1
|
Shafiek MZ, Zaki HF, Mohamed AF. New ways to repurpose salmeterol in an animal model of fibromyalgia. Fundam Clin Pharmacol 2024. [PMID: 39496328 DOI: 10.1111/fcp.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Fibromyalgia (FM) is a syndrome of pervasive chronic pain accompanied by low mood, sleep disorders, and cognitive decline. The dysfunction of central pain processing systems along with neurotransmitter disturbances are possible contributing mechanisms. Genetic polymorphism of the 𝛽2 adrenergic receptors is reported in FM patients. It is reported that chronic β2 agonists administration is effective for neuropathic pain alleviation. No current information, however, exists on their potential to alleviate nociplastic pain, such as FM. Therefore, the purpose of the current study is to examine salmeterol's potential antiallodynic effects in experimentally produced FM and explore some of the possible contributing mechanisms. METHODS Thirty rats are allocated into three groups (n = 10): a normal group, a reserpine group that received reserpine (1 mg/kg; s.c.) for 3 days, and a reserpine + salmeterol group that received salmeterol (1 mg/kg; i.p.) for 21 consecutive days following last reserpine injection. RESULTS Reserpine administration resulted in behavioral and biochemical changes consistent with FM, including thermal and mechanical hyperalgesia, depressive behavior, and motor incoordination. This is coupled with disturbed spinal monoamine levels, depressed cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, disturbed mitochondrial function/dynamics, and compromised blood-nerve barrier integrity. Treatment with salmeterol conceivably reversed these effects. CONCLUSION β2 receptor agonists such as salmeterol could be regarded as a promising strategy for the management of FM.
Collapse
Affiliation(s)
- Mena Z Shafiek
- Department of Pharmacology and Toxicology, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
2
|
Lin X, Bai H, Barravecchia M, Norman R, Schiralli Lester GM, Kottmann RM, Leonard A, Rahman A, Young JL, Dean DA. Occludin Is Essential to Maintain Normal Alveolar Barrier Integrity and Its Protective Role During ARDS Progression. Int J Mol Sci 2024; 25:11595. [PMID: 39519146 PMCID: PMC11546927 DOI: 10.3390/ijms252111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition without targeted therapy that is characterized by the disruption of epithelial and endothelial barriers. The role of the tight junction protein occludin in the pathogenesis of this disease is unknown, although it has previously been deemed redundant in some tissues. The aim of the present study is to determine whether occludin is required for lung function by controlling alveolar barrier integrity in mouse models. Immunofluorescence staining of lungs from ARDS patients revealed a significant decrease in occludin expression compared to controls. Gene delivery of shRNA against occludin in the mouse lung reduced occludin levels and induced lung injury, as assessed by wet-to-dry-ratio, histology, and cellularity and protein content of bronchial alveolar lavage fluid. Conversely, gene delivery of an occludin-expressing plasmid increased occludin expression and dampened endotoxin-induced lung injury. In primary rat alveolar epithelial cells, occludin levels were positively correlated with barrier integrity, as well as membrane localization of claudin-18, another tight junction protein. Collectively, our data demonstrate that occludin plays a significant role in alveolar barrier function and that targeting occludin may provide a new therapeutic approach for ARDS.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Haiqing Bai
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA
| | - Michael Barravecchia
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Rosemary Norman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - R. Matthew Kottmann
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Antony Leonard
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Arshad Rahman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Jennifer L. Young
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - David A. Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| |
Collapse
|
3
|
You X, Wang L, Wang H, Xu Y, Chen Y, Xu H, Ji X, Ma X, Xu X. Liver abscess induced by intestinal hypervirulent Klebsiella pneumoniae through down-regulation of tryptophan-IPA-IL22 axis. iScience 2024; 27:110849. [PMID: 39429788 PMCID: PMC11490733 DOI: 10.1016/j.isci.2024.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a significant causative agent of invasive hepatic abscess syndrome in Asia, presenting substantial clinical challenges due to its intricate pathogenesis. This study revealed the crucial role of the gut microbiota in fortifying the host's defense against hvKp infection by enhancing interleukin-22 (IL-22), probably through regulating downstream antimicrobial peptides such as Reg3β. In antibiotic-treated mice, we observed that gut microbiota disruption impaired the transformation of tryptophan to indole, a key ligand for the aryl hydrocarbon receptor (AhR), consequently affecting the regulatory functions of IL-22. Our experimental findings revealed that administering rIL-22 or indole propionic acid notably diminished the translocation of hvKp from the intestine to the liver. This research not only underscores the pivotal role of the gut microbiome in modulating tryptophan metabolism and the IL-22 pathway but also highlights its critical function in preventing hvKp migration from the colon to the liver.
Collapse
Affiliation(s)
- Xiu You
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liping Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yizheng Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory, Sichuan Orthopedic Hospital, Chengdu, Sichuan 610000, China
| | - Yongzheng Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huizhen Xu
- Key Laboratory of Laboratory Medical Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Ji
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangsong Ma
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiuyu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Xia Y, Chen J, Dong P, Zhang L, Ding Y, Ding W, Han X, Wang X, Li D. Embryonic 6:2 Fluorotelomer Alcohol Exposure Disrupts the Blood‒Brain Barrier by Causing Endothelial‒to‒Mesenchymal Transition in the Male Mice. Mol Neurobiol 2024:10.1007/s12035-024-04540-7. [PMID: 39417922 DOI: 10.1007/s12035-024-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
6:2 Fluorotelomer alcohol (6:2 FTOH) is a raw material used in the manufacture of short-chain poly- and perfluoroalkyl substances. Our previous study revealed that gestational exposure to 6:2 FTOH can impair blood‒brain barrier (BBB) function in offspring, accompanied by anxiety-like behavior and learning memory deficits. The aim of this study was to further investigate the specific mechanism by which maternal exposure to 6:2 FTOH resulted in impaired BBB function in offspring mice. Pregnant mice were orally administered different doses of 6:2 FTOH (0, 5, 25, and 125 mg/kg/day) from gestation day 8.5 until delivery. These results confirmed that maternal 6:2 FTOH exposure impaired BBB function and disrupted the brain immune microenvironment. Subsequent investigations revealed that endothelial-to-mesenchymal transition (EndMT) in the cerebral microvascular endothelium of offspring may be the mechanism mediating functional disruption of the BBB. Mechanistic studies revealed that exposure to 6:2 FTOH upregulated ETS proto-oncogene 1 (ETS1) expression via the tumor necrosis factor-α/extracellular signal-regulated kinase 1/2 signaling pathway, which mediated disturbances in energy metabolism, leading to impaired actin dynamics and subsequently triggering the EndMT phenotype. This is the first finding indicating that gestational 6:2 FTOH exposure caused functional impairment of the BBB through ETS1-mediated EndMT in cerebral microvascular endothelial cells, potentially providing novel insight into the environmental origins of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yunhui Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Junhan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
5
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
7
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
8
|
Rodrigues RO, Shin SR, Bañobre-López M. Brain-on-a-chip: an emerging platform for studying the nanotechnology-biology interface for neurodegenerative disorders. J Nanobiotechnology 2024; 22:573. [PMID: 39294645 PMCID: PMC11409741 DOI: 10.1186/s12951-024-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Neurological disorders have for a long time been a global challenge dismissed by drug companies, especially due to the low efficiency of most therapeutic compounds to cross the brain capillary wall, that forms the blood-brain barrier (BBB) and reach the brain. This has boosted an incessant search for novel carriers and methodologies to drive these compounds throughout the BBB. However, it remains a challenge to artificially mimic the physiology and function of the human BBB, allowing a reliable, reproducible and throughput screening of these rapidly growing technologies and nanoformulations (NFs). To surpass these challenges, brain-on-a-chip (BoC) - advanced microphysiological platforms that emulate key features of the brain composition and functionality, with the potential to emulate pathophysiological signatures of neurological disorders, are emerging as a microfluidic tool to screen new brain-targeting drugs, investigate neuropathogenesis and reach personalized medicine. In this review, the advance of BoC as a bioengineered screening tool of new brain-targeting drugs and NFs, enabling to decipher the intricate nanotechnology-biology interface is discussed. Firstly, the main challenges to model the brain are outlined, then, examples of BoC platforms to recapitulate the neurodegenerative diseases and screen NFs are summarized, emphasizing the current most promising nanotechnological-based drug delivery strategies and lastly, the integration of high-throughput screening biosensing systems as possible cutting-edge technologies for an end-use perspective is discussed as future perspective.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
- CMEMS-UMinho, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Su-Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA.
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal.
| |
Collapse
|
9
|
Koga M, Sato M, Nakagawa R, Tokuno S, Asai F, Maezawa Y, Nagamine M, Yoshino A, Toda H. Molecular hydrogen supplementation in mice ameliorates lipopolysaccharide-induced loss of interest. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e70000. [PMID: 39171191 PMCID: PMC11337204 DOI: 10.1002/pcn5.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Aim The objective of this study was to evaluate the potential of hydrogen in preventing and treating psychiatric symptoms, particularly depressed mood and loss of interest, and to explore its underlying mechanisms. A mouse model exhibiting inflammation-derived depressive symptoms was used for the investigation. Methods Institute of Cancer Research mice were subjected to a 7-day intervention of either 30% hydrogen or 40 g per day of air via jelly intake. On the final day, lipopolysaccharide (LPS) was intraperitoneally administered at 5 mg/kg to induce inflammation-related depressive symptoms. Behavioral and biochemical assessments were conducted 24 h post-LPS administration. Results Following LPS administration, a decrease in spontaneous behavior was observed; however, this effect was mitigated in the group treated with hydrogen. The social interaction test revealed a significant reduction in interactions with unfamiliar mice in the LPS-treated group, whereas the hydrogen-treated group exhibited no such decrease. No significant changes were noted in the forced-swim test for either group. Additionally, the administration of LPS in the hydrogen group did not result in a decrease in zonula occludens-1, a biochemical marker associated with barrier function at the cerebrovascular barrier and expressed in tight junctions. Conclusion Hydrogen administration demonstrated a preventive effect against the LPS-induced loss of interest, suggesting a potential role in symptom prevention. However, it did not exhibit a suppressive effect on depressive symptoms in this particular model. These findings highlight the nuanced impact of hydrogen in the context of inflammation-induced psychiatric symptoms, indicating potential avenues for further exploration and research.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Mayumi Sato
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Ryuichi Nakagawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Shinichi Tokuno
- Graduate School of Health InnovationKanagawa University of Human ServicesKanagawaJapan
- Department of BioengineeringGraduate School of EngineeringTokyoJapan
| | - Fumiho Asai
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Yuri Maezawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Masanori Nagamine
- Division of Behavioral SciencesNational Defense Medical College Research InstituteSaitamaJapan
| | - Aihide Yoshino
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Hiroyuki Toda
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
10
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
11
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
12
|
Rajala A, Rajala R, Bhat MA, Eminhizer M, Hao J, Du J, Rajala RVS. Age-related retinal degeneration resulting from the deletion of Shp2 tyrosine phosphatase in photoreceptor neurons. Cell Death Dis 2024; 15:577. [PMID: 39117618 PMCID: PMC11310310 DOI: 10.1038/s41419-024-06924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Shp2, a critical SH2-domain-containing tyrosine phosphatase, is essential for cellular regulation and implicated in metabolic disruptions, obesity, diabetes, Noonan syndrome, LEOPARD syndrome, and cancers. This study focuses on Shp2 in rod photoreceptor cells, revealing its enrichment, particularly in rods. Deletion of Shp2 in rods leads to age-dependent photoreceptor degeneration. Shp2 targets occludin (OCLN), a tight junction protein, and its deletion reduces OCLN expression in the retina and retinal pigment epithelium (RPE). The isolation of actively translating mRNAs from rods lacking Shp2, followed by RNA sequencing, reveals alterations in cell cycle regulation. Additionally, altered retinal metabolism is observed in retinal cells lacking Shp2. Our studies indicate that Shp2 is crucial for maintaining the structure and function of photoreceptors.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Rahul Rajala
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohd A Bhat
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26505, USA
| | - Jeff Hao
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26505, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26505, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Dean McGee Eye Institute, Oklahoma City, OK, 73104, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
13
|
Zhang Z, Chen J, Ma R, Xu C, Lu Y, Zhou J, Xia K, Lu P. Tight Junction Component Occludin Binds to FIP5 to Regulate Endosome Trafficking and Mitotic Spindle Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308822. [PMID: 38884279 PMCID: PMC11321699 DOI: 10.1002/advs.202308822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Indexed: 06/18/2024]
Abstract
The genetic basis of vertebrate emergence during metazoan evolution has remained largely unknown. Understanding vertebrate-specific genes, such as the tight junction protein Occludin (Ocln), may help answer this question. Here, it is shown that mammary glands lacking Ocln exhibit retarded epithelial branching, owing to reduced cell proliferation and surface expansion. Interestingly, Ocln regulates mitotic spindle orientation and function, and its loss leads to a range of defects, including prolonged prophase and failed nuclear and/or cytoplasmic division. Mechanistically, Ocln binds to the RabGTPase-11 adaptor FIP5 and recruits recycling endosomes to the centrosome to participate in spindle assembly and function. FIP5 loss recapitulates Ocln null, leading to prolonged prophase, reduced cell proliferation, and retarded epithelial branching. These results identify a novel role in OCLN-mediated endosomal trafficking and potentially highlight its involvement in mediating membranous vesicle trafficking and function, which is evolutionarily conserved and essential.
Collapse
Affiliation(s)
- Zichao Zhang
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Jing Chen
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Rongze Ma
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Chongshen Xu
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Yunzhe Lu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Jiecan Zhou
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Kun Xia
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Pengfei Lu
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute of Cytology and GeneticsSchool of Basic Medical SciencesHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Institute for Future SciencesHengyang Medical SchoolUniversity of South ChinaChangshaChina
| |
Collapse
|
14
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
15
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
16
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
17
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
18
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
19
|
Bao S, Yi J, Xian B, Rao C, Xiang D, Tang W, Fang T. Global analysis of the adverse effects of micro- and nanoplastics on intestinal health and microbiota of fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134157. [PMID: 38569337 DOI: 10.1016/j.jhazmat.2024.134157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The wide occurrence of micro- and nanoplastics (MPs/NPs) within aquatic ecosystems has raised increasing concerns regarding their potential effects on aquatic organisms. However, the effects of MPs/NPs on intestinal health and microbiota of fish remain controversial, and there is a lack of comprehensive understanding regarding how the impact of MPs/NPs is influenced by MPs/NPs characteristics and experimental designs. Here, we conducted a global analysis to synthesize the effects of MPs/NPs on 47 variables associated with fish intestinal health and microbiota from 118 studies. We found that MPs/NPs generally exerted obvious adverse effects on intestinal histological structure, permeability, digestive function, immune and oxidative-antioxidative systems. By contrast, MPs/NPs showed slight effects on intestinal microbial variables. Further, we observed that the responses of intestinal variables to MPs/NPs were significantly regulated by MPs/NPs characteristics and experimental designs. For instance, polyvinyl chloride plastics showed higher toxicity to fish gut than polyethylene and polystyrene did. Additionally, larval fish appeared to be more sensitive to MPs/NPs than juvenile fish. Collectively, this study highlights the potential impacts of MPs/NPs on intestinal health and microbiota of fish, and underscores the determinant role of MPs/NPs characteristics and experimental designs in MPs/NPs toxicity.
Collapse
Affiliation(s)
- Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jia Yi
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, China.
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenyang Rao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Melchior K, Gerner RR, Hossain S, Nuccio SP, Moreira CG, Raffatellu M. IL-22-dependent responses and their role during Citrobacter rodentium infection. Infect Immun 2024; 92:e0009924. [PMID: 38557196 PMCID: PMC11075456 DOI: 10.1128/iai.00099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3β), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.
Collapse
Affiliation(s)
- Karine Melchior
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Romana R. Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, ZIEL – Institute for Food and Health, Freising-Weihenstephan, Technical University of Munich, Munich, Germany
- Department of Internal Medicine III, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Suzana Hossain
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Cristiano Gallina Moreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California, USA
| |
Collapse
|
21
|
Nguyen TP, Otani T, Tsutsumi M, Kinoshita N, Fujiwara S, Nemoto T, Fujimori T, Furuse M. Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex. J Cell Biol 2024; 223:e202307104. [PMID: 38517380 PMCID: PMC10959758 DOI: 10.1083/jcb.202307104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.
Collapse
Affiliation(s)
- Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Kinoshita
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomomi Nemoto
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Zhang Y, Anderson RC, You C, Purba A, Yan M, Maclean P, Liu Z, Ulluwishewa D. Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7 Enhance the Intestinal Epithelial Barrier in a Dual-Environment In Vitro Co-Culture Model. Microorganisms 2024; 12:873. [PMID: 38792703 PMCID: PMC11124027 DOI: 10.3390/microorganisms12050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Intestinal barrier hyperpermeability, which is characterised by impaired tight junction proteins, is associated with a variety of gastrointestinal and systemic diseases. Therefore, maintaining intestinal barrier integrity is considered one of the effective strategies to reduce the risk of such disorders. This study aims to investigate the potential benefits of two probiotic strains (Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7) on intestinal barrier function by using a physiologically relevant in vitro model of the intestinal epithelium. Our results demonstrate that both strains increased transepithelial electrical resistance, a measure of intestinal barrier integrity. Immunolocalisation studies indicated that this improvement in barrier function was not due to changes in the co-localisation of the tight junction (TJ) proteins ZO-1 and occludin. However, we observed several modifications in TJ-related genes in response to the probiotics, including the upregulation of transmembrane and cytosolic TJ proteins, as well as TJ signalling proteins. Gene expression modulation was strain- and time-dependent, with a greater number of differentially expressed genes and higher fold-change being observed in the L. plantarum ST-III group and at the latter timepoint. Further studies to investigate how the observed gene expression changes can lead to enhanced barrier function will aid in the development of probiotic foods to help improve intestinal barrier function.
Collapse
Affiliation(s)
- Yilin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Rachel C. Anderson
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Ajitpal Purba
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Minghui Yan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4410, New Zealand;
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Dulantha Ulluwishewa
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| |
Collapse
|
23
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
24
|
Zhao Y, Chen C, Xiao X, Fang L, Cheng X, Chang Y, Peng F, Wang J, Shen S, Wu S, Huang Y, Cai W, Zhou L, Qiu W. Teriflunomide Promotes Blood-Brain Barrier Integrity by Upregulating Claudin-1 via the Wnt/β-catenin Signaling Pathway in Multiple Sclerosis. Mol Neurobiol 2024; 61:1936-1952. [PMID: 37819429 DOI: 10.1007/s12035-023-03655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6 months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.
Collapse
Affiliation(s)
- Yipeng Zhao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiuqing Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ling Fang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shishi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shilin Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yiying Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Linli Zhou
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
25
|
Vollstädt ML, Stein L, Brunner N, Amasheh S. Cinnamic Acid and Caffeic Acid Effects on Gastric Tight Junction Proteins Analyzed in Xenopus laevis Oocytes. MEMBRANES 2024; 14:40. [PMID: 38392667 PMCID: PMC10890460 DOI: 10.3390/membranes14020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Analysis of secondary plant compounds for the development of novel therapies is a common focus of experimental biomedicine. Currently, multiple health-supporting properties of plant-derived molecules are known but still information on many mechanisms is scarce. Cinnamic acid and caffeic acid are two of the most abundant polyphenols in human dietary fruits and vegetables. In this study, we investigated cinnamic acid and caffeic acid effects on the gastric barrier, which is primarily provided by members of the transmembrane tight junction protein family of claudins. The Xenopus laevis oocyte has been established, in recent years, as a heterologous expression system for analysis of transmembrane tight junction protein interactions, by performing paired oocyte experiments to identify an effect on protein-protein interactions, in vitro. In our current study, human gastric claudin-4, -5, and -18.2. were expressed and detected in the oocyte plasma membrane by freeze fracture electron microscopy and immunoblotting. Oocytes were paired and incubated with 100 µM or 200 µM cinnamic acid or caffeic acid, or Ringer's solution, respectively. Caffeic acid showed no effect on the contact area strength of paired oocytes but led to an increased contact area size. In contrast, cinnamic acid-incubated paired oocytes revealed a reduced contact area and a strengthening effect on the contact area was identified. These results may indicate that caffeic acid and cinnamic acid both show an effect on gastric barrier integrity via direct effects on tight junction proteins.
Collapse
Affiliation(s)
- Marie-Luise Vollstädt
- School of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Laura Stein
- School of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Nora Brunner
- School of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Salah Amasheh
- School of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
26
|
Qiao Z, Liao M, Xiao M, Luo S, Wang K, Niu M, Jiang H, Sun S, Xu G, Xu N, Xu Q, Liu Y. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol 2024; 220:116004. [PMID: 38142837 DOI: 10.1016/j.bcp.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Liao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyue Xiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saiyan Luo
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Niu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - NanJie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
27
|
Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells 2024; 13:260. [PMID: 38334652 PMCID: PMC10854731 DOI: 10.3390/cells13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
The blood-brain barrier (BBB) is a remarkable and intricate barrier that controls the exchange of molecules between the bloodstream and the brain. Its role in maintaining the stability of the central nervous system cannot be overstated. Over the years, advancements in neuroscience and technology have enabled us to delve into the cellular and molecular components of the BBB, as well as its regulation. Yet, there is a scarcity of comprehensive reviews that follow a logical framework of structure-function-regulation, particularly focusing on the nuances of BBB regulation under both normal and pathological conditions. This review sets out to address this gap by taking a historical perspective on the discovery of the BBB and highlighting the major observations that led to its recognition as a distinct brain barrier. It explores the intricate cellular elements contributing to the formation of the BBB, including endothelial cells, pericytes, astrocytes, and neurons, emphasizing their collective role in upholding the integrity and functionality of the BBB. Furthermore, the review delves into the dynamic regulation of the BBB in physiological states, encompassing neural, humoral, and auto-regulatory mechanisms. By shedding light on these regulatory processes, a deeper understanding of the BBB's response to various physiological cues emerges. This review also investigates the disruption of the BBB integrity under diverse pathological conditions, such as ischemia, infection, and toxin exposure. It elucidates the underlying mechanisms that contribute to BBB dysfunction and explores potential therapeutic strategies that aim to restore the BBB integrity and function. Overall, this recapitulation provides valuable insights into the structure, functions, and regulation of the BBB. By integrating historical perspectives, cellular elements, regulatory mechanisms, and pathological implications, this review contributes to a more comprehensive understanding of the BBB and paves the way for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Botao Zhou
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| | - Haixiao Feng
- Gies College of Business, University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA;
| | - Chuoying Luo
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - Boren Bai
- Faculty of Medicine, International School, Jinan University, Guangzhou 510632, China; (H.F.); (C.L.); (B.B.)
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA;
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
28
|
Cornelius V, Droessler L, Amasheh S. Quercetin Improves Barrier Properties in Porcine Small Intestine but Not in Peyer's Patches. Int J Mol Sci 2024; 25:1530. [PMID: 38338808 PMCID: PMC10855467 DOI: 10.3390/ijms25031530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.
Collapse
Affiliation(s)
| | | | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
29
|
Mak S, Hammes A. Canonical and Non-Canonical Localization of Tight Junction Proteins during Early Murine Cranial Development. Int J Mol Sci 2024; 25:1426. [PMID: 38338705 PMCID: PMC10855338 DOI: 10.3390/ijms25031426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.
Collapse
Affiliation(s)
- Shermin Mak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute for Biology, Free University of Berlin, 14159 Berlin, Germany
| | - Annette Hammes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
| |
Collapse
|
30
|
Kobayashi K, Mochizuki J, Yamazaki F, Sashihara T. Yogurt starter strains ameliorate intestinal barrier dysfunction via activating AMPK in Caco-2 cells. Tissue Barriers 2024; 12:2184157. [PMID: 36852963 PMCID: PMC10832913 DOI: 10.1080/21688370.2023.2184157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.
Collapse
Affiliation(s)
- Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
31
|
Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024; 16:2331460. [PMID: 38512763 PMCID: PMC10962615 DOI: 10.1080/19490976.2024.2331460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity, insulin resistance (IR), and the gut microbiome intricately interplay in Metabolic-associated Steatotic Liver Disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease (NAFLD), a growing health concern. The complex progression of MASLD extends beyond the liver, driven by "gut-liver axis," where diet, genetics, and gut-liver interactions influence disease development. The pathophysiology of MASLD involves excessive liver fat accumulation, hepatocyte dysfunction, inflammation, and fibrosis, with subsequent risk of hepatocellular carcinoma (HCC). The gut, a tripartite barrier, with mechanical, immune, and microbial components, engages in a constant communication with the liver. Recent evidence links dysbiosis and disrupted barriers to systemic inflammation and disease progression. Toll-like receptors (TLRs) mediate immunological crosstalk between the gut and liver, recognizing microbial structures and triggering immune responses. The "multiple hit model" of MASLD development involves factors like fat accumulation, insulin resistance, gut dysbiosis, and genetics/environmental elements disrupting the gut-liver axis, leading to impaired intestinal barrier function and increased gut permeability. Clinical management strategies encompass dietary interventions, physical exercise, pharmacotherapy targeting bile acid (BA) metabolism, and microbiome modulation approaches through prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). This review underscores the complex interactions between diet, metabolism, microbiome, and their impact on MASLD pathophysiology and therapeutic prospects.
Collapse
Affiliation(s)
- Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
32
|
Hu S, Kou Y, Liu X, Rong W, Han H, Zhang G. Activation of the 5-hydroxytryptamine 4 receptor ameliorates tight junction barrier dysfunction in the colon of type 1 diabetic mice. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1874-1883. [PMID: 37766457 PMCID: PMC10753360 DOI: 10.3724/abbs.2023137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia drives dysfunction of the intestinal barrier. 5-Hydroxytryptaine 4 receptor (5-HT 4R) agonists have been considered therapeutics for constipation in clnic. However, the roles of 5-HT 4R activation in mucosa should be fully realized. Here, we investigate the effects of 5-HT 4R activation on diabetes-induced disruption of the tight junction (TJ) barrier in the colon. Not surprisingly, the TJ barrier in diabetic mice with or without 5-HT 4R is tremendously destroyed, as indicated by increased serum fluorescein isothiocyanate (FITC)-dextran and decreased transepithelial electrical resistance (TER). Simultaneously, decreased expressions of TJ proteins are shown in both wild-type (WT) and 5-HT 4R knockout (KO) mice with diabetes. Notably, chronic treatment with intraperitoneal injection of a 5-HT 4R agonist in WT mice with diabetes repairs the TJ barrier and promotes TJ protein expressions, including occludin, claudin-1 and ZO-1, in the colon, whereas a 5-HT 4R agonist does not improve TJ barrier function or TJ protein expressions in 5-HT 4R KO mice with diabetes. Furthermore, stimulation of 5-HT 4R inhibits diabetes-induced upregulation of myosin light chain kinase (MLCK), Rho-associated coiled coil protein kinase 1 (ROCK1), and phosphorylated myosin light chain (p-MLC), which are key molecules that regulate TJ integrity, in the colonic mucosa of WT mice. However, such action induced by a 5-HT 4R agonist is not observed in 5-HT 4R KO mice with diabetes. These findings indicate that 5-HT 4R activation may restore TJ integrity by inhibiting the expressions of MLCK, ROCK1 and p-MLC, improving epithelial barrier function in diabetes.
Collapse
Affiliation(s)
- Shasha Hu
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yueting Kou
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xiaochen Liu
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Weifang Rong
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hongxiu Han
- Department of PathologyTongji HospitalTongji UniversityShanghai200065China
| | - Guohua Zhang
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
33
|
Crawford CK, Beltran A, Castillo D, Matloob MS, Uehara ME, Quilici ML, Cervantes VL, Kol A. Fenofibrate reduces glucose-induced barrier dysfunction in feline enteroids. Sci Rep 2023; 13:22558. [PMID: 38110453 PMCID: PMC10728136 DOI: 10.1038/s41598-023-49874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease in humans and household cats that is characterized by persistent hyperglycemia. DM is associated with dysfunction of the intestinal barrier. This barrier is comprised of an epithelial monolayer that contains a network of tight junctions that adjoin cells and regulate paracellular movement of water and solutes. The mechanisms driving DM-associated barrier dysfunction are multifaceted, and the direct effects of hyperglycemia on the epithelium are poorly understood. Preliminary data suggest that fenofibrate, An FDA-approved peroxisome proliferator-activated receptor-alpha (PPARα) agonist drug attenuates intestinal barrier dysfunction in dogs with experimentally-induced DM. We investigated the effects of hyperglycemia-like conditions and fenofibrate treatment on epithelial barrier function using feline intestinal organoids. We hypothesized that glucose treatment directly increases barrier permeability and alters tight junction morphology, and that fenofibrate administration can ameliorate these deleterious effects. We show that hyperglycemia-like conditions directly increase intestinal epithelial permeability, which is mitigated by fenofibrate. Moreover, increased permeability is caused by disruption of tight junctions, as evident by increased junctional tortuosity. Finally, we found that increased junctional tortuosity and barrier permeability in hyperglycemic conditions were associated with increased protein kinase C-α (PKCα) activity, and that fenofibrate treatment restored PKCα activity to baseline levels. We conclude that hyperglycemia directly induces barrier dysfunction by disrupting tight junction structure, a process that is mitigated by fenofibrate. We further propose that counteracting modulation of PKCα activation by increased intracellular glucose levels and fenofibrate is a key candidate regulatory pathway of tight junction structure and epithelial permeability.
Collapse
Affiliation(s)
- Charles K Crawford
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Aeelin Beltran
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Muhammad S Matloob
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mimoli E Uehara
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mary L Quilici
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Veronica Lopez Cervantes
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
34
|
Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol 2023; 14:1283511. [PMID: 38145121 PMCID: PMC10748502 DOI: 10.3389/fneur.2023.1283511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an antibody-related autoimmune encephalitis. It is characterized by the existence of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce NMDAR levels in this disorder, compromising synaptic activity in the hippocampus. Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of antibodies in the central nervous system (CNS) is unclear. The blood-brain barrier (BBB), which separates the brain from the peripheral circulatory system, is crucial for antibodies and immune cells to enter or exit the CNS. The findings of cytokines in this disorder support the involvement of the BBB. Here, we aim to review the function of NMDARs and the relationship between anti-NMDAR antibodies and anti-NMDAR encephalitis. We summarize the present knowledge of the composition of the BBB, especially by emphasizing the role of BBB components. Finally, we further provide a discussion on the impact of BBB dysfunction in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Niya Wang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kunhua Wu
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
35
|
Du Y, Duan Y, Zhao J, Liu C, Zhang Z, Zhang J, Meng Z, Wang X, Lau WB, Xie D, Lopez BL, Christopher TA, Gao E, Koch WW, Liu H, Liu D, Ma XL, Gu G, Wang Y. Dysfunctional APPL1-Mediated Epigenetic Regulation in Diabetic Vascular Injury. Arterioscler Thromb Vasc Biol 2023; 43:e491-e508. [PMID: 37795615 DOI: 10.1161/atvbaha.122.318752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND APN (adiponectin) and APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) are potent vasculoprotective molecules, and their deficiency (eg, hypoadiponectinemia) contributes to diabetic vascular complications. However, the molecular mechanisms that govern their vasculoprotective genes as well as their alteration by diabetes remain unknown. METHODS Diabetic medium-cultured rat aortic endothelial cells, mouse aortic endothelial cells from high-fat-diet animals, and diabetic human aortic endothelial cells were used for molecular/cellular investigations. The in vivo concept-prove demonstration was conducted using diabetic vascular injury and diabetic hindlimb ischemia models. RESULTS In vivo animal experiments showed that APN replenishment caused APPL1 nuclear translocation, resulting in an interaction with HDAC (histone deacetylase) 2, which inhibited HDAC2 activity and increased H3Kac27 levels. Based on transcriptionome pathway-specific real-time polymerase chain reaction profiling and bioinformatics analysis, Angpt1 (angiopoietin 1), Ocln (occludin), and Cav1 (caveolin 1) were found to be the top 3 vasculoprotective genes suppressed by diabetes and rescued by APN in an APPL1-dependent manner. APN reverses diabetes-induced inhibition of Cav1 interaction with APPL1. APN-induced Cav1 expression was not affected by Angpt1 or Ocln deficiency, whereas APN-induced APPL1 nuclear translocation or upregulation of Angpt1/Ocln expression was abolished in the absence of Cav1 both in vivo and in vitro, suggesting Cav1 is upstream molecule of Angpt1/Ocln in response to APN administration. Chromatin immunoprecipitation-qPCR (quantitative polymerase chain reaction) demonstrated that APN caused significant enrichment of H3K27ac in Angpt1 and Ocln promoter region, an effect blocked by APPL1/Cav1 knockdown or HDAC2 overexpression. The protective effects of APN on the vascular system were attenuated by overexpression of HDAC2 and abolished by knocking out APPL1 or Cav1. The double knockdown of ANGPT1/OCLN blunted APN vascular protection both in vitro and in vivo. Furthermore, in diabetic human endothelial cells, HDAC2 activity is increased, H3 acetylation is decreased, and ANGPT1/OCLN expression is reduced, suggesting that the findings have important translational implications. CONCLUSIONS Hypoadiponectinemia and dysregulation of APPL1-mediated epigenetic regulation are novel mechanisms leading to diabetes-induced suppression of vasculoprotective gene expression. Diabetes-induced pathological vascular remodeling may be prevented by interventions promoting APPL1 nuclear translocation and inhibiting HDAC2.
Collapse
Affiliation(s)
- Yunhui Du
- Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases. Beijing Anzhen Hospital (Y. Du, Y. Duan), Capital Medical University, China
| | - Yanru Duan
- Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases. Beijing Anzhen Hospital (Y. Du, Y. Duan), Capital Medical University, China
| | - Jianli Zhao
- Department of Biomedical Engineering, UAB, Birmingham (J.Z., Y.W.)
| | - Caihong Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - John Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Xiaoliang Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.W.K.)
| | - Walter W Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.W.K.)
| | - Huirong Liu
- Department of Physiology and Pathophysiology (H.L.), Capital Medical University, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (D.L., G.G.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (D.L., G.G.)
| | - Yajing Wang
- Department of Biomedical Engineering, UAB, Birmingham (J.Z., Y.W.)
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (C.L., Z.Z., J.Z., Z.M., X.W., W.B.L., D.X., B.L.L., T.A.C., X.-L.M., Y.W.)
| |
Collapse
|
36
|
Güney Z, Kurgan Ş, Önder C, Serdar MA, Günhan Ö, Günhan M. Expression of tight junction proteins in smokers and non-smokers with generalized Stage III periodontitis. J Periodontal Res 2023; 58:1281-1289. [PMID: 37697913 DOI: 10.1111/jre.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE This study aims to evaluate the gingival crevicular fluid (GCF) levels of tumor necrosis factor-α (TNF-α), zonula occludens-1 (ZO-1), occludin (Occ), and tricellulin (Tric) in periodontitis, as well as their alterations due to smoking. BACKGROUND Tight junctions (TJ), which consist of transmembrane and cytoplasmic scaffolding proteins, connect the epithelial cells of the periodontium. Occ, claudins, junctional adhesion molecules, and Tric are transmembrane TJ proteins found at the cell membrane. The transmembrane TJ proteins and the intracellular cytoskeleton are directly linked by cytoplasmic scaffolding proteins such as ZO-1. Although the functions and locations of these molecules have been defined, their behavior in periodontal inflammation is unknown. METHODS The study included four groups: individuals with periodontal health without smoking (C; n = 31), individuals with generalized Stage III periodontitis without smoking (P; n = 28), individuals with periodontal health while smoking (CS; n = 22), and individuals with generalized Stage III periodontitis while smoking (PS; n = 18). Clinical periodontal parameters were recorded, and enzyme-linked immunosorbent assay (ELISA) was used to examine ZO-1, Occ, Tric, and TNF-α levels in GCF. RESULTS In the periodontitis groups, clinical parameters were significantly higher (p < .001). The site-specific levels of TNF-α, ZO-1, Tric, and Occ in the P group were statistically higher than those in the other groups (p < .05). TNF-α, probing pocket depth (PPD), and bleeding on probing (BOP) exhibited positive correlations with all TJ proteins (p < .005). CONCLUSIONS Smoking could potentially affect the levels of epithelial TJ proteins in the GCF, thereby potentially playing a significant role in the pathogenesis of the periodontal disease.
Collapse
Affiliation(s)
- Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Canan Önder
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | - Ömer Günhan
- Department of Pathology, School of Medicine, TOBB ETÜ University, Ankara, Turkey
| | - Meral Günhan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
37
|
Zhang J, Jiang X, Yang Y, Yang L, Lu B, Ji Y, Guo L, Zhang F, Xue J, Zhi X. Peptidome analysis reveals critical roles for peptides in a rat model of intestinal ischemia/reperfusion injury. Aging (Albany NY) 2023; 15:12852-12872. [PMID: 37955663 DOI: 10.18632/aging.205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqi Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Yang
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yannan Ji
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Leijun Guo
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Fan Zhang
- Department of Pediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
38
|
Ren WQ, Liu N, Shen Y, Wang XY, Zhou Q, Rui C, Yang XH, Cao SL, Li LY, Wāng Y, Wang QN. Subchronic exposure to di-(2-ethylhexyl) phthalate (DEHP) elicits blood-brain barrier dysfunction and neuroinflammation in male C57BL/6J mice. Toxicology 2023; 499:153650. [PMID: 37858774 DOI: 10.1016/j.tox.2023.153650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Exposure to di-(2-ethylhexyl) phthalate (DEHP) can cause neurotoxicity but the mechanism is not clear. Blood brain barrier (BBB) is one of the most important tissues to protect the brain. However, whether DEHP can disrupt the BBB or not remains unclear. The objective of this study is to investigate the potential effects of subchronic DEHP exposure on BBB integrity and discuss the role of BBB in DEHP inducible neurotoxicity with an emphasis on neuroinflammatory responses. Male adult C57BL/6J mice were orally administered with vehicle or 200 or 750 mg/kg/day DEHP for 90 days. Subchronic exposure to high-dose DEHP increased water intake but decreased body weight and brain weight. The concentrations of DEHP metabolites increased in serum from all DEHP-exposed groups while increased in brain only from the high-dose group. DEHP induced neurobehavioural alterations and damaged hippocampal neurons. DEHP increased BBB permeability by Evans blue (EB) extravasation and decreased tight junction proteins (ZO-1, occludin, and claudin-5) while presenting a neuroinflammatory feature characterized by the upregulated inflammatory mediators TNF-α and the NLRP3/caspase-1/IL-1β inflammasome pathway. Our data provide new insights into neurotoxicity caused by subchronic DEHP exposure, which is probably involved in BBB dysfunction and neuroinflammatory responses.
Collapse
Affiliation(s)
- Wen-Qiang Ren
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Nuo Liu
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yan Shen
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xian-Yan Wang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Qiong Zhou
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Chen Rui
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Han Yang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Sheng-Long Cao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ling-Yu Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Qu-Nan Wang
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
39
|
Kumar LK, Verma SK, Chandel R, Thumar M, Singh D, Onteru SK. Aflatoxin M1 decreases the expression of genes encoding tight junction proteins and influences the intestinal epithelial integrity. Mycotoxin Res 2023; 39:453-467. [PMID: 37794205 DOI: 10.1007/s12550-023-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Aflatoxin M1 (AFM1) is a mycotoxin that is commonly found as a milk contaminant, and its presence in milk has been linked to cytotoxicity. The present study aimed to evaluate the acute cytotoxic effects of AFM1 on intestinal Caco-2 cells. Initially, we checked the morphology and viability of Caco-2 cells after treatment with different concentrations of AFM1 (5 ng/L, 50 ng/L, 250 ng/L, 500 ng/L, 1000 ng/L, and 2000 ng/L) for different time intervals (6 h, 12 h, and 24 h). It was found that AFM1 did not show any effect on cell morphology, but 10% decrease in viability above 1000 ng/L after 12 h. Furthermore, DCFDA assay showed increased ROS production after 6 h treatments. qPCR analysis showed an increased expression of epithelial-specific cytoskeleton marker genes, Cytokeratin, Villin, Vimentin, and JAM-1, and a decreased expression of tight junction protein genes, Claudin-1, Occludin, and ZO-1. Similarly, we found an increased expression of Cyp1a1 transcript with an increasing AFM1 concentration and incubation time. This gene expression analysis showed AFM1 can cause disruption of tight junctions between intestinal cells, which was further confirmed by a transwell experiment. In conclusion, consumption of AFM1-contaminated milk does not show any effect on cells morphology and viability but decreases the expression of intestinal barrier transcripts that may lead to the disruption of intestinal barrier function and leaky gut.
Collapse
Affiliation(s)
- Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Rajeev Chandel
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Meet Thumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001.
| |
Collapse
|
40
|
Torices S, Daire L, Simon S, Naranjo O, Mendoza L, Teglas T, Fattakhov N, Adesse D, Toborek M. Occludin: a gatekeeper of brain Infection by HIV-1. Fluids Barriers CNS 2023; 20:73. [PMID: 37840143 PMCID: PMC10577960 DOI: 10.1186/s12987-023-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 infection and to improve the lives of people living with HIV-1.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Daniel Adesse
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA.
| |
Collapse
|
41
|
Chen J, Ding C, Cao J, Tong H, Chen Y. Heat stress combined with lipopolysaccharide induces pulmonary microvascular endothelial cell glycocalyx inflammatory damage in vitro. Immun Inflamm Dis 2023; 11:e1034. [PMID: 37904703 PMCID: PMC10552074 DOI: 10.1002/iid3.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Heat stroke is a life-threatening disease with high mortality and complications. Endothelial glycocalyx (EGCX) is essential for maintaining endothelial cell structure and function as well as preventing the adhesion of inflammatory cells. Potential relationship that underlies the imbalance in inflammation and coagulation remains elusive. Moreover, the role of EGCX in heat stroke-induced organ injury remained unclear. Therefore, the current study aimed to illustrate if EGCX aggravates apoptosis, inflammation, and oxidative damage in human pulmonary microvascular endothelial cells (HPMEC). Heat stress and lipopolysaccharide (LPS) were employed to construct in vitro models to study the changes of glycocalyx structure and function, as well as levels of heparansulfate proteoglycan (HSPG), syndecan-1 (SDC-1), heparansulfate (HS), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, Von Willebrand factor (vWF), endothelin-1 (ET-1), occludin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and reactive oxygen species (ROS). Here, we showed that heat stress and LPS devastated EGCX structure, activated EGCX degradation, and triggered oxidative damage and apoptosis in HPMEC. Stimulation of heat stress and LPS decreased expression of HSPG, increased levels of SDC-1 and HS in culture supernatant, promoted the production and release of proinflammation cytokines (TNF-α and IL-6,) and coagulative factors (vWF and ET-1) in HPMEC. Furthermore, Expressions of E-selection, VCAM-1, and ROS were upregulated, while that of occludin was downregulated. These changes could be deteriorated by heparanase, whereas they meliorated by unfractionated heparin. This study indicated that EGCX may contribute to apoptosis and heat stroke-induced coagulopathy, and these effects may have been due to the decrease in the shedding of EGCX.
Collapse
Affiliation(s)
- Jiadi Chen
- Department of Intensive Care Medicine First WardThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Chengjia Ding
- Department of Critical Care Medicine, Binhaiwan Central Hospital of DongguanDongguan Hospital Affiliated to Jinan UniversityDongguanGuangdongChina
- The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan CityDongguanGuangdongChina
| | - Jingjing Cao
- Department of Critical Care Medicine, Binhaiwan Central Hospital of DongguanDongguan Hospital Affiliated to Jinan UniversityDongguanGuangdongChina
- The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan CityDongguanGuangdongChina
| | - Huasheng Tong
- Department of Emergency MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouGuangdongChina
| | - Yi Chen
- Department of Critical Care Medicine, Binhaiwan Central Hospital of DongguanDongguan Hospital Affiliated to Jinan UniversityDongguanGuangdongChina
- The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan CityDongguanGuangdongChina
| |
Collapse
|
42
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Klusóczki Á, Oláh B, Hosszú D, Fenyvesi F, Remenyik J, Homoki J, Gyöngyösi A, Bácskay I, Váradi J. Effectiveness of Anthocyanin-Rich Sour Cherry Extract on Gliadin-Induced Caco-2 Barrier Damage. Nutrients 2023; 15:4022. [PMID: 37764805 PMCID: PMC10535085 DOI: 10.3390/nu15184022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of gluten-related disorders are known, in which the common starting point is gluten-induced zonulin release. Zonulin results in varying degrees of increased permeability in certain gluten-related disorders but is largely responsible for the development of further pathogenic processes and symptoms. Therefore, it is important to know the barrier-modulating role of individual nutritional components and to what extent the antioxidant substance supports the protection of gliadin-induced membrane damage with its radical scavenging capacity. We investigated the pH dependence of the gliadin-anthocyanin interaction using UV photometry, during which a concentration-dependent interaction was observed at pH 6.8. The barrier modulatory effect of the anthocyanin-rich sour cherry extract (AC) was analyzed on Caco-2 cell culture with pepsin-trypsin-resistant gliadin (PT-gliadin) exposure by TEER measurement, zonula occludens-1 (ZO-1), and Occludin immunohistochemistry. In addition to the TEER-reducing and TJ-rearranging effects of PT-gliadin, NF-κB activation, an increase in cytokine (TNF-α, IFN-γ, and IL-8) release, and mitochondrial ROS levels were observed. We confirmed the anti-inflammatory, stabilizing, and restoring roles of AC extract during gliadin treatment on the Caco-2 monolayer. The extract was able to significantly reduce cytokine and ROS levels despite the known interaction of the main components of the extract with PT-gliadin.
Collapse
Affiliation(s)
- Ágnes Klusóczki
- Institute of Healthcare Industry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Boglárka Oláh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Dominik Hosszú
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (J.R.); (J.H.)
| | - Judit Homoki
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (J.R.); (J.H.)
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| |
Collapse
|
44
|
Zheng X, Ren B, Gao Y. Tight junction proteins related to blood-brain barrier and their regulatory signaling pathways in ischemic stroke. Biomed Pharmacother 2023; 165:115272. [PMID: 37544283 DOI: 10.1016/j.biopha.2023.115272] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Tight junctions (TJs) are crucial for intercellular connections. The abnormal expression of proteins related to TJs can result in TJ destruction, structural damage, and endothelial and epithelial cell dysfunction. These factors are associated with the occurrence and progression of several diseases. Studies have shown that blood-brain barrier (BBB) damage and dysfunction are the prominent pathological features of stroke. TJs are directly associated with the BBB integrity. In this article, we first discuss the structure and function of BBB TJ-related proteins before focusing on the crucial events that cause TJ dysfunction and BBB damage, as well as the regulatory mechanisms that affect the qualitative and quantitative expression of TJ proteins during ischemic stroke. Multiple regulatory mechanisms, including phosphorylation, matrix metalloproteinases (MMPs), and microRNAs, regulate TJ-related proteins and affect BBB permeability. Some signaling pathways and mechanisms have been demonstrated to have dual functions. Hopefully, our understanding of the regulation of BBB TJs in ischemic stroke will be applied to the development of targeted medications and therapeutic therapies.
Collapse
Affiliation(s)
- Xiangyi Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
45
|
Imafuku K, Iwata H, Natsuga K, Okumura M, Kobayashi Y, Kitahata H, Kubo A, Nagayama M, Ujiie H. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates. Cell Prolif 2023; 56:e13441. [PMID: 36919255 PMCID: PMC10472521 DOI: 10.1111/cpr.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Zonula occludens-1 (ZO-1) is a scaffolding protein of tight junctions, which seal adjacent epithelial cells, that is also expressed in adherens junctions. The distribution pattern of ZO-1 differs among stratified squamous epithelia, including that between skin and oral buccal mucosa. However, the causes for this difference, and the mechanisms underlying ZO-1 spatial regulation, have yet to be elucidated. In this study, we showed that epithelial turnover and proliferation are associated with ZO-1 distribution in squamous epithelia. We tried to verify the regulation of ZO-1 by comparing normal skin and psoriasis, known as inflammatory skin disease with rapid turnover. We as well compared buccal mucosa and oral lichen planus, known as an inflammatory oral disease with a longer turnover interval. The imiquimod (IMQ) mouse model, often used as a psoriasis model, can promote cell proliferation. On the contrary, we peritoneally injected mice mitomycin C, which reduces cell proliferation. We examined whether IMQ and mitomycin C cause changes in the distribution and appearance of ZO-1. Human samples and mouse pharmacological models revealed that slower epithelial turnover/proliferation led to the confinement of ZO-1 to the uppermost part of squamous epithelia. In contrast, ZO-1 was widely distributed under conditions of faster cell turnover/proliferation. Cell culture experiments and mathematical modelling corroborated these ZO-1 distribution patterns. These findings demonstrate that ZO-1 distribution is affected by epithelial cell dynamics.
Collapse
Affiliation(s)
- Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Makoto Okumura
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Yasuaki Kobayashi
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of ScienceChiba UniversityChibaJapan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal RelatedKobe University Graduate School of MedicineKobeJapan
- Department of DermatologyKeio University School of MedicineTokyoJapan
| | - Masaharu Nagayama
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
46
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
47
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
48
|
van der Krogt JMA, van der Meulen IJE, van Buul JD. Spatiotemporal regulation of Rho GTPase signaling during endothelial barrier remodeling. CURRENT OPINION IN PHYSIOLOGY 2023; 34:None. [PMID: 37547802 PMCID: PMC10398679 DOI: 10.1016/j.cophys.2023.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The vasculature is characterized by a thin cell layer that comprises the inner wall of all blood vessels, the continuous endothelium. Endothelial cells can also be found in the eye's cornea. And even though cornea and vascular endothelial (VE) cells differ from each other in structure, they both function as barriers and express similar junctional proteins such as the adherens junction VE-cadherin and tight-junction member claudin-5. How these barriers are controlled to maintain the barrier and thereby its integrity is of major interest in the development of potential therapeutic targets. An important target of endothelial barrier remodeling is the actin cytoskeleton, which is centrally coordinated by Rho GTPases that are in turn regulated by Rho-regulatory proteins. In this review, we give a brief overview of how Rho-regulatory proteins themselves are spatiotemporally regulated during the process of endothelial barrier remodeling. Additionally, we propose a roadmap for the comprehensive dissection of the Rho GTPase signaling network in its entirety.
Collapse
Affiliation(s)
| | | | - Jaap D van Buul
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
50
|
Zhang FL, Ma HH, Dong PY, Yuan ZN, Zhang SE, Zhao AH, Liu HQ, De Felici M, Shen W, Zhang XF. Aflatoxin B1 disrupts testicular development via the cell cycle-related Ras/PI3K/Akt signaling in mice and pig. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121729. [PMID: 37116564 DOI: 10.1016/j.envpol.2023.121729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Aflatoxins B1 (AFB1), a type I carcinogen widely present in the environment, not only poses a danger to animal husbandry, but also poses a potential threat to human reproductive health, but its mechanism is still unclear. To address this question, multi-omics were performed on porcine Sertoli cells and mice testis. The data suggest that AFB1 induced testicular damage manifested as decreased expression of GJA1, ZO1 and OCCLUDIN in mice (p < 0.01) and inhibition of porcine Sertoli cell proliferation. Transcriptomic analysis suggested changes in noncoding RNA expression profiles that affect the cell cycle-related Ras/PI3K/Akt signaling pathway after AFB1 exposure both in mice and pigs. Specifically, AFB1 caused abnormal cell cycle of testis with the characterization of decreased expressions of CCNA1, CCNB1 and CDK1 (p < 0.01). Flow cytometry revealed that the G2/M phase was significantly increased after AFB1 exposure. Meanwhile, AFB1 downregulated the expressions of Ras, PI3K and AKT both in porcine Sertoli cell (p < 0.01) and mice testis (p < 0.01). Metabolome analysis verified the alterations in the PI3K/Akt signaling pathway (p < 0.05). Moreover, the joint analysis of metabolome and microbiome found that the changes of metabolites were correlated with the expression of flora. In conclusion, we have demonstrated that AFB1 impairs testicular development via the cell cycle-related Ras/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266100, China; College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hao-Hai Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266100, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266100, China
| | - Zheng-Ning Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266100, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Huan-Qi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266100, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266100, China.
| |
Collapse
|