1
|
Hadjadji C, Devalloir Q, Gaillard C, van den Brink NW, Scheifler R. Evidence linking cadmium and/or lead exposure to immunomodulatory effects in mammals based upon an adverse outcome pathways approach, and research perspectives. CHEMOSPHERE 2025; 371:144056. [PMID: 39746483 DOI: 10.1016/j.chemosphere.2024.144056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
For decades, studies have shown how exposure to non-essential trace metals such as lead (Pb) and cadmium (Cd) largely impact global wildlife. Ecoimmunotoxicology has emerged in the past two decades and focuses on the effects of pollutants on the immune system of free-ranging organisms. Adverse outcome pathways (AOPs) represent a conceptual approach to explore the mechanistic linkage between a molecular initiating event and adverse outcomes, potentially at all biological levels of organisation. The present paper proposes putative AOPs related to the effects of Cd, Pb, and the mixture Cd-Pb, on the immune system of mammals to address future questions in ecoimmunotoxicology. Molecular Initiating Events for both metals relate to entrance in cells through Ca2+ channels or bond to cell surfaces. Exposure to Cd, Pb and Cd-Pb share several similar Key Events (KEs), primarily an increase of oxidative stress (OS) in immune cells through production of reactive oxygen species. For both metals and the mixture, OS affects mitochondrial membranes, and induces apoptosis, ultimately decreasing immune cell number. Both metals affect innate immune system through nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) inflammatory signalling pathways, leading to an upregulation of inflammatory markers and mediators. Adaptive immune system is also affected by the exposure to both metals though a decrease of CD4+/CD8+ ratio, a decrease of MHCII, an inactivation of TH1 and TH2 response, and an inhibition of the humoral response mediated by various Ig. Mixture effects of Cd-Pb are less documented resulting in a more speculative AOP, but potential synergic and antagonistic effects were identified. According to our AOPs, further research in ecoimmunotoxicology of metals in free-ranging mammals should focus on KEs related to NF-κB/MAPK inflammatory signalling pathways, changes in CD4+/CD8+ ratio and MHCII complexes, and on AOs related to auto-immune disorders and on the effective increase of infection rate, particularly in case of exposure to metal mixtures.
Collapse
Affiliation(s)
- Cloe Hadjadji
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland; Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France.
| | - Quentin Devalloir
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France
| | - Colette Gaillard
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University, Box 8000, 6700 EA, Wageningen, the Netherlands
| | - Renaud Scheifler
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France
| |
Collapse
|
2
|
Garg M, Verma M, Khan AS, Yadav P, Rahman SS, Ali A, Kamthan M. Cadmium-induced augmentation of fungal translocation promotes systemic infection in mice via gut barrier disruption and immune dysfunction. Life Sci 2025; 362:123368. [PMID: 39756275 DOI: 10.1016/j.lfs.2025.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Cadmium (Cd) disrupts the immune system and intestinal barrier, increasing infection risk and gut dysbiosis. Its impact on intestinal fungi, particularly the opportunistic pathogen Candida albicans, which can cause systemic infections in immunocompromised patients, is not well understood. Our study revealed that C. albicans exhibited high tolerance and maintained its morphogenetic switching in response to Cd. As C. albicans is not naturally found in the mouse gut, we attempted intestinal colonization of C. albicans-SC5314 strain using standard procedures. However, the intestinal fungal load decreased and was undetectable by 15th day. To assess the effects of sub-chronic Cd exposure, both oral and intravenous methods were used. Oral exposure to C. albicans (105 CFU/ml) resulted in a 10-fold increase in intestinal translocation in Cd-exposed mice (0.98 mg/kg) compared to controls. Cd exposure also downregulated intestinal tight junction proteins and increased FITC-dextran permeability, indicating that Cd disrupts the intestinal barrier and facilitates C. albicans translocation. Moreover, Cd-exposed mice showed significant morbidity and higher fungal loads in organs after intravenous non-lethal dose of C. albicans, along with a subdued cytokine response. These findings highlight the significant impact of Cd on fungal pathogenicity and immune response, pointing to the broader health risks of Cd exposure.
Collapse
Affiliation(s)
- Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
3
|
Sarmiento-Ortega VE, Alcántara-Jara DI, Moroni-González D, Diaz A, Vázquez-Roque RA, Brambila E, Treviño S. Chronic cadmium exposure to minimal-risk doses causes dysfunction of epididymal adipose tissue and metabolic disorders. Toxicol Appl Pharmacol 2024; 495:117203. [PMID: 39701214 DOI: 10.1016/j.taap.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Cadmium (Cd) is among the top seven most hazardous environmental contaminants. Minimal risk levels for daily exposure have been established, such as no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL). Chronic exposure to Cd, at both NOAEL and LOAEL doses, causes toxicity in diverse tissues. However, Cd toxicity in adipose tissue, an endocrine and metabolic organ, remains relatively understudied. We aimed to investigate the potentially toxic effects of chronic Cd exposure (at NOAEL and LOAEL doses) on epidydimal adipose tissue of adult male Wistar rats. Ninety male Wistar rats were divided into three groups (n = 30): Control Cd-free, NOAEL, and LOAEL that received CdCl2 in drinking water for 15 days to 5 months. We evaluated over time zoometry, serum and adipose Cd concentration, redox balance, GLUT4 and Nrf2 expression, histology, leptin, adiponectin, adipose insulin resistance index, free fatty acids, and glucose tolerance. The higher dose group showed a more pronounced and sustained increase in serum and adipose tissue of Cd concentration. Zoometry was similarly affected in both Cd-exposed groups with adipocyte hypertrophy. The redox balance was maintained due to the augmenting of Nrf2 expression. Leptin concentration augmented, while adiponectin diminished. Adipose insulin resistance increased simultaneously to lipolysis and glucose intolerance despite high GLUT4 expression. In conclusion, this study provides strong evidence that chronic Cd exposure, even at minimal risk levels (LOAEL and NOAEL doses), has toxic effects, disrupting the function of epididymal adipose tissue and contributing to metabolic disorders.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Daniel Issac Alcántara-Jara
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Alfonso Diaz
- Laboratory of Neurochemistry and Behavior, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Rubén Antonio Vázquez-Roque
- Laboratory of Neuroplasticity and Metabolism, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Samuel Treviño
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico.
| |
Collapse
|
4
|
Bucurica IA, Dulama ID, Radulescu C, Banica AL, Stanescu SG. Heavy Metals and Associated Risks of Wild Edible Mushrooms Consumption: Transfer Factor, Carcinogenic Risk, and Health Risk Index. J Fungi (Basel) 2024; 10:844. [PMID: 39728340 DOI: 10.3390/jof10120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
This research aims to investigate the heavy metals (i.e., Cd, Cr, Cu, Ni, and Pb) in the fruiting bodies of six indigenous wild edible mushrooms including Agaricus bisporus, Agaricus campestris, Armillaria mellea, Boletus edulis, Macrolepiota excoriate, and Macrolepiota procera, correlated with various factors, such as the growth substrate, the sampling site, the species and the morphological part (i.e., cap and stipe), and their possible toxicological implications. Heavy metal concentrations in mushroom (228 samples) and soil (114 samples) were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In the first part of the study, the soil contamination (index of geo-accumulation, contamination factor, and pollution loading index) and associated risks (chronic daily dose for three exposure pathways-ingestion, dermal, and inhalation; hazard quotient of non-cancer risks and the carcinogenic risks) were calculated, while the phytoremediation capacity of the mushrooms was determined. At the end of these investigations, it was concluded that M. procera accumulates more Cd and Cr (32.528% and 57.906%, respectively), M. excoriata accumulates Cu (24.802%), B. edulis accumulates Ni (22.694%), and A. mellea accumulates Pb (18.574%), in relation to the underlying soils. There were statistically significant differences between the stipe and cap (i.e., in the cap subsamples of M. procera, the accumulation factor for Cd was five times higher than in the stipe subsamples). The daily intake of toxic metals related to the consumption of these mushrooms with negative consequences on human health, especially for children (1.5 times higher than for adults), was determined as well.
Collapse
Affiliation(s)
- Ioan Alin Bucurica
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
| | - Ioana Daniela Dulama
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
| | - Cristiana Radulescu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 030167 Bucharest, Romania
| | - Andreea Laura Banica
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
| |
Collapse
|
5
|
Alruhaimi RS, Hassanein EHM, Ahmeda AF, Alnasser SM, Atwa AM, Sabry M, Alzoghaibi MA, Mahmoud AM. Attenuation of inflammation, oxidative stress and TGF-β1/Smad3 signaling and upregulation of Nrf2/HO-1 signaling mediate the protective effect of diallyl disulfide against cadmium nephrotoxicity. Tissue Cell 2024; 91:102576. [PMID: 39353227 DOI: 10.1016/j.tice.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals are toxic environmental pollutants with serious health effects on humans and animals. Cadmium (Cd) is known for its serious nephrotoxic effect and its toxicity involves oxidative stress (OS) and inflammation. Diallyl disulfide (DADS), a main constituent of garlic, exhibites cytoprotective and antioxidant activities. This study investigated the effect of DADS on OS, inflammation, and fibrosis induced by Cd in rat kidney, pointing to the involvement of transforming growth factor-β (TGF-β)/Smad3 and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling, and peroxisome proliferator-activated receptor gamma (PPARγ). Rats received DADS for 14 days and Cd on day 7 and blood and kidney samples were collected. Cd elevated serum creatinine, urea and uric acid, provoked kidney histopathological alterations and collagen deposition, increased kidney malondialdehyde (MDA) level, and decreased glutathione (GSH) and antioxidant enzymes. Nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and CD68 were upregulated in Cd-administered rat kidney. DADS prevented kidney injury, mitigated OS, suppressed NF-κB, CD68 and pro-inflammatory mediators, and boosted antioxidants. DADS downregulated TGF-β1, Smad3 phosphorylation and Kelch-like ECH-associated protein-1 (Keap1), and increased Nrf2, HO-1, cytoglobin, and PPARγ. In conclusion, DADS protects the kidney against Cd toxicity by attenuating OS, inflammation, and TGF-β1/Smad3 signaling, and enhancement of Nrf2/HO-1 signaling, antioxidants, and PPARγ.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mostafa Sabry
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
6
|
Angali KA, Farhadi M, Neisi A, Cheraghian B, Ahmadi M, Takdastan A, Dargahi A, Angali ZA. Carcinogenic and non-carcinogenic risks caused by rice contamination with heavy metals and their effect on the prevalence of cardiovascular disease (Using machine learning). Food Chem Toxicol 2024; 194:115085. [PMID: 39521240 DOI: 10.1016/j.fct.2024.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The safety and health of food products are essential in the food industry, and the risk of contamination from various contaminants must be evaluated. Exposure to HMs from the environment (especially food) causes various adverse effects on the body and increases the risk of cardiovascular disease (CVD). MATERIAL AND METHOD Volunteers in the study comprised both healthy individuals and those with CVD. Patients were chosen using a cohort database of CVD individuals. A random choice of samples was conducted. Medical information (individuals with CVD) related to the participants was obtained from the Hoveyzeh Cohort Study Center. CVD-HM relationships were assessed using various machine-learning techniques. RESULT Based on the results of the GAM statistics approach, the baseline levels (β) of As, Cd, and Cr in rice have been calculated to be 1.05, 1.19, and 1.11, respectively. Based on the investigation's results, rice acts as a mediator between high-magnitude actions and the prevalence of CVD. Eating rice increases the probability of CVD by 0.18 and raises As eating by 0.494. The results showed that rice consumption in the research area is not associated with non-carcinogenic and carcinogenic risk (CRs and ILCRs for both categories were less than 1∗10-6). CONCLUSION There was neither a carcinogenic nor non-carcinogenic threat to adults or children and many hazardous HMs existed at the accepted thresholds. A notable relationship was seen between rice contaminated with HM and CVD.
Collapse
Affiliation(s)
- Kambiz Ahmadi Angali
- Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Educational Development Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Dargahi
- Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Zahra Ahmadi Angali
- Department of Mathematics, Seattle University, 901 12th Ave, Seattle, WA, 98122, USA
| |
Collapse
|
7
|
Pal S, Firdous SM. Unraveling the role of heavy metals xenobiotics in cancer: a critical review. Discov Oncol 2024; 15:615. [PMID: 39495398 PMCID: PMC11535144 DOI: 10.1007/s12672-024-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer is a multifaceted disease characterized by the gradual accumulation of genetic and epigenetic alterations within cells, leading to uncontrolled cell growth and invasive behavior. The intricate interplay between environmental factors, such as exposure to carcinogens, and the molecular cascades governing cell growth, differentiation, and survival contributes to cancer's development and progression. This review offers a comprehensive overview of key molecular targets and their roles in cancer development. Peroxisome proliferator-activated receptors are implicated in various cancers due to their role in regulating lipid metabolism, inflammation, and cell proliferation. Nuclear factor erythroid 2-related factor 2 protects cells from oxidative damage but can also promote tumor cell survival. Cytochrome P450 1B1 metabolizes exogenous and endogenous substances, and its increased expression is observed in several cancers. The constitutive androstane receptor regulates gene expression, and its dysregulation can lead to liver cancer. Transforming growth factor-beta 2 is involved in the development and progression of various cancers by dysregulating cell proliferation, differentiation, and migration. Chelation treatment has been investigated for removing heavy metals, while genetically altered immune cells show promise in treating specific cancers. Metal-organic frameworks and fibronectin targeting represent new directions in cancer treatment. While some heavy metals, such as arsenic, chromium, nickel, and cadmium, are known to have carcinogenic properties, others, like zinc, Copper, gold, bismuth, and silver, have many uses that highlight their potential as effective cancer control tactics. There are a variety of heavy metal-based technologies that show potential for improving cancer treatment methods, including targeted drug delivery, improved radiation, and diagnostic tools.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Pharmacology, Seacom Pharmacy College, Jaladhulagori, Sankrail, Howrah, West Bengal, 711302, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
8
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
9
|
Jiao Q, Li G, Li L, Lin D, Xu Z, Fan L, Zhang J, Shen F, Liu S, Seth CS, Liu H. Hormetic responses to cadmium exposure in wheat seedlings: insights into morphological, physiological, and biochemical adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57701-57719. [PMID: 39292310 DOI: 10.1007/s11356-024-34915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Cadmium is commonly recognized as toxic to plant growth, low-level Cd has promoting effects on growth performance, which is so-called hormesis. Although Cd toxicity in wheat has been widely investigated, knowledge of growth response to a broad range of Cd concentrations, especially extremely low concentrations, is still unknown. In this study, the morphological, physiological, and biochemical performance of wheat seedlings to a wide range of Cd concentrations (0-100 µΜ) were explored. Low Cd treatment (0.1-0.5 µM) improved wheat biomass and root development by enhancing the photosynthetic system and antioxidant system ability. Photosynthetic rate (Pn) was improved by 5.72% under lower Cd treatment (1 µΜ), but inhibited by 6.05-49.85% from 5 to 100 µΜ. Excessive Cd accumulation induced oxidative injury manifesting higher MDA content, resulting in lower photosynthetic efficiency, stunted growth, and reduction of biomass. Further, the contents of ascorbate, glutathione, non-protein thiols, and phytochelatins were improved under 5-100 µΜ Cd treatment. The ascorbate peroxidase activity in the leaf showed a hormetic dose-response characteristic. Correlation analysis and partial least squares (PLS) results indicated that antioxidant enzymes and metabolites were closely correlated with Cd tolerance and accumulation. The results of the element network, correlation analysis, and PLS showed a crucial role for exogenous Cd levels in K, Fe, Cu, and Mn uptake and accumulation. These results provided a deeper understanding of the hormetic effect of Cd in wheat, which would be beneficial for improving the quality of hazard and risk assessments.
Collapse
Affiliation(s)
- Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lantao Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Di Lin
- College of Forestry, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zhengyang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengmin Shen
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | | | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
10
|
Djulejic V, Ivanovski A, Cirovic A, Cirovic A. Increased Cadmium Load, Vitamin D Deficiency, and Elevated FGF23 Levels as Pathophysiological Factors Potentially Linked to the Onset of Acute Lymphoblastic Leukemia: A Review. J Pers Med 2024; 14:1036. [PMID: 39452542 PMCID: PMC11508935 DOI: 10.3390/jpm14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The preventability of acute lymphocytic leukemia during childhood is currently receiving great attention, as it is one of the most common cancers in children. Among the known risk factors so far are those affecting the development of gut microbiota, such as a short duration or absence of breastfeeding, cesarean section, a diet lacking in short-chain fatty acids (SCFAs), the use of antibiotics, absence of infection during infancy, and lack of pets, among other factors. Namely, it has been shown that iron deficiency anemia (IDA) and lack of vitamin D may cause intestinal dysbiosis, while at the same time, both increase the risk of hematological malignancies. The presence of IDA and vitamin D deficiency have been shown to lead to a decreased proportion of Firmicutes in stool, which could, as a consequence, lead to a deficit of butyrate. Moreover, children with IDA have increased blood concentrations of cadmium, which induces systemic inflammation and is linked to the onset of an inflammatory microenvironment in the bone marrow. Finally, IDA and Cd exposure increase fibroblast growth factor 23 (FGF23) blood levels, which in turn suppresses vitamin D synthesis. A lack of vitamin D has been associated with a higher risk of ALL onset. In brief, as presented in this review, there are three independent ways in which IDA increases the risk of acute lymphocytic leukemia (ALL) appearance. These are: intestinal dysbiosis, disruption of vitamin D synthesis, and an increased Cd load, which has been linked to systemic inflammation. All of the aforementioned factors could generate the appearance of a second mutation, such as ETV6/RUNX1 (TEL-AML), leading to mutation homozygosity and the onset of disease. ALL has been observed in both IDA and thalassemia. However, as IDA is the most common type of anemia and the majority of published data pertains to it, we will focus on IDA in this review.
Collapse
Affiliation(s)
- Vuk Djulejic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia;
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| |
Collapse
|
11
|
Khan IU, Jamil Y, Shams F, Farsi S, Humayun M, Hussain A, Ahmad A, Iqbal A, Alrefaei AF, Ali S. Unlocking the in vitro and in vivo antioxidant and anti-inflammatory activities of polysaccharide fractions from Lepidium sativum seed-coat mucilage. Heliyon 2024; 10:e36797. [PMID: 39319123 PMCID: PMC11419874 DOI: 10.1016/j.heliyon.2024.e36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 μg/mL), followed by F20 (69.19 ± 0.61 μg/mL) and F52 (75.06 ± 0.45 μg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fareeha Shams
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salman Farsi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Humayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
12
|
Obeng-Gyasi E, Obeng-Gyasi B. Association of combined lead, cadmium, and mercury with systemic inflammation. Front Public Health 2024; 12:1385500. [PMID: 39267632 PMCID: PMC11390544 DOI: 10.3389/fpubh.2024.1385500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Exposure to environmental metals has been increasingly associated with systemic inflammation, which is implicated in the pathogenesis of various chronic diseases, including those with neurodegenerative aspects. However, the complexity of exposure and response relationships, particularly for mixtures of metals, has not been fully elucidated. Objective This study aims to assess the individual and combined effects of lead, cadmium, and mercury exposure on systemic inflammation as measured by C-reactive protein (CRP) levels, using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Methods We employed Bayesian Kernel Machine Regression (BKMR) to analyze the NHANES 2017-2018 data, allowing for the evaluation of non-linear exposure-response functions and interactions between metals. Posterior Inclusion Probabilities (PIP) were calculated to determine the significance of each metal's contribution to CRP levels. Results The PIP results highlighted mercury's significant contribution to CRP levels (PIP = 1.000), followed by cadmium (PIP = 0.6456) and lead (PIP = 0.3528). Group PIP values confirmed the importance of considering the metals as a collective group in relation to CRP levels. Our BKMR analysis revealed non-linear relationships between metal exposures and CRP levels. Univariate analysis showed a flat relationship between lead and CRP, with cadmium having a positive relationship. Mercury exhibited a U-shaped association, indicating both low and high exposures as potential risk factors for increased inflammation. Bivariate analysis confirmed this relationship when contaminants were combined with lead and cadmium. Analysis of single-variable effects suggested that cadmium and lead are associated with higher values of the h function, a flexible function that takes multiple metals and combines them in a way that captures the complex and potentially nonlinear relationship between the metals and CRP. The overall exposure effect of all metals on CRP revealed that exposures below the 50th percentile exposure level are associated with an increase in CRP levels, while exposures above the 60th percentile are linked to a decrease in CRP levels. Conclusions Our findings suggest that exposure to environmental metals, particularly mercury, is associated with systemic inflammation. These results highlight the need for public health strategies that address the cumulative effects of metal exposure and reinforce the importance of using advanced statistical methods to understand the health impact of environmental contaminants. Future research should focus on the mechanistic pathways of metal-induced inflammation and longitudinal studies to ascertain the long-term effects of these exposures.
Collapse
Affiliation(s)
- Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC, United States
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC, United States
| | | |
Collapse
|
13
|
Wu L, Lu X, Zhang S, Zhong Y, Gao H, Tao FB, Wu X. Co-exposure effects of urinary polycyclic aromatic hydrocarbons and metals on lung function: mediating role of systematic inflammation. BMC Pulm Med 2024; 24:386. [PMID: 39128985 PMCID: PMC11316979 DOI: 10.1186/s12890-024-03173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) and metals were associated with decreased lung function, but co-exposure effects and underlying mechanism remained unknown. METHODS Among 1,123 adults from National Health and Nutrition Examination Survey 2011-2012, 10 urinary PAHs, 11 urinary metals, and peripheral white blood cell (WBC) count were determined, and 5 lung function indices were measured. Least absolute shrinkage and selection operator, Bayesian kernel machine regression, and quantile-based g-computation were used to estimate co-exposure effects on lung function. Mediation analysis was used to explore mediating role of WBC. RESULTS These models demonstrated that PAHs and metals were significantly associated with lung function impairment. Bayesian kernel machine regression models showed that comparing to all chemicals fixed at median level, forced expiratory volume in 1 s (FEV1)/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25 and 75% decreased by 1.31% (95% CI: 0.72%, 1.91%), 231.62 (43.45, 419.78) mL/s, and 131.64 (37.54, 225.74) mL/s respectively, when all chemicals were at 75th percentile. In the quantile-based g-computation, each quartile increase in mixture was associated with 104.35 (95% CI: 40.67, 168.02) mL, 1.16% (2.11%, 22.40%), 294.90 (78.37, 511.43) mL/s, 168.44 (41.66, 295.22) mL/s decrease in the FEV1, FEV1/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25% and 75%, respectively. 2-Hydroxyphenanthrene, 3-Hydroxyfluorene, and cadmium were leading contributors to the above associations. WBC mediated 8.22%-23.90% of association between PAHs and lung function. CONCLUSIONS Co-exposure of PAHs and metals impairs lung function, and WBC could partially mediate this relationship. Our findings elucidate co-exposure effects of environmental mixtures on respiratory health and underlying mechanisms, suggesting that focusing on highly prioritized toxicants would effectively attenuate adverse effects.
Collapse
Affiliation(s)
- Lihong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Anhui, China
| | - Siying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yumei Zhong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiulong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, Brambila E, Treviño S. Curcumin Treatment Ameliorates Hepatic Insulin Resistance Induced by Sub-chronic Oral Exposure to Cadmium LOAEL Dose via NF-κB and Nrf2 Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04314-1. [PMID: 39103711 DOI: 10.1007/s12011-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Cadmium (Cd) is a global pollutant, and its accumulation in the liver causes oxidative stress, inflammation, insulin resistance (IR), and metabolic complications. This study investigated whether curcumin treatment could alleviate hepatic IR in Wistar rats exposed to sub-chronic cadmium and explored the underlying molecular pathways. Male Wistar rats were divided into a control group (standard normocaloric diet + cadmium-free water) and a cadmium group (standard normocaloric diet + drinking water with 32.5 ppm CdCl2) for 30 days. Oral glucose tolerance, insulin response, and IR were assessed using mathematical models. Liver tissue was analyzed for markers of oxidative stress, inflammation, and key regulatory pathways, including NF-κB, Nrf2, MAPKs (JNK and p38), and the IRS1-Akt pathway. We established an effective curcumin dose of 250 mg/kg for 5 days orally. Results demonstrated that after 30 days of exposure, cadmium accumulated in the liver, inducing an oxidative and inflammatory state. This was characterized by increased expression of NF-κB, JNK, and p38, along with diminished Nrf2 expression, hepatic IR, hyperglycemia, and hyperinsulinemia. Curcumin treatment effectively alleviated these metabolic disorders by restoring the balance between NF-κB and Nrf2 in the liver, modulating the MAPK pathway, and, consequently, improving oxidative and inflammatory balance. In conclusion, this study suggests that cadmium induces hepatic IR through an imbalance between NF-κB and Nrf2 signaling pathways. Curcumin treatment appears to improve these pathways, thereby ameliorating hepatic IR.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
15
|
Niekerk LA, Gokul A, Basson G, Badiwe M, Nkomo M, Klein A, Keyster M. Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2793-2810. [PMID: 38650576 DOI: 10.1111/pce.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mihlali Badiwe
- Plant Pathology Department, AgriScience Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, KwaDlangezwa, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
16
|
Chargui A. Lysine-63-linked polyubiquitination: a principal target of cadmium carcinogenesis. Toxicol Res 2024; 40:349-360. [PMID: 38911543 PMCID: PMC11187039 DOI: 10.1007/s43188-024-00236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 06/25/2024] Open
Abstract
Cadmium is an environmental pollutant that constitutes a major danger to human health. It is considered a definite human carcinogen. The lung and kidney are the most sensitive organs for cancer development, and we recently provided the first evidence of direct upregulation of lysine-63-linked polyubiquitination by cadmium, particularly in response to environmentally relevant concentrations. Investigations of K63 polyubiquitination have greatly progressed, and various strategies have been reported for studying this molecular process in different biological systems under both physiological and stress conditions. Furthermore, the mechanisms underlying cadmium-induced accumulation of K63-polyubiquitinated proteins in lung and renal cells continue to be of interest given the unknown mechanism involved in the carcinogenesis of this metal. Cadmium is persistent within the cytosol and induces oxidative stress, which continuously damages proteins and causes K63 polyubiquitination, leading to the regulation/activation of different cellular signaling pathways. The aim of this review was to perform a critical analysis of the knowledge about K63 polyubiquitination induced by cadmium and its effect on selective autophagy, CYLD, the NF-KB pathway and Hif-1α. We also report data obtained in different experimental studies using cadmium, highlighting similarities in the induction of the ubiquitination system. A more detailed discussion will concern the role of K63 polyubiquitination in cadmium-exposed renal proximal convoluted tubules and lung cells since they are suitable model systems that are extremely sensitive to environmental stress, and cadmium is one of the most carcinogenic metals to which humans are exposed. We ultimately concluded that K63 polyubiquitination may be the origin of cadmium carcinogenesis in the lung and kidney. Graphical Abstract Pathways of cadmium carcinogenesis: Cadmium mimics zinc and induces Lysine-63-linked polyubiquitination, which promotes three intracellular processes: (1) accumulation of ubiquitinated proteins, (2) stabilization of hypoxic inducible factor-1α and (3) activation of the nuclear factor-kappaB pathway, which results in the blockade of selective autophagy, angiogenesis, inflammation and cell proliferation.
Collapse
Affiliation(s)
- Abderrahmen Chargui
- Université de Jendouba, Ecole Supérieure d’Agriculture du Kef (ESAK), LR: Appui à la Durabilité des Systèmes de Production Agricoles du Nord-Ouest, 7119 Le Kef, Tunisie
| |
Collapse
|
17
|
Ingham JR, Donati GL, Douvris L, Bartzas G, Bussan DD, Douvris C. Commercially available mouthguards: Unearthing trace elements for the first time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172790. [PMID: 38677440 DOI: 10.1016/j.scitotenv.2024.172790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The use of mouthguards is advocated by the American Dental Association for orofacial injury prevention and teeth protection. However, the chemical environment in the mouth may cause harmful substances within the mouthguard's polymer material to leach out and be absorbed by the user. Considering this, the present study for the first time analyzed commercially available mouthguards and disclosed the presence of trace elements. Specifically, an analytical method was developed based on closed-vessel microwave-assisted digestion and plasma-based atomic spectrometry for determining toxic trace elements in mouthguard samples. Initially, 75 elements were assessed and, thereafter, quantified cadmium (Cd), copper (Cu) and lead (Pb) in each sample by inductively coupled plasma mass spectrometry (ICP-MS). Method validation was carried out by analyzing a certified reference material of Low-Density Polyethylene, and by addition and recovery experiments. Results for copper were further validated by ICP optical emission spectrometry (ICP-OES). While most samples exhibited elemental levels beneath the method's limit of quantification, Cd, Cu and Pb were detected in four samples. Remarkably, one sample had Cu levels exceeding safe limits by 109 times, highlighting potential toxicity risks. This initial research underscores the need for stricter contamination control in mouthguard materials to minimize potentially health hazards.
Collapse
Affiliation(s)
- Jesse R Ingham
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, NC 27109, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, NC 27109, USA
| | - Liliya Douvris
- Theobald Science Center, Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Georgios Bartzas
- School of Mining and Metallurgical Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., 157 80 Zografos, Athens, Greece
| | - Derek D Bussan
- Nistler College of Business and Public Administration, Department of Marketing, University of North Dakota, Grand Forks, ND 58202, USA
| | - Chris Douvris
- Theobald Science Center, Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA.
| |
Collapse
|
18
|
Guo C, Ruan J, Li Z, Fu H, Li K, Gong X, Gu X, Gu J, Shi H. Cadmium promoted LPS-induced inflammation through TLR4/IκBα/NFκ-B signaling by increasing ROS-mediated incomplete autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116405. [PMID: 38696874 DOI: 10.1016/j.ecoenv.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Cadmium (Cd) exposure is considered as non-infectious stressor to human and animal health. Recent studies suggest that the immunotoxicity of low dose Cd is not directly apparent, but disrupts the immune responses when infected with some bacteria or virus. But how Cd alters the adaptive immunity organ and cells remains unclear. In this study, we applied lipopolysaccharide (LPS, infectious stressor) to induced inflammation in spleen tissues and T cells, and investigated the effects after Cd exposure and the underlying mechanism. Cd exposure promoted LPS-induced the expressions of the inflammatory factors, induced abnormal initiation of autophagy, but blocked autophagic flux. The effects Cd exposure under LPS activation were reversed by the autophagy promoter Rapamycin. Under LPS activation conditions, Cd also induced oxidative stress by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and reducing total antioxidant capacity (T-AOC) activity. The increased superoxide dismutase (SOD) activity after Cd exposure might be a negative feedback or passive adaptive regulation of oxidative stress. Cd-increased autophagic flux inhibition and TNF-α expression were reversed by ROS scavenger α-tocopherol (TCP). Furthermore, under LPS activation condition, Cd promoted activation of toll-like receptor 4 (TLR4)/IκBα/NFκ-B signaling pathway and increased TLR4 protein stability, which were abolished by the pretreatment of Rapamycin. The present study confirmed that, by increasing ROS-mediated inhibiting autophagic degradation of TLR4, Cd promoted LPS-induced inflammation in spleen T cells. This study identified the mechanism of autophagy in Cd-aggravated immunotoxicity under infectious stress, which could arouse public attention to synergistic toxicity of Cd and bacterial or virus infection.
Collapse
Affiliation(s)
- Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Zehua Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Huilin Fu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, the Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Xin Gu
- King's Own Institute, Sydney 2000, Australia; The University of Newcastle, Callaghan 2308, Australia
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Verma M, Garg M, Khan AS, Yadav P, Rahman SS, Ali A, Kamthan M. Cadmium modulates intestinal Wnt/β-catenin signaling ensuing intestinal barrier disruption and systemic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116337. [PMID: 38640798 DOI: 10.1016/j.ecoenv.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/β-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/β-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/β catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
20
|
Sun J, Su F, Chen Y, Wang T, Ali W, Jin H, Xiong L, Ma Y, Liu Z, Zou H. Co-exposure to PVC microplastics and cadmium induces oxidative stress and fibrosis in duck pancreas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172395. [PMID: 38608882 DOI: 10.1016/j.scitotenv.2024.172395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangyu Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hengqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
21
|
Odediran A, Obeng-Gyasi E. Association between Combined Metals and PFAS Exposure with Dietary Patterns: A Preliminary Study. ENVIRONMENTS 2024; 11:127. [PMID: 39139369 PMCID: PMC11321592 DOI: 10.3390/environments11060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Background The global burden of chronic diseases has been increasing, with evidence suggesting that diet and exposure to environmental pollutants, such as per- and polyfluoroalkyl substances (PFAS) and heavy metals, may contribute to their development. The Dietary Inflammatory Index (DII) assesses the inflammatory potential of an individual's diet. However, the complex interplay between PFAS, heavy metals, and DII remains largely unexplored. Objective The goal of this cross-sectional study was to investigate the associations between diet operationalized as the DII with individual and combined lead, cadmium, mercury, perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) exposures using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Methods Descriptive statistics, a correlational analysis, and linear regression were initially used to assess the relationship between the variables of interest. We subsequently employed Bayesian kernel Machine regression (BKMR) to analyze the data to assess the non-linear, non-additive, exposure-response relationships and interactions between PFAS and metals with the DII. Results The multi-variable linear regression revealed significant associations between the DII and cadmium and mercury. Our BKMR analysis revealed a complex relationship between PFAS, metal exposures, and the DII. In our univariate exposure-response function plot, cadmium and mercury exhibited a positive and negative linear relationship, respectively, which indicated a positive and negative relationship across the spectrum of exposures with the DII. In addition, the bivariate exposure-response function between two exposures in a mixture revealed that cadmium had a robust positive relationship with the DII for different quantiles of lead, mercury, PFOA, and PFOS, indicating that increasing levels of cadmium are associated with the DII. Mercury's bivariate plot demonstrated a negative relationship across all quantiles for all pollutants. Furthermore, the posterior inclusion probability (PIP) results highlighted the consistent importance of cadmium and mercury with the inflammatory potential of an individual's diet, operationalized as the DII in our study, with both showing a PIP of 1.000. This was followed by PFOS with a PIP of 0.8524, PFOA at 0.5924, and lead, which had the lowest impact among the five environmental pollutants, with a PIP of 0.5596. Conclusion Our study suggests that exposures to environmental metals and PFAS, particularly mercury and cadmium, are associated with DII. These findings also provide evidence of the intricate relationships between PFAS, heavy metals, and the DII. The findings underscore the importance of considering the cumulative effects of multi-pollutant exposures. Future research should focus on elucidating the mechanistic pathways and dose-response relationships underlying these associations in a study that examines causality, which will enable a deeper understanding of the dietary risks associated with environmental pollutants.
Collapse
Affiliation(s)
- Augustina Odediran
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
22
|
Qu F, Zheng W. Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. TOXICS 2024; 12:388. [PMID: 38922068 PMCID: PMC11209188 DOI: 10.3390/toxics12060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Cadmium (Cd), a prevalent environmental contaminant, exerts widespread toxic effects on human health through various biochemical and molecular mechanisms. This review encapsulates the primary pathways through which Cd inflicts damage, including oxidative stress induction, disruption of Ca2+ signaling, interference with cellular signaling pathways, and epigenetic modifications. By detailing the absorption, distribution, metabolism, and excretion (ADME) of Cd, alongside its interactions with cellular components such as mitochondria and DNA, this paper highlights the extensive damage caused by Cd2+ at the cellular and tissue levels. The role of Cd in inducing oxidative stress-a pivotal mechanism behind its toxicity-is discussed with emphasis on how it disrupts the balance between oxidants and antioxidants, leading to cellular damage and apoptosis. Additionally, the review covers Cd's impact on signaling pathways like Mitogen-Activated Protein Kinase (MAPK), Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), and Tumor Protein 53 (p53) pathways, illustrating how its interference with these pathways contributes to pathological conditions and carcinogenesis. The epigenetic effects of Cd, including DNA methylation and histone modifications, are also explored to explain its long-term impact on gene expression and disease manifestation. This comprehensive analysis not only elucidates the mechanisms of Cd toxicity but also underscores the critical need for enhanced strategies to mitigate its public health implications.
Collapse
Affiliation(s)
- Fei Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China;
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Zhou C, Guo S, Gong P, Ba Q, Yao W. Nano-Selenium Alleviates Cd-Induced Chronic Colitis through Intestinal Flora. Nutrients 2024; 16:1330. [PMID: 38732577 PMCID: PMC11085897 DOI: 10.3390/nu16091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cadmium (Cd) is an environmental contaminant that poses risks to human and animal health. Selenium (Se), a beneficial element, alleviates the detrimental consequences of colitis and Cd toxicity. Se is found in food products as both inorganic Se (sodium selenite) and organic Se (typically Se-enriched yeast). Nano-selenium (nano-Se; a novel form of Se produced through the bioreduction of Se species) has recently garnered considerable interest, although its effects against Cd-induced enterotoxicity are poorly understood. The aim of this study was to investigate the impact of nano-selenium on mitigating cadmium toxicity and safeguarding the integrity of the intestinal barrier. METHODS For a total of two cycles, we subjected 6-week-old C57 mice to chronic colitis by exposing them to Cd and nano-selenium for two weeks, followed by DSS water for one week. RESULTS The application of nano-selenium mitigated the intensity of colitis and alleviated inflammation in the colon. Nano-selenium enhanced the diversity of the intestinal flora, elevated the concentration of short-chain fatty acids (SCFAs) in feces, and improved the integrity of the intestinal barrier. CONCLUSIONS In summary, nano-Se may reduce intestinal inflammation by regulating the growth of intestinal microorganisms and protecting the intestinal barrier.
Collapse
Affiliation(s)
- Chengdong Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
| | - Shengliang Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
| | - Qian Ba
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai 200071, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai 200071, China
| |
Collapse
|
24
|
Guo W, Zhang J, Zhang X, Ren Q, Zheng G, Zhang J, Nie G. Environmental cadmium exposure perturbs systemic iron homeostasis via hemolysis and inflammation, leading to hepatic ferroptosis in common carp (Cyprinus carpio L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116246. [PMID: 38537478 DOI: 10.1016/j.ecoenv.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 μg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jinjin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
25
|
Chiu LC, Lee CS, Hsu PC, Li HH, Chan TM, Hsiao CC, Kuo SCH, Ko HW, Lin SM, Wang CH, Lin HC, Chu PH, Yen TH. Urinary cadmium concentration is associated with the severity and clinical outcomes of COVID-19: a bicenter observational cohort study. Environ Health 2024; 23:29. [PMID: 38504259 PMCID: PMC10949676 DOI: 10.1186/s12940-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Cadmium and nickel exposure can cause oxidative stress, induce inflammation, inhibit immune function, and therefore has significant impacts on the pathogenesis and severity of many diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also provoke oxidative stress and the dysregulation of inflammatory and immune responses. This study aimed to assess the potential associations of cadmium and nickel exposure with the severity and clinical outcomes of patients with coronavirus disease 2019 (COVID-19). METHODS We performed a retrospective, observational, bicenter cohort analysis of patients with SARS-CoV-2 infection in Taiwan between June 2022 and July 2023. Cadmium and nickel concentrations in blood and urine were measured within 3 days of the diagnosis of acute SARS-CoV-2 infection, and the severity and clinical outcomes of patients with COVID-19 were analyzed. RESULTS A total of 574 patients were analyzed and divided into a severe COVID-19 group (hospitalized patients) (n = 252; 43.9%), and non-severe COVID-19 group (n = 322; 56.1%). The overall in-hospital mortality rate was 11.8% (n = 68). The severe COVID-19 patients were older, had significantly more comorbidities, and significantly higher neutrophil/lymphocyte ratio, C-reactive protein, and interleukin-6 than the non-severe COVID-19 patients (all p < 0.05). Blood and urine cadmium and urine nickel concentrations were significantly higher in the severe COVID-19 patients than in the non-severe COVID-19 patients. Among the severe COVID-19 patients, those in higher urine cadmium/creatinine quartiles had a significantly higher risk of organ failure (i.e., higher APACHE II and SOFA scores), higher neutrophil/lymphocyte ratio, lower PaO2/FiO2 requiring higher invasive mechanical ventilation support, higher risk of acute respiratory distress syndrome, and higher 60-, 90-day, and all-cause hospital mortality (all p < 0.05). Multivariable logistic regression models revealed that urine cadmium/creatinine was independently associated with severe COVID-19 (adjusted OR 1.643 [95% CI 1.060-2.547], p = 0.026), and that a urine cadmium/creatinine value > 2.05 μg/g had the highest predictive value (adjusted OR 5.349, [95% CI 1.118-25.580], p = 0.036). CONCLUSIONS Urine cadmium concentration in the early course of COVID-19 could predict the severity and clinical outcomes of patients and was independently associated with the risk of severe COVID-19.
Collapse
Affiliation(s)
- Li-Chung Chiu
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsien Li
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tien-Ming Chan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Scott Chih-Hsi Kuo
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - How-Wen Ko
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Cardiology, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, No. 5, Fu-Shing St., GuiShan, Taoyuan, 33305, Taiwan.
- Clinical Poison Center, Center for Tissue Engineering, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| |
Collapse
|
26
|
Li Y, Liu J, Ran N, Zheng C, Wang P, Li J, Fang Y, Fang D, Ma Y. Potential pathological mechanisms and pharmacological interventions for cadmium-induced miscarriage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116118. [PMID: 38367606 DOI: 10.1016/j.ecoenv.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
The prevalence of cadmium (Cd) contamination has emerged as a significant global concern. Exposure to Cd during pregnancy is associated with adverse pregnancy outcomes, including miscarriage. However, there is currently a lack of comprehensive summaries on Cd-induced miscarriage. Therefore, it is imperative to further strengthen research into in vivo studies, clinical status, pathological mechanisms, and pharmacological interventions for Cd-induced miscarriage. This study systematically presents the current knowledge on animal models and clinical trials investigating Cd exposure-induced miscarriage. The underlying mechanisms involving oxidative stress, inflammation, endocrine disruption, and placental dysfunction caused by Cd-induced miscarriage are also extensively discussed. Additionally, potential drug interventions such as melatonin, vitamin C, and vitamin E are highlighted for their pharmacological role in mitigating adverse pregnancy outcomes induced by Cd.
Collapse
Affiliation(s)
- Yufei Li
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Juan Liu
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing 100013, China
| | - Na Ran
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Changwu Zheng
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - PingPing Wang
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Jiayi Li
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Yumeng Fang
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Danna Fang
- Medical College, Shaoxing University, Zhejiang 312000, China
| | - Yeling Ma
- Medical College, Shaoxing University, Zhejiang 312000, China.
| |
Collapse
|
27
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
28
|
Yang H, Mo A, Yi L, Wang J, He X, Yuan Y. Selenium attenuated food borne cadmium-induced intestinal inflammation in red swamp crayfish (Procambarus clarkii) via regulating PI3K/Akt/NF-κB pathway. CHEMOSPHERE 2024; 349:140814. [PMID: 38040256 DOI: 10.1016/j.chemosphere.2023.140814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Selenium (Se), an indispensable micronutrient for living organisms, has been extensively studied for its heavy metal-detoxifying properties in diverse biological systems and tissues. Nevertheless, it is not entirely certain whether Se can effectively protect against Cadmium (Cd)-induced gut inflammation, especially in aquatic animals. In this study, we employed various approaches, including transcriptome profiling, histological examinations, assessment of antioxidant enzyme activities, and analysis of gut microbiota composition to investigate the effects on crayfish growth and intestinal health after exposure to dietary Cd (15 mg kg-1 diet) and Se (15 mg kg-1 diet) individually or in combination for 8 weeks. The results revealed that dietary Cd exposure resulted in reduced body weight and survival rates, along with an increased occurrence of intestinal inflammation. Nevertheless, Se supplementation proved effective in mitigating the adverse effects of Cd on growth and gut health. Se exhibited a remarkable ability to counteract the disruption of gut antioxidant abilities induced by dietary Cd, as evidenced by the observed increases in ROS and MDA contents, decrease in GSH levels, and inhibition of antioxidative enzyme activities. At the concentration of 6 mg kg-1 in the diet, Se was found beneficial for maintaining gut microbiota richness and diversity. Among them, Flavobacterium, Thermomonas, and Chloronema displayed a weak negative correlation with the rate of gut inflammation. Meanwhile, the levels of short chain fatty acids (SCFAs), including acetic acid (AA) and butanoic acid (BA), showed a significant increase in the Se-Cd group compared to the Cd-only group. Furthermore, transcriptome analysis exhibited significant responses of the PI3K/Akt and NF-κB pathways following crayfish exposure to dietary Se and Cd, either separately or in combination. In short, this study provides a new evidence regarding the molecular mechanisms through which Se could regulate the PI3K/Akt and NF-κB pathways, either directly or indirectly via ROS and SCFAs, thereby alleviating Cd-induced gut inflammation in crayfish.
Collapse
Affiliation(s)
- Huijun Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Linyuan Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
Albekairi TH, Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almanaa TN, Alwetaid MY, Alqinyah M, Alnefaie HO, Ahmad SF. Cadmium exposure exacerbates immunological abnormalities in a BTBR T + Itpr3 tf/J autistic mouse model by upregulating inflammatory mediators in CD45R-expressing cells. J Neuroimmunol 2024; 386:578253. [PMID: 38064869 DOI: 10.1016/j.jneuroim.2023.578253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.
Collapse
Affiliation(s)
- Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
30
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Devalloir Q, Fritsch C, Alchammas Y, Raoul F, Driget V, Amiot C, Ozaki S, van den Brink N, Scheifler R. Environmental pollution and nutritional quality modulate immune response of the wood mouse (Apodemus sylvaticus) through hormonal disturbances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122100. [PMID: 37392867 DOI: 10.1016/j.envpol.2023.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Cadmium (Cd) and lead (Pb) are known to enhance immune cell damages and to decrease cellular immunity, promoting higher susceptibility to infectious diseases. Selenium (Se) is an essential element involved in immunity and reactive oxygen species scavenging. This study aimed at evaluating how Cd and Pb and low nutritional (Se) quality modulate immune response to a bacterial lipopolysaccharide (LPS) challenge in wood mice (Apodemus sylvaticus). Mice were trapped near a former smelter in northern France in sites of High or Low contamination. Individuals were challenged immediately after capture or after five days of captivity, fed a standard or a Se-deficient diet. Immune response was measured with leukocyte count and plasma concentration of TNF-α, a pro-inflammatory cytokine. Faecal and plasma corticosterone (CORT), a stress-hormone involved in anti-inflammatory processes, was measured to assess potential endocrine mechanisms. Higher hepatic Se and lower faecal CORT were measured in free-ranging wood mice from High site. LPS-challenged individuals from High site showed steeper decrease of circulating leukocytes of all types, higher TNF-α concentrations, and a significant increase of CORT, compared to individuals from Low site. Challenged captive animals fed standard food exhibited similar patterns (decrease of leukocytes, increase of CORT, and detectable levels of TNF-α), with individuals from lowly contaminated site having higher immune responses than their counterparts from highly polluted site. Animals fed Se-deficient food exhibited lymphocytes decrease, no CORT variation, and average levels of TNF-α. These results suggest (i) a higher inflammatory response to immune challenge in free-ranging animals highly exposed to Cd and Pb, (ii) a faster recovery of inflammatory response in animals lowly exposed to pollution when fed standard food than more exposed individuals, and (iii) a functional role of Se in the inflammatory response. The role of Se and mechanisms underlying the relationship between glucocorticoid and cytokine remain to be elucidated.
Collapse
Affiliation(s)
- Quentin Devalloir
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Yara Alchammas
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Francis Raoul
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Vincent Driget
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Caroline Amiot
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Shinji Ozaki
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France; UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Nico van den Brink
- Division of Toxicology, Wageningen University, 6700 EA, Wageningen, the Netherlands
| | - Renaud Scheifler
- UMR 6249 Chrono-environnement, CNRS / Université Bourgogne Franche-Comté, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| |
Collapse
|
32
|
Lee JW, Jo AH, Lee DC, Choi CY, Kang JC, Kim JH. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. ENVIRONMENTAL RESEARCH 2023; 236:116600. [PMID: 37429393 DOI: 10.1016/j.envres.2023.116600] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Cadmium (Cd) in aquatic environments can cause environmental toxicity to fish and induce oxidative stress owing to an excessive production of reactive oxygen species in fish bodies. Fish have developed various antioxidant systems to protect themselves from reactive oxygen species; thus, a change in antioxidant responses in fish can be a criterion for evaluating oxidative stress resulting from Cd exposure. Because Cd exposure may be recognized as an exogenous substance by a fish body, it may lead to the stimulation or suppression of its immune system. Various immune responses can be assessed to evaluate Cd toxicity in fish. This review aimed to identify the impacts of Cd exposure on oxidative stress and immunotoxicity in fish as well as identify accurate indicators of Cd toxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Ju-Wook Lee
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan, South Korea
| | - Deok-Chan Lee
- Shellfish Research Team, South Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyoung 53085, South Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
33
|
KORKMAZ Y, GUNGOR H, DEMIRBAS A, DIK B. Pomegranate peel extract, N-Acetylcysteine and their combination with Ornipural alleviate Cadmium-induced toxicity in rats. J Vet Med Sci 2023; 85:990-997. [PMID: 37495528 PMCID: PMC10539821 DOI: 10.1292/jvms.22-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Cadmium is a major environmental pollutant and a highly toxic metal. It was aimed to determine the effects of pomegranate peel extract (PPE), N-acetylcysteine (NAC) alone and along with Ornipural on cadmium-induced toxicity. Forty-six Wistar Albino male rats were divided into 6 groups and the groups were formed into healthy control, Cadmium group (5 mg/kg/day, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral), Cadmium + N-acetylcysteine (100 mg/kg, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous) and Cadmium + N-acetylcysteine (100 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous). Cadmium accumulated heavily in both liver and kidney tissue. The administration of N-acetylcysteine and pomegranate peel extract alone reduced cadmium levels in both tissues. N-acetylcysteine treatment prevented the increase in ALT and MDA levels by cadmium damage. N-acetylcysteine + Ornipural treatment inhibited the increase in liver 8-OHdG level in the liver. N-acetylcysteine and N-acetylcysteine + Ornipural treatments prevented the reduced serum MMP2 level. N-acetylcysteine and Pomegranate peel extract + Ornipural treatments significantly reduced the increased liver iNOS level in the liver. In conclusion, NAC therapy may be a successful treatment option for cadmium toxicity. However, further research is needed on the effects of PPE and Ornipural combinations for the treatment of cadmium toxicity. In future studies, various doses of these treatment options (with chelators) should be investigated for cadmium toxicity.
Collapse
Affiliation(s)
- Yasemin KORKMAZ
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hüseyin GUNGOR
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet DEMIRBAS
- Department of Plant and Animal Production, Sivas Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak DIK
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
34
|
Akash MSH, Yaqoob A, Rehman K, Imran M, Assiri MA, Al-Rashed F, Al-Mulla F, Ahmad R, Sindhu S. Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities. Front Mol Biosci 2023; 10:1218497. [PMID: 37484533 PMCID: PMC10357477 DOI: 10.3389/fmolb.2023.1218497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Heavy metals are the metal compounds found in earth's crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs.
Collapse
Affiliation(s)
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
35
|
Kong Z, Liu C, Olatunji OJ. Asperuloside attenuates cadmium-induced toxicity by inhibiting oxidative stress, inflammation, fibrosis and apoptosis in rats. Sci Rep 2023; 13:5698. [PMID: 37029128 PMCID: PMC10081990 DOI: 10.1038/s41598-023-29504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 04/09/2023] Open
Abstract
This present study investigated the protective effects of asperuloside (ASP) against cadmium-induced nephrocardiac toxicity. Rats were treated with 50 mg/kg of ASP for five weeks and CdCl2 (5 mg/kg, p.o., once daily) during the last 4 weeks of ASP treatment. The serum levels of blood urea nitrogen (BUN), creatinine (Scr), aspartate transaminase (AST), creatine kinase-MB (CK-MB), troponin T (TnT) and lactate dehydrogenase (LDH) were evealuted. Oxido-inflammatory parameters were detected via malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β) and nuclear factor kappa B (NF-κB). Additionally, the cardiorenal levels of caspase 3, transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), collagen IV and Bcl2 were measured by ELISA or immunohistochemical assays. The results indicated that ASP significantly decreased Cd-instigated oxidative stress, serum BUN, Scr, AST, CK-MB, TnT and LDH as well as histopathological alterations. Furthermore, ASP notably attenuated Cd-induced cardiorenal and apoptosis and fibrosis by reducing caspase 3 and TGF-β levels, as well as reducing the stain intensity of a-SMA and collagen IV, while increasing Bcl2 intensity. These results revealed that ASP attenuated Cd induced cardiac and renal toxicity which may be attributed to reducing oxidative stress, inflammation, fibrosis and apoptosis.
Collapse
Affiliation(s)
- Zhiyang Kong
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China
| | - Chunhong Liu
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China.
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand.
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
36
|
Tong X, Fu X, Yu G, Qu H, Zou H, Song R, Ma Y, Yuan Y, Bian J, Gu J, Liu Z. Polystyrene exacerbates cadmium-induced mitochondrial damage to lung by blocking autophagy in mice. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37022104 DOI: 10.1002/tox.23804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is an environmental heavy metal, and its accumulation is harmful to animal and human health. The cytotoxicity of Cd includes oxidative stress, apoptosis, and mitochondrial histopathological changes. Furthermore, polystyrene (PS) is a kind of microplastic piece derived from biotic and abiotic weathering courses, and has toxicity in various aspects. However, the potential mechanism of action of Cd co-treated with PS is still poorly unclear. The objective of this study was to investigate the effects of PS on Cd-induced histopathological injury of mitochondria in the lung of mice. In this study, the results have showed that Cd could induce the activity of oxidative enzymes of the lung cells in mice, increasing the content of partial microelement and the phosphorylation of inflammatory factor NF-κB p65. Cd further destroys the integrity of mitochondria by increasing the expression of apoptotic protein and blocking the autophagy. In addition, PS solely group aggravated the lung damage in mice, especially mitochondrial toxicity, and played a synergistic effect with Cd in lung injury. However, how PS can augment mitochondrial damage and synergism with Cd in lung of mice requiring further exploration. Therefore, PS was able to exacerbate Cd-induced mitochondrial damage to the lung in mice by blocking autophagy, and was associated with the apoptosis.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaohui Fu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Gengsheng Yu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Huayi Qu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Hui Zou
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Ruilong Song
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yonggang Ma
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yan Yuan
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianchun Bian
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Zongping Liu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| |
Collapse
|
37
|
Kuznetsov D, Krylsky D, Dezhurov S, Grachev A, Neschisliaev V, Orlova E, Kuznetsova A. Quantum dots are time bomb: Multiscale toxicological study. Chem Biol Interact 2023; 374:110396. [PMID: 36764372 DOI: 10.1016/j.cbi.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The use of quantum dots has spread widely into many applications. Works on the study of quantum dots on living organisms have had conflicting results on toxicity. There are no full-scale long-term toxicological studies with multiple administration of quantum dots. Understanding the toxicity of quantum dots is still limited. Here we present data on the effects of quantum dots on animals. In this work for the first time, it is shown that at a single administration of quantum dots in the body they have moderate species-specific toxicity, but repeated administration of quantum dots for 14 days even in the amount of 0.5 mg/kg leads to a delayed not completely irreversible hematotoxic effect, delayed irreversible disorders of barrier function of the liver, irreversible nephrotoxic effect, and to pathological changes in the thymus, kidneys and spleen. Administration of quantum dots in the amount of 2.5 mg/kg for 14 days leads to irreversible changes in the lungs, liver, spleen, kidneys and thyroid gland. This phenomenon is based on immunological reactions. On the one hand, these data confirm that quantum dots at a single administration can show relatively low toxicity. On the other hand, they cause to a delayed irreversible organ and tissue damage when repeatedly administered to the body even in small quantities. This study demonstrates that quantum dots are not as low in toxicity as previously thought to be and pose a serious risk when entering living organisms. Detecting and treating poisoning using standard methods of diagnosis and treatment of heavy metal poisoning may not be effective. This study demonstrates that toxic effects of quantum dots on a living body are quite complex and cannot be generalized based on previously reported assumptions.
Collapse
Affiliation(s)
- Denis Kuznetsov
- G.N. Gabrichevsky Scientific and Research Institute of Epidemiology and Microbiology, 10, Admirala Makarova str., Moscow, 125212, Russia.
| | - Dmitriy Krylsky
- Research Institute of Applied Acoustics, Center of High Technologies, 7A, 9 Maya, Dubna, 141980, Russia
| | - Sergey Dezhurov
- Research Institute of Applied Acoustics, Center of High Technologies, 7A, 9 Maya, Dubna, 141980, Russia
| | - Alexei Grachev
- Institute of Carcinogenesis, Cancer Research Center of N.N. Blokhin, Kashirskoe sh. 24, Moscow, 115478, Russia
| | | | - Ekaterina Orlova
- Perm State Pharmaceutical Academy, Polevaya str. 2, 614000, Perm, Russia
| | | |
Collapse
|
38
|
Dashtbanei S, Keshtmand Z. A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics Antimicrob Proteins 2023; 15:226-238. [PMID: 35819625 DOI: 10.1007/s12602-022-09946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Cadmium (Cd) produces severe oxidative stress, which can result in serious clinical consequences and tissue injury. The aim of the present survey was to investigate the protective effects of native Iranian probiotics (Lactobacillus rhamnosus, L. helveticus, and L. casei) against cadmium (Cd)-induced toxicity against the small intestine and lung at histopathological and biochemical levels. MATERIALS AND METHODS Twenty-one adult male Wistar rats were randomized into three groups of seven rats (control, Cd-treated (3 mg/kg), and concomitant Cd and mix probiotic treatment for 30 days). Histological alterations were appraised via hematoxylin & eosin, Trichrome Masson, and PAS staining. The qRT-PCR technique was applied to assess the expression of pro-apoptotic, anti-apoptotic, and pro-inflammatory genes. Antioxidant enzymes activity was measured via ZellBio kits. RESULTS Probiotic-treated rats displayed low production of lipid peroxides, reduced malondialdehyde (MDA) level, and elevated contents of superoxide dismutase (SOD) and catalase (CAT) enzymes compared with Cd-treated rats. The results of qRT-PCR demonstrated the up-regulation of Bax, p53, and caspase 3 and down-regulation of Bcl2, TNF-α, and IL-6 genes in both the intestine and lungs of mix probiotic-treated rats compared with Cd-treated animals. Histopathological findings revealed that the probiotic formulation improved Cd-triggered tissue damage in the intestine and lungs. CONCLUSION The strong cytoprotective benefits of Iranian probiotics against Cd-induced tissue injury observed in this study may be due to their anti-inflammatory and antioxidant properties. Therefore, additional clinical and experimental research is required to explain the precise mechanisms of probiotics' beneficial impacts and underline their potential therapeutic use.
Collapse
Affiliation(s)
- Shadi Dashtbanei
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
39
|
Petitjean Q, Laffaille P, Perrault A, Cousseau M, Jean S, Jacquin L. Adaptive plastic responses to metal contamination in a multistress context: a field experiment in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55678-55698. [PMID: 36894734 DOI: 10.1007/s11356-023-26189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Wild populations often differ in their tolerance to environmental stressors, but intraspecific variability is rarely taken into account in ecotoxicology. In addition, plastic responses to multiple stressors have rarely been investigated in realistic field conditions. In this study, we compared the responses to metal contamination of gudgeon populations (Gobio occitaniae) differing in their past chronic exposure to metal contamination, using a reciprocal transplant experiment and an immune challenge mimicking a parasite attack to test for potential effects of multiple stressors across biological levels. We measured fish survival and traits involved in metal bioaccumulation, oxidative stress, immunity, cell apoptosis, and energy management to decipher underpinning physiological mechanisms across biological levels (i.e., gene expression, cell, organism). Fish from the two replicate High Contamination sites had higher survival when transferred into contaminated sites, suggesting a local adaptation to the contaminated site, possibly explained by higher levels of detoxification and antioxidant capacity but with potential higher apoptosis costs compared to their naïve counterparts. We found no evidence of co- or maladaptation to the immune stressor, suggesting no specific costs to face pathogens. In the emerging field of evolutionary ecotoxicology, this study underlines the need to consider intraspecific variability to better understand the effects of pollution in heterogeneous populations.
Collapse
Affiliation(s)
- Quentin Petitjean
- Laboratoire Ecologie Fonctionnelle et Environnement, UMR5245 LEFE, Université de Toulouse, UPS, CNRS, INP-ENSAT, Auzeville-Tolosane, France.
- Laboratoire Evolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, UPS, CNRS, IRD, Toulouse, France.
- Long-Term Socio-Ecological Research Platform LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France.
- Institut Sophia Agrobiotech, UMR1355 INRAE, UMR7254 CNRS, Université Côte d'Azur, Sophia-Antipolis, France.
| | - Pascal Laffaille
- Laboratoire Ecologie Fonctionnelle et Environnement, UMR5245 LEFE, Université de Toulouse, UPS, CNRS, INP-ENSAT, Auzeville-Tolosane, France
| | - Annie Perrault
- Laboratoire Ecologie Fonctionnelle et Environnement, UMR5245 LEFE, Université de Toulouse, UPS, CNRS, INP-ENSAT, Auzeville-Tolosane, France
| | - Myriam Cousseau
- Laboratoire Ecologie Fonctionnelle et Environnement, UMR5245 LEFE, Université de Toulouse, UPS, CNRS, INP-ENSAT, Auzeville-Tolosane, France
| | - Séverine Jean
- Laboratoire Ecologie Fonctionnelle et Environnement, UMR5245 LEFE, Université de Toulouse, UPS, CNRS, INP-ENSAT, Auzeville-Tolosane, France
- Long-Term Socio-Ecological Research Platform LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| | - Lisa Jacquin
- Laboratoire Evolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, UPS, CNRS, IRD, Toulouse, France
- Long-Term Socio-Ecological Research Platform LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
40
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
41
|
Li H, Liu Y, Zhou J, Liu S, Liu Y, Yang Y, Wang W, Che Y, Inam M, Guan L. The protective mechanism of a novel polysaccharide from Lactobacillus-fermented Nostoc commune Vauch. on attenuating cadmium-induced kidney injury in mice. Int J Biol Macromol 2023; 226:1444-1454. [PMID: 36442563 DOI: 10.1016/j.ijbiomac.2022.11.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A novel polysaccharide (NCVP-F) from Lactobacillus-fermented Nostoc commune Vauch. was obtained to investigate its underlying mechanism in cadmium-induced kidney injury. Results indicated that in comparison with NCVP, NCVP-F with lower molecular weight of 365.369 kDa, exhibited higher mole percentage of Man and Glc-UA, whereas slightly lower mole percentage of other monosaccharides. NCVP-F is a α-pyran polysaccharide similar to NCVP. Meanwhile, NCVP-F can more effectively alleviate hepatorenal injury (ALT, AST, TG, BUN and SCr) and kidney tissue lesions in Cd-injured mice model by increasing antioxidant enzyme activity (SOD, GSH and GSH-Px), inhibiting cytokines levels (IL-6, IL-1β, TNF-α and IL-18). In addition, NCVP-F effectively inhibited apoptosis proteins (Bax, cytochrome c, a-caspase-9 and a-caspase-3) and enhanced anti-apoptotic protein (Bcl-2) probably via activating PI3K/AKT/mTOR pathway in the Cd-injury kidney. Furthermore, 16S rRNA sequencing results indicated that NCVP-F better enriched Lachnospiraceae, reduced Muribaculaceae, Alloprevotella and Blautia to regulate Cd-induced gut microbiota disorders, which was probably down-regulated 7 pathways including apoptosis and lipopolysaccharide biosynthesis, and up-regulated 63 pathways, such as carbohydrate metabolism and lipid metabolism. This study suggested that applying functional NCVP-F prepared by biotransformation with low molecular weight might be more beneficial.
Collapse
Affiliation(s)
- Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Su Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yue Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Muhammad Inam
- Department of Animal Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Pakistan
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
42
|
The Impact of Long-Term Clinoptilolite Administration on the Concentration Profile of Metals in Rodent Organisms. BIOLOGY 2023; 12:biology12020193. [PMID: 36829471 PMCID: PMC9952783 DOI: 10.3390/biology12020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Heavy metals are dangerous systemic toxicants that can induce multiple organ damage, primarily by inducing oxidative stress and mitochondrial damage. Clinoptilolite is a highly porous natural mineral with a magnificent capacity to eliminate metals from living organisms, mainly by ion-exchange and adsorption, thus providing detoxifying, antioxidant and anti-inflammatory medicinal effects. The in vivo efficiency and safety of the oral administration of clinoptilolite in its activated forms, tribomechanically activated zeolite (TMAZ) and Panaceo-Micro-Activated (PMA) zeolite, as well as the impact on the metallic biodistribution, was examined in healthy female rats. Concentration profiles of Al, As, Cd, Co, Pb, Ni and Sr were measured in rat blood, serum, femur, liver, kidney, small and large intestine, and brain using inductively coupled plasma mass spectrometry (ICP-MS) after a 12-week administration period. Our results point to a beneficial effect of clinoptilolite materials on the concentration profile of metals in female rats supplemented with the corresponding natural clinoptilolite materials, TMAZ and PMA zeolite. The observed decrease of measured toxicants in the kidney, femur, and small and large intestine after three months of oral intake occurred concomitantly with their most likely transient release into the bloodstream (serum) indicative of a detoxification process.
Collapse
|
43
|
Tanveer Y, Jahangir S, Shah ZA, Yasmin H, Nosheen A, Hassan MN, Illyas N, Bajguz A, El-Sheikh MA, Ahmad P. Zinc oxide nanoparticles mediated biostimulant impact on cadmium detoxification and in silico analysis of zinc oxide-cadmium networks in Zea mays L. regulome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120641. [PMID: 36372365 DOI: 10.1016/j.envpol.2022.120641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) toxicity can significantly limit plant growth and development. To eliminate the toxic effects of Cd stress, we intended to evaluate the biochemical mediated physiological responses in maize treated with biostimulant and zinc oxide nanoparticles (ZnPs). In silico analysis exhibited that the maize treated with Cd stress (200 μM) had an adverse impact on CAT1, CAT2, CAT3 and gor1 proteins, which are influential in managing the machinery of redox homeostasis. While maize inoculated with bacteria-based biostimulant and ZnPs (10 ppm) showed prominently improved biomass, chlorophyll a, b and carotenoid content. We found a significant increase in the total sugar, protein, proline content and antioxidants under the effect of Cd stress. However, these parameters are further enhanced by applying biostimulants and ZnPs. Declined lipid peroxidation and membrane solubilization index under the effect of biostimulant and ZnPs was observed. Furthermore, these treatments improved maize's zinc, copper, sodium, magnesium, iron, potassium and calcium content. Based on these results, an antagonistic relationship between Zn and Cd uptake that triggered efficient Cd detoxification in maize shoot was found. Scanning electron micrography showed distorted leaf structure of the Cd stressed plants while the biostimulant and ZnPs reduced the structural cell damage of maize leaves. In silico study showed that ZnO positively regulates all protein interactors, including GRMZM2G317386_P01 (Metallo endo proteinase 1-MMP), GRMZM2G110220_P01 (Metallo endo proteinase 5-MMP), GRMZM2G103055_P01 (Alpha-amylase) and GRMZM2G006069_P01 (Zn-dependent exo peptidase superfamily) proteins which are involved in energy generating processes, channels formation, matrix re-localization and stress response. This suggests that ZnO offers an ideal role with protein interactors in maize. Our findings depict that these treatments, i.e., biostimulant and ZnPs alone, are efficient enough to exhibit Cd remediation potential in maize; however, their combination showed synergistic effects.
Collapse
Affiliation(s)
- Yashfa Tanveer
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad, 45550, Pakistan
| | - Saman Jahangir
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad, 45550, Pakistan
| | - Zafar Abbas Shah
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad, 45550, Pakistan.
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad, 45550, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Chak Shahzad, Islamabad, 45550, Pakistan
| | - Noshin Illyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Andrzej Bajguz
- Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
44
|
Mitra P, Goyal T, Sharma P, Sai Kiran G, Rana S, Sharma S. Plasma microRNA expression and immunoregulatory cytokines in an Indian population occupationally exposed to cadmium. J Biochem Mol Toxicol 2023; 37:e23221. [PMID: 36094808 DOI: 10.1002/jbt.23221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Following its accumulation in the body, cadmium (Cd) exposure is associated with devastating effects on multiple organ system of the human body. The immune system is one of the sensitive targets for Cd-induced toxicity. Recently, studies have demonstrated a significant role of Cd in inducing epigenetic alterations. With this background, the present study was planned to study the changes in candidate microRNA (miRNA) expression associated with immune regulation in occupationally Cd-exposed workers. One hundred individuals involved in welding and metal handicraft manufacturing, while 80 apparently healthy subjects without any prior history of occupational exposure were recruited for the study. Blood Cd level was determined by atomic absorption spectrometry. Serum cytokine levels were measured using an enzyme-linked immunosorbent assay and serum miRNA expression of candidate miRNAs (miR-146a, miR-210, and miR-222) were determined by real-time polymerase chain reaction. The median Cd level (2.40 μg/L) in the occupationally exposed workers was significantly higher than the nonexposed subjects (0.90 μg/L). Among the cytokines, interleukin-4 (IL-4), and tumor necrosis factor-alpha (TNF-α) were significantly higher while IL-2 and IL-10 were significantly lower in the exposed. The expression level of miR-146a and miR-222 were significantly different between the groups with the former showing downregulation and later showing upregulation. Correlation analysis revealed a positive and negative association of miR-222 and miR-146a with blood cadmium level, IL-17 as well as TNF-α, respectively. Furthermore, the in-silico analysis revealed a significant role of the studied miRNAs in various cellular and genetic pathways. The findings of the present study demonstrate significant involvement of Cd-induced alteration in miRNAs in varied immune regulatory changes in exposed individuals.
Collapse
Affiliation(s)
- Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.,Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.,Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Gangam Sai Kiran
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Shweta Rana
- Environmental Studies, Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
45
|
Omar UM, Elmorsy EM, Al-Ghafari AB. Mitochondrial disruption in isolated human monocytes: an underlying mechanism for cadmium-induced immunotoxicity. J Immunotoxicol 2022; 19:81-92. [PMID: 36067115 DOI: 10.1080/1547691x.2022.2113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cadmium (Cd) is an immunotoxic metal frequently found in the environment. The in vitro study undertaken here evaluated the immunotoxic effects of Cd in isolated human peripheral blood monocytes (hPBM). The results of the studies of exposures to varying doses of Cd (0, 0.1, 1, 10, and 100 µM, as cadmium dichloride [CdCl2]) for 3, 6, 12, 24, 48, and 72 hr showed the test agent was cytotoxic to the cells in time- and concentration-related manners. Thereafter, using only those doses found to not cause extreme cell lethality a 48-hr period, the impact of 0.1 or 1 µM CdCl2 on the cells was evaluated. Functionally, CdCl2 treatment led to time- and concentration-related decreases in hPBM phagocytic activities as well as in the ability of the cells to form/release cytokines (including tumor necrosis factor [TNF]-α and interleukin [IL]-6 and -8). The CdCl2 also led to significantly decreased ATP production (in part, via inhibition of mitochondrial complexes I and III) as well as in mitochondrial membrane potentials (MMP) and oxygen consumption rates (OCR; associated with parallel increases in cell lactate production) in the cells. In addition, CdCl2 treatment resulted in significant increases in mitochondrial membrane fluidity (MMF) and cell unsaturated fatty acid content. Based on the results here, one might conclude that some of the effects that arose during the CdCl2-induced dysfunction of the isolated hPBM (i.e. changes phagocytic activity, cytokine formation/secretion) could have evolved secondary to CdCl2-induced disruptions of hPBM cell bioenergetics - an effect that itself was a culmination of an overall toxicity from CdCl2 upon the mitochondria within these cells.
Collapse
Affiliation(s)
- Ulfat M Omar
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy M Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Research Center, Dar Al-Hekma University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, Brambila E, Treviño S. ROS and ERK Pathway Mechanistic Approach on Hepatic Insulin Resistance After Chronic Oral Exposure to Cadmium NOAEL Dose. Biol Trace Elem Res 2022:10.1007/s12011-022-03471-5. [PMID: 36348173 DOI: 10.1007/s12011-022-03471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cadmium is a critical toxic agent in occupational and non-occupational settings and acute and chronic environmental exposure situations that have recently been associated with metabolic disease development. Until now, the no observed adverse effect level (NOAEL) of cadmium has not been studied regarding insulin resistance development. Therefore, we aimed to monitor whether chronic oral exposure to cadmium NOAEL dose induces insulin resistance in Wistar rats and investigate if oxidative stress and/or inflammation are related. Male Wistar rats were separated into control (standard normocalorie diet + water free of cadmium) and cadmium groups (standard normocalorie diet + drinking water with 15 ppm CdCl2). At 15, 30, and 60 days, oral glucose tolerance, insulin response, and insulin resistance were analyzed using mathematical models. In the liver glycogen, triglyceride, pro- and anti-inflammatory cytokines, cadmium, zinc, metallothioneins, and redox balance were quantified. Immunoreactivity analysis of proteins involved in metabolic and mitogenic insulin signaling was performed. The results showed that a cadmium NOAEL dose after 15 days of exposure causes ROS and mitogenic arm of insulin signaling to increase while hepatic glycogen diminishes. At 30 days, Cd accumulation accentuated ROS production, hepatic triglyceride overaccumulation, and mitogenic signals that develop insulin resistance. Finally, inflammation and lipid peroxidation appear after 60 days of Cd exposure, while lipids and carbohydrate homeostasis deteriorate. In conclusion, environmental exposure to cadmium NAOEL dose causes hepatic Cd accumulation and ROS overproduction that chronically declines the antioxidant defense, deteriorates metabolic homeostasis associated with the mitogenic pathway of insulin signaling, and induces insulin resistance.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Chemistry Department, Meritorious Autonomous University of Puebla, 14 South, FCQ1, Ciudad Universitaria, C.P. 72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Chemistry Department, Meritorious Autonomous University of Puebla, 14 South, FCQ1, Ciudad Universitaria, C.P. 72560, Puebla, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, C.P. 72560, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Chemistry Department, Meritorious Autonomous University of Puebla, 14 South, FCQ1, Ciudad Universitaria, C.P. 72560, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Chemistry Department, Meritorious Autonomous University of Puebla, 14 South, FCQ1, Ciudad Universitaria, C.P. 72560, Puebla, Mexico.
| |
Collapse
|
47
|
Elazab ST, Hsu WH. Antagonism of cadmium-induced liver injury in ducks by α-bisabolol. Front Vet Sci 2022; 9:1024549. [PMID: 36419731 PMCID: PMC9676494 DOI: 10.3389/fvets.2022.1024549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Cadmium (Cd) is an ecological pollutant which causes hazardous effects in animals and humans. The aim of this study was to investigate the role of α-bisabolol (BISA) in antagonizing the Cd-induced hepatotoxicity in ducks. Two-week old ducks were allocated into 8 groups (10 ducks/group): Group I received basal diet and was gavaged with sunflower oil (BISA vehicle, 1.1 mL/kg/day); group II was administered BISA orally (50 mg/kg/day; diluted with sunflower oil); groups III, IV, and V were fed the basal diet mixed with CdCl2 at 37.5, 75, and 150 mg/kg diet, respectively, and were gavaged with sunflower oil; group VI, VII, and VIII were given basal diet containing CdCl2 at the aforementioned consecutive doses plus BISA. All treatments were provided daily for 4 weeks. Exposure to CdCl2 induced mortality in ducks, increased hepatic Cd content and serum levels of hepatopathic biomarkers, and caused oxidative stress and morphological alterations in ducks' liver. Furthermore, exposure to Cd caused upregulation of the mRNA of proinflammatory cytokine tumor necrosis factor-α and apoptotic gene Bax, and that of cyclooxygenase-2 protein in the liver. All effects of Cd were dose-dependent. BISA antagonized all of the aforementioned CdCl2-induced changes. These findings suggested that BISA exert the hepatoprotective effect against Cd toxicity through reducing the hepatic content of Cd as well as antagonizing oxidative insults, inflammation, and apoptosis. Thus, BISA has a great potential to be used as an antidote in the control of Cd poisoning.
Collapse
Affiliation(s)
- Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walter H. Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
48
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Eduardo B, Samuel T. Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biol Trace Elem Res 2022; 200:4370-4384. [PMID: 34846673 DOI: 10.1007/s12011-021-03027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3β-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, Autonomous University of Puebla, 22 South, FC91, University City, C.P. 72560, Puebla, Mexico
| | - Brambila Eduardo
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Treviño Samuel
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico.
| |
Collapse
|
49
|
Abdul Haddi AA, Ja’afar MH, Ismail H. Association between lung function impairment with urinary heavy metals in a community in Klang Valley, Malaysia. PeerJ 2022; 10:e13845. [PMID: 35966922 PMCID: PMC9373978 DOI: 10.7717/peerj.13845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Lung function status can be directly or indirectly affected by exposure to pollutants in the environment. Urinary heavy metals may be an indirect indicator of lung function impairment that leads to various diseases such as chronic obstructive pulmonary disease (COPD). This study aimed to explore the prevalence of lung function impairment as well as its association with urinary heavy metal levels and other influencing factors among the community in Klang Valley, Malaysia. Urinary sampling was done during various community events in the housing areas of Klang Valley between March and October 2019. Only respondents who consented would undergo a lung function test. Urine samples were obtained and sent for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. Of the 200 recruited respondents, 52% were male and their ages ranged from 18 years old to 74 years old with a mean age of 38.4 ± 14.05 years. Urinary samples show high urinary Cd level in 12% of the respondents (n = 24) whereas none recorded a high urinary Pb level. There was a positive correlation between the levels of urinary Cd and urinary Pb (r = 0.303; p = 0.001). Furthermore, a negative correlation was detected between urinary Cd level and forced vital capacity (FVC) (r = - 0.202, p = 0.004), force expiratory volume at the first second (FEV1) (r = - 0.225, p = 0.001), and also force expiratory flow between 25-75% of FVC (FEF 25-75%) (r = - 0.187, p = 0.008). However, urinary Pb did not show any correlation with lung function parameters. Multiple linear regression analysis showed that urinary Cd had a significant negative effect on FVC (p = 0.025) and FEV1 (p = 0.004) based on the predicted value. Additionally, other factors such as education level (p = 0.013) also influenced lung function. However, no interaction was detected between heavy metals or other factors. In short, there was a significant negative linear relationship between urinary Cd and lung function, whereas urinary Pb was not associated with lung function. Beside acting as a biomarker for cadmium exposure level, urinary Cd may also be applied as indirect biomarker for asymptomatic chronic lung function deterioration among the healthy population.
Collapse
Affiliation(s)
- Ammar Amsyar Abdul Haddi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia,Ministry of Health, Putrajaya, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Halim Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Xing H, Liu Q, Hou Y, Tian Z, Liu J. Cadmium mediates pyroptosis of human dermal lymphatic endothelial cells in a NLRP3 inflammasome-dependent manner. J Toxicol Sci 2022; 47:237-247. [PMID: 35650140 DOI: 10.2131/jts.47.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pyroptosis is a form of inflammasome-trigged programmed cell death in response to a variety of stimulators, including environmental cytotoxic pollutant Cadmium (Cd). Vascular endothelial cell is one of the first-line cell types of Cd cell toxicity. Studies report that Cd exposure causes pyroptosis in vascular endothelial cells. Vascular and lymphatic endothelial cells have many common properties, but these two cell types are distinguished in gene expression profile and the responsive behaviors to chemokine or physical stimulations. Whether Cd exposure also causes pyroptosis in lymphatic endothelial cells has not been investigated. Here, we found that Cd treatment significantly decreased the viability of human dermal lymphatic endothelial cells (HDLECs). Cd treatment induced inflammasome activation indicated by elevated cleavage of pro-caspase-1 into active form Casp1p20, elevated secretion of pro-inflammatory cytokines and production of reactive oxygen species (ROS). Flow cytometry showed that caspase-1 activity was significantly increased in Cd-treated cells. Moreover, knockdown of NLRP3 effectively rescued Cd-induced inflammasome activation and pyroptosis in HDLECs. Collectively, our results indicated that Cd induced pyroptosis in a NLRP3 inflammasome-dependent manner in lymphatic endothelial cells.
Collapse
Affiliation(s)
- Haiyan Xing
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China
| | - Qiang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China.,Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Ju Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, China.,Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Microvascular Medicine, China
| |
Collapse
|