. Nishimura, W. E. Moerner, and H. M. McConnell. 2005. Biophys. J. 88:334-347. At 37 degrees C, the diffusion of both I-E(k) proteins is Brownian (0.9 < alpha-parameter < 1.1). More than 99% of the protein population diffuses homogeneously when imaged at 65 frames per s. As the temperature is raised from 22 degrees C to 42 degrees C, a change in activation energy is seen at approximately 35 degrees C in the Arrhenius plots. Cytoskeletal effects appear to be minimal. These results are consistent with a previously described model of solid-like domain formation in the plasma membrane.
Collapse
Affiliation(s)
- Stefanie Y Nishimura
- Department of Chemistry, Molecular and Cellular Physiology, and Biophysics Program, Stanford University, Stanford, California 94305-5080, USA.
| | | | | | | | | |
Collapse
|
16
|
Zhu MY, Hasty AH, Harris C, Linton MF, Fazio S, Swift LL. Physiological relevance of apolipoprotein E recycling: studies in primary mouse hepatocytes. Metabolism 2005; 54:1309-15. [PMID: 16154429 DOI: 10.1016/j.metabol.2005.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 04/30/2005] [Indexed: 10/25/2022]
Abstract
Studies in our laboratory have shown that a fraction of apolipoprotein (apo) E internalized by hepatocytes escapes degradation and is resecreted. Although the intracellular routing is not fully understood, our studies suggest that a portion of apoE recycles through the Golgi apparatus. Given the role of the Golgi apparatus in lipoprotein secretion and the fact that apoE modulates the hepatic secretion of very low-density lipoprotein, we hypothesized that recycling apoE has an effect on hepatic very low-density lipoprotein assembly and/or secretion. To test this hypothesis, apoE-/- mice were transplanted with bone marrow from wild-type mice. In this model, extrahepatic (macrophage-derived) apoE is internalized by the hepatocytes in vivo and is resecreted when the hepatocytes are placed in culture. Unexpectedly, our studies demonstrate that recycling apoE has little effect on hepatic lipid content or hepatocyte triglyceride secretion. In addition, recycling apoE has little effect on the expression of enzymes and proteins involved in lipid synthesis as well as plasma lipoprotein apoproteins. We conclude that the physiological relevance of apoE recycling may not be related to cell-specific functions, such as lipoprotein assembly in the liver. Rather, recycling may provide a mechanism for modulating general cellular effects such as intracellular cholesterol transport or cholesterol efflux.
Collapse
Affiliation(s)
- Mei-Ying Zhu
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2561, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ton MN, Chang C, Carpentier YA, Deckelbaum RJ. In vivo and in vitro properties of an intravenous lipid emulsion containing only medium chain and fish oil triglycerides. Clin Nutr 2005; 24:492-501. [PMID: 16054521 DOI: 10.1016/j.clnu.2005.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 03/03/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS The triglyceride (TG) fatty acyl composition in lipid emulsions influences their metabolism. Little is known about the effects of long chain omega-3 polyunsaturated fatty acids (PUFA) on lipid emulsion metabolism. We investigated possible differences between omega-3 containing emulsions in their metabolism and tissue-targeting in vivo in a mouse model, and in vitro using lipolysis and cell culture experiments. METHODS Soy oil (LCT), MCT/LCT/omega-3 (5:4:1, wt/wt/wt), and MCT/omega-3 (8:2, wt/wt) emulsions were radiolabeled with nondegradable 1alpha,2alpha (n)-[3H] cholesteryl oleoyl ether to trace core particle metabolism in C57BL/6J mice following a bolus injection. Blood samples obtained over 25 min and extracted organs were used to measure the tissue distribution of lipid emulsion particles. Lipoprotein lipase (LpL)-mediated hydrolysis experiments and cell uptake studies in cultured J774 murine macrophages were also performed. RESULTS Blood clearance of 8:2 was 13.4% and 29.8% faster compared to 5:4:1 and LCT, respectively. LCT had greatest liver uptake. LpL-mediated hydrolysis was greatest in 8:2 and lowest in LCT. Overall, cell TG accumulation in the presence of apolipoprotein E was least with 8:2. CONCLUSIONS Our data shows that 8:2 had the most efficient blood clearance but less hepatic uptake in vivo. In vitro, 8:2 had both highest hydrolysis by LpL and intracellular TG utilization in the presence of apoE. Thus, an 8:2 lipid emulsion undergoes efficient blood clearance and may direct omega-3 PUFA more towards extrahepatic tissues.
Collapse
Affiliation(s)
- Mimi N Ton
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
18
|
Liu Y, Yang L, Conde-Knape K, Beher D, Shearman MS, Shachter NS. Fatty acids increase presenilin-1 levels and γ-secretase activity in PSwt-1 cells. J Lipid Res 2004; 45:2368-76. [PMID: 15375184 DOI: 10.1194/jlr.m400317-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Presenilin-1 (PS1) is an important determinant of the gamma-secretase activity necessary for the generation of beta-amyloid (Abeta), likely the central pathogenic molecule in Alzheimer's disease. Most presenilin is rapidly degraded, and determinants of the level of the active cleaved form are unknown. We examined the influence of fatty acids on PS1 levels and gamma-secretase activity using stably transfected CHO cells that express human PS1 and the human amyloid precursor protein. Cells cultured with 0.4 mM oleic acid (OA), with 0.1 mM linoleic acid, or with a triglyceride emulsion expressed increased PS1 and Abeta. This effect was independent of any secondary increase in cellular cholesterol. Cells cultured in 0.4 mM OA also exhibited significantly increased gamma-secretase activity. PS1 mRNA levels were unchanged, and pulse-chase experiments indicated that OA slowed presenilin holoprotein degradation. Nontransfected human neuroblastoma cells also showed increased presenilin when cultured in 0.4 mM OA. Lipids may be important biological determinants of PS1 level and gamma-secretase activity.
Collapse
Affiliation(s)
- Yanzhu Liu
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Choi DW, Leininger-Muller B, Wellman M, Kim YH, Siest G. Cytochrome p-450-mediated differential oxidative modification of proteins: albumin, apolipoprotein E, and CYP2E1 as targets. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:2061-2071. [PMID: 15513903 DOI: 10.1080/15287390490514895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although many studies established a role of cytochrome P-450s in metabolism of xenobiotics, few studies evaluating the ability of cytochrome P-450s to oxidize proteins have been reported. The ability of cytochrome P-450s to induce oxidative modification of albumin, apolipoprotein E, and CYP2E1 protein was investigated. Microsomal cytochrome P-450s induced production of reactive radical species, leading to differential modification of the proteins. Albumin remained unmodified, and CYP2E1 protein was degraded, whereas recombinant and endogenous apolipoprotein E was aggregated. The modification of apolipoprotein E was isoform independent. Cytochrome P-450 inhibitors or antioxidants inhibited the production of reactive radical species and protein modification. These results demonstrate that response of each protein to cytochrome P-450-mediated oxidative attack is different, and cytochrome P-450s can induce apolipoprotein E aggregation, a process that might be relevant to accumulation of altered protein in various abnormal conditions. In view of the ubiquitous expression of cytochrome P-450s, the present results may have important toxicological implications.
Collapse
Affiliation(s)
- Dal Woong Choi
- INSERM U525, Faculté de Pharmacie, Université Nancy, Nancy, France
| | | | | | | | | |
Collapse
|
20
|
Simoens C, Deckelbaum RJ, Carpentier YA. Metabolism of defined structured triglyceride particles compared to mixtures of medium and long chain triglycerides intravenously infused in dogs. Clin Nutr 2004; 23:665-72. [PMID: 15297104 DOI: 10.1016/j.clnu.2003.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 11/07/2003] [Indexed: 11/26/2022]
Abstract
The present study aimed to determine whether including medium-chain fatty acids (MCFA) in specifically designed structured triglycerides (STG) with a MCFA in sn-1 and sn-3 positions and a long-chain (LC) FA in sn-2 position (MLM) would lead to different effects on plasma lipids and FA distribution into plasma and tissue lipids by comparison to a mixture of separate MCT and LCT molecules (MMM/LLL). The fatty acid (FA) composition was comparable in both lipid emulsions. Lipids were infused over 9h daily, in 2 groups of dogs (n = 6 each), for 28 days as a major component (55% of the non-protein energy intake) of total parenteral nutrition (TPN). Blood samples were obtained on specific days, before starting and just before stopping TPN. The concentration of plasma lipids was measured before starting and before stopping TPN on days 1, 2, 3, 4, 5, 8, 10, 12, 16 and 28. Biopsies were obtained from liver, muscle and adipose tissue 15 days before starting, and again on the day following cessation of TPN. In addition, the spleen was removed after the TPN period. FA composition in plasma and tissue lipids was analysed by gas liquid chromatography in different lipid components of plasma and tissues. No differences in either safety or tolerance parameters were detected between both lipid preparations. A lower rise of plasma TG (P < 0.05) was observed during MLM infusion, indicating a faster elimination rate of MLM vs MMM/LLL emulsion. In spite of the differences of TG molecules which would be assumed to affect the site of FA delivery and metabolic fate, FA distribution in phospholipids (PL) of hepatic and extrahepatic tissues did not substantially differ between both emulsions.
Collapse
Affiliation(s)
- Ch Simoens
- L. Deloyers Laboratory for Experimental Surgery, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
21
|
Farkas MH, Weisgraber KH, Shepherd VL, Linton MF, Fazio S, Swift LL. The recycling of apolipoprotein E and its amino-terminal 22 kDa fragment: evidence for multiple redundant pathways. J Lipid Res 2004; 45:1546-54. [PMID: 15145976 DOI: 10.1194/jlr.m400104-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A portion of apolipoprotein E (apoE) internalized by hepatocytes is spared degradation and is recycled. To investigate the intracellular routing of recycling apoE, primary hepatocyte cultures from LDL receptor-deficient mice and mice deficient in receptor-associated protein [a model of depressed expression of LDL receptor-related protein (LRP)] were incubated with human VLDL containing 125I-labeled human recombinant apoE3. Approximately 30% of the internalized intact apoE was recycled after 4 h. The N-terminal 22 kDa fragment of apoE was also resecreted, demonstrating that this apoE domain contains sufficient sequence to recycle. The 22 kDa fragment has reduced affinity for lipoproteins, suggesting that apoE recycling is linked to the ability of apoE to bind directly to a recycling receptor. Finally, apoE was found to recycle equally well in the presence of brefeldin A, a drug that blocks transport from the endoplasmic reticulum and leads to collapse of the Golgi stacks. Our studies demonstrate that apoE recycling occurs 1) in the absence of the LDL receptor or under conditions of markedly reduced LRP expression; 2) when apoE lacks the carboxyl-terminal domain, which allows binding to the lipoprotein; and 3) in the absence of an intact Golgi apparatus. We conclude that apoE recycling occurs through multiple redundant pathways.
Collapse
Affiliation(s)
- Monica H Farkas
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
22
|
Farkas MH, Swift LL, Hasty AH, Linton MF, Fazio S. The recycling of apolipoprotein E in primary cultures of mouse hepatocytes. Evidence for a physiologic connection to high density lipoprotein metabolism. J Biol Chem 2003; 278:9412-7. [PMID: 12524433 DOI: 10.1074/jbc.m208026200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Internalization of apoE-containing very low density protein (VLDL) by hepatocytes in vivo and in vitro leads to apoE recycling and resecretion. Because of the role of apoE in VLDL metabolism, apoE recycling may influence lipoprotein assembly or remnant uptake. However, apoE is also a HDL protein, and apoE recycling may be related to reverse cholesterol transport. To investigate apoE recycling, apoE(-/-) mouse hepatocytes were incubated (pulsed) with wild-type mouse lipoproteins, and cells and media were collected at chase periods up to 24 h. When cells were pulsed with VLDL, apoE was resecreted within 30 min. Although the mass of apoE in the media decreased with time, it could be detected up to 24 h after the pulse. Intact intracellular apoE was also detectable 24 h after the pulse. ApoE was also resecreted when cells were pulsed with HDL. When apoA-I was included in the chase media after a pulse with VLDL, apoE resecretion increased 4-fold. Furthermore, human apoE was resecreted from wild-type mouse hepatocytes after a pulse with human VLDL. Finally, apoE was resecreted from mouse peritoneal macrophages after pulsing with VLDL. We conclude that 1) HDL apoE recycles in a quantitatively comparable fashion to VLDL apoE; 2) apoE recycling can be modulated by extracellular apoA-I but is not affected by endogenous apoE; and 3) recycling occurs in macrophages as well as in hepatocytes, suggesting that the process is not cell-specific.
Collapse
Affiliation(s)
- Monica H Farkas
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
23
|
Mullick AE, Deckelbaum RJ, Goldberg IJ, Al-Haideri M, Rutledge JC. Apolipoprotein E and lipoprotein lipase increase triglyceride-rich particle binding but decrease particle penetration in arterial wall. Arterioscler Thromb Vasc Biol 2002; 22:2080-5. [PMID: 12482838 DOI: 10.1161/01.atv.0000040221.70377.19] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver-derived apolipoprotein E (apoE) decreases atherosclerosis without altering the circulating concentrations of plasma lipoproteins. We evaluated the effects of apoE and lipoprotein lipase (LpL) on the interactions of triglyceride-rich particles (TGRPs) in the arterial wall. METHODS AND RESULTS Quantitative fluorescence microscopy was used to study the interactions of TGRPs (25- to 35-nm diameter) in the arterial wall. Carotid arteries were harvested from rats, placed in a perfusion chamber, and perfused with fluorescently labeled TGRPs. In the absence of apoE or LpL, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-TGRP (100 microg neutral lipid/mL) was poorly retained in the arterial wall. The addition of either apoE (10 microg/mL) or LpL (10 microg/mL) increased TGRP accumulation 220% and 100%, respectively. This effect was attenuated by heparin (10.0 IU/mL). Histological analyses of cross sections from these vessels demonstrate that in the absence of apoE or LpL, there is deep penetration of lipid into the arterial wall. With the addition of either apoE or LpL, arterial wall penetration of TGRP is blocked. CONCLUSIONS These results demonstrate that although apoE and LpL increase arterial wall accumulation of TGRPs, these proteins also reduce the penetration of TGRPs into the arterial wall. We postulate that this may represent a novel antiatherogenic property of apoE and LpL.
Collapse
Affiliation(s)
- Adam E Mullick
- Division of Endocrinology, University of California, Davis 95616, USA.
| | | | | | | | | |
Collapse
|
24
|
Qi K, Seo T, Al-Haideri M, Worgall TS, Vogel T, Carpentier YA, Deckelbaum RJ. Omega-3 triglycerides modify blood clearance and tissue targeting pathways of lipid emulsions. Biochemistry 2002; 41:3119-27. [PMID: 11863451 DOI: 10.1021/bi015770h] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Omega-3-rich (n-3) triglycerides (TG) are increasingly recognized as having modulating roles in many physiological and pathological conditions. We questioned whether the catabolism of lipid emulsions would be changed after enrichment with fish oil (n-3) TG as compared to enrichment with omega-6-rich soy oil (n-6) TG. Phospholipid-stabilized emulsions of n-3 TG and n-6 TG were labeled with [(3)H]cholesteryl oleoyl ether and administered by bolus injection to wild-type (WT) mice, mice lacking the low-density lipoprotein receptor (LDL-R) (LDL-R -/-), and apolipoprotein E (apoE) knockout mice (apoE -/-). The effects of exogenous apoE, heparin, Triton WR 1339, and lactoferrin on catabolism of emulsions were also assayed. n-3 TG emulsions were cleared faster from blood and had different extrahepatic tissue targeting compared to n-6 TG emulsions. In apoE -/- and LDL-R -/- mice, blood clearance of n-6 TG emulsions slowed with decreased liver uptake, but no changes were observed in n-3 TG emulsion clearance and tissue uptake compared to WT mice. In WT mice, addition of exogenous apoE to the emulsion increased liver uptake of n-6 TG emulsions but had no impact on n-3 TG emulsions. Pre-injection of heparin increased and Triton WR 1339 and lactoferrin decreased blood clearance of n-6 TG emulsions with little or no effect on n-3 TG emulsions. Liver uptake of n-6 TG emulsions increased after heparin injection and decreased after Triton WR 1339 injection, but uptake of n-3 TG emulsions was not changed. These data show that the catabolism of n-3 TG emulsions and the catabolism of n-6 TG emulsions occur via very different mechanisms. Removal of chylomicron-sized n-6 TG emulsions is modulated by lipoprotein lipase (LPL), apoE, LDL-R, and lactoferrin-sensitive pathways. In contrast, clearance of chylomicron-sized n-3 TG emulsions relies on LPL to a very minor extent and is independent of apoE, LDL-R, and lactoferrin-sensitive pathways.
Collapse
Affiliation(s)
- Kemin Qi
- Institute of Human Nutrition and Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Apolipoprotein E has key functions in lipoprotein metabolism, and polymorphisms in the apolipoprotein E gene are associated with distinct lipoprotein patterns. The possibility of gene-nutrient interactions for apolipoprotein E has been addressed in many studies. Although results have generally been mixed, the indications for such an interaction have been more common in studies employing a metabolic challenge. Studies directly designed to examine apolipoprotein E gene-nutrient interactions are needed.
Collapse
Affiliation(s)
- Jill Rubin
- Department of Medicine, Columbia University, New York, New York, USA
| | | |
Collapse
|
26
|
Ho YY, Deckelbaum RJ, Chen Y, Vogel T, Talmage DA. Apolipoprotein E inhibits serum-stimulated cell proliferation and enhances serum-independent cell proliferation. J Biol Chem 2001; 276:43455-62. [PMID: 11551921 DOI: 10.1074/jbc.m105325200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Independently of its role in lipid homeostasis, apolipoprotein E (apoE) inhibits cell proliferation. We compared the effects of apoE added to media (exogenous apoE) with the effects of stably expressed apoE (endogenous apoE) on cell proliferation. Exogenous and endogenous apoE increased population doubling times by 30-50% over a period of 14 days by prolonging the G(1) phase of the cell cycle. Exogenous and endogenous apoE also decreased serum-stimulated DNA synthesis by 30-50%. However, apoE did not cause cell cycle arrest; both apoE-treated and control cells achieved equivalent saturation densities at 14 days. Further analyses demonstrated that exogenous and endogenous apoE prevented activation of MAPK but not induction of c-fos expression in response to serum growth factors. Endogenous (but not exogenous) apoE altered serum concentration-dependent effects on proliferation. Whereas control (non-apoE-expressing) cell numbers increased with increasing serum concentrations (1.6-fold for every 2-fold increase in serum), apoE-expressing cell numbers did not differ as serum levels were raised from 2.5 to 10%. In addition, in low serum (0.1%), apoE-expressing cells had elevated DNA synthesis levels compared with control cells. We conclude that apoE does not simply inhibit cell proliferation; rather, the presence of apoE alters the response to and requirement for serum mitogens.
Collapse
Affiliation(s)
- Y Y Ho
- Institute of Human Nutrition and the Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
27
|
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Lund-Katz S, Phillips MC. Lipid binding-induced conformational change in human apolipoprotein E. Evidence for two lipid-bound states on spherical particles. J Biol Chem 2001; 276:40949-54. [PMID: 11533033 DOI: 10.1074/jbc.m106337200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.
Collapse
Affiliation(s)
- H Saito
- Joseph Stokes, Jr. Research Institute, the Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | |
Collapse
|
28
|
Swift LL, Farkas MH, Major AS, Valyi-Nagy K, Linton MF, Fazio S. A recycling pathway for resecretion of internalized apolipoprotein E in liver cells. J Biol Chem 2001; 276:22965-70. [PMID: 11304532 DOI: 10.1074/jbc.m100172200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the recycling of apoE in livers of apoE(-)/- mice transplanted with wild type bone marrow (apoE(+/+) --> apoE(-)/-), a model in which circulating apoE is derived exclusively from macrophages. Nascent Golgi lipoproteins were recovered from livers of apoE(+/+) --> apoE(-)/- mice 8 weeks after transplantation. ApoE was identified with nascent d < 1.006 and with d 1.006-1.210 g/ml lipoproteins at a level approximately 6% that of nascent lipoproteins from C57BL/6 mice. Hepatocytes from apoE(+/+) --> apoE(-)/- mice were isolated and cultured in media free of exogenous apoE. ApoE was found in the media primarily on the d < 1.006 g/ml fraction, indicating a resecretion of internalized apoprotein. Secretion of apoE from C57BL/6 hepatocytes was consistent with constitutive production, whereas the majority of apoE secreted from apoE(+/+) --> apoE(-)/- hepatocytes was recovered in the last 24 h of culture. This suggests that release may be triggered by accumulation of an acceptor, such as very low density lipoproteins, in the media. In agreement with the in vivo data, total recovery of apoE from apoE(+/+) --> apoE(-)/- hepatocytes was approximately 6% that of the apoE recovered from C57BL/6 hepatocytes. Since plasma apoE levels in the transplanted mice are approximately 10% of control levels, the findings indicate that up to 60% of the internalized apoE may be reutilized under physiologic conditions. These studies provide definitive evidence for the sparing of apoE and its routing through the secretory pathway and demonstrate that internalized apoE can be resecreted in a quantitatively significant fashion.
Collapse
Affiliation(s)
- L L Swift
- Departments of Pathology, Medicine, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ. Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Adv Drug Deliv Rev 2001; 47:251-76. [PMID: 11311995 DOI: 10.1016/s0169-409x(01)00109-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoproteins are endogenous particles that transport lipids through the blood to various cell types, where they are recognised and taken up via specific receptors. These particles are, therefore, excellent candidates for the targeted delivery of drugs to various tissues. For example, the remnant receptor and the asialoglycoprotein receptor (ASGPr), which are uniquely localised on hepatocytes, recognise chylomicrons and lactosylated high density lipopoteins (HDL), respectively. In addition, tumour cells of various origins overexpress the low density lipoprotein (LDL) receptor that recognises apolipoprotein E (apoE) on small triglyceride-rich particles and apoB-100 on LDL. Being endogenous, lipoproteins are biodegradable, do not trigger immune reactions, and are not recognised by the reticuloendothelial system (RES). However, their endogenous nature also hampers large-scale pharmaceutical application. In the past two decades, various research groups have successfully synthesised recombinant lipoproteins from commercially available natural and synthetic lipids and serum-derived or recombinant apolipoproteins, which closely mimic the metabolic behaviour of their native counterparts in animal models as well as humans. In this paper, we will summarise the studies that led to the development of these recombinant lipoproteins, and we will address the possibility of using these lipidic particles to selectively deliver a wide range of lipophilic, amphiphilic, and polyanionic compounds to hepatocytes and tumour cells. In addition, the intrinsic therapeutic activities of recombinant chylomicrons and HDL in sepsis and atherosclerosis will be discussed.
Collapse
Affiliation(s)
- P C Rensen
- Sylvius Laboratories, Amsterdam Center for Drug Research, Division of Biopharmaceutics, Leiden, University of Leiden, P.O. Box 9503, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Lynch C, Mobley W. Comprehensive theory of Alzheimer's disease. The effects of cholesterol on membrane receptor trafficking. Ann N Y Acad Sci 2001; 924:104-11. [PMID: 11193786 DOI: 10.1111/j.1749-6632.2000.tb05568.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neurotrophic factors (NTFs), once known for their role in development, have recently been shown to contribute to the maintenance and plasticity of the adult nervous system. This knowledge has provoked hypotheses implicating NTFs in neurodegenerative conditions, particularly Alzheimer's disease (AD). Many of these hypotheses, however, fail to place the possibility of trophic factor dysfunction in the context of recent advances in the molecular pathogenesis of AD. Most notable has been the discovery of several genetic risk factors and three causative Alzheimer's genes. Genetic advances, in turn, have not yet shed much light on an important pathological feature of AD, synaptic loss. We propose here an hypothesis based on recent cell biological research that attempts to integrate findings in these areas. Our hypothesis states that AD pathogenesis results from disruption of cholesterol uptake and metabolism and that this in turn results in abnormal trafficking of membrane proteins critical to normal neuronal function and synaptic plasticity.
Collapse
Affiliation(s)
- C Lynch
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
32
|
Benezra M, Vogel T, Ben-Sasson SA, Panet A, Sehayek E, Al-Haideiri M, Decklbaum RJ, Vlodavsky I. A synthetic heparin-mimicking polyanionic compound binds to the LDL receptor-related protein and inhibits vascular smooth muscle cell proliferation. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(20010401)81:1<114::aid-jcb1028>3.0.co;2-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Ho YY, Al-Haideri M, Mazzone T, Vogel T, Presley JF, Sturley SL, Deckelbaum RJ. Endogenously expressed apolipoprotein E has different effects on cell lipid metabolism as compared to exogenous apolipoprotein E carried on triglyceride-rich particles. Biochemistry 2000; 39:4746-54. [PMID: 10769131 DOI: 10.1021/bi992294a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein E (apoE) on model triglyceride-rich particles (TGRP) increases triglyceride (TG) utilization and cholesteryl ester (CE) hydrolysis, independent of its effect on enhancing particle uptake. We questioned whether, under physiological concentrations, endogenously expressed apoE has similar effects on cellular lipid metabolism as compared to exogenous apoE. J774 macrophages, which do not express apoE, were engineered to express endogenous apoE by transfection of human apoE3 cDNA expression constructs (E(+)) or control vectors (E(-)) into the cells. To compare the effects of exogenous apoE and endogenous apoE on TGRP uptake, cells were incubated with or without apoE associated with (3)H-cholesteryl ether-labeled TGRP. Exogenous apoE enhanced TGRP uptake in both E(-) and E(+) cells. E(-) cells displayed significantly higher TGRP uptake than E(+) cells. Sodium chlorate, which inhibits cell proteoglycan synthesis, markedly diminished differences in TGRP uptake between E(-) and E(+) cells, suggesting that endogenous apoE-proteoglycan interaction contributes to differences in uptake between the two cell types. Particle uptake by the LDL receptor, by the LDL receptor related protein, or by scavenger receptors were similar between E(-) and E(+) cells indicating that endogenous apoE expression does not have a general effect on endocytic pathways. Exogenous apoE carried on TGRP stimulated TG utilization and CE hydrolysis in both cell types. However, TG utilization and CE hydrolysis were not affected by endogenous apoE expression. In conclusion, macrophage expression of apoE has very different effects on TGRP metabolism than exogenously supplied apoE. The fluorescence microscopy results in this study showing that exogenous apoE and endogenous apoE were confined in separate cellular compartments support the hypothesis that these differences resulted from distinct intracellular trafficking pathways followed by exogenous apoE bound to TGRP as compared to endogenous cell-expressed apoE.
Collapse
Affiliation(s)
- Y Y Ho
- Department of Pediatrics, Institute of Human Nutrition, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Rensen PC, Jong MC, van Vark LC, van der Boom H, Hendriks WL, van Berkel TJ, Biessen EA, Havekes LM. Apolipoprotein E is resistant to intracellular degradation in vitro and in vivo. Evidence for retroendocytosis. J Biol Chem 2000; 275:8564-71. [PMID: 10722695 DOI: 10.1074/jbc.275.12.8564] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E (apoE) is an important determinant for the uptake of triglyceride-rich lipoproteins and emulsions by the liver, but the intracellular pathway of apoE following particle internalization is poorly defined. In the present study, we investigated whether retroendocytosis is a unique feature of apoE as compared with apoB by studying the intracellular fate of very low density lipoprotein-sized apoE-containing triglyceride-rich emulsion particles and LDL after LDLr-mediated uptake. Incubation of HepG2 cells with [(3)H]cholesteryl oleate-labeled particles at 37 degrees C led to a rapid release of [(3)H]cholesterol within 30 min for both LDL and emulsion particles. In contrast, emulsion-derived (125)I-apoE was more resistant to degradation (>/=120 min) than LDL-derived (125)I-apoB (30 min). Incubation at 18 degrees C, which allows endosomal uptake but prevents lysosomal degradation, with subsequent incubation at 37 degrees C resulted in a time-dependent release of intact apoE from the cells (up to 14% of the endocytosed apoE at 4 h). The release of apoE was accelerated by the presence of protein-free emulsion (20%) or high density lipoprotein (26%). Retroendocytosis of intact particles could be excluded since little intact [(3)H]cholesteryl oleate was released (<3%). In contrast, the degradation of LDL was complete with virtually no secretion of intact apoB into the medium. The intracellular stability of apoE was also demonstrated after hepatic uptake in C57Bl/6 mice. Intravenous injection of (125)I-apoE and [(3)H]cholesteryl oleate-labeled emulsions resulted in efficient LDLr-mediated uptake of both components by the liver (45-50% of the injected dose after 20 min). At 1 h after injection, only 15-20% of the hepatic (125)I-apoE was degraded, whereas 75% of the [(3)H]cholesteryl oleate was hydrolyzed. From these data we conclude that following LDLr-mediated internalization by liver cells, apoE can escape degradation and can be resecreted. This sequence of events may allow apoE to participate in its hypothesized intracellular functions such as mediator of the post-lysosomal trafficking of lipids and very low density lipoprotein assembly.
Collapse
Affiliation(s)
- P C Rensen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Sylvius Laboratory, P. O. Box 9503, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mensenkamp AR, Jong MC, van Goor H, van Luyn MJ, Bloks V, Havinga R, Voshol PJ, Hofker MH, van Dijk KW, Havekes LM, Kuipers F. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem 1999; 274:35711-8. [PMID: 10585451 DOI: 10.1074/jbc.274.50.35711] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ApoE-deficient mice on low fat diet show hepatic triglyceride accumulation and a reduced very low density lipoprotein (VLDL) triglyceride production rate. To establish the role of apoE in the regulation of hepatic VLDL production, the human APOE3 gene was introduced into apoE-deficient mice by cross-breeding with APOE3 transgenics (APOE3/apoe-/- mice) or by adenoviral transduction. APOE3 was expressed in the liver and, to a lesser extent, in brain, spleen, and lung of transgenic APOE3/apoe-/- mice similar to endogenous apoe. Plasma cholesterol levels in APOE/apoe-/- mice (3.4 +/- 0.5 mM) were reduced when compared with apoe-/- mice (12.6 +/- 1.4 mM) but still elevated when compared with wild type control values (1.9 +/- 0.1 mM). Hepatic triglyceride accumulation in apoE-deficient mice was completely reversed by introduction of the APOE3 transgene. The in vivo hepatic VLDL-triglyceride production rate was reduced to 36% of control values in apoE-deficient mice but normalized in APOE3/apoe-/- mice. Hepatic secretion of apoB was not affected in either of the strains. Secretion of (3)H-labeled triglycerides synthesized from [(3)H]glycerol by cultured hepatocytes from apoE-deficient mice was four times lower than by APOE3/apoe-/- or control hepatocytes. The average size of secreted VLDL particles produced by cultured apoE-deficient hepatocytes was significantly reduced when compared with those of APOE3/apoe-/- and wild type mice. Hepatic expression of human APOE3 cDNA via adenovirus-mediated gene transfer in apoE-deficient mice resulted in a reduction of plasma cholesterol depending on plasma apoE3 levels. The in vivo VLDL-triglyceride production rate in these mice was increased up to 500% compared with LacZ-injected controls and correlated with the amount of apoE3 per particle. These findings indicate a regulatory role of apoE in hepatic VLDL-triglyceride secretion, independent from its role in lipoprotein clearance.
Collapse
Affiliation(s)
- A R Mensenkamp
- Groningen Institute for Drug Studies, University Hospital Groningen, 9713 GZ Groningen
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Khaled Z, Ho YY, Benimetskaya L, Deckelbaum RJ, Stein CA. Omega-6 polyunsaturated fatty acid-stimulated cellular internalization of phosphorothioate oligodeoxynucleotides: evidence for protein kinase C-zeta dependency. Biochem Pharmacol 1999; 58:411-23. [PMID: 10424759 DOI: 10.1016/s0006-2952(99)00126-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rate of cellular internalization of phosphorothioate oligodeoxynucleotides is determined predominantly by adsorptive plus fluid-phase endocytosis. Internalization of a 5'-fluoresceinated phosphorothioate 15mer homopolymer of thymidine (FSdT15) in K562 cells in medium containing lipid-depleted albumin was reduced consistently versus nondepleted albumin. Treatment of K562 and several other cell lines with omega-6 polyunsaturated fatty acids (omega-6 PUFAs; e.g. arachidonic and linoleic acids) but not saturated fatty acids dramatically increased FSdT15 internalization in a concentration-dependent manner and over a wide albumin concentration range. The rate of efflux of FSdT15 from K562 cells was not affected by the omega-6 PUFA, implying that an increase of cellular fluorescence was due to an increase in the in-rate. These data were consistent with the observation that the binding of FSdT15 to the cell surface was also increased in the presence of omega-6 PUFAs. Omega-6 PUFAs are stimulators of protein kinase C (PKC) activity. Inhibition of PKC activity in K562 cells by Go6976, an inhibitor of the classical PKC isoforms, did not block the linoleic acid-induced stimulation of FSdT15 internalization. On the other hand, treatment of cells with Ro318220, which has considerably less isoform specificity, almost totally blocked the effect of linoleic acid on FSdT15 internalization, implying the involvement of a nonclassical PKC isoform in the process. Finally, since the only PKC isoform expressed in K562 cells that also is activated by omega-PUFAs is PKC-zeta, we obtained NIH 3T3 cells expressing a doxycycline-repressible dominant negative PKC-zeta mutant. Expression of the mutant blocked the stimulation of FSdT15 internalization by linoleic acid. Stimulated internalization also was blocked by wortmannin and LY 294002, which are relatively specific inhibitors of phosphatidylinositol 3-kinase (PI 3-K). Taken together, our data suggest that omega-6 PUFA stimulation of fluoresceinated phosphorothioate oligomers may be PKC-zeta dependent, and perhaps PI-3K dependent as well.
Collapse
Affiliation(s)
- Z Khaled
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
37
|
Massimi M, Lear SR, Williams DL, Jones AL, Erickson SK. Differential expression of apolipoprotein E messenger RNA within the rat liver lobule determined by in situ hybridization. Hepatology 1999; 29:1549-55. [PMID: 10216141 DOI: 10.1002/hep.510290504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apolipoprotein (Apo) E plays a key role in the metabolism of lipoproteins. It also modulates immunoregulation, cell growth and differentiation and the response to nerve injury. The liver is a major site of ApoE synthesis. Most of the circulating ApoE is thought to be of hepatic origin with most synthesized in hepatocytes. We showed that total liver ApoE messenger RNA (mRNA) levels were greater in normal adult female rats than in male and that gender-specific patterns of liver ApoE mRNA expression were present by in situ hybridization. In the male liver, the signal was strongest in the portal area, decreasing toward the central vein with the weakest signal in pericentral hepatocytes, resulting in a hepatic lobular gradient of expression. In female liver, a strong periportal signal also was observed that decreased in Zone 2, similar to that in males, but which then increased in pericentral hepatocytes resulting in a bowl-like distribution in marked contrast with that of the male. The results suggest that ApoE mRNA level is regulated differentially in hepatocytes within the liver plate and that the regulation is gender-dependent. Further, the results suggest that in males, hepatocytes in the portal area are the major contributors of ApoE to the plasma and/or sinusoidal pool, whereas in females, both portal and central area hepatocytes play an equal role.
Collapse
Affiliation(s)
- M Massimi
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Following the internalization of low density lipoprotein (LDL) by the LDL receptor within cells, both the lipid and the protein components of LDL are completely degraded within the lysosomes. Remnant lipoproteins are also internalized by cells via the LDL receptor as well as other receptors, but the events following the internalization of these complexes, which use apolipoprotein E (apoE) as their ligand for receptor capture, have not been defined. There is evidence that apoE-containing beta-very low density lipoproteins follow differential intracellular routing depending on their size and apoE content and that apoE internalized with lipoproteins can be resecreted by cultured hepatocytes and fibroblasts. In the present studies, we addressed the question of apoE sparing or recycling as a physiologic phenomenon. Remnant lipoproteins (d < 1.019 g/ml) from normal mouse plasma were iodinated and injected into normal C57BL/6 mice. Livers were collected at 10, 30, 60, and 120 min after injection, and hepatic Golgi fractions were prepared for gel electrophoresis analysis. Golgi preparations were analyzed for galactosyltransferase enrichment (>40-fold above cell homogenate) and by appearance of the Golgi stacks and vesicles on electron microscopy. Iodinated apoE was consistently found in the Golgi fractions peaking at 10 min and disappearing by 2 h after injection. Although traces of apoB48 were present in the Golgi fractions, the apoE/apoB ratio in the Golgi was 50-fold higher compared with serum. Quantitatively similar results were obtained when the very low density lipoprotein remnants were injected into mice deficient in either apoE or the LDL receptor, indicating that the phenomenon of apoE recycling is not influenced by the production of endogenous apoE and is not dependent on the presence of LDL receptors. In addition, radioactive apoE in the Golgi fractions was part of d = 1.019-1.21 g/ml complexes, indicating an association of recycled apoE with either newly formed lipoproteins or the internalized complexes. These studies show that apoE recycling is a physiologic phenomenon in vivo and establish the presence of a unique pathway of intracellular processing of apoE-containing remnant lipoproteins.
Collapse
Affiliation(s)
- S Fazio
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Substantial progress has been made in the understanding of the metabolism of intravenous lipid emulsions and the delivery of their various components to specific tissues or cells. Lipid emulsions should be considered not only as a means of providing energy substrates but also specific compounds that participate in the regulation of key metabolic functions. Such improved knowledge should find applications in the metabolic care of different types of patients.
Collapse
Affiliation(s)
- I E Dupont
- L. Deloyers Laboratory for Experimental Surgery, Free University of Brussels, Belgium
| | | |
Collapse
|
40
|
Schmitt M, Grand-Perret T. Regulated turnover of a cell surface-associated pool of newly synthesized apolipoprotein E in HepG2 cells. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33337-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Abstract
Like many complex disease processes, atherogenesis represents the interaction of an array of genetic and environmental factors. From nonhuman animal models to the investigation of epidemiologic factors in man, no single, overriding cause for the development of this indolent vascular disease has been identified. However, the cholesterol-enriched lipoprotein particles are closely tied to the development of the disease. The genetic and environmental influences on the concentrations of specific lipoprotein subspecies provide a context for identifying patients at risk as well as for developing effective therapeutic strategies to influence and prevent the sequelae of atherogenesis.
Collapse
Affiliation(s)
- J M Hoeg
- Section of Cell Biology, Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J Neurosci 1998. [PMID: 9547235 DOI: 10.1523/jneurosci.18-09-03261.1998] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epsilon4 allele of apolipoprotein E (apoE) is associated with increased risk for Alzheimer's disease (AD) and poor outcome after brain injury. In the CNS, apoE is expressed by glia, predominantly astrocytes. To define the potential biological functions of different human apoE isoforms produced within the brain, transgenic mice were generated in which human apoE3 and apoE4 expression is under control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. These animals were then bred back to apoE knock-out mice. Human apoE protein is found within astrocytes and the neuropil throughout development and into the adult period, as assessed by immunocytochemistry and immunoblot analysis in several GFAP-apoE3 and E4 lines. Cultured astrocytes from these mice secrete apoE3 and apoE4 in lipoproteins that are high-density lipoprotein-like in size. When primary hippocampal neurons are grown in the presence of astrocyte monolayers derived from these transgenic mice, there is significantly greater neurite outgrowth from neurons grown in the presence of apoE3-secreting astrocytes compared with apoE4-secreting or apoE knock-out astrocytes. These effects are not dependent on direct astrocyte-neuron contact and appear to require the low-density lipoprotein receptor-related protein. These data suggest that astrocyte-secreted, apoE3-containing lipoproteins have different biological effects than apoE4-containing lipoproteins. In addition to providing information regarding the role of astrocyte-secreted apoE lipoproteins in the normal brain, these animals will also be useful in models of both AD and CNS injury.
Collapse
|
43
|
Sacks FM, Krukonis GP. The influence of apolipoprotein E on the interactions between normal human very low density lipoproteins and U937 human macrophages: heterogeneity among persons. Vasc Med 1998; 1:9-18. [PMID: 9546921 DOI: 10.1177/1358863x9600100103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apolipoprotein E (apo E) can mediate the cell binding of normal human very low density lipoproteins (VLDL). However, the extent to which apo E is involved in the cell binding and uptake of VLDL from different normolipidemic persons is not well defined. The VLDL (d < 1.006 g/l) of eight subjects were fractionated into VLDL with apo E and without apo E using a monoclonal antibody that binds to the LDL receptor recognition region of apo E. VLDL particles that expressed the 1D7 binding region of apo E comprised an average of 34% (range 7-51%) of the VLDL particles. Anti-apo E blocked an average of 43% (range 8-63%) of the binding of unfractionated VLDL to U937 cells. Anti-apo E blocked a similar proportion of binding to U937 cells of three VLDL subfractions of different density ranges (Sf20-60, Sf60-100, Sf100-400). The proportion of the VLDL particles that contained apo E correlated with the extent of uptake of the total VLDL by U937 cells, but not with stimulation by total VLDL of cholesterol ester formation. The binding to cells of VLDL without apo E varied by six-fold among persons, and caused most of the binding of the total VLDL of some subjects. Therefore, normolipidemic VLDL contains particles across its density range that use apo E to bind to U937 macrophages. In some VLDL samples, apo E provides most of the cell binding activity, whereas in others the binding activity occurs by other means.
Collapse
Affiliation(s)
- F M Sacks
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Abstract
In this review we discuss the metabolism of parenteral emulsions in relation to their natural counterpart, the chylomicrons. A major reaction is lipoprotein lipase-mediated hydrolysis of triglycerides at the vascular endothelium in extrahepatic tissues. The lipase is retained at the cell surface by interactions with heparan sulfate proteoglycans but can move along the surface. Lipoproteins and emulsion particles are initially steered to the endothelium by electrostatic forces. These weak interactions are reinforced by recruitment of lipase molecules. Small particles, whether injected as such or formed as remnants of larger particles, are catabolized mainly through receptor-mediated endocytosis in the liver. In contrast, many of the larger particles are removed by other, less well defined, mechanisms.
Collapse
Affiliation(s)
- G Olivecrona
- Department of Medical Biochemistry and Biophysics, University of Umeå, Sweden.
| | | |
Collapse
|
45
|
Chan S, McCowen KC, Bistrian B. Medium-chain triglyceride and n-3 polyunsaturated fatty acid-containing emulsions in intravenous nutrition. Curr Opin Clin Nutr Metab Care 1998; 1:163-9. [PMID: 10565343 DOI: 10.1097/00075197-199803000-00004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Medium-chain triglycerides and n-3 polyunsaturated fatty acid emulsions as a physical mixture have attracted increasing interest for use in parenteral nutrition and may play an important role in the development of structured triglycerides in a future generation of new lipids. Over the past two decades, the clinical use of intravenous emulsion for the nutritional support of hospitalized patients has relied exclusively on long-chain triglycerides providing both a safe, calorically dense alternative to dextrose and a source of essential fatty acids needed for biological membranes and maintenance of the immune function. During the past decade, the development of new triglycerides (medium- and long-chain triglyceride emulsions and structured triglyceride emulsions) for parenteral use have provided useful advances and opportunities to enhance nutritional and metabolic support. Medium-chain triglycerides and n-3 polyunsaturated fatty acid emulsions possess unique physical, chemical, and metabolic properties that make them theoretically advantageous over the conventional long-chain triglycerides. The physical mixture of medium- and long-chain triglycerides have been used clinically in patients with critical illness, liver disease, immunosuppression, pulmonary disease, and in premature infants, with good tolerance and the avoidance of some of the problems encountered with long-chain triglycerides alone.
Collapse
Affiliation(s)
- S Chan
- Nutrition Support Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
46
|
Jong MC, Dahlmans VE, Hofker MH, Havekes LM. Nascent very-low-density lipoprotein triacylglycerol hydrolysis by lipoprotein lipase is inhibited by apolipoprotein E in a dose-dependent manner. Biochem J 1997; 328 ( Pt 3):745-50. [PMID: 9396715 PMCID: PMC1218981 DOI: 10.1042/bj3280745] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study it was investigated whether apolipoprotein (apoE) can inhibit the lipoprotein lipase (LPL)-mediated hydrolysis of very-low-density-lipoprotein (VLDL) triacylglycerols (TAGs). Previous studies have suggested such an inhibitory role for apoE by using as a substrate for LPL either plasma VLDL or artificial TAG emulsions. To mimic the in vivo situation more fully, we decided to investigate the effect of apoE on the LPL-mediated TAG hydrolysis by using VLDL from apoE-deficient mice that had been enriched with increasing amounts of apoE. Furthermore, since plasma VLDL isolated from apoE-deficient mice was relatively poor in TAGs and strongly enriched in cholesterol as compared with VLDL from wild-type mice, we used nascent VLDL obtained by liver perfusions. Nascent VLDL (d<1. 006) isolated from the perfusate of the apoE-deficient mouse liver was rich in TAGs. Addition of increasing amounts of apoE to apoE-deficient nascent VLDL effectively decreased TAG lipolysis as compared with that of apoE-deficient nascent VLDL without the addition of apoE (63.1+/-6.3 and 20.8+/-1.8% of the control value at 2.7 microg and 29.6 microg of apoE/mg of TAG added respectively). Since, in vivo, LPL is attached to heparan sulphate proteoglycans (HSPG) at the endothelial matrix, we also performed lipolysis assays with LPL bound to HSPG in order to preserve the interaction of the lipoprotein particle with the HSPG-LPL complex. In this lipolysis system a concentration-dependent decrease in the TAG lipolysis was also observed with increasing amounts of apoE on nascent VLDL, although to a lesser extent than with LPL in solution (72.3+/-3.6% and 56.6+/-1.7% of control value at 2.7 microg and 29.6 microg of apoE/mg TAGs added respectively). In conclusion, the enrichment of the VLDL particle with apoE decreases its suitability as a substrate for LPL in a dose-dependent manner.
Collapse
Affiliation(s)
- M C Jong
- TNO-Prevention and Health, Gaubius Laboratory, P.O. Box 2215, 2301 CE Leiden, The Netherlands
| | | | | | | |
Collapse
|
47
|
Kuipers F, Jong MC, Lin Y, Eck M, Havinga R, Bloks V, Verkade HJ, Hofker MH, Moshage H, Berkel TJ, Vonk RJ, Havekes LM. Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes. J Clin Invest 1997; 100:2915-22. [PMID: 9389759 PMCID: PMC508499 DOI: 10.1172/jci119841] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To explore mechanisms underlying triglyceride (TG) accumulation in livers of chow-fed apo E-deficient mice (Kuipers, F., J.M. van Ree, M.H. Hofker, H. Wolters, G. In't Veld, R.J. Vonk, H.M.G. Princen, and L.M. Havekes. 1996. Hepatology. 24:241-247), we investigated the effects of apo E deficiency on secretion of VLDL-associated TG (a) in vivo in mice, (b) in isolated perfused mouse livers, and (c) in cultured mouse hepatocytes. (a) Hepatic VLDL-TG production rate in vivo, determined after Triton WR1339 injection, was reduced by 46% in apo E-deficient mice compared with controls. To eliminate the possibility that impaired VLDL secretion is caused by aspecific changes in hepatic function due to hypercholesterolemia, VLDL-TG production rates were also measured in apo E-deficient mice after transplantation of wild-type mouse bone marrow. Bone marrow- transplanted apo E-deficient mice, which do not express apo E in hepatocytes, showed normalized plasma cholesterol levels, but VLDL-TG production was reduced by 59%. (b) VLDL-TG production by isolated perfused livers from apo E-deficient mice was 50% lower than production by livers from control mice. Lipid composition of nascent VLDL particles isolated from the perfusate was similar for both groups. (c) Mass VLDL-TG secretion by cultured apo E-deficient hepatocytes was reduced by 23% compared with control values in serum-free medium, and by 61% in the presence of oleate in medium (0. 75 mM) to stimulate lipogenesis. Electron microscopic evaluation revealed a smaller average size for VLDL particles produced by apo E-deficient cells compared with control cells in the presence of oleate (38 and 49 nm, respectively). In short-term labeling studies, apo E-deficient and control cells showed a similar time-dependent accumulation of [3H]TG formed from [3H]glycerol, yet secretion of newly synthesized VLDL-associated [3H]TG by apo E-deficient cells was reduced by 60 and 73% in the absence and presence of oleate, respectively. We conclude that apo E, in addition to its role in lipoprotein clearance, has a physiological function in the VLDL assembly-secretion cascade.
Collapse
Affiliation(s)
- F Kuipers
- Laboratory of Nutrition and Metabolism, Groningen Institute for Drug Studies, Academic Hospital Groningen, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Al-Haideri M, Goldberg IJ, Galeano NF, Gleeson A, Vogel T, Gorecki M, Sturley SL, Deckelbaum RJ. Heparan sulfate proteoglycan-mediated uptake of apolipoprotein E-triglyceride-rich lipoprotein particles: a major pathway at physiological particle concentrations. Biochemistry 1997; 36:12766-72. [PMID: 9335533 DOI: 10.1021/bi9631024] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We explored potential mechanisms of non-low-density lipoprotein (LDL) receptor-mediated uptake of triglyceride-rich particles (TGRP) in the presence of apolipoprotein E (apo E). Human fibroblasts were incubated with model intermediate-density lipoprotein- (IDL-) sized TGRP (10-1000 microg of neutral lipid/mL) containing apo E. The extent of receptor-mediated uptake of TGRP was assessed with (a) an anti-apo E monoclonal antibody, which blocks receptor interaction; (b) incubation with heparin; (c) normal vs LDL receptor-negative fibroblasts; and (d) receptor-associated protein (RAP) to determine the potential contribution of LDL receptor-related protein (LRP). Cell surface heparan sulfate proteoglycan- (HSPG-) mediated uptake was examined with or without the addition of heparinase and heparitinase to cell incubation mixtures. At low particle concentrations (</=100 microg of neutral lipid/mL), almost all apo E-TGRP uptake was via the LDL receptor. At higher particle concentrations, within the physiologic range (>250 microg of neutral lipid/mL), most (>/=60%) particle uptake and internalization was via HSPG-mediated pathways. This HSPG pathway did not involve classical lipoprotein receptors, such as LRP or the LDL receptor. These data suggest that in peripheral tissues, such as the arterial wall, apo E may act in TGRP as a ligand for uptake not only via the LDL receptor and LRP pathways but also via HSPG pathways that are receptor-independent. Thus, at physiologic particle concentrations apo E-TGRP can be bound and internalized in certain cells by relatively low affinity but high capacity HSPG-mediated pathways.
Collapse
Affiliation(s)
- M Al-Haideri
- Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rumsey SC, Galeano NF, Lipschitz B, Deckelbaum RJ. Oleate and other long chain fatty acids stimulate low density lipoprotein receptor activity by enhancing acyl coenzyme A:cholesterol acyltransferase activity and altering intracellular regulatory cholesterol pools in cultured cells. J Biol Chem 1995; 270:10008-16. [PMID: 7730302 DOI: 10.1074/jbc.270.17.10008] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modification of dietary fatty acid composition results in changes in plasma cholesterol levels in man. We examined the effect of in vitro fatty acid supplementation on low density lipoprotein (LDL) receptor activity in cultured cells and questioned whether changes were related to fatty acid-induced alterations in acyl-CoA: cholesterol acyltransferase (ACAT) activity. Preincubation of cultured cells (i.e. human skin fibroblasts, J774 macrophages, and HepG2 cells) with oleic acid (oleic acid:bovine serum albumin molar ratio 2:1) at 37 degrees C for longer than 2 h resulted in a 1.2- to 1.5-fold increase in LDL cell binding at 4 degrees C and LDL cell degradation at 37 degrees C. Scatchard analysis showed that oleic acid increased LDL receptor number but not LDL affinity (Kd). Fatty acid supplementation of J774 macrophages increased both LDL receptor activity and cholesteryl ester accumulation. The ACAT inhibitor, 58-035, eliminated both effects, and increased ACAT activity preceded stimulation of LDL receptor activity by 1-2 h. Supplementation of macrophages with triolein emulsion particles also increased LDL cell binding and degradation, and addition of cholesterol to the emulsions abolished this effect. Among fatty acids tested, oleate (18:1), arachidonate (20:4), and eicosapentanoate (20:5) demonstrated the greatest effects. We hypothesize that certain fatty acids delivered to cells either in free form, or as triglyceride, first increase cellular ACAT activity, which then causes a decrease in an intracellular free cholesterol pool, signaling a need for increased LDL receptor activity. This mechanism may play a role in the effect of certain dietary fatty acids on LDL metabolism in vivo.
Collapse
Affiliation(s)
- S C Rumsey
- Institute of Human Nutrition, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|