1
|
Dodd RJ, Moffatt D, Vachiteva M, Parkinson JE, Chan BHK, Day AJ, Allen JE, Sutherland TE. Injury From Nematode Lung Migration Induces an IL-13-Dependent Hyaluronan Matrix. PROTEOGLYCAN RESEARCH 2024; 2:e70012. [PMID: 39606183 PMCID: PMC11589410 DOI: 10.1002/pgr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
A consistent feature of lung injury is a rapid and sustained accumulation of hyaluronan (HA). The rodent gut-dwelling nematode Nippostrongylus brasiliensis (Nb) induces tissue damage as it migrates through the lungs. Type 2 immune responses are essential for the repair of the lungs, hence Nb infection is a well-established model to study immune-mediated lung repair. We found that Nb infection was associated with increased HA in the lung, which peaked at d7 post-infection (p.i.). Deposition of HA in the alveolar epithelium correlated with regions of damaged tissue and the type 2 immune response, which is characterized by eosinophilia and increased type 2 cytokines such as IL-13. Consistent with the accumulation of HA, we observed increased expression of the major synthase Has2, alongside decreased expression of Hyal1, Hyal2, and Tmem2, which can degrade existing HA. Expression of Tsg6 was also increased and correlated with the presence of inter-α-inhibitor heavy chain-HA complexes (HC·HA) at d7 p.i. Using IL-13-deficient mice, we found that the accumulation of HA during Nb infection was IL-13 dependent. Our data thus provide further evidence that IL-13 is a modulator of the HA matrix during lung challenge and links IL-13-mediated HA regulation to tissue repair pathways.
Collapse
Affiliation(s)
- Rebecca J. Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Dora Moffatt
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Monika Vachiteva
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - James E. Parkinson
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Brian H. K. Chan
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Anthony J. Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith E. Allen
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | | |
Collapse
|
2
|
Peter B, Rebeaud J, Vigne S, Bressoud V, Phillips N, Ruiz F, Petrova TV, Bernier-Latmani J, Pot C. Perivascular B cells link intestinal angiogenesis to immunity and to the gut-brain axis during neuroinflammation. J Autoimmun 2024; 148:103292. [PMID: 39067313 DOI: 10.1016/j.jaut.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Disruption of gut barrier function and intestinal immune cell homeostasis are increasingly considered critical players in pathogenesis of extra-intestinal inflammatory diseases, including multiple sclerosis (MS) and its prototypical animal model, the experimental autoimmune encephalomyelitis (EAE). Breakdown of epithelial barriers increases intestinal permeability and systemic dissemination of microbiota-derived molecules. However, whether the gut-vascular barrier (GVB) is altered during EAE has not been reported. Here, we demonstrate that endothelial cell proliferation and vessel permeability increase before EAE clinical onset, leading to vascular remodeling and expansion of intestinal villi capillary bed during disease symptomatic phase in an antigen-independent manner. Concomitant to onset of angiogenesis observed prior to neurological symptoms, we identify an increase of intestinal perivascular immune cells characterized by the surface marker lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1). LYVE-1+ is expressed more frequently on B cells that show high levels of CD73 and have proangiogenic properties. B cell depletion was sufficient to mitigate enteric blood endothelial cell proliferation following immunization for EAE. In conclusion, we propose that altered intestinal vasculature driven by a specialized LYVE-1+ B cell subset promotes angiogenesis and that loss of GVB function is implicated in EAE development and autoimmunity.
Collapse
Affiliation(s)
- Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Nicholas Phillips
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland.
| |
Collapse
|
3
|
Duhon BH, Thompson K, Fisher M, Kaul VF, Nguyen HT, Harris MS, Varadarajan V, Adunka OF, Prevedello DM, Kolipaka A, Ren Y. Tumor biomechanical stiffness by magnetic resonance elastography predicts surgical outcomes and identifies biomarkers in vestibular schwannoma and meningioma. Sci Rep 2024; 14:14561. [PMID: 38914647 PMCID: PMC11196577 DOI: 10.1038/s41598-024-64597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Variations in the biomechanical stiffness of brain tumors can not only influence the difficulty of surgical resection but also impact postoperative outcomes. In a prospective, single-blinded study, we utilize pre-operative magnetic resonance elastography (MRE) to predict the stiffness of intracranial tumors intraoperatively and assess the impact of increased tumor stiffness on clinical outcomes following microsurgical resection of vestibular schwannomas (VS) and meningiomas. MRE measurements significantly correlated with intraoperative tumor stiffness and baseline hearing status of VS patients. Additionally, MRE stiffness was elevated in patients that underwent sub-total tumor resection compared to gross total resection and those with worse postoperative facial nerve function. Furthermore, we identify tumor microenvironment biomarkers of increased stiffness, including αSMA + myogenic fibroblasts, CD163 + macrophages, and HABP (hyaluronic acid binding protein). In a human VS cell line, a dose-dependent upregulation of HAS1-3, enzymes responsible for hyaluronan synthesis, was observed following stimulation with TNFα, a proinflammatory cytokine present in VS. Taken together, MRE is an accurate, non-invasive predictor of tumor stiffness in VS and meningiomas. VS with increased stiffness portends worse preoperative hearing and poorer postoperative outcomes. Moreover, inflammation-mediated hyaluronan deposition may lead to increased stiffness.
Collapse
Affiliation(s)
- Bailey H Duhon
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Otology, Neurotology, and Lateral Skull Base Surgery Program, Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School at the University of Texas at Houston, Houston, TX, USA
| | - Kristin Thompson
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Melanie Fisher
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vivian F Kaul
- Otology, Neurotology, and Lateral Skull Base Surgery Program, Department of Otorhinolaryngology-Head and Neck Surgery, McGovern Medical School at the University of Texas at Houston, Houston, TX, USA
| | - Han Tn Nguyen
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael S Harris
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Varun Varadarajan
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Oliver F Adunka
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel M Prevedello
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Yin Ren
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Thoyajakshi RS, Megha GT, Ravi Kumar H, Mathad SN, Khan A, Nagaraju S, Mahmoud MH, Ansari A. Garcinol: A novel and potent inhibitor of hyaluronidase enzyme. Int J Biol Macromol 2024; 266:131145. [PMID: 38574932 DOI: 10.1016/j.ijbiomac.2024.131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Extracellular matrix (ECM) contains hyaluronic acid (HA) as its integral part that is involved in numerous functional activities within the body. Degradation of HA by hyaluronidase enzyme involved in many pathophysiological conditions such as asthma, arthritis, COPD and in venom spreading during envenomation. Inhibitor of hyaluronidase enzyme has a wide range of application along with the hyaluronan-hyaluronidase system. In this present study, we have evaluated the inhibitory effect of garcinol against hyaluronidase from Hippasa partita spider venom (HPHyal), bovine testicular hyaluronidase (BTH) and human serum hyaluronidase. Garcinia indica fruit rind has been used to isolate the active component garcinol. Garcinol has been used in treatment of diverse ailments. Garcinol has exhibited anti-oxidant, anti-inflammatory, HAT inhibition and miRNA deregulator in development and progression of cancers. Experimental data have shown that garcinol completely inhibited all the three tested hyaluronidase enzymes. The inhibition was found to be non-competitive pattern with reversible type. In the docking study, garcinol with hyaluronidase enzyme has been stabilized by hydrogen bonding and hydrophobic interactions. Thus, garcinol could be a potent novel inhibitor of hyaluronidase enzyme which can be further used for pharmacotherapeutic applications.
Collapse
Affiliation(s)
- R S Thoyajakshi
- Department of Studies and Research in Biotechnology, Tumkur University, Tumkur 572102, Karnataka, India
| | - G T Megha
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572102, Karnataka, India
| | - H Ravi Kumar
- Department of Life Sciences, Bangalore University, J B Campus,Bangalore 560056, Karnataka, India
| | - Shridhar N Mathad
- Department of Physics,KLE Institute of Technology, Hubli 580027,Karnataka,India
| | - Anish Khan
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - S Nagaraju
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572102, Karnataka, India.
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia
| | - AbuZar Ansari
- Department of Obstetrics and Gyenocology and Ewha Medical Research Institute, College of Medicine, EwhaWomens University, Seoul 07984, Republic of Korea
| |
Collapse
|
5
|
Freise C, Biskup K, Blanchard V, Schnorr J, Taupitz M. Inorganic Phosphate-Induced Extracellular Vesicles from Vascular Smooth Muscle Cells Contain Elevated Levels of Hyaluronic Acid, Which Enhance Their Interaction with Very Small Superparamagnetic Iron Oxide Particles. Int J Mol Sci 2024; 25:2571. [PMID: 38473817 DOI: 10.3390/ijms25052571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with chronic kidney disease (CKD) have a high prevalence of hyperphosphatemia, where uremic toxins like inorganic phosphate (Pi) induce a cardiovascular remodeling. Related disorders like atherosclerosis bear the risk of increased morbidity and mortality. We previously found that Pi stimulates the synthesis and sulfation of the negatively charged glycosaminoglycans (GAGs) heparan sulfate and chondroitin sulfate in vascular smooth muscle cells (VSMC). Similar GAG alterations were detected in VSMC-derived exosome-like extracellular vesicles (EV). These EV showed a strong interaction with very small superparamagnetic iron oxide particles (VSOP), which are used as imaging probes for experimental magnetic resonance imaging (MRI). Hyaluronic acid (HA) represents another negatively charged GAG which is supposed to function as binding motif for VSOP as well. We investigated the effects of Pi on the amounts of HA in cells and EV and studied the HA-dependent interaction between VSOP with cells and EV. Rat VSMC were treated with elevated concentrations of Pi. CKD in rats was induced by adenine feeding. EV were isolated from culture supernatants and rat plasma. We investigated the role of HA in binding VSOP to cells and EV via cell-binding studies, proton relaxometry, and analysis of cellular signaling, genes, proteins, and HA contents. Due to elevated HA contents, VSMC and EV showed an increased interaction with VSOP after Pi stimulation. Amongst others, Pi induced hyaluronan synthase (HAS)2 expression and activation of the Wnt pathway in VSMC. An alternative upregulation of HA by iloprost and an siRNA-mediated knockdown of HAS2 confirmed the importance of HA in cells and EV for VSOP binding. The in vitro-derived data were validated by analyses of plasma-derived EV from uremic rats. In conclusion, the inorganic uremic toxin Pi induces HA synthesis in cells and EV, which leads to an increased interaction with VSOP. HA might therefore be a potential molecular target structure for improved detection of pathologic tissue changes secondary to CKD like atherosclerosis or cardiomyopathy using EV, VSOP and MRI.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karina Biskup
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
6
|
Khoshbin M, Ahmadi SAY, Cheraghi M, Nouryazdan N, Birjandi M, Shahsavari G. Association of E-Selectin gene polymorphisms and serum E-Selectin level with risk of coronary artery disease in lur population of Iran. Arch Physiol Biochem 2023; 129:387-392. [PMID: 33022186 DOI: 10.1080/13813455.2020.1828481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Adhesion molecules like E-selectin have important role in pathogenesis of atherosclerosis. C1901T and G98T polymorphisms of E-selectin gene and E-selectin serum level may affect the risk of coronary artery disease (CAD). METHODS A total of 145 normal individuals and 154 patients diagnosed with CAD from the Lur population of Iran undergoing coronary angiography were enrolled. Genetic polymorphisms of E-selectin were determined using PCR-RFLP. Serum level of soluble E-selectin was measured using Elisa. RESULTS T allele in C1901T polymorphism was significantly associated with an increased risk of atherosclerosis (P = 0.018). No significant association was observed for G98T polymorphism. The mean serum level of soluble E-selectin in the patient group was significantly higher than the control group (P < 0.001). CONCLUSIONS Allele type in C1901T polymorphism plays a role in increasing the risk of developing CAD. Furthermore, since serum E-selectin level is associated with systemic inflammation, it contributes to the increased risk of the disease.
Collapse
Affiliation(s)
- Mobin Khoshbin
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyyed Amir Yasin Ahmadi
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Cheraghi
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Negar Nouryazdan
- Department of Clinical Biochemistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Department of Epidemiology and Biostatistics, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Shahsavari
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Berdiaki A, Neagu M, Spyridaki I, Kuskov A, Perez S, Nikitovic D. Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix? Antioxidants (Basel) 2023; 12:antiox12040824. [PMID: 37107200 PMCID: PMC10135151 DOI: 10.3390/antiox12040824] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic.
Collapse
|
8
|
Sakamoto A, Kawakami R, Mori M, Guo L, Paek KH, Mosquera JV, Cornelissen A, Ghosh SKB, Kawai K, Konishi T, Fernandez R, Fuller DT, Xu W, Vozenilek AE, Sato Y, Jinnouchi H, Torii S, Turner AW, Akahori H, Kuntz S, Weinkauf CC, Lee PJ, Kutys R, Harris K, Killey AL, Mayhew CM, Ellis M, Weinstein LM, Gadhoke NV, Dhingra R, Ullman J, Dikongue A, Romero ME, Kolodgie FD, Miller CL, Virmani R, Finn AV. CD163+ macrophages restrain vascular calcification, promoting the development of high-risk plaque. JCI Insight 2023; 8:e154922. [PMID: 36719758 PMCID: PMC10077470 DOI: 10.1172/jci.insight.154922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Vascular calcification (VC) is concomitant with atherosclerosis, yet it remains uncertain why rupture-prone high-risk plaques do not typically show extensive calcification. Intraplaque hemorrhage (IPH) deposits erythrocyte-derived cholesterol, enlarging the necrotic core and promoting high-risk plaque development. Pro-atherogenic CD163+ alternative macrophages engulf hemoglobin:haptoglobin (HH) complexes at IPH sites. However, their role in VC has never been examined to our knowledge. Here we show, in human arteries, the distribution of CD163+ macrophages correlated inversely with VC. In vitro experiments using vascular smooth muscle cells (VSMCs) cultured with HH-exposed human macrophage - M(Hb) - supernatant reduced calcification, while arteries from ApoE-/- CD163-/- mice showed greater VC. M(Hb) supernatant-exposed VSMCs showed activated NF-κB, while blocking NF-κB attenuated the anticalcific effect of M(Hb) on VSMCs. CD163+ macrophages altered VC through NF-κB-induced transcription of hyaluronan synthase (HAS), an enzyme that catalyzes the formation of the extracellular matrix glycosaminoglycan, hyaluronan, within VSMCs. M(Hb) supernatants enhanced HAS production in VSMCs, while knocking down HAS attenuated its anticalcific effect. NF-κB blockade in ApoE-/- mice reduced hyaluronan and increased VC. In human arteries, hyaluronan and HAS were increased in areas of CD163+ macrophage presence. Our findings highlight an important mechanism by which CD163+ macrophages inhibit VC through NF-κB-induced HAS augmentation and thus promote the high-risk plaque development.
Collapse
Affiliation(s)
| | | | | | - Liang Guo
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Ka Hyun Paek
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Jose Verdezoto Mosquera
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Kenji Kawai
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | | | | | - Weili Xu
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | - Yu Sato
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | - Sho Torii
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Adam W. Turner
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Hirokuni Akahori
- Department of Cardiovascular and Renal Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Salome Kuntz
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Craig C. Weinkauf
- Division of Vascular and Endovascular Surgery, University of Arizona, Tucson, Arizona, USA
| | | | - Robert Kutys
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Kathryn Harris
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Roma Dhingra
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | | | | | | | | | - Clint L. Miller
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
| | - Aloke V. Finn
- CVPath Institute, Inc., Gaithersburg, Maryland, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez HA, Nagy N, Karmouty-Quintana H, Bollyky PL. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol 2023; 116:49-66. [PMID: 36750167 PMCID: PMC9899355 DOI: 10.1016/j.matbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Henry W Barnes
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Karousou E, Parnigoni A, Moretto P, Passi A, Viola M, Vigetti D. Hyaluronan in the Cancer Cells Microenvironment. Cancers (Basel) 2023; 15:cancers15030798. [PMID: 36765756 PMCID: PMC9913668 DOI: 10.3390/cancers15030798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors.
Collapse
|
11
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL, Pallardó FV. The Endothelial Glycocalyx and Neonatal Sepsis. Int J Mol Sci 2022; 24:364. [PMID: 36613805 PMCID: PMC9820255 DOI: 10.3390/ijms24010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Ahlam Fatmi
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
13
|
Sugita S, Naito Y, Zhou L, He H, Hao Q, Sakamoto A, Lee JW. Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB Bioadv 2022; 4:619-631. [PMID: 36089980 PMCID: PMC9447422 DOI: 10.1096/fba.2022-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Lung endothelial permeability is a key pathological feature of acute respiratory distress syndrome. Hyaluronic acid (HA), a major component of the glycocalyx layer on the endothelium, is generated by HA synthase (HAS) during inflammation and injury and is critical for repair. We hypothesized that administration of exogenous high molecular weight (HMW) HA would restore protein permeability across human lung microvascular endothelial cells (HLMVEC) injured by an inflammatory insult via upregulation of HAS by binding to CD44. A transwell coculture system was used to study the effects of HA on protein permeability across HLMVEC injured by cytomix, a mixture of IL-1β, TNFα, and IFNγ, with or without HMW or low molecular weight (LMW) HA. Coincubation with HMW HA, but not LMW HA, improved protein permeability following injury at 24 h. Fluorescence microscopy demonstrated that exogenous HMW HA partially prevented the increase in "actin stress fiber" formation. HMW HA also increased the synthesis of HAS2 mRNA expression and intracellular HMW HA levels in HLMVEC following injury. Pretreatment with an anti-CD44 antibody or 4-methylumbelliferone, a HAS inhibitor, blocked the therapeutic effects. In conclusion, exogenous HMW HA restored protein permeability across HLMVEC injured by an inflammatory insult in part through upregulation of HAS2.
Collapse
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yoshifumi Naito
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Li Zhou
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hongli He
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Qi Hao
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
| | - Jae W. Lee
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
14
|
Parnigoni A, Viola M, Karousou E, Rovera S, Giaroni C, Passi A, Vigetti D. ROLE OF HYALURONAN IN PATHOPHYSIOLOGY OF VASCULAR1 ENDOTHELIAL AND SMOOTH MUSCLE CELLS. Am J Physiol Cell Physiol 2022; 323:C505-C519. [PMID: 35759431 DOI: 10.1152/ajpcell.00061.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the main components of the extracellular matrix (ECM) of the blood vessel is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the membrane in the pericellular space via HAS or via binding proteins. In fact, several cell surface proteins can interact with HA working as HA receptors like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and in the adventitia and is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations which have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that wake up cells from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Further, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on the effects of HA on vascular cell behavior.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
15
|
Liu Z, Liu Y, Liu M, Gong Q, Shi A, Li X, Bai X, Guan X, Hao B, Liu F, Zhou X, Yuan H. PD-L1 Inhibits T Cell-Induced Cytokines and Hyaluronan Expression via the CD40-CD40L Pathway in Orbital Fibroblasts From Patients With Thyroid Associated Ophthalmopathy. Front Immunol 2022; 13:849480. [PMID: 35619700 PMCID: PMC9128409 DOI: 10.3389/fimmu.2022.849480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Thyroid associated ophthalmopathy (TAO), characterized by T cell infiltration and orbital fibroblast activation, is an organ-specific autoimmune disease which is still short of effective and safety therapeutic drugs. The PD-1/PD-L1 pathway has been reported hindering the progression of Graves’ disease to some extent by inhibiting T cell activity, and tumor therapy with a PD-1 inhibitor caused some adverse effects similar to the symptoms of TAO. These findings suggest that the PD-1/PD-L1 pathway may be associated with the pathogenesis of TAO. However, it remains unknown whether the PD-1/PD-L1 pathway is involved in orbital fibroblast activation. Here, we show that orbital fibroblasts from patients with TAO do not express PD-L1. Based on in vitro OF-T cell co-culture system, exogenous PD-L1 weakens T cell-induced orbital fibroblast activation by inhibiting T cell activity, resulting in reduced production of sICAM-1, IL-6, IL-8, and hyaluronan. Additionally, exogenous PD-L1 treatment also inhibits the expression of CD40 and the phosphorylation levels of MAPK and NF-κB pathways in orbital fibroblasts of the OF-T cell co-culture system. Knocking down CD40 with CD40 siRNA or down-regulating the phosphorylation levels of MAPK and NF-κB pathways with SB203580, PD98059, SP600125, and PDTC can both reduce the expression of these cytokines and hyaluronan. Our study demonstrates that the orbital immune tolerance deficiency caused by the lack of PD-L1 in orbital fibroblasts may be one of the causes for the active orbital inflammation in TAO patients, and the utilization of exogenous PD-L1 to reconstruct the orbital immune tolerance microenvironment may be a potential treatment strategy for TAO.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingming Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingjia Gong
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Anjie Shi
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiuhong Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| | - Xu Bai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Guan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Hao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| |
Collapse
|
16
|
Kainulainen K, Takabe P, Heikkinen S, Aaltonen N, Motte CDL, Rauhala L, Durst FC, Oikari S, Hukkanen T, Rahunen E, Ikonen E, Hartikainen JM, Ketola K, Pasonen-Seppänen S. M1 macrophages induce pro-tumor inflammation in melanoma cells via TNFR–NF-κB signaling. J Invest Dermatol 2022; 142:3041-3051.e10. [PMID: 35580697 DOI: 10.1016/j.jid.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
|
17
|
Umugire A, Lee S, Lee CJ, Choi Y, Kim T, Cho HH. Hyaluronan synthase 1: A novel candidate gene associated with late-onset non-syndromic hereditary hearing loss. Clin Exp Otorhinolaryngol 2022; 15:220-229. [PMID: 35413171 PMCID: PMC9441500 DOI: 10.21053/ceo.2022.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Hyaluronan synthase 1 (HAS1) is a membrane-bound protein that is abundant in the epidermis and dermis, and it is important for skin function. However, its association with hearing loss has not yet been studied. Herein, we sought to evaluate the potential contribution of HAS1: c.1082G>A to genetic hearing loss. Methods We used whole-exome sequencing to analyze blood DNA samples of six patients of a family with autosomal dominant familial late-onset progressive hearing loss, which was revealed to be related to a variant of the HAS1 gene. Confirmatory Sanger sequencing was performed with samples from 10 members. A missense variant was detected in HAS1 (c.1082 G>A, p.Cys361Tyr). In silico analyses predicted this variant to result in the functional loss of HAS1. Immunostaining was conducted using wild-type mouse samples to verify HAS1 expression. Results Has1 was detected in an otocyst at E10.5. In the pup, Has1 expression was localized in the stria vascularis (SV), hair cells, supporting cells of the organ of Corti, and some spiral ganglion neurons. SV marginal cells markedly expressed Has1 in the adult stage. The hearing threshold in the Has1-depleted condition was investigated by accessing the International Mouse Phenotyping Consortium’s Auditory Brainstem Response (ABR) data. ABR of Has1 knock-out mice showed threshold elevations at 6, 12, and 18 kHz in young male adults. Conclusion HAS1 may have a close relationship with auditory function and genetic hearing loss. Further investigation is needed to reveal the precise role of HAS1 in the auditory system. HAS1 is a candidate gene for future hereditary hearing loss genetic testing.
Collapse
|
18
|
Kuroda Y, Higashi H. Regulation of hyaluronan production by β2 adrenergic receptor signaling. Biochem Biophys Res Commun 2021; 575:50-55. [PMID: 34455221 DOI: 10.1016/j.bbrc.2021.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaluronan (HA), the main component of the extracellular matrix, is involved in tissue elasticity and cell scaffolding, and in progression of conditions such as cancer, inflammation and wound healing. Signaling by G protein coupled receptor (GPCR) activation increases expression of hyaluronan synthase (HAS) and HA production. The β2 adrenergic receptor (β2AR) is a catecholamine-liganded GPCR that is involved in cancer progression and wound healing. Since HA and β2AR are involved in a common pathology, we investigated whether β2AR signaling regulates HA production. METHODS After stimulating β2AR-expressing cells with a β agonist, the amount of HA in the culture medium was measured and HAS expression was examined by real-time PCR. A variety of signaling molecule inhibitors were used to identify signaling pathways that alter HAS expression. RESULTS β2AR activation increased HA production and enhanced HAS2 expression. The increase in HAS2 expression by β2AR activation occurred via the Gs - adenylyl cyclase - PKA - CREB signal transduction pathway. CONCLUSIONS Downstream signal transduction by β2AR activation increased HA production by enhancing transcription of the HAS2 gene. This study suggests that β2AR is a GPCR that regulates HA production, and that stimulation with a catecholamine (β2 agonist) can regulate HA production. GENERAL SIGNIFICANCE β2AR may function through regulation of HA production in cancer progression and wound healing.
Collapse
Affiliation(s)
- Yoshiyuki Kuroda
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Hideyoshi Higashi
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
19
|
Koch J, Hijmans RS, Ossa Builes M, Dam WA, Pol RA, Bakker SJL, Pas HH, Franssen CFM, van den Born J. Direct Evidence of Endothelial Dysfunction and Glycocalyx Loss in Dermal Biopsies of Patients With Chronic Kidney Disease and Their Association With Markers of Volume Overload. Front Cell Dev Biol 2021; 9:733015. [PMID: 34621749 PMCID: PMC8491614 DOI: 10.3389/fcell.2021.733015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/30/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular morbidity is a major problem in patients with chronic kidney disease (CKD) and endothelial dysfunction (ED) is involved in its development. The luminal side of the vascular endothelium is covered by a protective endothelial glycocalyx (eGC) and indirect evidence indicates eGC loss in CKD patients. We aimed to investigate potential eGC loss and ED in skin biopsies of CKD patients and their association with inflammation and volume overload. During living kidney transplantation procedure, abdominal skin biopsies were taken from 11 patients with chronic kidney disease stage 5 of whom 4 were treated with hemodialysis and 7 did not receive dialysis treatment. Nine healthy kidney donors served as controls. Biopsies were stained and quantified for the eGC marker Ulex europaeus agglutinin-1 (UEA1) and the endothelial markers vascular endothelial growth factor-2 (VEGFR2) and von Willebrand factor (vWF) after double staining and normalization for the pan-endothelial marker cluster of differentiation 31. We also studied associations between quantified log-transformed dermal endothelial markers and plasma markers of inflammation and hydration status. Compared to healthy subjects, there was severe loss of the eGC marker UEA1 (P < 0.01) while VEGFR2 was increased in CKD patients, especially in those on dialysis (P = 0.01). For vWF, results were comparable between CKD patients and controls. Skin water content was identical in the three groups, which excluded dermal edema as an underlying cause in patients with CKD. The dermal eGC/ED markers UEA1, VEGFR2, and vWF all associated with plasma levels of NT-proBNP and sodium (all R2 > 0.29 and P < 0.01), except for vWF that only associated with plasma NT-proBNP. This study is the first to show direct histopathological evidence of dermal glycocalyx loss and ED in patients with CKD. In line with previous research, our results show that ED associates with markers of volume overload arguing for strict volume control in CKD patients.
Collapse
Affiliation(s)
- Josephine Koch
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ryanne S Hijmans
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Manuela Ossa Builes
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wendy A Dam
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert A Pol
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hendri H Pas
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Casper F M Franssen
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Hundhausen C, Schneckmann R, Ostendorf Y, Rimpler J, von Glinski A, Kohlmorgen C, Pasch N, Rolauer L, von Ameln F, Eckermann O, Altschmied J, Ale-Agha N, Haendeler J, Flögel U, Fischer JW, Grandoch M. Endothelial hyaluronan synthase 3 aggravates acute colitis in an experimental model of inflammatory bowel disease. Matrix Biol 2021; 102:20-36. [PMID: 34464693 DOI: 10.1016/j.matbio.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
The association between hyaluronan (HA) accumulation and increased inflammation in the colon suggests that HA is a potential therapeutic target in inflammatory bowel disease (IBD). However, whether patients with IBD would benefit from interference with HA synthesis is unknown. Here, we used pharmacological and genetic approaches to investigate the impact of systemic and partial blockade of HA synthesis in the Dextran Sodium Sulfate (DSS)-induced colitis model. To systemically inhibit HA production, we used 4-Methylumbelliferone (4-MU), whereas genetic approaches included the generation of mice with global or inducible cell-type specific deficiency in the Hyaluronan synthase 3 (Has3). We found that 4-MU treatment did not ameliorate but exacerbated disease severity characterized by increased body weight loss and enhanced colon tissue destruction compared to control mice without colitis. In contrast, global Has3 deficiency had a profound protective effect as reflected by a low colitis score and reduced infiltration of immune cells into the colon. To get further mechanistic insight into the proinflammatory role of HAS3, we deleted Has3 in a cell-type specific manner. Interestingly, while lack of Has3 expression in intestinal epithelial and smooth muscle cells had no effect or was rather proinflammatory, mice with Has3 deficiency in the endothelium were strongly protected against acute colitis. We conclude that endothelium-derived HAS3 plays a critical role in driving experimental colitis, warranting future studies on cell type-specific therapeutic interference with HA production in human IBD.
Collapse
Affiliation(s)
- Christian Hundhausen
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Rebekka Schneckmann
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Yanina Ostendorf
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jacqueline Rimpler
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Anette von Glinski
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Christina Kohlmorgen
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Nina Pasch
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Luca Rolauer
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Florian von Ameln
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Olaf Eckermann
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Joachim Altschmied
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf, Germany
| | - Ulrich Flögel
- Institute for Molecular Cardiology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
21
|
Nikopensius T, Niibo P, Haller T, Jagomägi T, Voog-Oras Ü, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Association analysis of juvenile idiopathic arthritis genetic susceptibility factors in Estonian patients. Clin Rheumatol 2021; 40:4157-4165. [PMID: 34101054 PMCID: PMC8463396 DOI: 10.1007/s10067-021-05756-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients.
Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-021-05756-x.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Priit Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Triin Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ülle Voog-Oras
- Institute of Dentistry, University of Tartu, Tartu, Estonia.,Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Mare Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Chris Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia.,Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Caravà E, Moretto P, Caon I, Parnigoni A, Passi A, Karousou E, Vigetti D, Canino J, Canobbio I, Viola M. HA and HS Changes in Endothelial Inflammatory Activation. Biomolecules 2021; 11:biom11060809. [PMID: 34072476 PMCID: PMC8229641 DOI: 10.3390/biom11060809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are a group of disorders caused by the presence of a combination of risk factors, such as tobacco use, unhealthy diet and obesity, physical inactivity, etc., which cause the modification of the composition of the vessel’s matrix and lead to the alteration of blood flow, matched with an inflammation condition. Nevertheless, it is not clear if the inflammation is a permissive condition or a consequent one. In order to investigate the effect of inflammation on the onset of vascular disease, we treated endothelial cells with the cytokine TNF-α that is increased in obese patients and is reported to induce cardiometabolic diseases. The inflammation induced a large change in the extracellular matrix, increasing the pericellular hyaluronan and altering the heparan sulfate Syndecans sets, which seems to be related to layer permeability but does not influence cell proliferation or migration nor induce blood cell recruitment or activation.
Collapse
Affiliation(s)
- Elena Caravà
- Quantix Italia S.r.l., 20121 Milano, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (J.C.); (I.C.)
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (J.C.); (I.C.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
- Correspondence: ; Tel.: +39-0332-397143
| |
Collapse
|
23
|
Yang X, Qi F, Wei S, Lin L, Liu X. The Transcription Factor C/EBPβ Promotes HFL-1 Cell Migration, Proliferation, and Inflammation by Activating lncRNA HAS2-AS1 in Hypoxia. Front Cell Dev Biol 2021; 9:651913. [PMID: 33777961 PMCID: PMC7994614 DOI: 10.3389/fcell.2021.651913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Objective Recent studies were widely concerned about the role of lncRNAs in hypoxic pulmonary hypertension (HPH). HAS2 was found significantly highly expressed in HPH, but the antisense of HAS2 (HAS2-AS1) has not been explored in HPH, providing a new potential therapeutic target of HPH. Methods In this study, human fetal lung fibroblast-1 (HFL-1) cells were cultured under hypoxia conditions to stimulate the pathological process of HPH. Transwell and wound-healing assays were used to detect HFL-1 cell migration, and CCK 8 assay was used to detect cell proliferation. The upstream transcription factor of HAS2-AS1 was predicted by JASPAR website, and the binding site between C/EBPβ and HAS2-AS1 was predicted by JASPAR, too. In order to verify the association between C/EBPβ and the HAS2 promoter region, we used chromatin immunoprecipitation (ChIP) and dual luciferase reporter gene detection, western blot to detect the expression of inflammation-related proteins, and qRT-PCR to detect the expression of HAS2-AS1 and HAS2. Idiopathic pulmonary fibrosis (IPF) with HPH patient microarray data was downloaded from the GEO database and analyzed by R software. Results Our study showed that HAS2-AS1 and C/EBPβ were highly expressed in hypoxic HFL-1 cells, and the knockdown of HAS2-AS1 expression could inhibit the proliferation, migration, and inflammatory response of HFL-1 cells. C/EBPβ binds to the promoter region of HAS2-AS1 and has a positive regulation effect on the transcription of HAS2-AS1. Furthermore, C/EBPβ can regulate the proliferation, migration, and inflammatory response of HFL-1 cells through HAS2-AS1. Conclusion This study suggested that C/EBPβ could upregulate HAS2-AS1 expression and induce HFL-1 cell proliferation, migration, and inflammation response.
Collapse
Affiliation(s)
- Xue Yang
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Fei Qi
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Shanchen Wei
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Lianjun Lin
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
24
|
Derkacz A, Olczyk P, Olczyk K, Komosinska-Vassev K. The Role of Extracellular Matrix Components in Inflammatory Bowel Diseases. J Clin Med 2021; 10:jcm10051122. [PMID: 33800267 PMCID: PMC7962650 DOI: 10.3390/jcm10051122] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The remodeling of extracellular matrix (ECM) within the intestine tissues, which simultaneously involves an increased degradation of ECM components and excessive intestinal fibrosis, is a defining trait of the progression of inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD). The increased activity of proteases, especially matrix metalloproteinases (MMPs), leads to excessive degradation of the extracellular matrix and the release of protein and glycoprotein fragments, previously joined with the extracellular matrix, into the circulation. MMPs participate in regulating the functions of the epithelial barrier, the immunological response, and the process of wound healing or intestinal fibrosis. At a later stage of fibrosis during IBD, excessive formation and deposition of the matrix is observed. To assess changes in the extracellular matrix, quantitative measurement of the concentration in the blood of markers dependent on the activity of proteases, involved in the breakdown of extracellular matrix proteins as well as markers indicating the formation of a new ECM, has recently been proposed. This paper describes attempts to use the quantification of ECM components as markers to predict intestinal fibrosis and evaluate the healing process of the gut. The markers which reflect increased ECM degradation, together with the ones which show the process of creating a new matrix during IBD, allow the attainment of important information regarding the changes in the intestinal tissue, epithelial integrity and extracellular matrix remodeling. This paper contains evidence confirming that ECM remodeling is an integral part of directional cell signaling in the progression of IBD, and not only a basis for the ongoing processes.
Collapse
Affiliation(s)
- Alicja Derkacz
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (K.O.)
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (K.O.)
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (K.O.)
- Correspondence: ; Tel.: +48-32364-1150
| |
Collapse
|
25
|
Selman G, Martinez L, Lightle A, Aguilar A, Woltmann D, Xiao Y, Vazquez-Padron RI, Salman LH. A hyaluronan synthesis inhibitor delays the progression of diabetic kidney disease in a mouse experimental model. KIDNEY360 2021; 2:809-818. [PMID: 34350420 PMCID: PMC8330520 DOI: 10.34067/kid.0004642020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The role of hyaluronan (HA) in the development and progression of diabetic kidney disease (DKD), as well as the precise mechanisms and consequences of HA involvement in this pathology are still to be clarified. METHODS In this study, we assayed the effects of the HA synthesis inhibitor 4-methylumbelliferone (4-MU) on the development of DKD. Diabetic type 2 model mice (eNOS-/- C57BLKS/Jdb) were fed artificial diets containing 5% 4-MU or not for 9 weeks. Plasma glucose, glomerular filtration rate (GFR), albumin to creatinine ratio (ACR), and biomarkers of kidney function and systemic inflammation were measured at baseline and after treatment. Diabetic nephropathy was further characterized in treated and control mice by histopathology. RESULTS Treated animals consumed a daily dose of approximately 6.2 g of 4-MU per kg of body weight. At the end of the experimental period, the 4-MU supplemented diet resulted in a significant decrease in non-fasting plasma glucose (516 [interquartile range 378-1170] vs. 1149 [875.8-1287] mg/dL, P=0.050) and a trend toward lower HA kidney content (5.6 ± 1.5 vs. 8.8 ± 3.1 ng/mg of kidney weight, P=0.070) compared to the control diet, respectively. Diabetic animals treated with 4-MU showed significantly higher GFR and lower urine ACR and plasma cystatin C levels than diabetic controls. Independent histological assessment of DKD also demonstrated a significant decrease in mesangial expansion score and glomerular injury index in 4-MU-treated mice compared to controls. Plasma glucose showed a strong correlation with kidney HA levels (r=0.66, P=0.0098). Both total hyaluronan (r=0.76, P=0.0071) and low-molecular-weight hyaluronan content (r=0.64, P=0.036) in the kidneys correlated with urine ACR in mice. CONCLUSION These results show that the hyaluronan synthesis inhibitor 4-MU effectively slowed the progression of DKD and constitutes a potential new therapeutic approach to treat DKD.
Collapse
Affiliation(s)
- Guillermo Selman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Andrea Lightle
- Department of Pathology, Albany Medical Center, Albany, New York
| | - Alejandra Aguilar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H. Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York,Division of Nephrology and Hypertension, Albany Medical Center, Albany, New York
| |
Collapse
|
26
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
27
|
Queisser KA, Mellema RA, Petrey AC. Hyaluronan and Its Receptors as Regulatory Molecules of the Endothelial Interface. J Histochem Cytochem 2021; 69:25-34. [PMID: 32870756 PMCID: PMC7780188 DOI: 10.1369/0022155420954296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
On the surface of endothelial cells (ECs) lies the glycocalyx, a barrier of polysaccharides that isolates the ECs from the blood. The role of the glycocalyx is dynamic and complex, thanks to not only its structure, but its vast number of components, one being hyaluronan (HA). HA is a critical component of the glycocalyx, having been found to have a wide variety of functions depending on its molecular weight, its modification, and receptor-ligand interactions. As HA and viscous blood are in constant contact, HA can transmit mechanosensory information directly to the cytoskeleton of the ECs. The degradation and synthesis of HA directly alters the permeability of the EC barrier; HA modulation not only alters the physical barrier but also can signal the initiation of other pathways. EC proliferation and angiogenesis are in part regulated by HA fragmentation, HA-dependent receptor binding, and downstream signals. The interaction between the CD44 receptor and HA is a driving force behind leukocyte recruitment, but each class of leukocyte still interacts with HA in unique ways during inflammation. HA regulates a diverse repertoire of EC functions.
Collapse
Affiliation(s)
| | - Rebecca A Mellema
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Aaron C Petrey
- Molecular Medicine Program, The University of Utah, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
28
|
Chen CG, Iozzo RV. Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology. J Biol Chem 2020; 295:16797-16812. [PMID: 33020183 PMCID: PMC7864073 DOI: 10.1074/jbc.rev120.014391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.
Collapse
Affiliation(s)
- Carolyn G Chen
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Li Z, Wu N, Wang J, Zhang Q. Roles of Endovascular Calyx Related Enzymes in Endothelial Dysfunction and Diabetic Vascular Complications. Front Pharmacol 2020; 11:590614. [PMID: 33328998 PMCID: PMC7734331 DOI: 10.3389/fphar.2020.590614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
In recent years, the number of diabetic patients has rapidly increased. Diabetic vascular complications seriously affect people’s quality of life. Studies found that endothelial dysfunction precedes the vascular complications of diabetes. Endothelial dysfunction is related to glycocalyx degradation on the surface of blood vessels. Heparanase (HPSE), matrix metalloproteinase (MMP), hyaluronidase (HYAL), hyaluronic acid synthase (HAS), and neuraminidase (NEU) are related to glycocalyx degradation. Therefore, we reviewed the relationship between endothelial dysfunction and the vascular complications of diabetes from the perspective of enzymes.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
31
|
Meszaros M, Kis A, Kunos L, Tarnoki AD, Tarnoki DL, Lazar Z, Bikov A. The role of hyaluronic acid and hyaluronidase-1 in obstructive sleep apnoea. Sci Rep 2020; 10:19484. [PMID: 33173090 PMCID: PMC7655850 DOI: 10.1038/s41598-020-74769-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Biological functions of hyaluronic acid (HA) depend on its molecular size. High-molecular weight HA (HMW-HA) is an important component of the endothelial wall and has anti-inflammatory and antioxidant properties. Under inflammation or hypoxia, HMW-HA is degraded by hyaluronidases, such as HYAL-1 resulting in pro-inflammatory low-molecular weight fragments. Obstructive sleep apnoea (OSA) is characterised by intermittent hypoxia and systemic inflammation. Our aim was to evaluate circulating HMW-HA and HYAL-1 in OSA. We recruited 68 patients with OSA and 40 control volunteers. After full-night sleep study blood samples were taken for HMW-HA and HYAL-1 measurements. HYAL-1 levels were significantly higher in patients with OSA compared to controls (0.59/0.31-0.88/ng/mL vs. 0.31/0.31-0.58/ng/mL; p = 0.005) after adjustment for gender, age, BMI and smoking. There was a trend for reduced HMW-HA concentrations in OSA (31.63/18.11-59.25/ng/mL vs. 46.83/25.41-89.95/ng/mL; p = 0.068). Significant correlation was detected between circulating HMW-HA and apnoea-hypopnoea-index (r = - 0.195, p = 0.043), HYAL-1 and apnoea-hypopnoea-index (r = 0.30, p < 0.01) as well as oxygen desaturation index (r = 0.26, p < 0.01). Our results suggest that chronic hypoxia is associated with increased plasma HYAL-1 concentration and accelerated HMW-HA degradation. Altered hyaluronan metabolism may be involved in the inflammatory cascade potentially leading to endothelial dysfunction in OSA.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology, Semmelweis University, Budapest, 1083, Hungary.
| | - Adrian Kis
- Department of Pulmonology, Semmelweis University, Budapest, 1083, Hungary
| | - Laszlo Kunos
- Department of Pulmonology, Semmelweis University, Budapest, 1083, Hungary
| | | | | | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, Budapest, 1083, Hungary
| | - Andras Bikov
- Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
32
|
Endothelial Cell Contributions to COVID-19. Pathogens 2020; 9:pathogens9100785. [PMID: 32992810 PMCID: PMC7600722 DOI: 10.3390/pathogens9100785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Understanding of the clinical, histological and molecular features of the novel coronavirus 2019 (Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)) has remained elusive. Coronavirus disease 2019 (COVID-19) caused by this virus has unusual clinical presentation with regard to other related coronaviruses. Recent reports suggest that SARS-CoV-2, unlike other related viruses, infects and replicates within endothelial cells, which may explain a significant portion of the observed clinical pathology. Likewise, mounting evidence associates vascular and endothelial cell dysfunction with increased mortality. This review focuses on understanding how endothelial cell pathology is caused by SARS-CoV-2 at the molecular and cellular levels and how these events relate to COVID-19. A detailed examination of current knowledge regarding canonical inflammatory reaction pathways as well as alteration of endothelial cell-derived exosomes and transdifferentiation by SARS-CoV-2 is included in this assessment. Additionally, given an understanding of endothelial contributions to COVID-19, potential therapeutic aims are discussed, particularly as would affect endothelial function and pathology.
Collapse
|
33
|
Wang G, Tiemeier GL, van den Berg BM, Rabelink TJ. Endothelial Glycocalyx Hyaluronan: Regulation and Role in Prevention of Diabetic Complications. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:781-790. [PMID: 32035886 DOI: 10.1016/j.ajpath.2019.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 10/25/2022]
Abstract
The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.
Collapse
Affiliation(s)
- Gangqi Wang
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gesa L Tiemeier
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Division of Nephrology, Department of Internal Medicine, the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
34
|
Wang G, Kostidis S, Tiemeier GL, Sol WMPJ, de Vries MR, Giera M, Carmeliet P, van den Berg BM, Rabelink TJ. Shear Stress Regulation of Endothelial Glycocalyx Structure Is Determined by Glucobiosynthesis. Arterioscler Thromb Vasc Biol 2019; 40:350-364. [PMID: 31826652 DOI: 10.1161/atvbaha.119.313399] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.
Collapse
Affiliation(s)
- Gangqi Wang
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands (S.K., M.G.)
| | - Gesa L Tiemeier
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Wendy M P J Sol
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Margreet R de Vries
- Department of Surgery (M.R.d.V.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands (S.K., M.G.)
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Vesalius Research Center, VIB, Belgium (P.C.).,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium (P.C.)
| | - Bernard M van den Berg
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Ton J Rabelink
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| |
Collapse
|
35
|
Sainio A, Takabe P, Oikari S, Salomäki-Myftari H, Koulu M, Söderström M, Pasonen-Seppänen S, Järveläinen H. Metformin decreases hyaluronan synthesis by vascular smooth muscle cells. J Investig Med 2019; 68:383-391. [PMID: 31672719 PMCID: PMC7063400 DOI: 10.1136/jim-2019-001156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 01/09/2023]
Abstract
Metformin is the first-line drug in the treatment of type 2 diabetes worldwide based on its effectiveness and cardiovascular safety. Currently metformin is increasingly used during pregnancy in women with gestational diabetes mellitus, even if the long-term effects of metformin on offspring are not exactly known. We have previously shown that high glucose concentration increases hyaluronan (HA) production of cultured human vascular smooth muscle cells (VSMC) via stimulating the expression of hyaluronan synthase 2 (HAS2). This offers a potential mechanism whereby hyperglycemia leads to vascular macroangiopathy. In this study, we examined whether gestational metformin use affects HA content in the aortic wall of mouse offspring in vivo. We also examined the effect of metformin on HA synthesis by cultured human VSMCs in vitro. We found that gestational metformin use significantly decreased HA content in the intima-media of mouse offspring aortas. In accordance with this, the synthesis of HA by VSMCs was also significantly decreased in response to treatment with metformin. This decrease in HA synthesis was shown to be due to the reduction of both the expression of HAS2 and the amount of HAS substrates, particularly UDP-N-acetylglucosamine. As shown here, gestational metformin use is capable to program reduced HA content in the vascular wall of the offspring strongly supporting the idea, that metformin possesses long-term vasculoprotective effects.
Collapse
Affiliation(s)
- Annele Sainio
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Piia Takabe
- Institute of Biomedicine, University of Eastern Finland-Kuopio Campus, Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland-Kuopio Campus, Kuopio, Finland.,Institute of Dentistry, University of Eastern Finland-Kuopio Campus, Kuopio, Finland
| | | | - Markku Koulu
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Hannu Järveläinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
| |
Collapse
|
36
|
Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, Heldin P. High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine 2019; 48:425-441. [PMID: 31526718 PMCID: PMC6838418 DOI: 10.1016/j.ebiom.2019.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. METHODS A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Serum hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. FINDINGS Elevated serum hyaluronan levels (≥70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. INTERPRETATION Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection. FUND: This work was supported in part by grants from the Swedish Cancer Society (2018/337; 2016/445), the Swedish Research Council (2015-02757), the Ludwig Institute for Cancer Research, Uppsala University, the Ministry of Science and Technology, Taiwan (106-2314-B-037-088- and 106-2915-I-037-501-), Kaohsiung Medical University Hospital (KMUH103-3 T05) and Academy of Finland. The funders played no role in the design, interpretation or writing of the manuscript.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden; Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Deparent of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
37
|
Nakai H, Hirose Y, Murosaki S, Yoshikai Y. Lactobacillus plantarum L-137 upregulates hyaluronic acid production in epidermal cells and fibroblasts in mice. Microbiol Immunol 2019; 63:367-378. [PMID: 31273816 DOI: 10.1111/1348-0421.12725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 01/16/2023]
Abstract
Heat-killed Lactobacillus plantarum L-137 (HK L-137), an immunobiotic lactic acid bacterium, has been reported to enhance IFN-γ production through induction of IL-12. In this study, we investigated the effects of HK L-137 on skin moisturizing and production of hyaluronic acid (HA), an extracellular matrix associated with the retention of skin moisture. Oral administration of HK L-137 suppressed the loss of water content in the stratum corneum in hairless mice. Treatment of primary epidermal cells with HK L-137 increased HA production. Supernatant from immune cells stimulated by HK L-137, which contained proinflammatory cytokines such as IL-12, TNF-α, and IFN-γ, upregulated HA production and hyaluronan synthase 2 (HAS2) messenger RNA expression by BALB/3T3 fibroblasts via activation of transcription factor nuclear factor κB (NFκB). Although treatment of the supernatant with anti-TNF-α antibody (Ab) alone did not inhibit the HA production, combination of anti-TNF-α Ab with anti-IFN-γ Ab significantly inhibited the HA production. Thus, HK L-137-induced IFN-γ plays a critical role in upregulated HA production in collaboration with TNF-α. HK L-137 may be useful for improvement of skin functions such as moisture retention by inducing HA production.
Collapse
Affiliation(s)
- Hiroko Nakai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirose
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shinji Murosaki
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Lompardía S, Díaz M, Pibuel M, Papademetrio D, Poodts D, Mihalez C, Álvarez É, Hajos S. Hyaluronan abrogates imatinib-induced senescence in chronic myeloid leukemia cell lines. Sci Rep 2019; 9:10930. [PMID: 31358779 PMCID: PMC6662747 DOI: 10.1038/s41598-019-47248-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan (HA) is the main glycosaminoglycan of the extracellular matrix. CD44 is the most important HA receptor, and both have been associated with poor prognosis in cancer. Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively activated tyrosine kinase (Breakpoint Cluster Region - Abelson murine leukemia viral oncogene homolog1, BCR-ABL). It is mainly treated with BCR-ABL inhibitors, such as imatinib. However, the selection of resistant cells leads to treatment failure. The aim of this work was to determine the capacity of HA (high molecular weight) to counteract the effect of imatinib in human CML cell lines (K562 and Kv562). We demonstrated that imatinib decreased HA levels and the surface expression of CD44 in both cell lines. Furthermore, HA abrogated the anti-proliferative and pro-senescent effect of Imatinib without modifying the imatinib-induced apoptosis. Moreover, the inhibition of HA synthesis with 4-methylumbelliferone enhanced the anti-proliferative effect of imatinib. These results suggest that Imatinib-induced senescence would depend on the reduction in HA levels, describing, for the first time, the role of HA in the development of resistance to imatinib. These findings show that low levels of HA are crucial for an effective therapy with imatinib in CML.
Collapse
Affiliation(s)
- Silvina Lompardía
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina.
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina.
| | - Mariángeles Díaz
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Matías Pibuel
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Daniela Papademetrio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Daniela Poodts
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina
| | - Cintia Mihalez
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Élida Álvarez
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Silvia Hajos
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| |
Collapse
|
39
|
Nagy N, Sunkari VG, Kaber G, Hasbun S, Lam DN, Speake C, Sanda S, McLaughlin TL, Wight TN, Long SR, Bollyky PL. Hyaluronan levels are increased systemically in human type 2 but not type 1 diabetes independently of glycemic control. Matrix Biol 2019; 80:46-58. [PMID: 30196101 PMCID: PMC6401354 DOI: 10.1016/j.matbio.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/19/2023]
Abstract
Hyaluronan (HA), an extracellular matrix glycosaminoglycan, is implicated in the pathogenesis of both type 1 diabetes (T1D) as well as type 2 diabetes (T2D) and has been postulated to be increased in these diseases due to hyperglycemia. We have examined the serum and tissue distribution of HA in human subjects with T1D and T2D and in mouse models of these diseases and evaluated the relationship between HA levels and glycemic control. We found that serum HA levels are increased in T2D but not T1D independently of hemoglobin-A1c, C-peptide, body mass index, or time since diabetes diagnosis. HA is likewise increased in skeletal muscle in T2D subjects relative to non-diabetic controls. Analogous increases in serum and muscle HA are seen in diabetic db/db mice (T2D), but not in diabetic DORmO mice (T1D). Diabetes induced by the β-cell toxin streptozotozin (STZ) lead to an increase in blood glucose but not to an increase in serum HA. These data indicate that HA levels are increased in multiple tissue compartments in T2D but not T1D independently of glycemic control. Given that T2D but not T1D is associated with systemic inflammation, these patterns are consistent with inflammatory factors and not hyperglycemia driving increased HA. Serum HA may have value as a biomarker of systemic inflammation in T2D.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Sonia Hasbun
- Department of Cardiology, Good Samaritan Regional Medical Center, 3600 NW Samaritan Dr, Corvallis, OR, 97330
| | - Dung N. Lam
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, 1201 Ninth Ave, Seattle, WA, 98101
| | - Srinath Sanda
- Department of Pediatrics, UCSF School of Medicine, 513 Parnassus Avenue, San Francisco, CA, 94143
| | - Tracey L. McLaughlin
- Department of Medicine, Medicine – Endocrinology, Endocrine Clinic, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Ave, Seattle, WA, 98101
| | - Steven R. Long
- Department of Pathology, Stanford University School of Medicine, Lane 235, 300 Pasteur Drive, Stanford, CA, 94305
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| |
Collapse
|
40
|
Kavasi RM, Berdiaki A, Spyridaki I, Papoutsidakis A, Corsini E, Tsatsakis A, Tzanakakis GN, Nikitovic D. Contact allergen (PPD and DNCB)-induced keratinocyte sensitization is partly mediated through a low molecular weight hyaluronan (LMWHA)/TLR4/NF-κB signaling axis. Toxicol Appl Pharmacol 2019; 377:114632. [PMID: 31226360 DOI: 10.1016/j.taap.2019.114632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Allergic contact dermatitis (ACD) is caused by topical exposure to chemical allergens. Keratinocytes play a key role in innate immunity, as well as in ACD progression. The transmembrane Toll-like receptor 4 (TLR4), strongly implicated in skin inflammation, has the ability to bind Damage Associated Molecular Patterns (DAMPs), like Low Molecular Weight Hyaluronan (LMWHA). Previously, we had determined that p-phenylenediamine (PPD) and 2,4-dinitrochlorobenzene (DNCB) modulate keratinocyte HA deposition in a manner correlated to their sensitization. In the present study, we aimed to investigate putative co-operation of HA and TLR4 in the process of PPD and DNCB-induced keratinocyte activation. Contact sensitizers were shown to significantly increase the expression of Hyaluronan Synthases (HAS) and TLR4 in NCTC2544 human keratinocytes, as demonstrated by western blot and Real-Time PCR. These data, in correlation to earlier shown enhanced HA degradation suggest that the contact sensitizers facilitate HA turnover of keratinocytes and increase the release of pro-inflammatory, LMWHA fragments. Treatment with exogenous LMWHA enhanced TLR4, HAS levels and Nuclear factor-kappa beta (NF-κΒ) activation. PPD, DNCB and LMWHA-effects were shown to be partly executed through TLR4 downstream signaling as shown by Real-Time, western blot, siRNA and confocal microscopy approaches. Specifically, PPD and DNCB stimulated the activation of the TLR4 downstream mediator NF-κB. Therefore, the shown upregulation of TLR4 expression is suggested to further facilitate the release of endogenous, bioactive HA fragments and sustain keratinocyte activation. In conclusion, keratinocyte contact allergen-dependent sensitization is partly mediated through a LMWHA/TLR4/ NF-κB signaling axis.
Collapse
Affiliation(s)
- Rafaela-Maria Kavasi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Emanuela Corsini
- Laboratory of Toxicology, ESP, Università degli Studi di Milano, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
41
|
Petrey AC, de la Motte CA. Hyaluronan in inflammatory bowel disease: Cross-linking inflammation and coagulation. Matrix Biol 2019; 78-79:314-323. [PMID: 29574062 PMCID: PMC6150849 DOI: 10.1016/j.matbio.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Hyaluronan, a major extracellular matrix component, is an active participant in many disease states, including inflammatory bowel disease (IBD). The synthesis of this dynamic polymer is increased at sites of inflammation. Hyaluronan together with the enzymes responsible for its synthesis, degradation, and its binding proteins, directly modulates the promotion and resolution of disease by controlling recruitment of immune cells, by release of inflammatory cytokines, and by balancing hemostasis. This review discusses the functional significance of hyaluronan in the cells and tissues involved in inflammatory bowel disease pathobiology.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.
| |
Collapse
|
42
|
McGovern SP, Purfield DC, Ring SC, Carthy TR, Graham DA, Berry DP. Candidate genes associated with the heritable humoral response to Mycobacterium avium ssp. paratuberculosis in dairy cows have factors in common with gastrointestinal diseases in humans. J Dairy Sci 2019; 102:4249-4263. [PMID: 30852025 DOI: 10.3168/jds.2018-15906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
Infection of cattle with bovine paratuberculosis (i.e., Johne's disease) is caused by Mycobacterium avium ssp. paratuberculosis (MAP) and results in a chronic incurable gastroenteritis. This disease, which has economic ramifications for the cattle industry, is increasing in detected prevalence globally; subclinically infected animals can silently shed the bacterium into the environment for years, exposing contemporaries and hampering disease-control programs. The objective of the present study was to first quantify the genetic parameters for humoral response to MAP in dairy cattle. This was followed by a genome-based association analysis and subsequent downstream bioinformatic analyses from imputed whole genome sequence SNP data. After edits, ELISA test records were available on 136,767 cows; analyses were also undertaken on a subset of 33,818 of these animals from herds with at least 5 MAP ELISA-positive cows, with at least 1 of those positive cows being homebred. Variance components were estimated using univariate animal and sire linear mixed models. The heritability calculated from the animal model for humoral response to MAP using alternative phenotype definitions varied from 0.02 (standard error = 0.003) to 0.05 (standard error = 0.008). The genome-based associations were undertaken within a mixed model framework using weighted deregressed estimated breeding values as a dependent variable on 1,883 phenotyped animals that were ≥87.5% Holstein-Friesian. Putative susceptibility quantitative trait loci (QTL) were identified on Bos taurus autosome 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 18, 21, 23, 25, 26, 27, and 29; mapping the most significant SNP to genes within and overlapping these QTL revealed that the most significant associations were with the 10 functional candidate genes KALRN, ZBTB20, LPP, SLA2, FI3A1, LRCH3, DNAJC6, ZDHHC14, SNX1, and HAS2. Pathway analysis failed to reveal significantly enriched biological pathways, when both bovine-specific pathway data and human ortholog data were taken into account. The existence of genetic variation for MAP susceptibility in a large data set of dairy cows signifies the potential of breeding programs for reducing MAP susceptibility. Furthermore, the identification of susceptible QTL facilitates greater biological understanding of bovine paratuberculosis and potential therapeutic targets for future investigation. The novel molecular similarities identified between bovine paratuberculosis and human inflammatory bowel disease suggest potential for human therapeutic interventions to be translated to veterinary medicine and vice versa.
Collapse
Affiliation(s)
- S P McGovern
- Department of Microbiology, University College Cork, Coláiste na hOllscoile Corcaigh, College Road, Cork City, Co. Cork, Ireland T12 CY82
| | - D C Purfield
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - S C Ring
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co. Cork, Ireland P72 X050
| | - T R Carthy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - D A Graham
- Animal Health Ireland, 4-5 The Archways, Carrick-on-Shannon, Co. Leitrim, Ireland N41 WN27
| | - D P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| |
Collapse
|
43
|
Asada K, Ohara T, Muroyama K, Yamamoto Y, Murosaki S. Effects of hot water extract of
Curcuma longa
on human epidermal keratinocytes in vitro and skin conditions in healthy participants: A randomized, double‐blind, placebo‐controlled trial. J Cosmet Dermatol 2019; 18:1866-1874. [DOI: 10.1111/jocd.12890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuki Asada
- Research & Development Institute House Wellness Foods Corporation Itami Japan
| | - Tatsuya Ohara
- Research & Development Institute House Wellness Foods Corporation Itami Japan
| | - Koutarou Muroyama
- Research & Development Institute House Wellness Foods Corporation Itami Japan
| | - Yoshihiro Yamamoto
- Research & Development Institute House Wellness Foods Corporation Itami Japan
| | - Shinji Murosaki
- Research & Development Institute House Wellness Foods Corporation Itami Japan
| |
Collapse
|
44
|
PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene 2019; 38:4215-4231. [PMID: 30705401 PMCID: PMC6756056 DOI: 10.1038/s41388-019-0722-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer disseminates primarily into the adjacent lymph nodes, which is related to a poor outcome. Atypical protein kinase C ζ (PKCζ) is highly expressed in aggressive prostate cancer and correlates with Gleason score, clinical stage, and poor prognosis. Here, we report the molecular mechanisms of PKCζ in lymphatic metastasis during prostate cancer progression. Using zinc-finger nuclease technology or PKCζ shRNA lentiviral particles, and orthotopic mouse xenografts, we show that PKCζ-knockout or knockdown from aggressive prostate cancer (PC3 and PC3U) cells, decreasesd tumor growth and lymphatic metastasis in vivo. Intriguingly, PKCζ-knockout or knockdown impaired the activation of AKT, ERK, and NF-κB signaling in prostate cancer cells, thereby impairing the expression of lymphangiogenic factors and macrophage recruitment, resulting in aberrant lymphangiogenesis. Moreover, PKCζ regulated the expression of hyaluronan synthase enzymes, which is important for hyaluronan-mediated lymphatic drainage and tumor dissemination. Thus, PKCζ plays a crucial oncogenic role in the lymphatic metastasis of prostate cancer and is predicted to be a novel therapeutic target for prostate cancer.
Collapse
|
45
|
Koch J, Idzerda NMA, Dam W, Assa S, Franssen CFM, van den Born J. Plasma syndecan-1 in hemodialysis patients associates with survival and lower markers of volume status. Am J Physiol Renal Physiol 2019; 316:F121-F127. [DOI: 10.1152/ajprenal.00252.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Syndecan-1, a transmembrane heparan sulfate proteoglycan, associates with renal and cardiovascular functioning. We earlier reported syndecan-1 to be involved in renal tubular regeneration. We now examined plasma values of syndecan-1 in a hemodialysis cohort and its association with volume and inflammatory and endothelial markers in addition to outcome. Eighty-four prevalent hemodialysis patients were evaluated for their plasma syndecan-1 levels by ELISA before the start of hemodialysis, as well as 60, 180, and 240 min after start of dialysis. Patients were divided into sex-stratified tertiles based on predialysis plasma syndecan-1 levels. We studied the association between plasma levels of syndecan-1 and volume, inflammation, and endothelial markers and its association with cardiovascular events and all-cause mortality using Kaplan-Meier curves and Cox regression analyses with adjustments for gender, age, diabetes, and dialysis vintage. Predialysis syndecan-1 levels were twofold higher in men compared with women ( P = 0.0003). Patients in the highest predialysis plasma syndecan-1 tertile had a significantly higher ultrafiltration rate ( P = 0.034) and lower plasma values of BNP ( P = 0.019), pro-ANP ( P = 0.024), and endothelin ( P < 0.0001) compared with the two lower predialysis syndecan-1 tertiles. No significant associations with inflammatory markers were found. Cox regression analysis showed that patients in the highest syndecan-1 tertile had significantly less cardiovascular events and better survival compared with the lowest syndecan-1 tertile ( P = 0.02 and P = 0.005, respectively). In hemodialysis patients, higher plasma syndecan-1 levels were associated with lower concentrations of BNP, pro-ANP, and endothelin and with better patient survival. This may suggest that control of volume status in hemodialysis patients allows an adaptive tissue regenerative response as reflected by higher plasma syndecan-1 levels.
Collapse
Affiliation(s)
- Josephine Koch
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nienke M. A. Idzerda
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy Dam
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Solmaz Assa
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Casper F. M. Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Tominaga T, Sharma I, Fujita Y, Doi T, Wallner AK, Kanwar YS. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress. Am J Physiol Renal Physiol 2018; 316:F301-F315. [PMID: 30539651 DOI: 10.1152/ajprenal.00534.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yui Fujita
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
47
|
Zhao P, Yu Y, Feng W, Du H, Yu J, Kang H, Zheng X, Wang Z, Liu GE, Ernst CW, Ran X, Wang J, Liu JF. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization. Gigascience 2018; 7:5001425. [PMID: 29790964 PMCID: PMC6007440 DOI: 10.1093/gigascience/giy058] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
Background Meishan is a pig breed indigenous to China and famous for its high fecundity. The traits of Meishan are strongly associated with its distinct evolutionary history and domestication. However, the genomic evidence linking the domestication of Meishan pigs with its unique features is still poorly understood. The goal of this study is to investigate the genomic signatures and evolutionary evidence related to the phenotypic traits of Meishan via large-scale sequencing. Results We found that the unique domestication of Meishan pigs occurred in the Taihu Basin area between the Majiabang and Liangzhu Cultures, during which 300 protein-coding genes have underwent positive selection. Notably, enrichment of the FoxO signaling pathway with significant enrichment signal and the harbored gene IGF1R were likely associated with the high fertility of Meishan pigs. Moreover, NFKB1 exhibited strong selective sweep signals and positively participated in hyaluronan biosynthesis as the key gene of NF-kB signaling, which may have resulted in the wrinkled skin and face of Meishan pigs. Particularly, three population-specific synonymous single-nucleotide variants occurred in PYROXD1, MC1R, and FAM83G genes; the T305C substitution in the MCIR gene explained the black coat of the Meishan pigs well. In addition, the shared haplotypes between Meishan and Duroc breeds confirmed the previous Asian-derived introgression and demonstrated the specific contribution of Meishan pigs. Conclusions These findings will help us explain the unique genetic and phenotypic characteristics of Meishan pigs and offer a plausible method for their utilization of Meishan pigs as valuable genetic resources in pig breeding and as an animal model for human wrinkled skin disease research.
Collapse
Affiliation(s)
- Pengju Zhao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Feng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jian Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huimin Kang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiquan Wang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G 2C8, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705-2350, USA
| | | | - Xueqin Ran
- School of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- School of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
48
|
DellaValle B, Manresa-Arraut A, Hasseldam H, Stensballe A, Rungby J, Larsen A, Hempel C. Detection of Glycan Shedding in the Blood: New Class of Multiple Sclerosis Biomarkers? Front Immunol 2018; 9:1254. [PMID: 29915593 PMCID: PMC5994890 DOI: 10.3389/fimmu.2018.01254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Multiple sclerosis (MS) is a devastating autoimmune disease, afflicting people in the prime of their lives. Presently, after initial clinical presentation, there are no reliable markers for whether a patient will develop MS, or whether their prognosis will be aggressive or relapsing–remitting. Furthermore, many MS patients do not respond to treatment. Thus, markers for diagnosis, prognosis, and treatment-responsiveness are lacking for a disease, where a precision medicine approach would be valuable. The glycocalyx (GLX) is the carbohydrate-rich outer surface of the blood vessel wall and is the first interaction between the blood and the vessel. We hypothesized that cleavage of the GLX may be an early stage predictor of immune attack, blood–brain barrier (BBB) breakdown, and disease severity in MS. Methods Two experimental models of MS, experimental autoimmune encephalitis (EAE), were included in this study. EAE was induced in C57BL/6J mice and Lewis rats, which were monitored for weight loss and clinical presentation in comparison to healthy controls. Plasma samples were obtained longitudinally from mice until peak disease severity and at peak disease severity in rats. Soluble GLX-associated glycosaminoglycans (GAG) and proteoglycans (PG) were detected in plasma samples. Results All animals receiving EAE emulsion developed fulminant EAE (100% penetrance). Increased plasma levels of chondroitin sulfate were detected before the onset of clinical symptoms and remained elevated at peak disease severity. Hyaluronic acid was increased at the height of the disease, whereas heparan sulfate was transiently increased during early stages only. By contrast, syndecans 1, 3, and 4 were detected in EAE samples as well as healthy controls, with no significant differences between the two groups. Discussion In this study, we present data supporting the shedding of the GLX as a new class of biomarker for MS. In particular, soluble, sugar-based GLX components are associated with disease severity in two models of MS, molecules that would not be detected in proteomics-based screens of MS patient samples. Patient studies are presently underway.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Biomedicine/Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alba Manresa-Arraut
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hasseldam
- Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jørgen Rungby
- Department of Biomedicine/Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Endocrinology, Bispebjerg Hospital Copenhagen, Copenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine/Pharmacology, Aarhus University, Aarhus, Denmark
| | - Casper Hempel
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
49
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
50
|
Hämäläinen L, Kärkkäinen E, Takabe P, Rauhala L, Bart G, Kärnä R, Pasonen-Seppänen S, Oikari S, Tammi MI, Tammi RH. Hyaluronan metabolism enhanced during epidermal differentiation is suppressed by vitamin C. Br J Dermatol 2018; 179:651-661. [PMID: 29405260 DOI: 10.1111/bjd.16423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hyaluronan is a large, linear glycosaminoglycan present throughout the narrow extracellular space of the vital epidermis. Increased hyaluronan metabolism takes place in epidermal hypertrophy, wound healing and cancer. Hyaluronan is produced by hyaluronan synthases and catabolized by hyaluronidases, reactive oxygen species and KIAA1199. OBJECTIVES To investigate the changes in hyaluronan metabolism during epidermal stratification and maturation, and the impact of vitamin C on these events. METHODS Hyaluronan synthesis and expression of the hyaluronan-related genes were analysed during epidermal maturation from a simple epithelium to a fully differentiated epidermis in organotypic cultures of rat epidermal keratinocytes using quantitative reverse transcriptase polymerase chain reaction, immunostaining and Western blotting, in the presence and absence of vitamin C. RESULTS With epidermal stratification, both the production and the degradation of hyaluronan were enhanced, resulting in an increase of hyaluronan fragments of various sizes. While the mRNA levels of Has3 and KIAA1199 remained stable during the maturation, Has1, Has2 and Hyal2 showed a transient upregulation during stratification, Hyal1 transcription remained permanently increased and transcription of the hyaluronan receptor, Cd44, decreased. At maturation, vitamin C downregulated Has2, Hyal2 and Cd44, whereas it increased high-molecular-mass hyaluronan in the epidermis, and reduced small fragments in the medium, suggesting stabilization of epidermal hyaluronan. CONCLUSIONS Epidermal stratification and maturation is associated with enhanced hyaluronan turnover, and release of large amounts of hyaluronan fragments. The high turnover is suppressed by vitamin C, which is suggested to enhance normal epidermal differentiation in part through its effect on hyaluronan.
Collapse
Affiliation(s)
- L Hämäläinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - E Kärkkäinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - P Takabe
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - L Rauhala
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - G Bart
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - R Kärnä
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - S Pasonen-Seppänen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - S Oikari
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - M I Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - R H Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|