1
|
Cherpaz M, Meugnier E, Seillier G, Pozzi M, Pierrard R, Leboube S, Farhat F, Vola M, Obadia JF, Amaz C, Chalabreysse L, May C, Chanon S, Brun C, Givre L, Bidaux G, Mewton N, Derumeaux G, Bergerot C, Paillard M, Thibault H. Myocardial transcriptomic analysis of diabetic patients with aortic stenosis: key role for mitochondrial calcium signaling. Cardiovasc Diabetol 2024; 23:239. [PMID: 38978010 PMCID: PMC11232229 DOI: 10.1186/s12933-024-02329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a frequent comorbidity encountered in patients with severe aortic stenosis (AS), leading to an adverse left ventricular (LV) remodeling and dysfunction. Metabolic alterations have been suggested as contributors of the deleterious effect of T2D on LV remodeling and function in patients with severe AS, but so far, the underlying mechanisms remain unclear. Mitochondria play a central role in the regulation of cardiac energy metabolism. OBJECTIVES We aimed to explore the mitochondrial alterations associated with the deleterious effect of T2D on LV remodeling and function in patients with AS, preserved ejection fraction, and no additional heart disease. METHODS We combined an in-depth clinical, biological and echocardiography phenotype of patients with severe AS, with (n = 34) or without (n = 50) T2D, referred for a valve replacement, with transcriptomic and histological analyses of an intra-operative myocardial LV biopsy. RESULTS T2D patients had similar AS severity but displayed worse cardiac remodeling, systolic and diastolic function than non-diabetics. RNAseq analysis identified 1029 significantly differentially expressed genes. Functional enrichment analysis revealed several T2D-specific upregulated pathways despite comorbidity adjustment, gathering regulation of inflammation, extracellular matrix organization, endothelial function/angiogenesis, and adaptation to cardiac hypertrophy. Downregulated gene sets independently associated with T2D were related to mitochondrial respiratory chain organization/function and mitochondrial organization. Generation of causal networks suggested a reduced Ca2+ signaling up to the mitochondria, with the measured gene remodeling of the mitochondrial Ca2+ uniporter in favor of enhanced uptake. Histological analyses supported a greater cardiomyocyte hypertrophy and a decreased proximity between the mitochondrial VDAC porin and the reticular IP3-receptor in T2D. CONCLUSIONS Our data support a crucial role for mitochondrial Ca2+ signaling in T2D-induced cardiac dysfunction in severe AS patients, from a structural reticulum-mitochondria Ca2+ uncoupling to a mitochondrial gene remodeling. Thus, our findings open a new therapeutic avenue to be tested in animal models and further human cardiac biopsies in order to propose new treatments for T2D patients suffering from AS. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov ; Unique Identifier: NCT01862237.
Collapse
MESH Headings
- Humans
- Aortic Valve Stenosis/metabolism
- Aortic Valve Stenosis/genetics
- Aortic Valve Stenosis/physiopathology
- Aortic Valve Stenosis/diagnostic imaging
- Aortic Valve Stenosis/surgery
- Aortic Valve Stenosis/pathology
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Female
- Aged
- Ventricular Remodeling
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Calcium Signaling
- Ventricular Function, Left
- Gene Expression Profiling
- Transcriptome
- Severity of Illness Index
- Middle Aged
- Aged, 80 and over
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/diagnostic imaging
Collapse
Affiliation(s)
- Maelle Cherpaz
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
- Centre d'investigation Clinique, Hospices Civils de Lyon, 69500, Bron, France
| | - Emmanuelle Meugnier
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Gaultier Seillier
- Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, 69500, Bron, France
| | - Matteo Pozzi
- Chirurgie Cardiaque, Hospices Civils de Lyon, 69500, Bron, France
| | - Romain Pierrard
- Service de Cardiologie, CHU Nord, 42100, Saint-Étienne, France
| | - Simon Leboube
- Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, 69500, Bron, France
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Fadi Farhat
- Chirurgie Cardiaque, Hospices Civils de Lyon, 69500, Bron, France
| | - Marco Vola
- Chirurgie Cardiaque, Hospices Civils de Lyon, 69500, Bron, France
| | | | - Camille Amaz
- Centre d'investigation Clinique, Hospices Civils de Lyon, 69500, Bron, France
| | - Lara Chalabreysse
- Laboratoire d'anatomopathologie, Hospices Civils de Lyon, 69500, Bron, France
| | - Chloe May
- Centre d'investigation Clinique, Hospices Civils de Lyon, 69500, Bron, France
| | - Stephanie Chanon
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Camille Brun
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Lucas Givre
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Gabriel Bidaux
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Nathan Mewton
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
- Centre d'investigation Clinique, Hospices Civils de Lyon, 69500, Bron, France
| | - Genevieve Derumeaux
- Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, 69500, Bron, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Department of Physiology, AP-HP, Henri Mondor Hospital, FHU SENEC, Créteil, France
| | - Cyrille Bergerot
- Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, 69500, Bron, France
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France
| | - Melanie Paillard
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France.
| | - Helene Thibault
- Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, 69500, Bron, France.
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500, Bron, France.
| |
Collapse
|
2
|
Rodríguez-Calvo R, Granado-Casas M, Pérez-Montes de Oca A, Julian MT, Domingo M, Codina P, Santiago-Vacas E, Cediel G, Julve J, Rossell J, Masana L, Mauricio D, Lupón J, Bayes-Genis A, Alonso N. Fatty Acid Binding Proteins 3 and 4 Predict Both All-Cause and Cardiovascular Mortality in Subjects with Chronic Heart Failure and Type 2 Diabetes Mellitus. Antioxidants (Basel) 2023; 12:antiox12030645. [PMID: 36978893 PMCID: PMC10044995 DOI: 10.3390/antiox12030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Subjects with type 2 diabetes mellitus (T2D) are at increased risk for heart failure (HF). The cardiac-specific (FABP3) and adipose-tissue-specific (FABP4) types of the fatty acid binding proteins have been associated with both all-cause and cardiovascular (CV) mortality. The aim of this study was to explore the prognosis value of FABP3 and FABP4 in ambulatory subjects with chronic HF (CHF), with and without T2D. A prospective study involving 240 ambulatory CHF subjects was performed. Patients were followed-up for a mean of 5.78 ± 3.30 years and cause of death (if any) was recorded. Primary endpoints were defined as all-cause and CV death, and a composite endpoint that included CV death or hospitalization for HF was included as a secondary endpoint. Baseline serum samples were obtained and the serum FABP3 and FABP4 concentrations were assessed by sandwich enzyme-linked immunosorbent assay. Survival analysis was performed with multivariable Cox regressions, using Fine and Gray competing risks models when needed, to explore the prognostic value of FABP3 and FABP4 concentrations, adjusting for potential confounders. Type 2 diabetes mellitus was highly prevalent, accounting for 47.5% for total subjects with CHF. Subjects with T2D showed higher mortality rates (T2D: 69.30%; non-T2D: 50.79%, p = 0.004) and higher serum FABP3 (1829.3 (1104.9–3440.5) pg/mL vs. 1396.05 (820.3–2362.16) pg/mL, p = 0.007) and FABP4 (45.5 (27.6–79.8) ng/mL vs. 34.1 (24.09–55.3) ng/mL, p = 0.006) concentrations compared with non-T2D CHF subjects. In the whole study cohort, FABP3 was independently associated with all-cause death, and both FABP3 and FABP4 concentrations were associated with CV mortality. The predictive values of these two molecules for all-cause (FABP3: HR 1.25, 95% CI 1.09–1.44; p = 0.002. FABP4: HR 2.21, 95% CI 1.12–4.36; p = 0.023) and CV mortality (FABP3: HR 1.28, 95% CI 1.09–1.50; p = 0.002. FABP4: HR 4.19, 95% CI 2.21–7.95; p < 0.001) were only statistically significant in the subgroup of subjects with T2D. Notably, FABP4 (HR 2.07, 95% CI 1.11–3.87; p = 0.022), but not FABP3, also predicted the occurrence of the composite endpoint (death or hospitalization for HF) only in subjects with T2D. All these associations were not found in CHF subjects without T2D. Our findings support the usefulness of serum FABP3 and FABP4 concentrations as independent predictors for the occurrence of all-cause and CV mortality in ambulatory subjects with CHF with T2D.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, “Sant Joan” University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Minerva Granado-Casas
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Nursing and Physiotherapy, Health Sciences Faculty, University of Lleida, IRBLleida, 25198 Lleida, Spain
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), 08041 Barcelona, Spain
| | | | - María Teresa Julian
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Mar Domingo
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Pau Codina
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Evelyn Santiago-Vacas
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Germán Cediel
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Josep Julve
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Joana Rossell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, “Sant Joan” University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic & Central University of Catalonia, 08500 Vic, Spain
| | - Josep Lupón
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, 08023 Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antoni Bayes-Genis
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, 08023 Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.B.-G.); (N.A.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
- Department of Medicine, Universitat Autonoma de Barcelona, 08023 Barcelona, Spain
- Correspondence: (A.B.-G.); (N.A.)
| |
Collapse
|
3
|
Worley BL, Auen T, Arnold AC, Monia BP, Hempel N, Czyzyk TA. Antisense oligonucleotide-mediated knockdown of Mpzl3 attenuates the negative metabolic effects of diet-induced obesity in mice. Physiol Rep 2021; 9:e14853. [PMID: 33991450 PMCID: PMC8123547 DOI: 10.14814/phy2.14853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Previously, we demonstrated that global knockout (KO) of the gene encoding myelin protein zero‐like 3 (Mpzl3) results in reduced body weight and adiposity, increased energy expenditure, and reduced hepatic lipid synthesis in mice. These mice also exhibit cyclic and progressive alopecia which may contribute to the observed hypermetabolic phenotype. The goal of the current study was to determine if acute and peripherally restricted knockdown of Mpzl3 could ameliorate the negative metabolic effects of exposure to a high‐fat and sucrose, energy‐dense (HED) diet similar to what was observed in global Mpzl3 KO mice in the absence of a skin phenotype. Mpzl3 antisense oligonucleotide (ASO) administration dose‐dependently decreased fat mass and circulating lipids in HED‐fed C57BL/6N mice. These changes were accompanied by a decrease in respiratory exchange ratio, a reduction in energy expenditure and food intake, a decrease in expression of genes regulating de novo lipogenesis in white adipose tissue, and an upregulation of genes associated with steroid hormone biosynthesis in liver, thermogenesis in brown adipose tissue and fatty acid transport in skeletal muscle. These data demonstrate that resistance to the negative metabolic effects of HED is a direct effect of Mpzl3 knockdown, rather than compensatory changes that could be associated with deletion of Mpzl3 during development in global KO mice. Inhibiting MPZL3 could be a potential therapeutic approach for the treatment of obesity and associated dyslipidemia.
Collapse
Affiliation(s)
- Beth L Worley
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA.,Biomedical Sciences Program, Penn State University College of Medicine, Hershey, PA, USA
| | - Thomas Auen
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Amy C Arnold
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Mlost J, Kostrzewa M, Borczyk M, Bryk M, Chwastek J, Korostyński M, Starowicz K. CB2 agonism controls pain and subchondral bone degeneration induced by mono-iodoacetate: Implications GPCR functional bias and tolerance development. Biomed Pharmacother 2021; 136:111283. [PMID: 33482616 DOI: 10.1016/j.biopha.2021.111283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system became a promising target for osteoarthritis (OA) treatment. Functional selectivity of cannabinoids may increase their beneficial properties while reducing side effects. The aim of the present study was to evaluate the analgesic potential of two functionally biased CB2 agonists in different treatment regimens to propose the best pharmacological approach for OA management. EXPERIMENTAL APPROACH Two functionally selective CB2 agonists were administered i.p. - JWH133 (cAMP biased) and GW833972A (β-arrestin biased), in a chemically induced model of OA in rats. The drugs were tested in acute and chronic treatment regimens. Analgesic effects were assessed by pressure application measurement and kinetic weight bearing. X-ray microtomography was used for the morphometric analysis of the femur's subchondral bone tissue. Underlying biochemical changes were analysed via RT-qPCR. KEY RESULTS Dose-response studies established the effective dose for both JWH133 and GW833972A. In chronic treatment paradigms, JWH133 was able to elicit analgesia throughout the course of the experiment, whereas GW833972A lost its efficacy after 2 days of treatment. Later studies revealed improvement in subchondral bone architecture and decrement of matrix metalloproteinases and proinflammatory factors expression following JWH133 chronic treatment. CONCLUSION AND IMPLICATIONS Data presents analgesic and disease-modifying potential of CB2 agonists in OA treatment. Moreover, the study revealed more pronounced tolerance development for analgesic effects of the β-arrestin biased CB2 agonist GW833972A. These results provide a better understanding of the molecular underpinnings of the anti-nociceptive potential of CB2 agonists and may improve drug development processes for any cannabinoid-based chronic pain therapy.
Collapse
Affiliation(s)
- Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - Magdalena Kostrzewa
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - Małgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - Marta Bryk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland.
| |
Collapse
|
5
|
Zhang Z, Emami S, Hennebelle M, Morgan RK, Lerno LA, Slupsky CM, Lein PJ, Taha AY. Linoleic acid-derived 13-hydroxyoctadecadienoic acid is absorbed and incorporated into rat tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158870. [PMID: 33340768 DOI: 10.1016/j.bbalip.2020.158870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Linoleic acid (LNA)-derived 13-hydroxyoctadecadienoic acid (13-HODE) is a bioactive lipid mediator that regulates multiple signaling processes in vivo. 13-HODE is also produced when LNA is oxidized during food processing. However, the absorption and incorporation kinetics of dietary 13-HODE into tissues is not known. The present study measured unesterified d4-13-HODE plasma bioavailability and incorporation into rat liver, adipose, heart and brain following gavage or intravenous (IV) injection (n = 3 per group). Mass spectrometry analysis revealed that d4-13-HODE was absorbed within 20 min of gavage, and continued to incorporate into plasma esterified lipid fractions throughout the 90 min monitoring period (incorporation half-life of 71 min). Following IV injection, unesterified d4-13-HODE was rapidly eliminated from plasma with a half-life of 1 min. Analysis of tracer incorporation kinetics into rat tissues following IV injection or gavage revealed that the esterified tracer preferentially incorporated into liver, adipose and heart compared to unesterified d4-13-HODE. No tracer was detected in the brain. This study demonstrates that dietary 13-HODE is absorbed, and incorporated into peripheral tissues from esterified plasma lipid pools. Understanding the chronic effects of dietary 13-HODE exposure on peripheral tissue physiology and metabolism merits future investigation.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Rhianna K Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Larry A Lerno
- Food Safety and Measurement Facility, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Raza SHA, Khan R, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Taha A, Ohran H, Mei C, Schreurs NM, Zan L. Advances of Molecular Markers and Their Application for Body Variables and Carcass Traits in Qinchuan Cattle. Genes (Basel) 2019; 10:E717. [PMID: 31533236 PMCID: PMC6771018 DOI: 10.3390/genes10090717] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/27/2022] Open
Abstract
This review considers the unique characteristics of Chinese cattle and intramuscular fat content (IMF) as factors influencing meat quality, including tenderness, flavor, and juiciness of meat. Due to its nutritional qualities, meat contributes to a healthy and balanced diet. The intramuscular fat content and eating quality of beef are influenced by many factors, which can generally be divided into on-farm and pre-slaughter factors (breed, sex of cattle, age at slaughter, housing system, diet, and pre-slaughter handling) and postmortem factors (post-slaughter processing, chilling temperature, and packaging). Meat quality traits can also be influenced by the individual genetic background of the animal. Worldwide, the function of genes and genetic polymorphisms that have potential effects on fattening of cattle and beef quality have been investigated. The use of DNA markers is recognized as a powerful and efficient approach to achieve genetic gain for desirable phenotypic characteristics, which is helpful for economic growth. The polymorphisms of the SIRT4, SIRT6, SIRT7, CRTC3, ABHD5, KLF6, H-FABP, and ELOVL6 genes for body and growth characteristics of cattle, and also for beef quality, are considered with the aim of highlighting the significance of beef intramuscular fat content, and that growth, body, and meat quality characteristics are polygenically regulated.
Collapse
Affiliation(s)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ayman Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt.
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmaja od Bosne Sarajevo 9071000, Bosnia and Herzegovina.
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Expression and single-nucleotide polymorphisms of the H-FABP gene in pigs. Gene 2019; 710:156-160. [PMID: 31173805 DOI: 10.1016/j.gene.2019.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
Heart fatty acid-binding protein (H-FABP) belongs to a family of intracellular fatty acid-binding proteins that are involved in the transport of long-chain fatty acids. Previous studies have indicated that H-FABP is significantly associated with intramuscular fat (IMF) content in pig. In this study, we compared the mRNA and protein expression of H-FABP between Tibetan pig (with high IMF) and Large White pig (with low IMF). The expression of H-FABP at both mRNA and protein levels in the tissues of backfat, longissimus dorsi muscle and liver was found to be significantly higher in TP than in LW. Single-nucleotide polymorphisms (SNPs) in a 2 kb region upstream of the start codon of the gene were screened using Sanger sequencing. We accordingly identified three SNPs (C-1375G, C-314T and T-158G) between the TP and LW populations and genotyped these based on PCR-restriction fragment length polymorphisms (PCF-RFLPs) analysis. The results showed that the C-1375G site might regulate H-FABP gene expression and thus be associated with fat deposition in pigs. Our study provides important data for further investigating the regulatory mechanism of H-FABP for fat deposition in pigs.
Collapse
|
8
|
Piek A, Du W, de Boer RA, Silljé HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci 2018; 55:246-263. [PMID: 29663841 DOI: 10.1080/10408363.2018.1460576] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last decade, numerous studies have aimed to identify novel HF biomarkers that would provide superior and/or additional diagnostic, prognostic, or stratification utility. Although numerous biomarkers have been identified, their implementation in clinical practice has so far remained largely unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP) and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clinical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides, hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT), adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss the biology of these HF biomarkers and conclude that most of them are markers of general pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-specific. These characteristics explain to a large degree why it has been difficult to relate these biomarkers to a single disease. We propose that, in addition to clinical investigations, it will be pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in order to fully reveal the potential of these novel HF biomarkers.
Collapse
Affiliation(s)
- Arnold Piek
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Weijie Du
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands.,b Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , China
| | - Rudolf A de Boer
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Herman H W Silljé
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
9
|
Murphy EJ. Ether lipids and their elusive function in the nervous system: a role for plasmalogens: An Editorial Highlight for 'Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction' on page 569. J Neurochem 2017; 143:463-466. [PMID: 28944460 DOI: 10.1111/jnc.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/27/2022]
Abstract
In this editorial, we highlight the recent work of Dorninger et al. that demonstrates a reduction in plasmalogens in the motor end plate is associated with a reduction in motor end plate function. This reduction in function is illuminated in reduced muscle function in these mice, corresponding with the reduction in acetylcholine release and in its receptor density observed in these mice.
Collapse
Affiliation(s)
- Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
10
|
Otaki Y, Watanabe T, Kubota I. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review. Clin Chim Acta 2017; 474:44-53. [PMID: 28911997 DOI: 10.1016/j.cca.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/12/2022]
Abstract
Fatty acid-binding proteins, whose clinical applications have been studied, are a family of proteins that reflect tissue injury. Heart-type fatty acid-binding protein (H-FABP) is a marker of ongoing myocardial damage and useful for early diagnosis of acute myocardial infarction (AMI). In the past decade, compared to other cardiac enzymes, H-FABP has shown more promise as an early detection marker for AMI. However, the role of H-FABP is being re-examined due to recent refinement in the search for newer biomarkers, and greater understanding of the role of high-sensitivity troponin. We discuss the current role of H-FABP as an early marker for AMI in the era of high sensitive troponin. H-FABP is highlighted as a prognostic marker for a broad spectrum of fatal diseases, viz., AMI, heart failure, arrhythmia, and pulmonary embolism that could be associated with poor clinical outcomes. Because the cut-off value of what constitutes an abnormal H-FABP potentially differs for each cardiovascular event and depends on the clinical setting, an optimal cut-off value has not been clearly established. Of note, several factors such as age, gender, and cardiovascular risk factors, which affect H-FABP levels need to be considered in this context. In this review, we discuss the clinical applications of H-FABP as a prognostic marker in various clinical settings.
Collapse
Affiliation(s)
- Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
11
|
Kronberg SL, Scholljegerdes EJ, Maddock RJ, Barceló-Coblijn G, Murphy EJ. Rump and shoulder muscles from grass and linseed fed cattle as important sources of n-3 fatty acids for beef consumers. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Robert J. Maddock
- Department of Animal Sciences; North Dakota State University; Fargo ND USA
| | | | - Eric J. Murphy
- Department of Biomedical Sciences; University of North Dakota; Grand Forks ND USA
| |
Collapse
|
12
|
Seeger DR, Murphy CC, Murphy EJ. Astrocyte arachidonate and palmitate uptake and metabolism is differentially modulated by dibutyryl-cAMP treatment. Prostaglandins Leukot Essent Fatty Acids 2016; 110:16-26. [PMID: 27255639 DOI: 10.1016/j.plefa.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression.
Collapse
Affiliation(s)
- D R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - C C Murphy
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - E J Murphy
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
13
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
14
|
Figueroa JD, Serrano-Illan M, Licero J, Cordero K, Miranda JD, De Leon M. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury. J Neurotrauma 2016; 33:1436-49. [PMID: 26715431 DOI: 10.1089/neu.2015.4186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the injured spinal cord.
Collapse
Affiliation(s)
- Johnny D Figueroa
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Miguel Serrano-Illan
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jenniffer Licero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Kathia Cordero
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Jorge D Miranda
- 2 Physiology Department, University of Puerto Rico Medical Sciences Campus , San Juan, Puerto Rico
| | - Marino De Leon
- 1 Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
15
|
Carley AN, Lewandowski ED. Triacylglycerol turnover in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1492-9. [PMID: 26993578 DOI: 10.1016/j.bbalip.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
No longer regarded as physiologically inert the endogenous triacylglyceride (TAG) pool within the cardiomyocyte is now recognized to play a dynamic role in metabolic regulation. Beyond static measures of content, the relative rates of interconversion among acyl intermediates are more closely linked to dynamic processes of physiological function in normal and diseased hearts, with the potential for both adaptive and maladaptive contributions. Indeed, multiple inefficiencies in cardiac metabolism have been identified in the decompensated, hypertrophied and failing heart. Among the intracellular responses to physiological, metabolic and pathological stresses, TAG plays a central role in the balance of lipid handling and signaling mechanisms. TAG dynamics are profoundly altered from normal in both diabetic and pathologically stressed hearts. More than just expansion or contraction of the stored lipid pool, the turnover rates of TAG are sensitive to and compete against other enzymatic pathways, anabolic and catabolic, for reactive acyl-CoA units. The rates of TAG synthesis and lipolysis thusly affect multiple components of cardiomyocyte function, including energy metabolism, cell signaling, and enzyme activation, as well as the regulation of gene expression in both normal and diseased states. This review examines the multiple etiologies and metabolic consequences of the failing heart and the central role of lipid storage dynamics in the pathogenic process. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Andrew N Carley
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | | |
Collapse
|
16
|
Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice. Lipids 2016; 51:549-60. [PMID: 26797754 DOI: 10.1007/s11745-015-4117-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/10/2015] [Indexed: 01/21/2023]
Abstract
C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies.
Collapse
|
17
|
Amarachintha S, Sertorio M, Wilson A, Li X, Pang Q. Fanconi Anemia Mesenchymal Stromal Cells-Derived Glycerophospholipids Skew Hematopoietic Stem Cell Differentiation Through Toll-Like Receptor Signaling. Stem Cells 2015; 33:3382-96. [PMID: 26212365 PMCID: PMC4618082 DOI: 10.1002/stem.2100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids, and their endogenous inhibitor, 5-(tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells. We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (a) limiting-dilution cobblestone area-forming cell assay revealed that TOFA significantly increased cobblestone colonies in Fanca-/- or Fancd2-/- cocultures compared to untreated cocultures. (b) Competitive repopulating assay using output cells collected from cocultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca-/- or Fancd2-/- cocultures. Furthermore, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation.
Collapse
Affiliation(s)
- Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mathieu Sertorio
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoli Li
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
18
|
FABP3 as Biomarker of Heart Pathology. BIOMARKERS IN DISEASE: METHODS, DISCOVERIES AND APPLICATIONS 2015. [DOI: 10.1007/978-94-007-7696-8_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Kakoti A, Goswami P. Heart type fatty acid binding protein: structure, function and biosensing applications for early detection of myocardial infarction. Biosens Bioelectron 2013; 43:400-11. [PMID: 23357005 DOI: 10.1016/j.bios.2012.12.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 12/16/2022]
Abstract
Heart type fatty acid binding protein (HFABP) as an early marker of cardiac injury holds a promising future with studies indicating surpassing performance as compared to myoglobin. As a plasma marker, this cytoplasmic protein owing to its small size (∼15kDa) and water solubility, appears readily in the blood-stream following cardiomyocyte damage, reaching peak levels within 6h of symptom onset. Low plasma levels of HFABP as compared to tissue levels indicate that minute amounts of the protein when released during myocardial infarction leads to a greater proportional rise. These parameters of kinetic release make it an ideal candidate for rapid assessment of acute myocardial infarction (AMI). The need for development of rapid immunoassays and immunotests so as to use HFABP as an early marker for AMI exclusion is tremendous. In the present review, we outline the various immunoassays and immunosensors developed so far for the detection of HFABP in buffer, plasma or whole blood. The principles behind the detection techniques along with their performance parameters compared to standard ELISA techniques are elucidated.
Collapse
Affiliation(s)
- Ankana Kakoti
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | |
Collapse
|
20
|
Vergnes L, Chin R, Young SG, Reue K. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance. J Biol Chem 2010; 286:380-90. [PMID: 21044951 DOI: 10.1074/jbc.m110.184754] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3(-/-) mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3(-/-) brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation.
Collapse
Affiliation(s)
- Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
21
|
Wu T, Tian J, Cutler RG, Telljohann RS, Bernlohr D, Mattson MP, Handa JT. Knockdown of FABP5 mRNA decreases cellular cholesterol levels and results in decreased apoB100 secretion and triglyceride accumulation in ARPE-19 cells. J Transl Med 2010; 90:906-14. [PMID: 19434059 PMCID: PMC2879160 DOI: 10.1038/labinvest.2009.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To maintain normal retinal function, retinal pigment epithelial (RPE) cells engulf photoreceptor outer segments (ROS) enriched in free fatty acids (FFAs). We have previously demonstrated fatty acid-binding protein 5 (FABP5) downregulation in the RPE/choroidal complex in a mouse model of aging and early age-related macular degeneration. FABPs are involved in intracellular transport of FFAs and their targeting to specific metabolic pathways. To elucidate the role of FABP5 in lipid metabolism, the production of the FABP5 protein in a human RPE cell line was inhibited using RNA interference technology. As a result, the levels of cholesterol and cholesterol ester were decreased by about 40%, whereas FFAs and triglycerides were increased by 18 and 67% after siRNA treatment, respectively. Some species of phospholipids were decreased in siRNA-treated cells. Cellular lipid droplets were evident and apoB secretion was decreased by 76% in these cells. Additionally, we discovered that ARPE-19 cells could synthesize and secrete Apolipoprotein B100 (apoB100), which may serve as a backbone structure for the formation of lipoprotein particles in these cells. Our results indicate that FABP5 mRNA knockdown results in the accumulation of cellular triglycerides, decreased cholesterol levels, and reduced secretion of apoB100 protein and lipoprotein-like particles. These observations indicated that FABP5 plays a critical role in lipid metabolism in RPE cells, suggesting that FABP5 downregulation in the RPE/choroid complex in vivo might contribute to aging and early age-related macular degeneration.
Collapse
Affiliation(s)
- Tinghuai Wu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jane Tian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roy G. Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Richard S. Telljohann
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Differential Expression of Lipid Metabolism Related Genes in Porcine Muscle Tissue Leading to Different Intramuscular Fat Deposition. Lipids 2009; 44:1029-37. [DOI: 10.1007/s11745-009-3356-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
23
|
Mirtschink P, Stehr SN, Walther M, Pietzsch J, Bergmann R, Pietzsch HJ, Weichsel J, Pexa A, Dieterich P, Wunderlich G, Binas B, Kropp J, Deussen A. Validation of 99mTc-labeled “4+1” fatty acids for myocardial metabolism and flow imaging. Nucl Med Biol 2009; 36:833-43. [DOI: 10.1016/j.nucmedbio.2009.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/12/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
|
24
|
Shan TZ, Ren Y, Wu T, Liu CX, Wang YZ. Regulatory role of Sirt1 on the gene expression of fatty acid-binding protein 3 in cultured porcine adipocytes. J Cell Biochem 2009; 107:984-91. [DOI: 10.1002/jcb.22203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci U S A 2009; 106:6375-80. [PMID: 19307565 DOI: 10.1073/pnas.0901515106] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) is an uncharged neuromodulatory lipid that, similar to many neurotransmitters, is inactivated through its cellular uptake and subsequent catabolism. AEA is hydrolyzed by fatty acid amide hydrolase (FAAH), an enzyme localized on the endoplasmic reticulum. In contrast to most neuromodulators, the hydrophilic cytosol poses a diffusional barrier for the efficient delivery of AEA to its site of catabolism. Therefore, AEA likely traverses the cytosol with the assistance of an intracellular carrier that increases its solubility and rate of diffusion. To study this process, AEA uptake and hydrolysis were examined in COS-7 cells expressing FAAH restricted to the endoplasmic reticulum, mitochondria, or the Golgi apparatus. AEA hydrolysis was detectable at the earliest measurable time point (3 seconds), suggesting that COS-7 cells, normally devoid of an endocannabinoid system, possess an efficient cytosolic trafficking mechanism for AEA. Three fatty acid binding proteins (FABPs) known to be expressed in brain were examined as possible intracellular AEA carriers. AEA uptake and hydrolysis were significantly potentiated in N18TG2 neuroblastoma cells after overexpression of FABP5 or FABP7, but not FABP3. Similar results were observed in COS-7 cells stably expressing FAAH. Consistent with the roles of FABP as AEA carriers, administration of the competitive FABP ligand oleic acid or the selective non-lipid FABP inhibitor BMS309403 attenuated AEA uptake and hydrolysis by approximately 50% in N18TG2 and COS-7 cells. Taken together, FABPs represent the first proteins known to transport AEA from the plasma membrane to FAAH for inactivation and may therefore be novel pharmacological targets.
Collapse
|
26
|
Golovko MY, Barceló-Coblijn G, Castagnet PI, Austin S, Combs CK, Murphy EJ. The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol Cell Biochem 2008; 326:55-66. [DOI: 10.1007/s11010-008-0008-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
|
27
|
Martin GG, Atshaves BP, McIntosh AL, Payne HR, Mackie JT, Kier AB, Schroeder F. Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice. Mol Cell Biochem 2008; 324:101-15. [PMID: 19104910 DOI: 10.1007/s11010-008-9989-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/11/2008] [Indexed: 01/02/2023]
Abstract
Although studies performed in vitro and with transfected cells in culture suggest a role for liver fatty acid binding protein (L-FABP) in regulating fatty acid oxidation and fat deposition, the physiological significance of this possibility is not completely clear. To begin to address this question, the effect of L-FABP gene ablation on phenotype of standard rodent chow-fed male mice was examined with increasing age up to 18 months. While young (2-3 months old) L-FABP null mice displayed no visually obvious phenotype, with increasing age >9 months the L-FABP null mice were visibly larger, exhibiting increased body weight due to increased fat and lean tissue mass. Liver lipid concentrations were unaffected by L-FABP gene ablation with the exception of triacylglycerol, which was decreased by 74% in the livers of 3-month-old mice. Likewise, serum lipid levels were not altered in L-FABP null mice with the exception of triacylglycerol, which was increased in the serum of 18-month-old mice. Increased body weight, fat tissue mass, and lean tissue mass in 18-month-old L-FABP null mice were accompanied by increased hepatic levels of low-density lipoprotein (LDL) receptor, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARalpha-regulated proteins such as fatty acid transport protein (FATP), fatty acid translocase (FAT/CD36), carnitine palmitoyl transferase I (CPT I), and lipoprotein lipase (LPL). A key enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase, was down-regulated in L-FABP null mice. These findings were consistent with a proposed role for L-FABP as an important physiological regulator of PPARalpha.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Storch J, Corsico B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 2008; 28:73-95. [PMID: 18435590 DOI: 10.1146/annurev.nutr.27.061406.093710] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fatty acid-binding proteins (FABPs) are abundant intracellular proteins that bind long-chain fatty acids with high affinity. Nine separate mammalian FABPs have been identified, and their tertiary structures are highly conserved. The FABPs have unique tissue-specific distributions that have long suggested functional differences among them. In the last decade, considerable progress has been made in understanding the specific functions of the FABPs and, in some cases, their mechanisms of action at the molecular level. The FABPs appear to be involved in the extranuclear compartments of the cell by trafficking their ligands within the cytosol via interactions with organelle membranes and specific proteins. Several members of the FABP family have been shown to function directly in the regulation of cognate nuclear transcription factor activity via ligand-dependent translocation to the nucleus. This review will focus on these emerging functions and mechanisms of the FABPs, highlighting the unique functional properties of each as well as the similarities among them.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
29
|
Shearer J, Fueger PT, Wang Z, Bracy DP, Wasserman DH, Rottman JN. Metabolic implications of reduced heart-type fatty acid binding protein in insulin resistant cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:586-92. [PMID: 18692568 PMCID: PMC6996140 DOI: 10.1016/j.bbadis.2008.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/24/2008] [Accepted: 07/15/2008] [Indexed: 11/19/2022]
Abstract
Insulin resistance is characterized by elevated rates of cardiac fatty acid utilization resulting in reduced efficiency and cardiomyopathy. One potential therapeutic approach is to limit the uptake and oxidation of fatty acids. The aims of this study were to determine whether a quantitative reduction in heart-type fatty acid binding protein (FABP3) normalizes cardiac substrate utilization without altering cardiac function. Transgenic (FABP3(+/-)) and wild-type (WT) littermates were studied following low fat (LF) or high fat (HF) diets, with HF resulting in obese, insulin-resistant mice. Cardiovascular function (systolic blood pressure, % fractional shortening) and heart dimension were measured at weaning and every month afterward for 3 mo. During this period cardiovascular function was the same independent of genotype and diet. Catheters were surgically implanted in the carotid artery and jugular vein for sampling and infusions in mice at 4 mo of age. Following 5 d recovery, mice underwent either a saline infusion or a hyperinsulinemic-euglycemic clamp (4 mU kg(-1) min(-1)). Indices of long chain fatty acid and glucose utilization (R(f), R(g); mumol g wet weight(-1) min(-1)) were obtained using 2-deoxy[(3)H]glucose and [(125)I]-15-rho-iodophenyl)-3-R,S-methylpentadecanoic acid. FABP3(+/-) had enhanced cardiac R(g) compared with WT during saline infusion in both LF and HF. FABP3(+/-) abrogated the HF-induced decrement in insulin-stimulated cardiac R(g). On a HF diet, FABP(+/-) but not WT had an increased reliance on fatty acids (R(f)) during insulin stimulation. In conclusion, cardiac insulin resistance and glucose uptake is largely corrected by a reduction in FABP3 in vivo without contemporaneous deleterious effects on cardiac function.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Binas B, Erol E. FABPs as determinants of myocellular and hepatic fuel metabolism. Mol Cell Biochem 2007; 299:75-84. [PMID: 17001451 DOI: 10.1007/s11010-005-9043-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro experiments and expression patterns have long suggested important roles for the genetically related cytosolic fatty acid binding proteins (FABPs) in lipid metabolism. However, evidence for such roles in vivo has become available only recently from genetic manipulation of FABP expression in mice. Here, we summarize the fuel-metabolic phenotypes of mice lacking the genes encoding heart-type FABP (H-/- mice) or liver-type FABP (L-/- mice). Cytosolic extracts from H-/- heart and skeletal muscle and from L-/- liver showed massively reduced binding of long chain fatty acids (LCFA) and, in case of L-/- liver, also of LCFA-CoA. Uptake, oxidation, and esterification LCFA, when measured in vivo and/or ex vivo, were markedly reduced in H-/- heart and muscle and in L-/- liver. The reduced LCFA oxidation in H-/- heart and L-/- liver was not due to reduced activity of PPARa, a fatty acid-sensitive transcription factor that determines the lipid-oxidative capacity in these organs. In H-/- mice, mechanisms of compensation were partially studied and included a redistribution of muscle mitochondria as well as increases of cardiac and skeletal muscle glucose uptakes and of hepatic ketogenesis. In skeletal muscle, the altered glucose uptake included decreased basal but increased insulin-dependent components. Metabolic compensation was only partial, however, since the H-/- mice showed decreased exercise tolerance. In conclusion, the recent studies established H- and L-FABP as major determinants of regional LCFA utilization; therefore the H-/- and L-/- mice are attractive models for studying principles of fuel selection and metabolic homeostasis.
Collapse
Affiliation(s)
- B Binas
- Department of Pathobiology, College of Vet. Medicine, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
31
|
Barceló-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ. Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J Neurochem 2007; 101:132-41. [PMID: 17250686 DOI: 10.1111/j.1471-4159.2006.04348.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that Snca deletion had on whole brain lipid composition. We analysed masses of individual phospholipid (PL) classes and neutral lipid mass as well as PL acyl chain composition in brains from wild-type and Snca-/- mice. Although total brain PL mass was not altered, cardiolipin and phosphatidylglycerol mass decreased 16% and 27%, respectively, in Snca-/- mice. In addition, no changes were observed in plasmalogen or polyphosphoinositide mass. In ethanolamine glycerophospholipids and phosphatidylserine, docosahexaenoic acid (22 : 6n-3) was decreased 7%, while 16 : 0 was increased 1.1-fold and 1.4-fold, respectively. Surprisingly, brain cholesterol, cholesteryl ester, and triacylglycerol mass were increased 1.1-fold, 1.6-fold, and 1.4-fold, respectively in Snca-/- mice. In isolated myelin, cholesterol mass was also increased 1.3-fold, but because there was also a net increase in myelin PL mass, the cholesterol to PL ratio was unaltered. No changes in the expression of cholesterogenic enzymes were observed, suggesting these did not account for the observed changes in cholesterol. These data extend our previous results in astrocytes and kinetic studies in vivo demonstrating a role for Snca in brain lipid metabolism and demonstrate a clear impact on brain neutral lipid metabolism.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | |
Collapse
|
32
|
Golovko MY, Rosenberger TA, Feddersen S, Faergeman NJ, Murphy EJ. α-Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem 2006; 101:201-11. [PMID: 17250657 DOI: 10.1111/j.1471-4159.2006.04357.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown. In the present study, we examined the effect of Snca gene ablation on brain 22:6n-3 metabolism. We determined 22:6n-3 uptake and incorporation into brain phospholipids by infusing awake, wild-type and Snca-/- mice with [1-14C]22:6n-3 using steady-state kinetic modeling. In addition, because Snca modulates 20:4n-6-CoA formation, we assessed microsomal Acsl activity using 22:6n-3 as a substrate. Although Snca gene ablation does not affect brain 22:6n-3 uptake, brain 22:6n-3-CoA mass was elevated 1.5-fold in the absence of Snca. This is consistent with the 1.6- to 2.2-fold increase in the incorporation rate and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-CoA. These effects of Snca gene deletion on 22:6n-3 brain metabolism are opposite to what we reported previously for brain 20:4n-6 metabolism and are likely compensatory for the decreased 20:4n-6 metabolism in brains of Snca-/- mice.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | |
Collapse
|
33
|
Kronberg SL, Barceló-Coblijn G, Shin J, Lee K, Murphy EJ. Bovine muscle n−3 fatty acid content is increased with flaxseed feeding. Lipids 2006; 41:1059-68. [PMID: 17263305 DOI: 10.1007/s11745-006-5056-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We examined the ability of n-3 FA in flaxseed-supplemented rations to increase the n-3 FA content of bovine muscle. Two groups of animals were used in each of two separate trials: (i) Hereford steers supplemented (or not) with ground flaxseed (907 g/d) for 71 d, and (ii) Angus steers supplemented (or not) with ground flaxseed (454 g/d for 3 d followed by 907 g/d for 110 d). For the Hereford group, flaxseed-supplemented rations increased 18:3n-3 (4.0-fold), 20:5n-3 (1.4-fold), and 22:5n-3 (1.3-fold) mass as compared with the control, and increased total n-3 mass about 1.7-fold. When these data were expressed as mol%, the increase in 18:3n-3 was 3.3-fold and in 20:5n-3 was 1.3-fold in the phospholipid fraction, and 18:3n-3 was increased 4-fold in the neutral lipid fraction. For the Angus group, flaxseed ingestion increased masses and composition of n-3 FA similarly to that for the Herefords and doubled the total n-3 FA mass. The effect of cooking to a common degree of doneness on FA composition was determined using steaks from a third group of cattle, which were Angus steers. We demonstrated no adverse effects on FA composition by grilling steaks to an internal temperature of 64 degrees C. Because n-3 FA may affect gene expression, we used quantitative real-time reverse transcriptase-polymerase chain reaction to quantify the effect of feeding flaxseed on heart-FA binding protein, peroxisome proliferator activated receptor gamma (PPARgamma) and alpha (PPARalpha) gene expression in the muscle tissue. PPARgamma mRNA level was increased 2.7-fold in the flaxseed-fed Angus steers compared with the control. Thus, we demonstrate a significant increase in n-3 FA levels in bovine muscle from cattle fed rations supplemented with flaxseed and increased expression of genes that regulate lipid metabolism.
Collapse
Affiliation(s)
- S L Kronberg
- USDA, ARS, Northern Great Plains Research Laboratory, Mandan, North Dakota 58554, USA.
| | | | | | | | | |
Collapse
|
34
|
Newberry EP, Xie Y, Kennedy SM, Luo J, Davidson NO. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology 2006; 44:1191-205. [PMID: 17058218 DOI: 10.1002/hep.21369] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Liver fatty acid-binding protein (L-Fabp) regulates murine hepatic fatty acid trafficking in response to fasting. In this study, we show that L-Fabp(-/-) mice fed a high-fat Western diet for up to 18 weeks are less obese and accumulate less hepatic triglyceride than C57BL/6J controls. Paradoxically, both control and L-Fabp(-/-) mice manifested comparable glucose intolerance and insulin resistance when fed a Western diet. Protection against obesity in Western diet-fed L-Fabp(-/-) mice was not due to discernable changes in food intake, fat malabsorption, or heat production, although intestinal lipid secretion kinetics were significantly slower in both chow-fed and Western diet-fed L-Fabp(-/-) mice. By contrast, there was a significant increase in the respiratory exchange ratio in L-Fabp(-/-) mice, suggesting a shift in energy substrate use from fat to carbohydrate, findings supported by an approximately threefold increase in serum lactate. Microarray analysis revealed increased expression of genes involved in lipid synthesis (fatty acid synthase, squalene epoxidase, hydroxy-methylglutaryl coenzyme A reductase), while genes involved in glycolysis (glucokinase and glycerol kinase) were decreased in L-Fabp(-/-) mice. Fatty acid synthase expression was also increased in the skeletal muscle of L-Fabp(-/-) mice. In conclusion, L-Fabp may function as a metabolic sensor in regulating lipid homeostasis. We suggest that L-Fabp(-/-) mice are protected against Western diet-induced obesity and hepatic steatosis through a series of adaptations in both hepatic and extrahepatic energy substrate use. (HEPATOLOGY 2006;44:1191-1205.).
Collapse
Affiliation(s)
- Elizabeth P Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63105, USA
| | | | | | | | | |
Collapse
|
35
|
Adhikari S, Erol E, Binas B. Increased glucose oxidation in H-FABP null soleus muscle is associated with defective triacylglycerol accumulation and mobilization, but not with the defect of exogenous fatty acid oxidation. Mol Cell Biochem 2006; 296:59-67. [PMID: 16909303 DOI: 10.1007/s11010-006-9298-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/26/2006] [Indexed: 01/17/2023]
Abstract
Heart-type fatty acid-binding protein (H-FABP) is a major fatty acid-binding factor in skeletal muscles. Genetic lack of H-FABP severely impairs the esterification and oxidation of exogenous fatty acids in soleus muscles isolated from chow-fed mice (CHOW-solei) and high fat diet-fed mice (HFD-solei), and prevents the HFD-induced accumulation of muscle triacylglycerols (TAGs). Here, we examined the impact of H-FABP deficiency on the relationship between fatty acid utilization and glucose oxidation. Glucose oxidation was measured in isolated soleus muscles in the presence or absence of 1 mM palmitate (simple protocol) or in the absence of fatty acid after preincubation with 1 mM palmitate (complex protocol). With the simple protocol, the mutation slightly reduced glucose oxidation in CHOW-muscles, but markedly increased it in HFD-muscles; unexpectedly, this pattern was not altered by the addition of palmitate, which reduced glucose oxidation in both CHOW- and HFD-solei irrespective of the mutation. In the complex protocol, the mutation first inhibited the synthesis and accumulation of TAGs and then their mobilization; with this protocol, the mutation increased glucose oxidation in both CHOW- and HFD-solei. We conclude: (i) H-FABP mediates a non-acute inhibition of muscle glucose oxidation by fatty acids, likely by enabling both the accumulation and mobilization of a critical mass of muscle TAGs; (ii) H-FABP does not mediate the acute inhibitory effect of extracellular fatty acids on muscle glucose oxidation; (iii) H-FABP affects muscle glucose oxidation in opposing ways, with inhibition prevailing at high muscle TAG contents.
Collapse
Affiliation(s)
- Sean Adhikari
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 1197 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | | | | |
Collapse
|
36
|
Golovko MY, Rosenberger TA, Faergeman NJ, Feddersen S, Cole NB, Pribill I, Berger J, Nussbaum RL, Murphy EJ. Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry 2006; 45:6956-66. [PMID: 16734431 PMCID: PMC2532510 DOI: 10.1021/bi0600289] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using an established steady-state kinetic model. Liver was used as a negative control, and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetase (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was completely restored after the addition of exogenous wild-type mouse or human alpha-synuclein, but not by A30P, E46K, and A53T forms of alpha-synuclein. Acsl and acyl-CoA hydrolase expression was not different between groups. The incorporation and turnover of 20:4n-6 into brain phospholipid pools were markedly reduced. The dilution coefficient lambda, which indicates 20:4n-6 recycling between the acyl-CoA pool and brain phospholipids, was increased 3.3-fold, indicating more 20:4n-6 was entering the 20:4n-6-CoA pool from the plasma relative to that being recycled from the phospholipids. This is consistent with the reduction in Acsl activity observed in the Snca-/- mice. Using titration microcalorimetry, we determined that alpha-synuclein bound free 20:4n-6 (Kd = 3.7 microM) but did not bind 20:4n-6-CoA. These data suggest alpha-synuclein is involved in substrate presentation to Acsl rather than product removal. In summary, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Maddock TD, Bauer ML, Koch KB, Anderson VL, Maddock RJ, Barceló-Coblijn G, Murphy EJ, Lardy GP. Effect of processing flax in beef feedlot diets on performance, carcass characteristics, and trained sensory panel ratings1. J Anim Sci 2006; 84:1544-51. [PMID: 16699112 DOI: 10.2527/2006.8461544x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To assess the effects of flax addition and flax processing on feedlot performance and carcass characteristics, 128 yearling beef heifers (360 +/- 14 kg of initial BW) were blocked by weight and assigned randomly to feedlot diets that included no flax (control), whole flax (WHL), rolled flax (RLD; 1,300 microm), or ground flax (GRD; 700 microm). Heifers were fed a growth diet (31% corn, 30% corn silage, 18% barley malt pellets, 14% alfalfa, 4% linseed meal, and 3% supplement; DM basis) for 56 d, after which they were adapted to a finishing diet (79% corn, 7% corn silage, 7% alfalfa, 4.75% linseed meal, and 2.25% supplement; DM basis). In WHL, RLD, and GRD, flax replaced all linseed meal and partially replaced corn at 8% of diet DM. All diets provided 0.5 mg of melengestrol acetate, 2,000 IU of vitamin E, and 232 mg of monensin per heifer daily. Cattle were slaughtered by block after 96, 97, and 124 (2 blocks) d on feed. At 24 h postmortem, carcass data were collected, and a portion of the loin was removed, vacuum-packaged, and aged for 14 d. After aging, 2 steaks were removed from each loin for Warner-Bratzler shear force measurement, sensory panel evaluation, and fatty acid analysis (approximately 100 g of muscle was collected). Flax inclusion (WHL, RLD, and GRD vs. control) did not affect DMI (P = 0.79), fat thickness over the 12th rib (P = 0.32), or LM area (P = 0.23). Flax inclusion increased ADG (P = 0.006), G:F (P = 0.006), and USDA yield grade (P = 0.01). Flax processing (RLD and GRD vs. WHL) increased ADG (P = 0.05), G:F (P = 0.08), and apparent dietary NEm and NEg (P = 0.003). Muscle from heifers fed flax had greater phospholipid 18:3n-3 (P < 0.001), 20:5n-3 (P < 0.001), 22:5n-3 (P < 0.001), and 22:6n-3 (P = 0.02) fractions, and greater neutral lipid 18:3n-3 (P < 0.001). Feeding 8% flax to feedlot heifers increased gain and efficiency, and processing flax increased available energy and resulted in increased efficiency of gain. Feeding 8% flax also increased levels of n-3 fatty acids in fresh beef.
Collapse
Affiliation(s)
- T D Maddock
- Department of Animal and Range Sciences, North Dakota State University, Fargo, 58105, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids liberated from adipose tissue adhering to the muscle cells. The regulation of utilization of the different lipid sources in skeletal muscle during exercise is reviewed, and the influence of diet, training, and gender is discussed. Major points deliberated are the methods utilized to measure uptake and oxidation of LCFA during exercise in humans. The role of the various lipid-binding proteins in transmembrane and cytosolic transport of lipids is considered as well as regulation of lipid entry into the mitochondria, focusing on the putative role of AMP-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), and carnitine during exercise. The possible contribution to fuel provision during exercise of circulating VLDL-TG as well as the role of IMTG is discussed from a methodological point of view. The contribution of IMTG for energy provision may not be large, covering ∼10% of total energy provision during fasting exercise in male subjects, whereas in females, IMTG may cover a larger proportion of energy delivery. Molecular mechanisms involved in breakdown of IMTG during exercise are also considered focusing on hormone-sensitive lipase (HSL). Finally, the role of lipids in development of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed.
Collapse
Affiliation(s)
- Bente Kiens
- Copenhagen Muscle Research Centre, Dept. of Human Physiology, Institute of Exercise and Sports Sciences, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
39
|
Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, Nussbaum RL. Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 2005; 25:10190-201. [PMID: 16260631 PMCID: PMC1280279 DOI: 10.1128/mcb.25.22.10190-10201.2005] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The presynaptic protein alpha-synuclein, implicated in Parkinson disease (PD), binds phospholipids and has a role in brain fatty acid (FA) metabolism. In mice lacking alpha-synuclein (Snca-/-), total brain steady-state mass of the mitochondria-specific phospholipid, cardiolipin, is reduced 22% and its acyl side chains show a 51% increase in saturated FAs and a 25% reduction in essential n-6, but not n-3, polyunsaturated FAs. Additionally, 23% reduction in phosphatidylglycerol content, the immediate biosynthetic precursor of cardiolipin, was observed without alterations in the content of other brain phospholipids. Consistent with these changes, more ordered lipid head group and acyl chain packing with enhanced rotational motion of diphenylhexatriene (DPH) about its long axis were demonstrated in time-resolved DPH fluorescence lifetime experiments. These abnormalities in mitochondrial membrane properties were associated with a 15% reduction in linked complex I/III activity of the electron transport chain, without reductions in mitochondrial number, complex II/III activity, or individual complex I, II, III, or IV activity. Reduced complex I activity is thought to be a critical factor in the development of PD. Thus, altered membrane composition and structure and impaired complex I/III function in Snca-/- brain suggest a relationship between alpha-synuclein's role in brain lipid metabolism, mitochondrial function, and PD.
Collapse
Affiliation(s)
- Christopher E Ellis
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Dr., MSC 4472, Bethesda, Maryland 20892-4472, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Shearer J, Fueger PT, Bracy DP, Wasserman DH, Rottman JN. Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulin resistance. Diabetes 2005; 54:3133-9. [PMID: 16249436 DOI: 10.2337/diabetes.54.11.3133] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to determine the contribution of heart-type fatty acid-binding protein (H-FABP) to glucose and long-chain fatty acid (LCFA) utilization in dietary-induced insulin resistance. We tested the hypothesis that H-FABP facilitates increases in LCFA flux present in glucose-intolerant states and that a partial reduction in the amount of this protein would compensate for all or part of the impairment. Transgenic H-FABP heterozygotes (HET) and wild-type (WT) littermates were studied following chow diet (CHD) or high-fat diet (HFD) for 12 weeks. Catheters were surgically implanted in the carotid artery and jugular vein for sampling and infusions, respectively. Following 5 days of recovery, mice received either a saline infusion or underwent a euglycemic insulin clamp (4 mU x kg(-1) x min(-1)) for 120 min. At 90 min, a bolus of 2-deoxyglucose and [125I]-15-(rho-iodophenyl)-3-R,S-methylpentadecanoic acid were administered to obtain indexes of glucose and LCFA utilization. At 120 min, skeletal muscles were excised for tracer determination. All HFD mice were obese and hyperinsulinemic; however, only HFD-WT mice were hyperglycemic. Glucose infusion rates during insulin clamps were 49 +/- 4, 59 +/- 4, 16 +/- 4, and 33 +/- 4 mg x kg(-1) x min(-1) for CHD-WT, CHD-HET, HFD-WT, and HFD-HET mice, respectively, showing that HET limited the severity of whole-body insulin resistance with HFD. Insulin-stimulated muscle glucose utilization was attenuated in HFD-WT but unaffected in HFD-HET mice. Conversely, rates of LCFA clearance were increased with HFD feeding in HFD-WT but not in HFD-HET mice. In conclusion, a partial reduction in H-FABP protein normalizes fasting glucose levels and improves whole-body insulin sensitivity in HFD-fed mice despite obesity.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cytosolic fatty acid binding proteins (FABPs) are widely expressed fatty acid chaperones. The adipocyte-expressed FABPs are permissive factors for the fat-induced metabolic syndrome, but a similar relevance of the FABPs of heart, muscle, and liver remains unclear. In this article, the known biochemical and physiologic roles of these FABPs are discussed in this context. It is concluded that the observations on adipocyte-expressed FABPs cannot be automatically extended to other tissues. More work is needed to clarify whether the individual or combined inhibition of FABPs is a desirable strategy to treat the metabolic syndrome.
Collapse
Affiliation(s)
- Bert Binas
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Raymond Stotzer Parkway, College Station, TX 77843, USA.
| |
Collapse
|
42
|
Castagnet PI, Golovko MY, Barceló-Coblijn GC, Nussbaum RL, Murphy EJ. Fatty acid incorporation is decreased in astrocytes cultured from alpha-synuclein gene-ablated mice. J Neurochem 2005; 94:839-49. [PMID: 16033426 DOI: 10.1111/j.1471-4159.2005.03247.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because alpha-synuclein may function as a fatty acid binding protein, we measured fatty acid incorporation into astrocytes isolated from wild-type and alpha-synuclein gene-ablated mice. alpha-Synuclein deficiency decreased palmitic acid (16:0) incorporation 31% and arachidonic acid [20:4 (n-6)] incorporation 39%, whereas 22:6 (n-3) incorporation was unaffected. In neutral lipids, fatty acid targeting of 20:4 (n-6) and 22:6 (n-3) (docosahexaenoic acid) to the neutral lipid fraction was increased 1.7-fold and 1.6-fold, respectively, with an increase in each of the major neutral lipids. This was consistent with a 3.4- to 3.8-fold increase in cholesteryl ester and triacylglycerol mass. In the phospholipid fraction, alpha-synuclein deficiency decreased 16:0 esterification 39% and 20:4 (n-6) esterification 43% and decreased the distribution of these fatty acids, including 22:6 (n-3), into this lipid pool. alpha-Synuclein gene-ablation significantly decreased the trafficking of these fatty acids to phosphatidylinositol. This observation is consistent with changes in phospholipid fatty acid composition in the alpha-synuclein-deficient astrocytes, including decreased 22:6 (n-3) content in the four major phospholipid classes. In summary, these studies demonstrate that alpha-synuclein deficiency significantly disrupted astrocyte fatty acid uptake and trafficking, with a marked increase in fatty acid trafficking to cholesteryl esters and triacylglycerols and decreased trafficking to phospholipids, including phosphatidylinositol.
Collapse
Affiliation(s)
- P I Castagnet
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58202-9037, USA
| | | | | | | | | |
Collapse
|
43
|
Tian J, Ishibashi K, Ishibashi K, Reiser K, Grebe R, Biswal S, Gehlbach P, Handa JT. Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. Proc Natl Acad Sci U S A 2005; 102:11846-51. [PMID: 16081535 PMCID: PMC1182551 DOI: 10.1073/pnas.0504759102] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation endproduct (AGE) formation is a trigger for the onset of age-related disease. To evaluate AGE-induced change in the ocular fundus, 5-mo-old C57BL/6 mice were given low-dose D-galactose (D-gal) for 8 wk and evaluated by AGE fluorescence, electroretinography (ERG), electron microscopy, and microarray analysis for 20 wk. Although AGE fluorescence was increased in D-gal-treated retinal pigment epithelium (RPE)-choroid compared with controls at all time points, ERG showed no AGE-induced functional toxicity. Progressive ultrastructural aging in the RPE-choroid was associated temporally with a transcriptional response of early inflammation, matrix expansion, and aberrant lipid processing and, later, down-regulation of energy metabolism genes, up-regulation of crystallin genes, and altered expression of cell structure genes. The overall transcriptome is similar to the generalized aging response of unrelated cell types. A subset of transcriptional changes is similar to early atherosclerosis, a chronic inflammatory disease characterized by matrix expansion and lipid deposition. These changes suggest an important contribution of a single environmental stimulus to the complex aging response.
Collapse
Affiliation(s)
- Jane Tian
- Michael Panitch Macular Degeneration Laboratory, Wilmer Eye Institute, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shearer J, Fueger PT, Rottman JN, Bracy DP, Binas B, Wasserman DH. Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise. Am J Physiol Endocrinol Metab 2005; 288:E292-7. [PMID: 15454399 DOI: 10.1152/ajpendo.00287.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of heart-type cytosolic fatty acid-binding protein (H-FABP) in mediating whole body and muscle-specific long-chain fatty acid (LCFA) and glucose utilization was examined using exercise as a phenotyping tool. Catheters were chronically implanted in a carotid artery and jugular vein of wild-type (WT, n = 8), heterozygous (H-FABP(+/-), n = 8), and null (H-FABP(-/-), n = 7) chow-fed C57BL/6J mice, and mice were allowed to recover for 7 days. After a 5-h fast, conscious, unrestrained mice were studied during 30 min of treadmill exercise (0.6 mph). A bolus of [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid and 2-deoxy-[(3)H]glucose was administered to obtain rates of whole body metabolic clearance (MCR) and indexes of muscle LCFA (R(f)) and glucose (R(g)) utilization. Fasting, nonesterified fatty acids (mM) were elevated in H-FABP(-/-) mice (2.2 +/- 0.9 vs. 1.3 +/- 0.1 and 1.3 +/- 0.2 for WT and H-FABP(+/-)). During exercise, blood glucose (mM) increased in WT (11.7 +/- 0.8) and H-FABP(+/-) (12.6 +/- 0.9) mice, whereas H-FABP(-/-) mice developed overt hypoglycemia (4.8 +/- 0.8). Examination of tissue-specific and whole body glucose and LCFA utilization demonstrated a dependency on H-FABP with exercise in all tissues examined. Reductions in H-FABP led to decreasing exercise-stimulated R(f) and increasing R(g) with the most pronounced effects in heart and soleus muscle. Similar results were seen for MCR with decreasing LCFA and increasing glucose clearance with declining levels of H-FABP. These results show that, in vivo, H-FABP has reciprocal effects on glucose and LCFA utilization and whole body fuel homeostasis when metabolic demands are elevated by exercise.
Collapse
Affiliation(s)
- Jane Shearer
- Dept. of Molecular Physiology and Biophysics, Vanderbilt University, 823 Light Hall, Nashville, TN 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
45
|
Patrick CB, McHowat J, Rosenberger TA, Rapoport SI, Murphy EJ. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart. Am J Physiol Heart Circ Physiol 2005; 288:H2611-9. [PMID: 15681700 DOI: 10.1152/ajpheart.00549.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.
Collapse
Affiliation(s)
- Casey B Patrick
- Dept. of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, Univ. of North Dakota, 501 N. Columbia Rd., Rm. 3700, Grand Forks, ND 58202-9037, USA
| | | | | | | | | |
Collapse
|