1
|
Zhou YQ, Peng JJ, Shan LP, Liu W. Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model. Respir Res 2025; 26:1. [PMID: 39748354 PMCID: PMC11697879 DOI: 10.1186/s12931-024-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ). METHODS Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed. Lung pathological changes were observed with conventional staining techniques. Lung tissue components were assessed with tandem mass spectrometry tag technology, and differentially expressed proteins (DEPs) were bioinformatically analyzed and investigated with parallel reaction monitoring. RESULTS The expression of 91, 160, and 78 proteins was significantly altered at days 2, 7, and 14, respectively. Gene Ontology analyses revealed that the DEPs in the PQ-2d and PQ-7d groups were involved primarily in humoral immunity and coagulation-related reactions, whereas those in the PQ-14d group were implicated primarily in chemotactic and regulatory responses. Kyoto Encyclopedia of Genes and Genomes analyses indicated that complement and coagulation cascades were key pathways in the PQ-2d and PQ-7d groups, whereas xenobiotic metabolism by cytochrome P450 was a key pathway in the PQ-14d group. Nine proteins at PQ-2d and eight proteins at PQ-7d were validated through parallel reaction monitoring (PRM). CONCLUSIONS PQ-induced ALI depends on over-activation of immune responses by damaged alveolar/endothelial cells, and the complement/coagulation cascade pathway plays a key role during this process. The proteins identified herein might provide new therapeutic targets or biomarkers for PQ poisoning.
Collapse
Affiliation(s)
- Yu Qing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Jin Jin Peng
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Li Ping Shan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
- Urology Surgery, ShengJing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
2
|
Aksoy-Ozer ZB, Bitirim CV, Turan B, Akcali KC. The Role of Zinc on Liver Fibrosis by Modulating ZIP14 Expression Throughout Epigenetic Regulatory Mechanisms. Biol Trace Elem Res 2024; 202:5094-5105. [PMID: 38221603 PMCID: PMC11442477 DOI: 10.1007/s12011-023-04057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
Zinc plays a pivotal role in tissue regeneration and maintenance being as a central cofactor in a plethora of enzymatic activities. Hypozincemia is commonly seen with chronic liver disease and is associated with an increased risk of liver fibrosis development and hepatocellular carcinoma. Previously favorable effects of zinc supplementation on liver fibrosis have been shown. However, the underlying mechanism of this effect is not elucidated. Liver fibrosis was induced in mice by using CCl4 injection, followed by treatment with zinc chloride (ZnCl2) both at fibrotic and sham groups, and their hepatocytes were isolated. Our results showed that the administration of ZnCl2 restored the depleted cytosolic zinc levels in the hepatocytes isolated from the fibrotic group. Also, alpha-smooth muscle actin (αSMA) expression in hepatocytes was decreased, indicating a reversal of the fibrotic process. Notably, ZIP14 expression significantly increased in the fibrotic group following ZnCl2 treatment, whereas in the sham group ZIP14 expression decreased. Chromatin immunoprecipitation (ChIP) experiments revealed an increased binding percentage of Metal-regulatory transcription factor 1 (MTF1) on ZIP14 promoter in the hepatocytes isolated from fibrotic mice compared to the sham group after ZnCl2 administration. In the same group, the binding percentage of the histone deacetylase HDAC4 on ZIP14 promoter decreased. Our results suggest that the ZnCl2 treatment ameliorates liver fibrosis by elevating intracellular zinc levels through MTF1-mediated regulation of ZIP14 expression and the reduction of ZIP14 deacetylation via HDAC4. The restoration of intracellular zinc concentrations and the modulation of ZIP14 expression by zinc orchestrated through MTF1 and HDAC4, appear to be essential determinants of the therapeutic response in hepatic fibrosis. These findings pave the way for potential novel interventions targeting zinc-related pathways for the treatment of liver fibrosis and associated conditions.
Collapse
Affiliation(s)
| | | | - Belma Turan
- Biophysics Department, Lokman Hekim University Medical School, Ankara, Turkey
| | - Kamil Can Akcali
- Ankara University Stem Cell Institute, Ankara, Turkey.
- Biophysics Department, Ankara University Medical School, Ankara, Turkey.
| |
Collapse
|
3
|
Yadav VS, Mir RA, Bhatia A, Yadav R, Shadang M, Chauhan SS, Dhingra K, Kharbanda OP, Yadav R, Garg R. Metallothionein levels in gingival crevicular fluid, saliva and serum of smokers and non-smokers with chronic periodontitis. J Periodontol 2020; 92:1329-1338. [PMID: 33107036 DOI: 10.1002/jper.20-0314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Metallothionein (MT), a cysteine rich protein is involved as a radical scavenger in several pathological conditions associated with oxidative stress; however, its role in periodontal disease still remains elusive. The aim of this cross-sectional study is to determine the serum, saliva and gingival crevicular fluid (GCF) levels of MT in smokers (S) and non-smokers (NS) with chronic periodontitis (CP), and compare them with those of periodontally healthy (PH) individuals. METHODS A total of 85 participants were enrolled: 45 patients with CP (23 S [CP+S] and 22 NS [CP+NS]) and 40 PH individuals (20 S [PH+S] and 20 NS [PH+NS]). In all the study participants, clinical periodontal parameters (plaque index, gingival index, sulcus bleeding index, probing depth, and clinical attachment level) were recorded and samples of serum, saliva and GCF were collected. Enzyme-linked immunosorbent assay was used to determine the levels of MT in the samples. RESULTS All periodontal clinical parameters were significantly higher in the CP groups as compared to PH groups (P < 0.05). MT levels in CP+S group were significantly raised in comparison to other three groups. There was no statistically significant difference in MT levels among CP+NS and PH+S groups (P > 0.05); however, relatively higher levels were observed in GCF and saliva in CP+NS group. When all the study groups were observed together, MT levels were positively correlated with clinical parameters. CONCLUSIONS Results of present study suggest that smoking and CP can induce the synthesis of MT owing to increased oxidative stress and heavy metals intoxication. Further longitudinal studies with large sample size and an interventional arm are needed to substantiate the role of MT as a potential biomarker in periodontitis.
Collapse
Affiliation(s)
- Vikender S Yadav
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anu Bhatia
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Rakhee Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mahaiwon Shadang
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunaal Dhingra
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Om P Kharbanda
- Division of Orthodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Renu Yadav
- Department of Prosthodontics, Surendera Dental College and Research Institute, Sriganganagar, Rajasthan, India
| | - Rahul Garg
- Department of Dental Surgery, Haryana Civil Dental Services, General Hospital, Sirsa, Haryana, India
| |
Collapse
|
4
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
5
|
Wu YJ, Ko BS, Liang SM, Lu YJ, Jan YJ, Jiang SS, Shyue SK, Chen L, Liou JY. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis 2019; 10:408. [PMID: 31138789 PMCID: PMC6538656 DOI: 10.1038/s41419-019-1651-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Decreased expression of metallothionein-1 (MT-1) is associated with a poor prognosis in hepatocellular carcinoma (HCC). Here, we found that MT-1 expression was suppressed by 14-3-3ε, and MT-1 overexpression abolished 14-3-3ε-induced cell proliferation and tumor growth. We identified that 14-3-3ε induced expression of ZNF479, a novel potential transcriptional regulator by gene expression profiling and ZNF479 contributed to 14-3-3ε-suppressed MT-1 expression. ZNF479 induced the expression of DNMT1, UHRF1, and mixed-lineage leukemia (MLL) complex proteins (ASH2L and Menin), and increased tri-methylated histone H3 (H3K4me3) levels, but suppressed H3K4 (H3K4me2) di-methylation. ZNF479-suppressed MT-1 expression was restored by silencing of ASH2L and DNMT1. Furthermore, ZNF479 expression was higher in HCC tissues than that in the non-cancerous tissues. Expression analyses revealed a positive correlation between the expression of ZNF479 and DNMT1, UHRF1, ASH2L, and Menin, and an inverse correlation with that of ZNF479, ASH2L, Menin, and MT-1 isoforms. Moreover, correlations between the expression of ZNF479 and its downstream factors were more pronounced in HCC patients with hepatitis B. Here, we found that ZNF479 regulates MT-1 expression by modulating ASH2L in HCC. Approaches that target ZNF479/MLL complex/MT-1 or related epigenetic regulatory factors are potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan.,Institute of Molecular Medicine, National Tsing Hua University, 300, Hsinchu, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, 100, Taipei, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, 407, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, 300, Hsinchu, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
6
|
Zhou S, Yin X, Jin J, Tan Y, Conklin DJ, Xin Y, Zhang Z, Sun W, Cui T, Cai J, Zheng Y, Cai L. Intermittent hypoxia-induced cardiomyopathy and its prevention by Nrf2 and metallothionein. Free Radic Biol Med 2017; 112:224-239. [PMID: 28778483 PMCID: PMC7453314 DOI: 10.1016/j.freeradbiomed.2017.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 07/30/2017] [Indexed: 01/08/2023]
Abstract
The mechanism for intermittent hypoxia (IH)-induced cardiomyopathy remains obscure. We reported the prevention of acute and chronic IH-induced cardiac damage by selective cardiac overexpression of metallothionein (MT). Herein we defined that MT-mediated protection from IH-cardiomyopathy is via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a critical redox-balance controller in the body. For this, mice were exposed to IH for 3 days (acute) or 4 or 8 weeks (chronic). Cardiac Nrf2 and MT expression in response to IH were significantly increased acutely yet decreased chronically. Interestingly, cardiac overexpression (Nrf2-TG) or global deletion of the Nrf2 gene (Nrf2-KO) made mice highly resistant or highly susceptible, respectively, to IH-induced cardiomyopathy and MT expression. Mechanistically, 4-week IH exposure significantly decreased cardiac Nrf2 binding to the MT gene promoter, and thus, depressed both MT transcription and translation in WT mice but not Nrf2-TG mice. Likewise, cardiac MT overexpression prevented chronic IH-induced cardiomyopathy and down-regulation of Nrf2 likely via activation of a PI3K/Akt/GSK-3β/Fyn-dependent signaling pathway. These results reveal an integrated relationship between cardiac Nrf2 and MT expression in response to IH -- acute compensatory up-regulation followed by chronic down-regulation and cardiomyopathy. Cardiac overexpression of either Nrf2 or MT offered cardioprotection from IH via complicated PI3K/Akt/GSK3B/Fyn signaling. Potential therapeutics may target either Nrf2 or MT to prevent chronic IH-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shanshan Zhou
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville 40202, USA
| | - Xia Yin
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jingpeng Jin
- Endoscopy Center China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Yi Tan
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville 40202, USA; Chinese-American Research Institute for Diabetic Complication, Wenzhou Medical College, Wenzhou 325035, China
| | - Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville 40202, USA
| | - Weixia Sun
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville 40202, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, Columbia, SC 29208, USA
| | - Jun Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville 40202, USA
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville 40202, USA; Chinese-American Research Institute for Diabetic Complication, Wenzhou Medical College, Wenzhou 325035, China; Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
7
|
Chen L, Teng H, Zhang KY, Skalicka-Woźniak K, Georgiev MI, Xiao J. Agrimonolide and Desmethylagrimonolide Induced HO-1 Expression in HepG2 Cells through Nrf2-Transduction and p38 Inactivation. Front Pharmacol 2017; 7:513. [PMID: 28119605 PMCID: PMC5223292 DOI: 10.3389/fphar.2016.00513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023] Open
Abstract
Agrimonolide and desmethylagrimonolide are the main bioactive polyphenols in agrimony with well-documented antioxidant, anti-diabetic, and anti-inflammatory potential. We report here for the first time that agrimonolide and desmethylagrimonolide stimulate the expression of phase II detoxifying enzymes through the Nrf2-dependent signaling pathway. Agrimonolide and desmethylagrimonolide also possess considerable protective activity from oxidative DNA damage. In order to explore the cytoprotective potential of agrimonolide and desmethylagrimonolide on oxidative stress in liver, we developed an oxidative stress model in HepG2 cells, and check the hypothesis whether Nrf2 pathway is involved. Western blotting and luciferase assay revealed that exposure of HepG2 cells to agrimonolide or desmethylagrimonolide leads to increased heme oxygenase-1 (HO-1) expression by activating ARE through induction of Nrf2 and suppression of Kelch-like ECH-associated protein 1 (Keap1). Moreover, agrimonolide and desmethylagrimonolide also activated ERK signaling pathways and significantly attenuated individual p38 MAPK expression, subsequently leading to Nrf2 nuclear translocation. In conclusion, our results indicated that transcriptional activation of Nrf2/ARE is critical in agrimonolide and desmethylagrimonolide-mediated HO-1 induction, which can be regulated partially by the blockade of p38 MAPK signaling pathway and inhibiting nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou, China
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou, China
| | - Kalin Yanbo Zhang
- School of Chinese Medicine, The University of Hong Kong Hong Kong, Hong Kong
| | | | - Milen I Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences Plovdiv, Bulgaria
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauTaipa, Macau
| |
Collapse
|
8
|
Sridharan S, Allen AL, Kidney B, Al-Dissi AN. Metallothionein Expression in Dogs With Chronic Hepatitis and Its Correlation With Hepatic Fibrosis, Inflammation, and Ki-67 Expression. Vet Pathol 2015; 52:1127-33. [PMID: 26077783 DOI: 10.1177/0300985815588607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chronic form of primary hepatitis occurs commonly in dogs, and the etiology is rarely found. Metallothionein (MT) is a heavy metal-binding protein found in many organs, including the liver. MT was recently shown to enhance liver regeneration and decrease hepatic fibrosis in human beings. This study examined the expression of MT in 24 cases of chronic hepatitis in dogs using immunohistochemistry. To understand the role of MT as a determinant of hepatic inflammation, fibrosis, bile duct proliferation, and regeneration, we correlated its expression with histologic lesions of chronic hepatitis, such as hepatic inflammation, fibrosis, and bile duct proliferation, as well as hepatocellular growth fraction as measured by Ki67 immunolabeling. Hepatocellular growth fraction was used as a measure of hepatic regeneration. Regression analysis revealed a significant positive correlation between MT labeling intensity and growth fraction (r(2) = 0.29, P < .05). The percentage of MT-positive cells and the overall MT expression were both positively correlated with growth fraction (r(2) = 0.25 and 0.26, respectively; P < .05). A negative correlation was found between the overall MT labeling and fibrosis (r(2) = 0.18, P < .05). A similar trend of negative correlation was also found between the percentage of MT-positive cells and fibrosis, but the P value was not statistically significant (r(2) = 0.14, P = .0684). These findings suggest a protective role of MT in dogs affected by chronic hepatitis, similar to its role in human beings. These dogs may respond to treatment modules focusing on enhancing the expression of MT.
Collapse
Affiliation(s)
- S Sridharan
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - A L Allen
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - B Kidney
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - A N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
9
|
Günther V, Lindert U, Schaffner W. The taste of heavy metals: gene regulation by MTF-1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1416-25. [PMID: 22289350 DOI: 10.1016/j.bbamcr.2012.01.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
The metal-responsive transcription factor-1 (MTF-1, also termed MRE-binding transcription factor-1 or metal regulatory transcription factor-1) is a pluripotent transcriptional regulator involved in cellular adaptation to various stress conditions, primarily exposure to heavy metals but also to hypoxia or oxidative stress. MTF-1 is evolutionarily conserved from insects to humans and is the main activator of metallothionein genes, which encode small cysteine-rich proteins that can scavenge toxic heavy metals and free radicals. MTF-1 has been suggested to act as an intracellular metal sensor but evidence for direct metal sensing was scarce. Here we review recent advances in our understanding of MTF-1 regulation with a focus on the mechanism underlying heavy metal responsiveness and transcriptional activation mediated by mammalian or Drosophila MTF-1. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
10
|
Yu WJ, Chang CC, Kuo TF, Tsai TC, Chang SJ. Toona sinensis Roem leaf extracts improve antioxidant activity in the liver of rats under oxidative stress. Food Chem Toxicol 2012; 50:1860-5. [PMID: 22497899 DOI: 10.1016/j.fct.2012.03.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 03/09/2012] [Accepted: 03/23/2012] [Indexed: 02/06/2023]
Abstract
Toona sinensis Roem (TS) is an herbal plant widely cultivated in Asia. Recently, several antioxidant compounds in TS leaf (TSL) extracts were chemically identified including quercetin, gallic acid, and others. However, in vivo experiments regarding the antioxidative function of TSL are limited. In this study, Sprague Dawley (SD) rats with oxidative stress were successfully established by intraperitoneal injection of hydrogen peroxide (H(2)O(2)) (1mmol/kg BW) and fed with different TSL extracts for in vivo antioxidation evaluation. Among the TSLs tested in this study, TSL6 exhibited the best antioxidative effects which increased the enzyme activities of catalase, cupper/zinc superoxide dismutase (Cu/Zn SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and Glutathione S transferase (GST) activities in liver compared to those in TSL-2 and TSL-2P groups. In conclusion, we provide the strong in vivo evidences for the first time that TSL extracts ameliorate the antioxidant enzymes (AOEs) activity in liver and is beneficial for the hepatic detoxification.
Collapse
Affiliation(s)
- Wen-Jen Yu
- Department of Biotechnology, Hung Kuang University, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Correia MA, Sinclair PR, De Matteis F. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 2010; 43:1-26. [PMID: 20860521 DOI: 10.3109/03602532.2010.515222] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular and Molecular Pharmacology, The Liver Center, University of California, San Francisco, 94158, USA.
| | | | | |
Collapse
|
12
|
Hou DX, Kumamoto T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 2010; 13:691-719. [PMID: 20070239 DOI: 10.1089/ars.2009.2816] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein kinases play crucial roles in the regulation of multiple cell signaling pathways and cellular functions. Deregulation of protein kinase function has been implicated in carcinogenesis. The inhibition of protein kinases has emerged as an important target for cancer chemoprevention and therapy. Accumulated data revealed that flavonoids exert chemopreventive effects through acting at protein kinase signaling pathways, more than as conventional hydrogen-donating antioxidants. Recent studies show that flavonoids can bind directly to some protein kinases, including Akt/protein kinase B (Akt/PKB), Fyn, Janus kinase 1 (JAK1), mitogen-activated protein kinase kinase 1 (MEK1), phosphoinositide 3-kinase (PI3K), mitogen-activated protein (MAP) kinase kinase 4 (MKK4), Raf1, and zeta chain-associated 70-kDa protein (ZAP-70) kinase, and then alter their phosphorylation state to regulate multiple cell signaling pathways in carcinogenesis processes. In this review, we report recent results on the interactions of flavonoids and protein kinases, especially their direct binding and molecular modeling. The data suggest that flavonoids act as protein kinase inhibitors for cancer chemoprevention that were thought previously as conventional hydrogen-donating antioxidant. Moreover, the molecular modeling data show some hints for creating natural compound-based protein kinase inhibitors for cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- De-Xing Hou
- The United Graduate School of Agricultural Sciences, Faculty of Agriculture, Kagoshima University, Kagoshima City, Japan
| | | |
Collapse
|
13
|
Leiser SF, Miller RA. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 2010; 30:871-84. [PMID: 19933842 PMCID: PMC2812245 DOI: 10.1128/mcb.01145-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/09/2009] [Accepted: 11/12/2009] [Indexed: 12/30/2022] Open
Abstract
Transcriptional regulation of the antioxidant response element (ARE) by Nrf2 is important for the cellular adaptive response to toxic insults. New data show that primary skin-derived fibroblasts from the long-lived Snell dwarf mutant mouse, previously shown to be resistant to many toxic stresses, have elevated levels of Nrf2 and of multiple Nrf2-sensitive ARE genes. Dwarf-derived fibroblasts exhibit many of the traits associated with enhanced activity of Nrf2/ARE, including higher levels of glutathione and resistance to plasma membrane lipid peroxidation. Treatment of control cells with arsenite, an inducer of Nrf2 activity, increases their resistance to paraquat, hydrogen peroxide, cadmium, and UV light, rendering these cells as stress resistant as untreated cells from dwarf mice. Furthermore, mRNA levels for some Nrf2-sensitive genes are elevated in at least some tissues of Snell dwarf mice, suggesting that the phenotypes observed in culture may be mirrored in vivo. Augmented activity of Nrf2 and ARE-responsive genes may coordinate many of the stress resistance traits seen in cells from these long-lived mutant mice.
Collapse
Affiliation(s)
- Scott F. Leiser
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, Department of Pathology, Geriatrics Center, and VA Medical Center, University of Michigan, 109 Zina Pitcher Place, Room 3001 BSRB, Box 2200, Ann Arbor, Michigan 48109-2200
| | - Richard A. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, Department of Pathology, Geriatrics Center, and VA Medical Center, University of Michigan, 109 Zina Pitcher Place, Room 3001 BSRB, Box 2200, Ann Arbor, Michigan 48109-2200
| |
Collapse
|
14
|
Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V. Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 2010; 12:305-20. [PMID: 19650691 DOI: 10.1089/ars.2009.2787] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hemopexin is an acute-phase plasma glycoprotein, produced mainly by the liver and released into plasma, where it binds heme with high affinity. Other sites of hemopexin synthesis are the nervous system, skeletal muscle, retina, and kidney. The only known receptor for the heme-hemopexin complex is the scavenger receptor, LDL receptor-related protein (LRP)1, which is expressed in most cell types, thus indicating multiple sites of heme-hemopexin complex recovery. The better-characterized function of hemopexin is heme scavenging at the systemic level, consisting of the transport of heme to the liver, where it is catabolyzed or used for the synthesis of hemoproteins or exported to bile canaliculi. This is important both in physiologic heme management for heme-iron recycling and in pathologic conditions associated with intravascular hemolysis to prevent the prooxidant and proinflammatory effects of heme. Other than scavenging heme, the heme-hemopexin complex has been shown to be able to activate signaling pathways, thus promoting cell survival, and to modulate gene expression. In this review, the importance of heme scavenging by hemopexin, as well as the other emerging functions of this protein, are discussed.
Collapse
Affiliation(s)
- Emanuela Tolosano
- Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
15
|
Evidence for a potential role of metallothioneins in inflammatory bowel diseases. Mediators Inflamm 2009; 2009:729172. [PMID: 19727408 PMCID: PMC2734936 DOI: 10.1155/2009/729172] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 07/03/2009] [Indexed: 01/23/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic, relapsing, immune-mediated disorders of the intestine, including Crohn's disease and ulcerative colitis. Recent studies underscore the importance of the damaged epithelial barrier and the dysregulated innate immune system in their pathogenesis. Metallothioneins (MTs) are a family of small proteins with a high and conserved cysteine content that are rapidly upregulated in response to an inflammatory stimulus. Herein, we review the current knowledge regarding the expression and potential role of MTs in IBD. MTs exert a central position in zinc homeostasis, modulate the activation of the transcription factor nuclear factor (NF)-kappaB, and serve as antioxidants. In addition, MTs could be involved in IBD through their antiapoptotic effects or through specific immunomodulating extracellular effects. Reports on MT expression in IBD are contradictory but clearly demonstrate a deviant MT expression supporting the idea that these aberrations in IBD require further clarification.
Collapse
|
16
|
Moxnes JF, Albert christophersen O. The Spanish flu as a worst case scenario? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600701699067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Smith A, Rish KR, Lovelace R, Hackney JF, Helston RM. Role for copper in the cellular and regulatory effects of heme-hemopexin. Biometals 2008; 22:421-37. [DOI: 10.1007/s10534-008-9178-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
18
|
Aliza D, Ismail IS, Kuah MK, Shu-Chien AC, Tengku Muhammad TS. Identification of Wap65, a human homologue of hemopexin as a copper-inducible gene in swordtail fish, Xiphophorus helleri. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:129-138. [PMID: 18649030 DOI: 10.1007/s10695-007-9153-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/26/2007] [Indexed: 05/26/2023]
Abstract
Copper is one of the major heavy metal pollutants found in the aquatic environment. Therefore, it is important for determining the genes that play a key role in copper metabolism in aquatic organisms. This study, thus, aimed to identify a new copper-inducible gene in swordtail fish, Xiphophorus helleri. Using ACP-based RT-PCR coupled with RLM-RACE, we cloned Wap65, a mammalian homologue of hemopexin gene. The gene exhibits high identity at amino acid levels with the Wap65 gene of other fish species (42-68%) and mammalian hemopexin gene (35-37%). In addition, ten cysteine and two histidine residues are conserved in the swordtail fish Wap65 gene. These cysteine residues are vital for structural integrity, and histidine residues provide high binding affinity towards heme. As revealed by RT-PCR, the gene was upregulated in swordtail fish that were exposed to copper in a dose- and time-dependent manner. Therefore, the identification of Wap65, a mammalian homologue of hemopexin, as a new copper-inducible gene will provide greater insight into the role of this gene in copper metabolism.
Collapse
Affiliation(s)
- Dwinna Aliza
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | | | | |
Collapse
|
19
|
Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavaré S, Tower J. Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 2008; 8:R262. [PMID: 18067683 PMCID: PMC2246264 DOI: 10.1186/gb-2007-8-12-r262] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/12/2007] [Accepted: 12/09/2007] [Indexed: 12/16/2022] Open
Abstract
Transcriptional profiling of MnSOD-mediated life-span extension in Drosophila identifies a set of candidate biomarkers of aging, consisting primarily of carbohydrate metabolism and electron transport genes. Background Several interventions increase lifespan in model organisms, including reduced insulin/insulin-like growth factor-like signaling (IIS), FOXO transcription factor activation, dietary restriction, and superoxide dismutase (SOD) over-expression. One question is whether these manipulations function through different mechanisms, or whether they intersect on common processes affecting aging. Results A doxycycline-regulated system was used to over-express manganese-SOD (MnSOD) in adult Drosophila, yielding increases in mean and maximal lifespan of 20%. Increased lifespan resulted from lowered initial mortality rate and required MnSOD over-expression in the adult. Transcriptional profiling indicated that the expression of specific genes was altered by MnSOD in a manner opposite to their pattern during normal aging, revealing a set of candidate biomarkers of aging enriched for carbohydrate metabolism and electron transport genes and suggesting a true delay in physiological aging, rather than a novel phenotype. Strikingly, cross-dataset comparisons indicated that the pattern of gene expression caused by MnSOD was similar to that observed in long-lived Caenorhabditis elegans insulin-like signaling mutants and to the xenobiotic stress response, thus exposing potential conserved longevity promoting genes and implicating detoxification in Drosophila longevity. Conclusion The data suggest that MnSOD up-regulation and a retrograde signal of reactive oxygen species from the mitochondria normally function as an intermediate step in the extension of lifespan caused by reduced insulin-like signaling in various species. The results implicate a species-conserved net of coordinated genes that affect the rate of senescence by modulating energetic efficiency, purine biosynthesis, apoptotic pathways, endocrine signals, and the detoxification and excretion of metabolites.
Collapse
Affiliation(s)
- Christina Curtis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mori T, Hiraka I, Kurata Y, Kawachi H, Mano N, Devlin RH, Nagoya H, Araki K. Changes in hepatic gene expression related to innate immunity, growth and iron metabolism in GH-transgenic amago salmon (Oncorhynchus masou) by cDNA subtraction and microarray analysis, and serum lysozyme activity. Gen Comp Endocrinol 2007; 151:42-54. [PMID: 17222841 DOI: 10.1016/j.ygcen.2006.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/01/2006] [Accepted: 11/15/2006] [Indexed: 11/29/2022]
Abstract
Growth hormone (GH) transgenic amago salmon (Oncorhynchus masou) were generated with a construct containing the sockeye salmon GH1 gene fused to the metallothionein-B (MT-B) promoter from the same species. This transgene directed significant growth enhancement with transgenic fish reaching approximately four to five times greater weight than control salmon in F(2) and F(3) generations. This drastic growth enhancement by GH transgene is well known in fish species compared with mammals, however, such fish can show morphological abnormalities and physiological disorders like other GH transgenic animals. GH is known to have many acute effects, but currently there are no data describing the chronic effects of over-expression of GH on various hepatic genes in GH transgenic fish. Hepatic gene expression is anticipated to play very important roles in many physiological functions and growth performance of transgenic and control salmon. To examine these effects, we performed subtractive hybridization (using cDNA generated from liver RNA) in both directions to identify genes both increased and decreased in transgenic salmon relative to controls (576 clones were isolated and sequenced in total). Heme oxygenase, vitelline envelope protein, Acyl-coA binding protein, NADH dehydrogenase, mannose binding lectin-associated serine protease, hemopexin-like protein, leucyte-derived chemotaxin2 (LECT2), and many other genes were obtained in higher clone frequencies suggesting enhanced expression. In contrast, complement C3-1, lectin, rabin, alcohol dehydrogenase, Tc1-like transposase, Delta6-desaturase, and pentraxin genes were obtained in lower frequencies. Microarray analysis was also performed to obtain quantitative expression data for these subtracted cDNA clones. Analysis of fish across seasons was also conducted using both F(2) and F(3) salmon. Results of the microarray data essentially corresponded with those of the subtraction data when both F(2) and F(3) fish were completely immature, but the expression pattern was changed when fish approached maturation. Genes showing enhanced expression in GH transgenic fish in F(2) and F(3) by array analysis were vitelline envelope protein, hemopexin-like protein, heme-oxygenase, inter alpha-trypsin inhibitor, LECT2, GTP cyclohydrolase I feedback regulatory protein (GFRP), and bikunin. Reduced expression genes were lectin, Delta6-desaturase, apolipoprotein, and pentraxin. In particular, lectin was found to be highly suppressed in all F(2) and immature F(3) salmon. Further, serum lysozyme activity, one of innate immunity, was significantly (p<0.05) decreased in both F(2) and F(3) GH transgenic fish. These results indicate that the GH transgene fish had altered hepatic gene expression relating to iron-metabolism, innate immunity, reproduction, and growth.
Collapse
Affiliation(s)
- Tsukasa Mori
- Laboratory of Marine Molecular Biochemistry, Department of Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa 252-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
van Beelen VA, Aarts JMMJG, Reus A, Mooibroek H, Sijtsma L, Bosch D, Rietjens IMCM, Alink GM. Differential induction of electrophile-responsive element-regulated genes by n-3 and n-6 polyunsaturated fatty acids. FEBS Lett 2006; 580:4587-90. [PMID: 16889775 DOI: 10.1016/j.febslet.2006.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/03/2006] [Accepted: 07/06/2006] [Indexed: 11/25/2022]
Abstract
In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.
Collapse
Affiliation(s)
- Vincent A van Beelen
- Division of Toxicology, Wageningen University and Research Center, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stitt MS, Wasserloos KJ, Tang X, Liu X, Pitt BR, St Croix CM. Nitric oxide-induced nuclear translocation of the metal responsive transcription factor, MTF-1 is mediated by zinc release from metallothionein. Vascul Pharmacol 2006; 44:149-55. [PMID: 16423564 DOI: 10.1016/j.vph.2005.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
We previously showed that the major Zn-binding protein, metallothionein (MT) is a critical target for nitric oxide (NO) with resultant increases in labile Zn. We now show that NO donors also affected the activity of the metal responsive transcription factor MTF-1 that translocates from the cytosol to the nucleus in response to physiologically relevant increases in intracellular Zn and transactivates MT gene expression. Exposing mouse lung endothelial cells (MLEC) to ZnCl(2) or the NO donor, S-Nitroso-N-acetylpenicillamine (SNAP, 200 microM), caused nuclear translocation of a reporter molecule consisting of enhanced green fluorescent protein (EGFP) fused to MTF-1 (pEGFP-MTF-1). In separate experiments, NO donors induced increases in MT protein levels (Western blot). In contrast, NO did not cause nuclear translocation of EGFP-MTF-1 in MLEC from MT knockouts, demonstrating a central role for MT in mediating this response. These data suggest that S-nitrosation of Zn-thiolate clusters in MT and subsequent alterations in Zn homeostasis are participants in intracellular NO signaling pathways affecting gene expression.
Collapse
Affiliation(s)
- Molly S Stitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 100 Technology Drive, Cellomics Building, Room 335, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jeong HG, Kim HG, Hwang YP. Involvement of cytokines in the hepatic expression of metallothionein by ursolic acid. Toxicol Lett 2005; 155:369-76. [PMID: 15649620 DOI: 10.1016/j.toxlet.2004.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 11/24/2022]
Abstract
Ursolic acid (UA), a pentacyclic triterpene acid, is reported to have inducing activity of hepatic metallothionein (MT) which responsible for the detoxification of heavy metals; however, the mechanism underlying its effects is poorly understood. To further determine the underlying mechanism of UA, this study investigated the effects of UA on the induction of hepatic MT expression in an in vitro model, using murine hepatoma cell line Hepa-1c1c7 and murine macrophage cell line RAW 264.7 cell cultures. The UA added directly to Hepa-1c1c7 cells had no effect on MT induction. However, MT and its mRNA levels were markedly increased when Hepa-1c1c7 cells were cultured with UA-treated conditioned media from RAW 264.7. Concomitant treatment with UA and pentoxifylline, a TNF-alpha synthesis inhibitor, to RAW 264.7 cells decreased the effects of UA on the MT induction. In UA-exposed RAW 264.7 cell cultures, TNF-alpha and IL-6 production and TNF-alpha and IL-6 mRNA levels increased. When antibodies to TNF-alpha or/and IL-6 were added to UA-treated conditioned media from RAW 264.7, the MT induction activity was inhibited. These results demonstrate that UA induces hepatic MT expression through TNF-alpha and IL-6 released from UA-activated macrophages, which may be the mechanism, whereby UA elicits its biological effects.
Collapse
Affiliation(s)
- Hye Gwang Jeong
- Department of Pharmacy, College of Pharmacy, Chosun University, 375 Seosuk-dong, Dong-ku, Kwangju, South Korea.
| | | | | |
Collapse
|
24
|
Kim JY, Lee KJ, Kim DH, Jeong TC, Lee ES, Choi YM, Jeong HG. Cytokine-mediated induction of metallothionein in Hepa-1c1c7 cells by oleanolic acid. Biochem Biophys Res Commun 2004; 325:792-7. [PMID: 15541359 DOI: 10.1016/j.bbrc.2004.10.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Indexed: 11/19/2022]
Abstract
Oleanolic acid (OA), a pentacyclic triterpene acid, has been reported to possess inducing activity of hepatic metallothionein (MT). However, the mechanism underlying its effects is unknown. This study investigated the effects of OA on the regulation of MT expression in an in vitro model. OA that was added directly to Hepa-1c1c7 cells had no effect on MT induction. However, MT and its mRNA levels increased markedly when the Hepa-1c1c7 cells were cultured with the OA-treated conditioned media from the RAW 264.7 cells. Co-treating the RAW 264.7 cells with OA and pentoxifylline, a TNF-alpha synthesis inhibitor, resulted in a decrease in the effects of OA on the MT induction. In the OA-exposed RAW 264.7 cell cultures, production and mRNA levels of TNF-alpha and IL-6 were increased. However, the MT induction activity was inhibited when antibodies to TNF-alpha and/or IL-6 were added to the OA-treated conditioned media from the RAW 264.7 cells. These results suggest that the up-regulation of MT expression by OA was mediated by the TNF-alpha and IL-6 released from UA-activated macrophages.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Pharmacy, College of Pharmacy, Research Center for Proteineous Materials, Chosun University, 375 Seosuk-dong, Kwangju 501-759, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003; 43:233-60. [PMID: 12359864 DOI: 10.1146/annurev.pharmtox.43.100901.140229] [Citation(s) in RCA: 961] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The expression of genes encoding antioxidative and Phase II detoxification enzymes is induced in cells exposed to electrophilic compounds and phenolic antioxidants. Induction of these enzymes is regulated at the transcriptional level and is mediated by a specific enhancer, the antioxidant response element or ARE, found in the promoter of the enzyme's gene. The transcription factor Nrf2 has been implicated as the central protein that interacts with the ARE to activate gene transcription constitutively or in response to an oxidative stress signal. This review focuses on the molecular mechanisms whereby the transcriptional activation mediated by the interaction between the ARE and NF-E2-related factor 2 (Nrf2) is regulated. Recent studies suggest that the sequence context of the ARE, the nature of the chemical inducers, and the cell type are important for determining the activity of the enhancer in a particular gene.
Collapse
Affiliation(s)
- Truyen Nguyen
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | |
Collapse
|
26
|
Abstract
Heme and iron metabolism are of considerable interest and importance in normal brain function as well as in neurodegeneration and neuropathologically following traumatic injury and hemorrhagic stroke. After a cerebral hemorrhage, large numbers of hemoglobin-containing red blood cells are released into the brain's parenchyma and/or subarachnoid space. After hemolysis and the subsequent release of heme from hemoglobin, several pathways are employed to transport and metabolize this heme and its iron moiety to protect the brain from potential oxidative stress. Required for these processes are various extracellular and intracellular transporters and storage proteins, the heme oxygenase isozymes and metabolic proteins with differing localizations in the various brain-cell types. In the past several years, additional new genes and proteins have been discovered that are involved in the transport and metabolism of heme and iron in brain and other tissues. These discoveries may provide new insights into neurodegenerative diseases like Alzheimer's, Parkinson's, and Friedrich's ataxia that are associated with accumulation of iron in specific brain regions or in specific organelles. The present review will examine the uptake and metabolism of heme and iron in the brain and will relate these processes to blood removal and to the potential mechanisms underlying brain injury following cerebral hemorrhage.
Collapse
Affiliation(s)
- Kenneth R Wagner
- Departments of Neurology, Pediatrics and Neuroscience Programl, Unviersity of Cincinnati College of Medicine, Cincinnati, Ohio 45220, USA.
| | | | | | | | | |
Collapse
|
27
|
Templeton DM, Liu Y. Genetic regulation of cell function in response to iron overload or chelation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:113-24. [PMID: 12527106 DOI: 10.1016/s0304-4165(02)00497-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Iron influences many aspects of cell function on different biochemical levels. This review considers effects mediated through iron-dependent changes in gene expression in mammalian cells. Several classes of related genes are responsive to cellular iron levels, but no clear patterns readily account for the toxicity of iron overload or the consequences of removal of iron with chelating agents. Here we group some of the genes influenced by iron status into those related to iron metabolism, oxygen and oxidative stress, energy metabolism, cell cycle regulation, and tissue fibrosis. Iron excess and chelation do not generally result in a continuous or graded transcriptional response, but indicate operation of distinct mechanisms. An emerging concept is that iron signals through generation of reactive oxygen species to activate transcription factors such as NF-kappaB, whereas iron removal mimics hypoxia, perhaps by disrupting iron-based O(2) sensors and influencing gene expression through, e.g., the hypoxia-inducible factor, HIF-1. Heme and other metalloporphyrins have other distinct mechanisms for regulating transcription. Regulation of gene expression through iron-responsive elements in mRNAs coded by several genes is one of the best understood mechanisms of translational control.
Collapse
Affiliation(s)
- Douglas M Templeton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
28
|
Sreekumar R, Rasmussen DL, Wiesner RH, Charlton MR. Differential allograft gene expression in acute cellular rejection and recurrence of hepatitis C after liver transplantation. Liver Transpl 2002; 8:814-21. [PMID: 12200784 DOI: 10.1053/jlts.2002.35173] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Treatment of acute cellular rejection (ACR) is associated with increased viral load, more severe histologic recurrence, and diminished patient and graft survival after liver transplantation for hepatitis C virus (HCV). Recurrence of HCV may be difficult to distinguish histologically from ACR. Because the immunologic mechanisms of ACR and HCV recurrence are likely to differ, we hypothesized that ACR is associated with the expression of a specific subset of immune activation genes that may serve as a diagnostic indicator of ACR and provide mechanistic insight into the pathophysiology of ACR and recurrence of HCV. The goal of the study was to study intragraft gene expression patterns in ACR and during recurrence of HCV in HCV-infected recipients. High-density microarrays were used to determine relative intragraft gene expression in two groups of HCV-infected liver transplant recipients: four with steroid responsive ACR by Banff criteria and four age- and gender-matched HCV-infected recipients with similar necroinflammatory activity but without histological criteria for rejection (no cholangitis or endotheliitis). Immunosuppression was similar in both groups. Other etiologies of graft dysfunction were excluded by ultrasound, cholangiography, and cultures. High-quality total RNA was extracted from snap frozen liver biopsies, reverse transcribed, labeled with biotin, and fragmented according to established protocol. Twenty-five genes were relatively overexpressed, and 15 were relatively underexpressed by > or = twofold in the ACR when compared with the HCV group. ACR was most notably associated with the relative overexpression of genes associated with major histocompatibility complex I and II, insulin-like growth factor-1 expression, apoptosis induction, and T-cell activation. In HCV-infected liver transplant recipients, ACR is associated with an intragraft gene expression profile that is distinct from that seen during recurrence of HCV. These experiments provide evidence that alloimmunity, as indicated by expression of T-cell activation and apoptosis-inducing genes, is less important in recurrence of HCV than in ACR. Further studies are required to determine whether gene expression profiles, either intragraft or in serum, can be used for the diagnosis and differentiation of ACR from recurrence of HCV.
Collapse
|
29
|
Escriba PV, Morales P, Smith A. Membrane phospholipid reorganization differentially regulates metallothionein and heme oxygenase by heme-hemopexin. DNA Cell Biol 2002; 21:355-64. [PMID: 12042074 DOI: 10.1089/104454902753759762] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heme-hemopexin coordinately regulates genes encoding protective proteins including metallothionein-I (MT-I) and heme oxygenase 1 (HO-1). Hexamethylene-bisacetamide (HMBA), which induces differentiation and activates protein kinase C (PKC), synergistically augments the induction of both MT-I and MT-II mRNAs in response to heme-hemopexin, but attenuates the induction of HO-1. HMBA also augments the increase in MT mRNA in response to cobalt protoporphyrin-hemopexin, a hemopexin (HPX) receptor ligand that activates signaling cascades without tetrapyrrole uptake. Unlike the PKC-activating phorbol esters that induce MT-I and HO-1, HMBA has minimal effects on MT-I or HO-1. HMBA is an amphipathic molecule, and is shown here to interact physically with lipids in model membranes using differential scanning calorimetry (DSC). The data are consistent with a stabilization of the lipid bilayer and an HMBA-induced segregation of lipids into separate domains each relatively enriched in one of the lipids. HMBA also perturbs membrane-protein interactions, and causes a loss of PKC and G-protein subunits from plasma membranes in vitro. Taken together, these observations reveal an additional level of complexity in the regulation of protective proteins induced by HPX, and which may take place in vivo in response to natural compounds that reorganize membrane phospholipids. A model is proposed whereby a reorganization of lipids by HMBA alters signaling pathways and fusion events considered to be the etiology of the differential response of the MT-1 (and MT-II) and the HO-1 genes to HMBA and heme-HPX.
Collapse
Affiliation(s)
- Pablo V Escriba
- Department of Biology, University of the Balearic Islands, 07071 Palma de Mallorca, Spain
| | | | | |
Collapse
|
30
|
Abstract
Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.
Collapse
Affiliation(s)
- Emanuela Tolosano
- Department of Genetics, Biology and Biochemistry, University of Turin, 10126 Turin, Italy
| | | |
Collapse
|
31
|
Shipulina NV, Smith A, Morgan WT. Effects of reduction and ligation of heme iron on the thermal stability of heme-hemopexin complexes. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:145-54. [PMID: 11563695 DOI: 10.1023/a:1011033625009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hemopexin has two homologous domains (N- and C-terminal domains), binds 1 mole of heme per mole with high affinity (Kd < 1 pM) in a low-spin bis-histidyl complex, and acts as a transporter for the heme. Transport is accomplished via endocytosis without degradation of the protein. Factors that affect stability of the heme coordination complex and potentially heme release in vivo were examined. The effects of temperature on hemopexin, its N-terminal domain, and their respective ferri-, ferro-, and CO-ferro-heme complexes were studied using absorbance and circular dichroism (CD) spectroscopy. As monitored with second-derivative absorbance spectra, the higher order structure of apo-hemopexin unfolds with a Tm of 52 degrees C in 50 mM sodium phosphate buffer and is stabilized by 150 mM NaCl (Tm 63 degrees C). Bis-histidyl heme coordination by hemopexin, observed by Soret absorbance, is substantially weakened by reduction of ferri-heme-hemopexin (Tm 55.5 degrees C) to the ferro-heme form (Tm 48 degrees C), and NaCl stabilizes both complexes by 10-15 degrees C. CO binding to ferroheme-hemopexin restores complex stability (Tm 67 degrees C). Upon cooling, unfolded apo- and ferriheme-hemopexin extensively refold and recover substantial heme-binding activity, but the characteristic ellipticity of the native protein (UV region) and heme complex (Soret region) are not regained, indicating that altered refolded forms are produced. Lowering the pH from 7.4 to 6.5 has little effect on the stability of the apo-protein but increases the Tm of heme complexes by 5-12 degrees C. The stability of the apo-N-terminal domain (Tm 53 degrees C) is similar to that of intact hemopexin, and the ferri-, ferro-, and CO-ferro-heme complexes of the N-terminal domain have Tm values of 53 degrees C, 33 degrees C, and 75 degrees C, respectively.
Collapse
Affiliation(s)
- N V Shipulina
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110, USA
| | | | | |
Collapse
|
32
|
Abstract
The hepatic cytosolic hemoprotein tryptophan 2,3-dioxygenase (TDO) is the rate-limiting enzyme in tryptophan catabolism and thus plays a key role in regulating the physiological flux of tryptophan into relevant metabolic pathways. The TDO protein is induced by corticosteroids such as dexamethasone (DEX) and is stabilized by its prosthetic heme. In rats, acute chemically induced hepatic heme depletion reduces the functional hepatic TDO levels to 25-30% of basal levels within 1 h, and this decrease persists beyond 28 h of heme depletion at which time only 25-30% of the protein is available for heme incorporation. Since this could stem from impaired de novo synthesis and/or instability of the newly synthesized apoTDO protein in the absence of heme, we examined the specific role of heme in these events in a previously validated rat model of acute hepatic heme depletion triggered by the P450 suicide substrate 3, 5-dicarbethoxy 2,6-dimethyl-4-ethyl-1,4-dihydropyridine. We now show that exogenous heme can reverse the functional impairment of the enzyme observed during hepatic heme depletion and fully restore the impaired DEX-mediated induction of the enzyme to normal. Furthermore, through Northern/slot blot analyses coupled with nuclear run-on studies, we now document that this heme regulation of TDO is exerted primarily at the transcriptional level. Immunoblotting analyses also reveal corresponding changes in the TDO protein, thereby establishing that heme is necessary for DEX-inducible TDO mRNA transcription and subsequent translation. Thus, the TDO gene may contain heme-regulatory elements in addition to the reported glucocorticoid-responsive elements. Together, these findings suggest that clinically, hepatic heme deficiency may enhance the tryptophan flux into synthetic (serotonergic) pathways, not only by depriving prosthetic heme for a functionally competent TDO hemoprotein, its primary catabolic enzyme, but also by impairing the de novo synthesis of this enzyme.
Collapse
Affiliation(s)
- S Ren
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
33
|
Sung L, Shibata M, Eskew JD, Shipulina N, Morales PJ, Smith A. Cell-surface events for metallothionein-1 and heme oxygenase-1 regulation by the hemopexin-heme transport system. Antioxid Redox Signal 2000; 2:753-65. [PMID: 11213480 DOI: 10.1089/ars.2000.2.4-753] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A model has been developed for the hemopexin receptor-mediated heme transport system based on iron uptake in yeast. Two steps are required: reduction followed by oxidation by a multi-copper-oxidase. Furthermore, in the hemopexin system, the surface redox events have been linked with gene regulation. The impermeable Cu(I) chelator bathocuproinedisulfonate (BCDS) is shown here to abrogate heme oxygenase-1 (HO-1) mRNA induction by heme-hemopexin. A role for Cu(I) in the regulation of HO-1 and MT-1 (Sung et al., 1999) by hemopexin supports the participation of electron transport processes at the cell surface as does competition by the reductase activator, ferric citrate, which inhibits the induction of MT-1 and HO-1 mRNA by heme-hemopexin. There is a key role for the hemopexin receptor because neither ferric citrate nor iron-transferrin alone regulates MT-1 or HO-1. Cell-surface copper is the first molecule to link the concomitant regulation of HO-1 and MT-1 by the hemopexin receptor. In addition, cytochrome b5 and cytochrome b5 reductase are implicated here in the response of cells to heme-hemopexin. Reduction of one or more electron donors of the reductase and oxidation of the electron acceptor, b5 heme, leads to gene regulation, but only when heme-hemopexin is bound to its receptor. Protein kinase cascades, including JNK, are activated by the hemopexin receptor itself upon ligand binding but are modulated by a Cu(I)-dependent process likely to be heme uptake.
Collapse
Affiliation(s)
- L Sung
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | | | | | | | |
Collapse
|
34
|
Smith A. Links between cell-surface events involving redox-active copper and gene regulation in the hemopexin heme transport system. Antioxid Redox Signal 2000; 2:157-75. [PMID: 11229523 DOI: 10.1089/ars.2000.2.2-157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heme is considered to play an instrumental role in the pathology of hemolysis, trauma, and reperfusion following ischemia. However, data are sparse and experimental models are required. The transport of heme by hemopexin to tissues is a specific, membrane receptor-mediated process. Hemopexin recycles after endocytosis like transferrin. Heme oxygenase-1 (HO-1), transferrin, the transferrin receptor, and ferritin are regulated by heme-hemopexin. Genes that encode proteins important for cellular defenses against oxidative stress, such as the cysteine-rich metallothioneins (MTs), are also activated by hemopexin, as are proteins that regulate cell cycle control including p21WAF1 and the tumor suppressor p53. The hemopexin system is being investigated to establish how intracellular events are affected by signal(s) from the plasma membrane due to hemopexin receptor occupancy and heme transport. A transient oxidative modification of proteins, shown by carbonyl production, takes place. Redox processes at the cell surface, which generate cuprous ions, are involved in the regulation of the MT-1 and HO-1 genes by heme-hemopexin before heme catabolism and intracellular release of iron. The "redox-sensitive" transcription factors activated by the hemopexin system include c- Jun, RelA/NFkappaB and MTF-1. The specific copper chelator bathocuproine disulfonate prevents carbonyl production, the nuclear translocation of MTF-1, and the induction of MT-1 revealing a novel, pivotal role for copper in the hemopexin system. In addition, surface redox-active copper is the first link shown for the concomitant regulation of HO-1 and MT-1 and is required for the activation of the amino-terminal c-Jun kinase (JNK) by heme-hemopexin.
Collapse
Affiliation(s)
- A Smith
- Division of Molecular Biology, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA.
| |
Collapse
|
35
|
Vanacore RM, Eskew JD, Morales PJ, Sung L, Smith A. Role for copper in transient oxidation and nuclear translocation of MTF-1, but not of NF-kappa B, by the heme-hemopexin transport system. Antioxid Redox Signal 2000; 2:739-52. [PMID: 11213479 DOI: 10.1089/ars.2000.2.4-739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heme-hemopexin (2-10 microM) is used as a model for intravenous heme released in trauma, stroke, and ischemia-reperfusion. A transient increase in cellular protein oxidation occurs during receptor-mediated heme transport from hemopexin which is inhibited by the nonpermeable Cu(I) chelator, bathocuproinedisulfonate. Thus, participation of surface redox process involving Cu(I) generation are proposed to be linked to the induction of the protective proteins heme oxygenase-1 (HO-1) and metallothionein-1 (MT-1) by heme-hemopexin. The region (-153 to -42) in the proximal promoter of the mouse MT-1 gene responds to heme- and CoPP-hemopexin in transient transfection assays and contains metal-responsive elements for MTF-1 and an antioxidant-responsive element (ARE) overlapping a GC-rich E-box to which USF-1 and -2 bind. No decreases in DNA binding of the diamide-oxidation sensitive USF-1 and -2 occur upon exposure of cells to heme-hemopexin. MTF-1 and the ARE-binding proteins are relatively resistant to diamide oxidation and are induced approximately eight- and two-fold, respectively, by heme-hemopexin. BCDS prevents the nuclear translocation of MTF-1 by both heme- and CoPP-hemopexin complexes as well as MT-1 mRNA induction by CoPP-hemopexin. Thus, copper is needed for the surface oxidation events and yet the nuclear translocation of MTF-1 in response to hemopexin occurs via copper, probably Cu(I),-dependent signaling cascades from the hemopexin receptor rather than the oxidation per se.
Collapse
Affiliation(s)
- R M Vanacore
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | | | | | |
Collapse
|
36
|
Morgan WT, Smith A. Binding and transport of iron-porphyrins by hemopexin. ADVANCES IN INORGANIC CHEMISTRY 2000. [DOI: 10.1016/s0898-8838(00)51004-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Parat MO, Richard MJ, Meplan C, Favier A, Béani JC. Impairment of cultured cell proliferation and metallothionein expression by metal chelator NNN'N'-tetrakis-(2-pyridylmethyl)ethylene diamine. Biol Trace Elem Res 1999; 70:51-68. [PMID: 10493184 DOI: 10.1007/bf02783849] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallothioneins (MT) are a family of intracellular, cysteine-rich, zinc-binding proteins. Their expression is constitutive but can also be induced at the transcriptional level by various stimuli. In this study, we exposed HaCaT human keratinocytes to excess zinc (ZnCl2) or to zinc deprivation by the diffusible chelator NNN'N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), and to ultraviolet B (UVB) irradiation. We examined both cell proliferation and MT expression. Cell proliferation was maximally stimulated by 100 microM Zn2+ supply and was markedly inhibited by zinc deprivation or UVB irradiation. Zinc and UVB irradiation both increased MTI and/or MTII as detected by immunocytochemistry and enhanced the baseline level of MT-IIA mRNA, whereas TPEN treatment inhibited MT basal expression. Zinc partially prevented the concentration-dependent, UVB-induced decrease in cell proliferation. On the other hand, TPEN partially prevented the UVB-induced increase in MTIIA mRNA. These results suggest that zinc is involved in defense mechanisms of skin keratinocytes and in their stress-induced response.
Collapse
Affiliation(s)
- M O Parat
- Groupe de Recherche sur les Pathologies Oxydatives, CHU Albert Michallon, Grenoble, France
| | | | | | | | | |
Collapse
|
38
|
Sprietsma JE. Cysteine, glutathione (GSH) and zinc and copper ions together are effective, natural, intracellular inhibitors of (AIDS) viruses. Med Hypotheses 1999; 52:529-38. [PMID: 10459834 DOI: 10.1054/mehy.1997.0689] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sufficient essential nutrients such as methionine, cysteine, copper, selenium, zinc and vitamins C and E are indispensable for the maintenance of optimal (immune) cell functions. Parasitic organisms such as protozoa, fungi, bacteria and viruses also depend on these essential nutrients for their multiplication and functioning. An evolutionarily developed optimal distribution of available nutrients between host (cells) and parasitic organisms normally prevents diseases, the nature of which will depend on genetic and environmental factors. The way in which the right amount of cysteine, glutathione (GSH), and copper and zinc ions made available in the right place at the right time and in the right form can prevent an unchecked multiplication of (AIDS) viruses in a more passive or active way forms the basis for the AIDS zinc-deficiency hypothesis (A-Z hypothesis) presented in this article. Zinc and copper ions stimulate/inhibit/block in a concentration-dependent way the (intracellular) activation of essential protein-splitting enzymes such as HIV proteases. Zinc and copper ions as 'passive' virus inhibitors. Apart from this, zinc ions directly or indirectly regulate, via zinc finger protein molecular structures, the activities of virus-combating Th-1 cells such as cytotoxic T-cells (CTLs). Zinc ions as regulators of the active, virus-combating Th-1 cells. Zinc and copper ions that remain available in sufficient amounts via cysteine/GSH are effective natural inhibitors/combaters of (AIDS) viruses and thereby prevent the development of chronic virus diseases that can lead to AIDS, autoimmune diseases, (food) allergies and/or cancer. A safe, relatively inexpensive and extensively tested medicine such as N-acetylcysteine (NAC) can help in supplying extra cysteine. The anti-HIV peptide T22, synthesized on the basis of two natural peptides from the Tachypleus tridentatus and Limnus polyphemus crabs, appears to be able to serve as supplier/carrier molecule of cysteine and zinc and/or to hinder the entry of HIVs into cells by way of the CD4 receptor.
Collapse
|
39
|
Cai L, Satoh M, Tohyama C, Cherian MG. Metallothionein in radiation exposure: its induction and protective role. Toxicology 1999; 132:85-98. [PMID: 10433372 DOI: 10.1016/s0300-483x(98)00150-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since its discovery about 40 years ago, there has been a wide interdisciplinary research interest in metallothionein (MT) on its physiological and toxicological aspects. Functionally, MT is involved not only in metal detoxification and homeostasis, but also in scavenging free radicals during oxidative damage. Among over 4500 publications which can be retrieved by Medline search, only about 50 reports have been published on the relationship of MT with ionizing and UV radiation. In this review, we have evaluated critically the published data on the induced synthesis of MT by radiation, and the potential functions of MT in radiation induced cell damage. MT mRNA expression or MT synthesis was found to be induced by exposure of cells in vitro or tissues in vivo to ionizing or UV radiation. In most of the studies in animals and tissue cultures, high doses of ionizing radiation were used to induce MT, and, therefore, it is difficult to extrapolate these results to low level of repeated exposures to radiation in humans. Induced synthesis of MT is considered as one of the mechanisms involved in the adaptive response to low dose radiation exposure. The presence of MT in normal cells may provide protective effects from radiation-induced genotoxicity and cytotoxicity. However, in tumor cells, the presence of MT can result in drug and radiation resistance as well. These effects are modulated by other cellular factors, besides MT, such as antioxidants, and by the cell cycle stages in cell proliferation and differentiation.
Collapse
Affiliation(s)
- L Cai
- Department of Pathology, The University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
40
|
Eskew JD, Vanacore RM, Sung L, Morales PJ, Smith A. Cellular protection mechanisms against extracellular heme. heme-hemopexin, but not free heme, activates the N-terminal c-jun kinase. J Biol Chem 1999; 274:638-48. [PMID: 9872997 DOI: 10.1074/jbc.274.2.638] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemopexin protects cells lacking hemopexin receptors by tightly binding heme abrogating its deleterious effects and preventing nonspecific heme uptake, whereas cells with hemopexin receptors undergo a series of cellular events upon encountering heme-hemopexin. The biochemical responses to heme-hemopexin depend on its extracellular concentration and range from stimulation of cell growth at low levels to cell survival at otherwise toxic levels of heme. High (2-10 microM) but not low (0.01-1 microM) concentrations of heme-hemopexin increase, albeit transiently, the protein carbonyl content of mouse hepatoma (Hepa) cells. This is due to events associated with heme transport since cobalt-protoporphyrin IX-hemopexin, which binds to the receptor and activates signaling pathways without tetrapyrrole transport, does not increase carbonyl content. The N-terminal c-Jun kinase (JNK) is rapidly activated by 2-10 microM heme-hemopexin, yet the increased intracellular heme levels are neither toxic nor apoptotic. After 24 h exposure to 10 microM heme-hemopexin, Hepa cells become refractory to the growth stimulation seen with 0.1-0.75 microM heme-hemopexin but HO-1 remains responsive to induction by heme-hemopexin. Since free heme does not induce JNK, the signaling events, like phosphorylation of c-Jun via activation of JNK as well as the nuclear translocation of NFkappaB, G2/M arrest, and increased expression of p53 and of the cell cycle inhibitor p21(WAF1/CIP1/SDI1) generated by heme-hemopexin appear to be of paramount importance in cellular protection by heme-hemopexin.
Collapse
Affiliation(s)
- J D Eskew
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | |
Collapse
|
41
|
Chen W, Lu H, Dutt K, Smith A, Hunt DM, Hunt RC. Expression of the protective proteins hemopexin and haptoglobin by cells of the neural retina. Exp Eye Res 1998; 67:83-93. [PMID: 9702181 DOI: 10.1006/exer.1998.0494] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-retinal barrier, consisting of retinal pigment epithelial cells and retinal endothelial cells, prevents hemopexin and haptoglobin, anti-oxidant protective plasma proteins normally synthesized by the liver, from entering the neural retina. If present, these proteins must, therefore, be made locally. The cell types within the retina in which hemopexin and haptoglobin mRNAs are made have been investigated. RNA was extracted from both the neural retina and pigment epithelium obtained by dissection of human donor eyes as well as from cultured pigment epithelial and photoreceptor cells. The mRNAs for both haptoglobin and hemopexin were detected, using reverse-transcriptase polymerase chain reaction, in the neural retina and cultured photoreceptors but not in pigment epithelial cells. The cellular location of these mRNAs was determined using in situ hybridization of sections of human retina which revealed that haptoglobin mRNA was located principally in the photoreceptor cells, cells of the inner nuclear layer and some cells of the ganglion cell layer. Hemopexin mRNA, previously shown to be made in the human neural retina (Hunt et al., 1996. Journal of Cellular Physiology 168: 71-80), is expressed by most of the cells of neural retina including the photoreceptors and, notably, the ganglion cells.
Collapse
Affiliation(s)
- W Chen
- Department of Microbiology and Immunology, University of South Carolina Medical School, Columbia 29208, USA
| | | | | | | | | | | |
Collapse
|
42
|
Scortegagna M, Galdzicki Z, Rapoport SI, Hanbauer I. In cortical cultures of trisomy 16 mouse brain the upregulated metallothionein-I/II fails to respond to H2O2 exposure or glutamate receptor stimulation. Brain Res 1998; 787:292-8. [PMID: 9518655 DOI: 10.1016/s0006-8993(97)01501-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To assess whether a defective oxidative defense may contribute to Down's syndrome, we studied the regulation of the metallothionein(MT)-I/II isoforms in primary cultures of cerebral cortex from fetal trisomy 16 mice and their euploid littermates. Western blot analysis showed that MT-I/II was upregulated and the protein carbonyl content was higher in trisomy 16 compared with euploid cultures. Addition of N-acetyl-l-cysteine to the culture medium reduced the increment of MT-I/II in trisomy 16 cortical cells. In euploid, but not trisomic cortical cultures, kainic acid, trans-(+/-)-ACPD, or H2O2 exposure elicited a dose-dependent increase of the MT-I/II immunoblots. In trisomic cells, the MT-I/II immunoblot densities were not increased beyond their elevated basal levels. In contrast, 25 microM Pb induced MT-I/II, to a similar extent, in cortical cultures from euploid and trisomy 16 mice. This suggests that the antioxidant-but not the metal-response element of the MT-I/II promoter was altered by increased oxidative stress. Our data suggest that, in the trisomy 16 mouse, the effects of increased production of reactive oxygen species, due to the increased SOD-1, GluR5, or amyloid precursor protein gene dosage, is exacerbated by an insufficient or missing antioxidant response.
Collapse
Affiliation(s)
- M Scortegagna
- Laboratory of Molecular Immunology, NHLBI, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
43
|
Taketani S, Immenschuh S, Go S, Sinclair PR, Stockert RJ, Liem HH, Muller Eberhard U. Hemopexin from four species inhibits the association of heme with cultured hepatoma cells or primary rat hepatocytes exhibiting a small number of species specific hemopexin receptors. Hepatology 1998; 27:808-14. [PMID: 9500711 DOI: 10.1002/hep.510270324] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hemopexin (Hx) binds heme with a very high affinity (Kd<0.1 pmol/L). It has been implicated as a major vehicle for the transport of heme into liver cells, involving a receptor-mediated recycling mechanism. However, previous studies indicated that heme is not taken up by cultured embryonic chick or adult rat hepatocytes by such a mechanism, because heme added as heme hemopexin failed to affect heme-responsive activities of 5-aminolevulinic acid synthase and heme oxygenase. Here, we investigated the importance of hemopexin in hepatic heme uptake in cultured rat hepatocytes and human HepG2 hepatoma cells, and determined the number and species specificity of hemopexin receptors on the rat hepatocytes. We also tested whether there is a difference between heterologous and homologous hemopexins. We found the following: 1) heme is inhibited from associating with hepatocytes by apo hemopexins from rat, human, rabbit, and chicken; 2) heme readily associates with hepatocytes when heme hemopexin preparations are added in which the ratio of heme to hemopexin exceeds 1.0; 3) heme induces heme oxygenase mRNA in rat hepatocytes and this induction is prevented by excess hemopexin; and 4) rat hepatocytes exhibit only about 2,000 hemopexin receptors per cell when using rat hemopexin, and none when using hemopexin of rabbit and human. We conclude that hemopexin plays a limited role in heme uptake by cultured hepatocytes and hepatoma cells, and that heme which exceeds the hemopexin binding capacity is taken up directly from heme-albumin.
Collapse
Affiliation(s)
- S Taketani
- Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Yu CW, Chen JH, Lin LY. Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS Lett 1997; 420:69-73. [PMID: 9450552 DOI: 10.1016/s0014-5793(97)01489-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of protein kinase C (PKC) inhibitors on the metallothionein (MT) gene expression induced by metals were investigated. When PKC inhibitor (H7 or chelerythrine) was administered to Cd resistant, MT gene-amplified Chinese hamster ovary (CdR) cells, the induction of MT mRNA by Cd or Zn was blocked. Treating the CdR cells with a PKA-specific inhibitor, HA1004, did not cause an inhibition of metal-induced MT gene transcription. The inhibitory effect was effectuated by adding inhibitors within 40 min of exposing the cells to Cd. Apparently, AP1 was not involved in this down-regulatory effect of PKC inhibitor on MT gene expression since the inducibility of MT promoter was blocked by H7 even in the absence of the AP1-binding sequence. For Cd-treated cells, Cd accumulation in the cell was similar with or without H7 treatment. However, H7 markedly reduced cellular Zn accumulation when the cells were treated with Zn. Cycloheximide treatment increased the level of MT mRNA. This elevation can also be blocked by treating the cell with PKC inhibitor. Results in this study suggest that PKC participates in the process of metal-induced MT gene expression.
Collapse
Affiliation(s)
- C W Yu
- Institute of Radiation Biology, National Tsing Hua University, Hsinchu Taiwan, ROC
| | | | | |
Collapse
|
45
|
Gong Q, Hart BA. Effect of thiols on cadmium-induced expression of metallothionein and other oxidant stress genes in rat lung epithelial cells. Toxicology 1997; 119:179-91. [PMID: 9152014 DOI: 10.1016/s0300-483x(96)03608-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examined cadmium-induced alterations in metallothionein-1 (MT), glutathione-S-transferase Ya (GST), and heme oxygenase-1 (HO) gene expression in an adult rat lung epithelial cell line. Elevations in MT mRNA and HO mRNA occurred as early as 1 h after exposure to a sub-toxic concentration of CdCl(2) (10 microM) whereas GST expression did not increase significantly until 4 h after Cd addition. At t = 8 h, levels of GST, MT, and HO mRNA were elevated 9-fold, 27-fold, and 44-fold, respectively, over basal expression. By 24 h, MT expression was almost back to baseline levels. GST mRNA and HO mRNA were also reduced, compared to 8 h, but to a lesser extent than MT expression. The MT gene was more responsive to low Cd concentrations (5 microM) than the genes for HO or GST whereas HO was induced more than the others at higher Cd doses (10-20 microM). Pro-oxidant conditions play a role in Cd-induced gene expression, as suggested by the rapid decline (15-30 min) in glutathione (GSH), amounting to 25-30% of baseline, that occurred after exposure to 10 microM CdCl(2). This was followed by resynthesis of GSH to a concentration higher than the initial. Depleting GSH by treatment of cells with buthionine sulfoximine (BSO) enhanced Cd-induced expression of MT, GST, and HO whereas thiol supplementation, by treatment with N-acetyl cysteine (NAC), had an attenuating effect. BSO and NAC pretreatment had no effect on basal gene expression or Cd uptake. In summary, this study has shown that: (1) Cd increases MT, GST, and HO gene expression in a time- and dose-dependent fashion: (2) MT gene expression appears to be most sensitive to Cd whereas the HO gene is most inducible at higher Cd concentrations; (3) Cd-induced expression is enhanced by GSH depletion and suppressed by thiol supplementation.
Collapse
Affiliation(s)
- Q Gong
- Department of Biochemistry, University of Vermont College of Medicine, Burlington 05405-0068, USA
| | | |
Collapse
|
46
|
Smith A, Eskew JD, Borza CM, Pendrak M, Hunt RC. Role of heme-hemopexin in human T-lymphocyte proliferation. Exp Cell Res 1997; 232:246-54. [PMID: 9168799 DOI: 10.1006/excr.1997.3526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heme-hemopexin supports and stimulates proliferation of human acute T-lymphoblastic (MOLT-3) cells, suggesting the participation of heme in cell growth and division. MOLT-3 cells express approximately 58,000 hemopexin receptors per cell (apparent Kd 20 nM), of which about 20% are on the cell surface. Binding is dose- and temperature-dependent, and growth in serum-free IMDM medium is stimulated by 100-1000 nM heme-hemopexin, consistent with the high affinity of the receptor for hemopexin, and maximal growth is seen in response to 500 nM complex. Growth was similar in defined minimal medium supplemented with either low concentrations of heme-hemopexin or iron-transferrin, and either of these complexes were about 80% as effective as a serum supplement. Heme-hemopexin, but not apo-hemopexin, reversed the growth inhibition caused by desferrioxamine showing that heme-iron derived from heme catabolism is used for cell growth. Cobalt-protoporphyrin (CoPP)-hemopexin, which binds to the receptor but is not transported intracellularly [Smith et al., (1993) J. Biol. Chem. 268, 7365], also stimulated cell proliferation in serum-free IMDM but did not "rescue" the cells from desferrioxamine. Furthermore, CoPP-hemopexin effectively competed for the hemopexin receptor with heme-hemopexin and diminished its growth stimulatory effects. In addition, protein kinase C (PKC) is translocated to the plasma membrane within 5 min after heme-hemopexin is added to the medium, reaches maximum activity within 5-10 min, and declines to unstimulated levels by 30 min. Heme-hemopexin and CoPP-hemopexin both augmented MOLT-3 cell growth stimulated by serum. Thus, heme-hemopexin not only functions as an iron source for T-cells but occupancy of the hemopexin receptor itself triggers signaling pathway(s) involved in the regulation of cell growth. The stimulation of growth of human T-lymphocytes by heme-hemopexin is likely to be a physiologically relevant mechanism at sites of injury, infection, and inflammation.
Collapse
Affiliation(s)
- A Smith
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110-2499, USA.
| | | | | | | | | |
Collapse
|
47
|
Sauer JM, Waalkes MP, Hooser SB, Baines AT, Kuester RK, Sipes IG. Tolerance induced by all-trans-retinol to the hepatotoxic effects of cadmium in rats: role of metallothionein expression. Toxicol Appl Pharmacol 1997; 143:110-9. [PMID: 9073599 DOI: 10.1006/taap.1996.8050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recently, it has been shown that large doses of all-trans-retinol (vitamin A) can potentiate the hepatotoxicity of several organic chemicals in the rat. Whether retinol pretreatment can alter the acute hepatotoxicity of an inorganic chemical, such as cadmium, is unknown. Therefore, the objective of this study was to determine how retinol might affect the acute toxicity of cadmium chloride (CdCl2) and to elucidate possible mechanisms. Cadmium exposure can induce acute, lethal hepatocellular necrosis in rodents, as well as lesions in the lung, kidney, testis, and gastrointestinal tract. In the present studies, male Sprague-Dawley rats were pretreated with retinol (75 mg/kg/day, po) for 7 consecutive days. One day after the last dose of retinol, animals were given a single injection of CdCl2 (2.5 to 4.0 mg/kg, iv). Cadmium chloride administration to unpretreated control rats caused extensive hepatic, renal, pulmonary, and testicular toxicity at 6, 24, and 48 hr postdosing as evaluated by plasma enzymes and/or histopathology. In retinol-pretreated rats, a significant attenuation of CdCl2-induced tissue injury was observed. Since the inducible cadmium-binding protein metallothionein (MT) is often an essential aspect of cadmium tolerance, its content in tissue was assessed using the cadmium-hemoglobin assay. Interestingly, retinol pretreatment significantly increased MT in the liver by sevenfold, but had no effect on lung, kidney, testicular, or pancreatic MT content. Although this increase in hepatic MT was much less than that induced by CdCl2, it was additive to the induction of CdCl2. Furthermore, the tissue distribution of cadmium was significantly altered by retinol pretreatment. The liver accumulated more cadmium, while less cadmium was found in the lung, kidney, and testis in retinol-pretreated rats than in controls. In monolayers of primary isolated hepatocytes, CdCl2-induced toxicity was significantly reduced in cells isolated from retinol-pretreated rats compared to those isolated from control rats. The dose response was shifted to the right and the in vitro cadmium LC50 was increased by in vivo retinol exposure from 1.1 +/- 0.1 to 2.4 +/- 0.04 microM. From these data it is concluded that the induction of hepatic MT is an essential aspect of retinol-induced tolerance to CdCl2 hepatotoxicity, as well as toxicity in other tissues.
Collapse
Affiliation(s)
- J M Sauer
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, 85721-0207, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The existence of the blood-retinal barrier means that proteins that protect the retina from damage by reactive oxygen species must either be made locally or specifically transported across the barrier cells; however, such transepithelial transport does not seem to occur. Among the circulatory proteins that protect against iron-catalyzed production of free radicals are apo-transferrin, which binds ferric iron and has previously been shown to be made by cells of the neural retina (Davis and Hunt, 1993, J. Cell Physiol., 156:280-285), and the extracellular antioxidant, apo-hemopexin, which binds free heme (iron-protoporphyrin IX). Since hemorrhage and heme release can be important contributing factors in retinal disease, evidence of a hemopexin-based retinal protection system was sought. The human retina has been shown to contain apo-hemopexin which is probably synthesized locally since its mRNA can be detected in retinal tissue dissected from human donor eyes. It is likely that the retina contains a mechanism for the degradation of hemopexin-bound heme since the blood-retinal barrier also precludes the exit of heme-hemopexin from the retina. Retinal pigment epithelial cells have been found to bind and internalize heme-hemopexin in a temperature-dependent, saturable, and specific manner, analogous to the receptor-mediated endocytic system of hepatoma cells. Moreover, the binding of heme-hemopexin to the cells stimulates the expression of heme oxygenase-1, metallothionein-1, and ferritin.
Collapse
Affiliation(s)
- R C Hunt
- Department of Microbiology and Immunology, University of South Carolina School of Medicine, Columbia 29208, USA
| | | | | | | |
Collapse
|