1
|
Torreggiani S, Castellan FS, Aksentijevich I, Beck DB. Somatic mutations in autoinflammatory and autoimmune disease. Nat Rev Rheumatol 2024; 20:683-698. [PMID: 39394526 DOI: 10.1038/s41584-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Somatic mutations (also known as acquired mutations) are emerging as common, age-related processes that occur in all cells throughout the body. Somatic mutations are canonically linked to malignant processes but over the past decade have been increasingly causally connected to benign diseases including rheumatic conditions. Here we outline the contribution of somatic mutations to complex and monogenic immunological diseases with a detailed review of unique aspects associated with such causes. Somatic mutations can cause early- or late-onset rheumatic monogenic diseases but also contribute to the pathogenesis of complex inflammatory and immune-mediated diseases, affect disease progression and define new clinical subtypes. Although even variants with a low variant allele fraction can be pathogenic, clonal dynamics could lead to changes over time in the proportion of mutant cells, with possible phenotypic consequences for the individual. Thus, somatic mutagenesis and clonal expansion have relevant implications in genetic testing and counselling. On the basis of both increased recognition of somatic diseases in clinical practice and improved technical and bioinformatic processes, we hypothesize that there will be an ever-expanding list of somatic mutations in various genes leading to inflammatory conditions, particularly in late-onset disease.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Epidemiology and Human Genetics, Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Flore S Castellan
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Hamada R, Yonezawa A, Matsumoto K, Mitani T, Takagi T, Muto A, Igarashi K, Naito Y, Higashimura Y. BTB and CNC homology 1 deficiency disrupts intestinal IgA secretion through regulation of polymeric immunoglobulin receptor expression. Am J Physiol Gastrointest Liver Physiol 2024; 327:G414-G423. [PMID: 38981617 DOI: 10.1152/ajpgi.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Immunoglobulin A (IgA)-mediated mucosal immunity is important for the host because it contributes to reducing infection risk and to establishing host-microbe symbiosis. BTB and CNC homology 1 (Bach1) is a transcriptional repressor with physiological and pathophysiological functions that are of particular interest for their relation to gastrointestinal diseases. However, Bach1 effects on IgA-mediated mucosal immunity remain unknown. For this study using Bach1-deficient (Bach1-/-) mice, we investigated the function of Bach1 in IgA-mediated mucosal immunity. Intestinal mucosa, feces, and plasma IgA were examined using immunosorbent assay. After cell suspensions were prepared from Peyer's patches and colonic lamina propria, they were examined using flow cytometry. The expression level of polymeric immunoglobulin receptor (pIgR), which plays an important role in the transepithelial transport of IgA, was evaluated using Western blotting, quantitative real-time PCR, and immunohistochemistry. Although no changes in the proportions of IgA-producing cells were observed, the amounts of IgA in the intestinal mucosa were increased in Bach1-/- mice. Furthermore, plasma IgA was increased in Bach1-/- mice, but fecal IgA was decreased, indicating that Bach1-/- mice have abnormal secretion of IgA into the intestinal lumen. In fact, Bach1 deficiency reduced pIgR expression in colonic mucosa at both the protein and mRNA levels. In the human intestinal epithelial cell line LS174T, suppression of Bach1 reduced pIgR mRNA stability. In contrast, the overexpression of Bach1 increased pIgR mRNA stability. These results demonstrate that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen via suppression of pIgR expression.NEW & NOTEWORTHY The transcriptional repressor Bach1 has been implicated in diverse intestinal functions, but the effects of Bach1 on IgA-mediated mucosal immunity remain unclear. We demonstrate here that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen, although the proportions of IgA-producing cells were not altered. Furthermore, Bach1 regulates the expression of pIgR, which plays an important role in the transepithelial transport of IgA, at the posttranscriptional level.
Collapse
Affiliation(s)
- Riku Hamada
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| | - Akari Yonezawa
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| | - Kenji Matsumoto
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
4
|
Yasuda T, Wang YA. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Trends Cancer 2024; 10:627-642. [PMID: 38600020 PMCID: PMC11292672 DOI: 10.1016/j.trecan.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Although immunotherapy has revolutionized solid tumor treatment, durable responses in gastric cancer (GC) remain limited. The heterogeneous tumor microenvironment (TME) facilitates immune evasion, contributing to resistance to conventional and immune therapies. Recent studies have highlighted how specific TME components in GC acquire immune escape capabilities through cancer-specific factors. Understanding the underlying molecular mechanisms and targeting the immunosuppressive TME will enhance immunotherapy efficacy and patient outcomes. This review summarizes recent advances in GC TME research and explores the role of the immune-suppressive system as a context-specific determinant. We also provide insights into potential treatments beyond checkpoint inhibition.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Randolph G, Erlich E, Czepielewski R, Field R, Dunning T, Saleh L, Hoofnagle M, Tumanov A, Guilak F, Brestoff J. Distinct roles for LTalpha3 and LTalpha1beta2 produced by B cells contribute to their multi-faceted impact on ileitis. RESEARCH SQUARE 2024:rs.3.rs-3962916. [PMID: 38464070 PMCID: PMC10925464 DOI: 10.21203/rs.3.rs-3962916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
B lymphocytes may facilitate chronic inflammation through antibody production or secretion of cytokines, including lymphotoxin (LT)-a1b2 associated with development of lymphoid tissue. Tertiary lymphoid structures (TLS) characterize human and murine ileitis by suppressing outflow from the ileum. Here, we show that B cell-derived secretory IgA protected against ileal inflammation, whereas B cell-derived LTa guarded against ileitis-associated loss of body mass. We initially hypothesized this protection resulted from formation of TLS that suppressed lymphatic outflow and thereby restrained systemic spread of inflammatory signals, but B cell-selective deletion of LTb did not exacerbate weight loss, despite eliminating TLS. Instead, weight loss driven by the cachectic cytokine TNF was exacerbated when LTa3, another ligand for TNF receptors, was selectively neutralized. Thus, B cells' multi-faceted impact on ileitis includes generating secretory IgA, expressing LTa1b2 to drive formation of TLS, and producing LTa3 for protecting against weight loss in the presence of TNF.
Collapse
|
6
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
7
|
Xu H, Wang Z, Li Y, Xu Z. The distribution and function of teleost IgT. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109281. [PMID: 38092093 DOI: 10.1016/j.fsi.2023.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Given the uniquely close relationship between fish and aquatic environments, fish mucosal tissues are constantly exposed to a wide array of pathogenic microorganisms in the surrounding water. To maintain mucosal homeostasis, fish have evolved a distinct mucosal immune system known as mucosal-associated lymphoid tissues (MALTs). These MALTs consist of key effector cells and molecules from the adaptive immune system, such as B cells and immunoglobulins (Igs), which play crucial roles in maintaining mucosal homeostasis and defending against external pathogen infections. Until recently, three primary Ig isotypes, IgM, IgD, and IgT, have been identified in varying proportions within the mucosal secretions of teleost fish. Similar to the role of mucosal IgA in mammals and birds, teleost IgT plays a predominant role in mucosal immunity. Following the identification of the IgT gene in 2005, significant advances have been made in researching the origin, evolution, structure, and function of teleost IgT. Multiple IgT variants have been identified in various species of teleost fish, underscoring the remarkable complexity of IgT in fish. Therefore, this study provides a comprehensive review of the recent advances in various aspects of teleost IgT, including its genomic and structural features, the diverse distribution patterns within various fish mucosal tissues (the skin, gills, gut, nasal, buccal, pharyngeal, and swim bladder mucosa), its interaction with mucosal symbiotic microorganisms, and its immune responses towards diverse pathogens, including bacteria, viruses, and parasites. We also highlight the existing research gaps in the study of teleost IgT, suggesting the need for further investigation into the functional aspects of IgT and IgT+ B cells. This research is aimed at providing valuable insights into the immune functions of IgT and the mechanisms underlying the immune responses of fish against infections.
Collapse
Affiliation(s)
- Haoyue Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
He Z, Dong H. The roles of short-chain fatty acids derived from colonic bacteria fermentation of non-digestible carbohydrates and exogenous forms in ameliorating intestinal mucosal immunity of young ruminants. Front Immunol 2023; 14:1291846. [PMID: 38149240 PMCID: PMC10750390 DOI: 10.3389/fimmu.2023.1291846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Short-chain fatty acids (SCFA) are a class of organic fatty acids that consist of 1 to 6 carbons in length. They are primary end-products which arise from non-digestible carbohydrates (NDC) fermentation of colonic bacteria. They are the fundamental energy sources for post-weaning ruminants. SCFA represent the major carbon flux of diet through the gut microbiota to the host. They also play a vital role in regulating cell expansion and gene expression of the gastrointestinal tract (GIT). Recently, remarkable progresses have been made in understanding the immunomodulatory effects of SCFA and their interactions with the host. The processes involved in this study encompassed inflammasome activation, proliferation of lymphocytes, and maturation of intestinal mucosal immunity maturation. It is important to note that the establishment and maturation of intestinal mucosal immune system are intricately connected to the barrier function of intestinal epithelial cells (IEC) and the homeostasis of gut microbiota. Thus, insights into the role of SCFA in enteric mucosal immunoreaction of calves will enhance our understanding of their various regulatory functions. This review aims to analyze recent evidence on the role of SCFA as essential signaling molecules between gut microbiota and animal health. Additionally, we provide a summary of current literature on SCFA in intestinal mucosal immune responses of dairy calves.
Collapse
Affiliation(s)
| | - Hong Dong
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
9
|
Scheurer S, Junker AC, He C, Schülke S, Toda M. The Role of IgA in the Manifestation and Prevention of Allergic Immune Responses. Curr Allergy Asthma Rep 2023; 23:589-600. [PMID: 37610671 PMCID: PMC10506939 DOI: 10.1007/s11882-023-01105-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE OF REVIEW Immunoglobulin A (IgA) mediates immune exclusion of antigens in the gut. Notably, IgA plays also a role in the prevention of IgE-mediated allergies and induction of immune tolerance. The present review addresses the role of IgA in the manifestation of IgE-mediated allergies, including allergen-specific immunotherapy (AIT), the regulation of IgA production, and the mechanism of IgA in immune cell activation. RECENT FINDINGS The majority of studies report an association of IgA with the induction of immune tolerance in IgE-mediated allergies. However, reports on the involvement of humoral and mucosal IgA, IgA subtypes, monomeric and polymeric IgA, and the mechanism of IgA-mediated immune cell activation are confounding. Effects by IgA are likely mediated by alteration of microbiota, IgE-blocking capacity, or activation of inhibitory signaling pathways. However, the precise mechanism of IgA-regulation, the contribution of serum and/or mucosal IgA, and IgA1/2 subtypes, on the manifestation of IgE-mediated allergies, and the underlying immune modulatory mechanism are still elusive.
Collapse
Affiliation(s)
- Stephan Scheurer
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany.
| | - Ann-Christine Junker
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany
| | - Chaoqi He
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Stefan Schülke
- Federal Institute for Vaccines and Biomedicines, Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str., 51-58, 63225, Langen, Germany
- Division of Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
11
|
Mo K, Yu W, Li J, Zhang Y, Xu Y, Huang X, Ni H. Dietary supplementation with a microencapsulated complex of thymol, carvacrol, and cinnamaldehyde improves intestinal barrier function in weaning piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1994-2003. [PMID: 36347590 DOI: 10.1002/jsfa.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The authors previously prepared a microencapsulated complex of thymol, carvacrol, and cinnamaldehyde (MEEO). This study aimed to evaluate the effect of MEEO on the intestinal mucosal barrier and homeostasis in weaning piglets. A comparison of the effect of MEEO versus chlortetracycline (CTC) was performed in this study. RESULTS Piglets were divided into three groups - control (Con), MEEO, and CTC groups - and raised for 28 days. The results showed that MEEO significantly elevated the ratio of the villus height and the crypt depth in the jejunum and decreased the crypt depth in the ileum compared with the other groups (P < 0.05); it also upregulated the messenger ribonucleic acid (mRNA) expression of tight junction protein in the small intestine. Compared with the Con group, MEEO increased the concentration of secretory immunoglobulin A (sIgA), cathelicidin antimicrobial peptides (CAMP), and interleukin 10 (IL-10), while decreasing the interleukin 1 beta (IL-1β) concentration in both jejunal and ileal mucosa (P < 0.05). The mRNA expression of jejunal mucosal MUC1 and ileal mucosal MUC2 was increased in the MEEO group compared with the other groups (P < 0.05). Intestinal microbial analysis showed that dietary treatment had little impact on the ileal microbial structure. A significant rise in the genus Lactobacillus was, however, found in the MEEO group. There is a positive correlation between the Lactobacillus and sIgA, and between the Lactobacillus and CAMP, indicating that an improvement in the mucosal barrier function by the addition of MEEO may be associated with the proliferation of Lactobacillus. CONCLUSION Dietary supplementation with MEEO improves intestinal barrier function in weaning piglets, the effect of which was superior to CTC. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaibin Mo
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wengang Yu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yunxiao Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xianhui Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hengjia Ni
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
12
|
Totoki Y, Saito-Adachi M, Shiraishi Y, Komura D, Nakamura H, Suzuki A, Tatsuno K, Rokutan H, Hama N, Yamamoto S, Ono H, Arai Y, Hosoda F, Katoh H, Chiba K, Iida N, Nagae G, Ueda H, Shihang C, Sekine S, Abe H, Nomura S, Matsuura T, Sakai E, Ohshima T, Rino Y, Yeoh KG, So J, Sanghvi K, Soong R, Fukagawa A, Yachida S, Kato M, Seto Y, Ushiku T, Nakajima A, Katai H, Tan P, Ishikawa S, Aburatani H, Shibata T. Multiancestry genomic and transcriptomic analysis of gastric cancer. Nat Genet 2023; 55:581-594. [PMID: 36914835 DOI: 10.1038/s41588-023-01333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
Gastric cancer is among the most common malignancies worldwide, characterized by geographical, epidemiological and histological heterogeneity. Here, we report an extensive, multiancestral landscape of driver events in gastric cancer, involving 1,335 cases. Seventy-seven significantly mutated genes (SMGs) were identified, including ARHGAP5 and TRIM49C. We also identified subtype-specific drivers, including PIGR and SOX9, which were enriched in the diffuse subtype of the disease. SMGs also varied according to Epstein-Barr virus infection status and ancestry. Non-protein-truncating CDH1 mutations, which are characterized by in-frame splicing alterations, targeted localized extracellular domains and uniquely occurred in sporadic diffuse-type cases. In patients with gastric cancer with East Asian ancestry, our data suggested a link between alcohol consumption or metabolism and the development of RHOA mutations. Moreover, mutations with potential roles in immune evasion were identified. Overall, these data provide comprehensive insights into the molecular landscape of gastric cancer across various subtypes and ancestries.
Collapse
Affiliation(s)
- Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiro Suzuki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Rokutan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hanako Ono
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Genta Nagae
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Biological Data Science, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Chen Shihang
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Matsuura
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Eiji Sakai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Takashi Ohshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Khay Guan Yeoh
- Dept of Medicine, National University of Singapore, Singapore, Singapore
| | - Jimmy So
- Dept of Surgery, National University of Singapore, Singapore, Singapore
| | - Kaushal Sanghvi
- Dept of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore, Singapore
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. .,Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Gier RA, Hueros RAR, Rong J, DeMarshall M, Karakasheva TA, Muir AB, Falk GW, Zhang NR, Shaffer SM. Clonal cell states link Barrett's esophagus and esophageal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525564. [PMID: 36747708 PMCID: PMC9900873 DOI: 10.1101/2023.01.26.525564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Barrett's esophagus is a common type of metaplasia and a precursor of esophageal adenocarcinoma. However, the cell states and lineage connections underlying the origin, maintenance, and progression of Barrett's esophagus have not been resolved in humans. To address this, we performed single-cell lineage tracing and transcriptional profiling of patient cells isolated from metaplastic and healthy tissue. Our analysis revealed discrete lineages in Barrett's esophagus, normal esophagus, and gastric cardia. Transitional basal progenitor cells of the gastroesophageal junction were unexpectedly related to both esophagus and gastric cardia cells. Barrett's esophagus was polyclonal, with lineages that contained all progenitor and differentiated cell types. In contrast, precancerous dysplastic foci were initiated by the expansion of a single molecularly aberrant Barrett's esophagus clone. Together, these findings provide a comprehensive view of the cell dynamics of Barrett's esophagus, linking cell states along the full disease trajectory, from its origin to cancer.
Collapse
Affiliation(s)
- Rodrigo A. Gier
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Raúl A. Reyes Hueros
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen DeMarshall
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana A. Karakasheva
- Gastrointestinal Epithelium Modeling Program, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda B. Muir
- Gastrointestinal Epithelium Modeling Program, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy R. Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney M. Shaffer
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Strugnell RA. When secretion turns into excretion - the different roles of IgA. Front Immunol 2022; 13:1076312. [PMID: 36618388 PMCID: PMC9812643 DOI: 10.3389/fimmu.2022.1076312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
IgA deficiency is the commonest immunodeficiency affecting up to 1 in 700 individuals. The effects of IgA deficiency are difficult to see in many individuals, are mild in many fewer and severe in fewer still. While monovalent IgA is found in serum, dimeric IgA is secreted through mucosal surfaces where it helps to maintain epithelial homeostasis. Studies with knockout mice have taught us that there are subtle inflammatory consequences of removing secretory IgA (sIgA), and the best explanation for these changes can be related by the loss of the 'excretory' immune system. The excretion of antigens is a logical process in regulating the immune system, given the long half-life of complement fixing antibodies. But the function of IgA as an immune or inflammation regulator may go beyond antigen removal.
Collapse
|
15
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
16
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
17
|
Rojas-Velázquez L, Morán P, Serrano-Vázquez A, Portillo-Bobadilla T, González E, Pérez-Juárez H, Hernández E, Partida-Rodríguez O, Nieves-Ramírez M, Padilla A, Zaragoza M, Ximénez C. The regulatory function of Blastocystis spp. on the immune inflammatory response in the gut microbiome. Front Cell Infect Microbiol 2022; 12:967724. [PMID: 36118018 PMCID: PMC9470931 DOI: 10.3389/fcimb.2022.967724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Blastocystis spp. is a unicellular organism that resides in digestive tract of various vertebrates, with a worldwide distribution and a variable prevalence. For many years, Blastocystis spp. was considered a cyst of a flagellate, a fungus, or a saprophyte yeast of the digestive tract; in 1996, it is placed in the group of stramenopiles (heterokonts). Since its new classification, many questions have arisen around this protist about its role as a pathogen or non-pathogen organism. Recent evidence indicates that Blastocystis spp. participates in the immune inflammatory response in the intestinal microbiome generating an anti-inflammatory response, showing a lower concentration of fecal inflammatory markers in infected human hosts. Here, we review recent findings on the regulatory function of Blastocystis spp. in the immune inflammatory response to comprehend the purpose of Blastocystis spp. in health and disease, defining if Blastocystis spp. is really a pathogen, a commensal or even a mutualist in the human gut microbiome.
Collapse
Affiliation(s)
- Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Liliana Rojas-Velázquez, ; Cecilia Ximénez,
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Tobías Portillo-Bobadilla
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM) e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Enrique González
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Eric Hernández
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Oswaldo Partida-Rodríguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miriam Nieves-Ramírez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Angeles Padilla
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Zaragoza
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Liliana Rojas-Velázquez, ; Cecilia Ximénez,
| |
Collapse
|
18
|
Intestinal epithelium in early life. Mucosal Immunol 2022; 15:1181-1187. [PMID: 36380094 DOI: 10.1038/s41385-022-00579-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Rapid development of the fetal and neonatal intestine is required to meet the growth requirements of early life and form a protective barrier against external insults encountered by the intestinal mucosa. The fetus receives nutrition via the placenta and is protected from harmful pathogens in utero, which leads to intestinal development in a relatively quiescent environment. Upon delivery, the intestinal mucosa is suddenly tasked with providing host defense and meeting nutritional demands. To serve these functions, an array of specialized epithelial cells develop from intestinal stem cells starting in utero and continuing postnatally. Intestinal disease results when these homeostatic processes are interrupted. For preterm neonates, the most common pathology resulting from epithelial barrier dysfunction is necrotizing enterocolitis (NEC). In this review, we discuss the normal development and function of the intestinal epithelium in early life as well as how disruption of these processes can lead to NEC.
Collapse
|
19
|
Sheng X, Guo Y, Zhu H, Chai B, Tang X, Xing J, Chi H, Zhan W. Transepithelial Secretion of Mucosal IgM Mediated by Polymeric Immunoglobulin Receptor of Flounder ( Paralichthys olivaceus): In-Vivo and In-Vitro Evidence. Front Immunol 2022; 13:868753. [PMID: 35464454 PMCID: PMC9019723 DOI: 10.3389/fimmu.2022.868753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Secretory immunoglobulin (SIg) is crucial for mucosal surface defenses, but the transepithelial secretion of SIg mediated by polymeric immunoglobulin receptor (pIgR) is not clarified in fish. We previously found that flounder (Paralichthys olivaceus) pIgR (fpIgR) and secretory IgM (SIgM) increased in gut mucus post-vaccination. Here, the fpIgR-positive signal was mainly observed in the intestinal epithelium, whereas the IgM-positive signal was mainly distributed in the lamina propria, before immunization. IgM signals increased in the lamina propria and then in the epithelium after immunization with inactivated Vibrio anguillarum, and co-localization between IgM and fpIgR in the epithelium was determined, while the presence of EdU+IgM+ cells in the lamina propria identified the proliferative B cells, revealing that the secretion and transepithelial transport of SIgM locally occurred in the gut of flounder. Subsequently, we established an in-vitro model of transfected MDCK cells that stably expressed the fpIgR. After a recombinant eukaryotic expression plasmid (pCIneoEGFP-fpIgR) was constructed and transfected into MDCK cells, stable expression of the fpIgR in transfected MDCK-fpIgR cells was confirmed, and the tightness and integrity of the polarized cell monolayers grown on Transwells were evaluated. Afterward, the serum IgM of flounder was purified as a binding ligand and placed in the lower compartment of Transwells. An ~800-kDa protein band in the upper compartment was shown to be IgM- and fpIgR-positive, and IgM-positive fluorescence was seen in MDCK-fpIgR cells but not in MDCK-mock cells. Hence, the fpIgR helped polymeric IgM to pass across MDCK-fpIgR cells via transcytosis in a basolateral-to-apical fashion. These new findings provide a better understanding of the pathways shaping mucosal IgM responses and the local mucosal immune mechanisms in teleosts.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuan Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hui Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Baihui Chai
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Ornelas A, Dowdell AS, Lee JS, Colgan SP. Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells 2022; 11:cells11060944. [PMID: 35326394 PMCID: PMC8946845 DOI: 10.3390/cells11060944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell–cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell–cell interactions and ultimately mucosal permeability in health and disease.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
- Rocky Mountain Regional Veterans Affairs Medical Center, 1700 N. Wheeling St., Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
21
|
Neu SD, Dittel BN. Characterization of Definitive Regulatory B Cell Subsets by Cell Surface Phenotype, Function and Context. Front Immunol 2022; 12:787464. [PMID: 34987513 PMCID: PMC8721101 DOI: 10.3389/fimmu.2021.787464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory B cell or “Breg” is a broad term that represents the anti-inflammatory activity of B cells, but does not describe their individual phenotypes, specific mechanisms of regulation or relevant disease contexts. Thus, given the variety of B cell regulatory mechanisms reported in human disease and their animal models, a more thorough and comprehensive identification strategy is needed for tracking and comparing B cell subsets between research groups and in clinical settings. This review summarizes the discovery process and mechanism of action for well-defined regulatory B cell subsets with an emphasis on the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis. We discuss the importance of conducting thorough B cell phenotyping along with mechanistic studies prior to defining a particular subset of B cells as Breg. Since virtually all B cell subsets can exert regulatory activity, it is timely for their definitive identification across studies.
Collapse
Affiliation(s)
- Savannah D Neu
- Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022; 10:biomedicines10020289. [PMID: 35203499 PMCID: PMC8869546 DOI: 10.3390/biomedicines10020289] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between gut microbes (both commensals and pathogens) and the host immune system. Highly specialized epithelial cells constantly cope with several protective and harmful agents to maintain the multiple physiological functions of the barrier as well as its integrity. However, both genetic defects and environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated immune-inflammatory responses, and even the development of chronic pathological conditions. Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier structural and functional homeostasis, focusing on potential alterations that may undermine this fine balance.
Collapse
|
23
|
Accurate prediction of immunoglobulin proteins using machine learning model. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Huang RY, Lee CN, Moochhala S. Circulating Antibodies to Skin Bacteria Detected by Serological Lateral Flow Immunoassays Differentially Correlated With Bacterial Abundance. Front Microbiol 2021; 12:709562. [PMID: 34867837 PMCID: PMC8635989 DOI: 10.3389/fmicb.2021.709562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The serological lateral flow immunoassay (LFIA) was used to detect circulating antibodies to skin bacteria. Next-generation sequencing analysis of the skin microbiome revealed a high relative abundance of Cutibacterium acnes but low abundance of Staphylococcus aureus and Corynebacterium aurimucosum on human facial samples. Yet, results from both LFIA and antibody titer quantification in 96-well microplates illustrated antibody titers that were not correspondent, and instead negatively correlated, to their respective abundance with human blood containing higher concentrations of antibodies to both S. aureus and C. aurimucosum than C. acnes. Acne vulgaris develops several unique microbial and cellular features, but its correlation with circulating antibodies to bacteria in the pilosebaceous unit remains unknown. Results here revealed that antibodies to C. acnes and S. aureus were approximately 3-fold higher and 1.5-fold lower, respectively, in acne patients than in healthy subjects. Although the results can be further validated by larger sample sizes, the proof-of-concept study demonstrates a newfound discrepancy between the abundance of skin bacteria and amounts of their corresponding antibodies. And in light of acne-correlated amplified titers of specific anticommensal antibodies, we highlight that profiling these antibodies in the pilosebaceous unit by LFIAs may provide a unique signature for monitoring acne vulgaris.
Collapse
Affiliation(s)
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shabbir Moochhala
- Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Goguyer-Deschaumes R, Waeckel L, Killian M, Rochereau N, Paul S. Metabolites and secretory immunoglobulins: messengers and effectors of the host-microbiota intestinal equilibrium. Trends Immunol 2021; 43:63-77. [PMID: 34848167 DOI: 10.1016/j.it.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Maintaining commensal diversity is essential to host homeostasis, because microbial species provide a range of metabolic products and continuously educate the host immune system. The mucosal immune system must actively gather information about the composition of the microbiota, while offering an appropriate response. In mammals, bacterial sensing leads to the production of specific immunoglobulins (Ig), which reach the intestinal lumen as secretory Ig (SIg). Recent work has shed more light on the mechanisms by which SIg can shape bacterial repertoires and contribute to regulating host metabolism. In parallel, bacterial metabolites modulate Ig production and secretion. Here, we present an overview of the current knowledge of the relationship between bacterial metabolites and host SIg, correlating the disruption of this balance with chronic inflammation in humans.
Collapse
Affiliation(s)
- Roman Goguyer-Deschaumes
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Louis Waeckel
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Martin Killian
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Nicolas Rochereau
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France.
| |
Collapse
|
26
|
Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature 2021; 598:657-661. [PMID: 34646015 DOI: 10.1038/s41586-021-03973-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Dimeric IgA secreted across mucous membranes in response to nonpathogenic taxa of the microbiota accounts for most antibody production in mammals. Diverse binding specificities can be detected within the polyclonal mucosal IgA antibody response1-10, but limited monoclonal hybridomas have been studied to relate antigen specificity or polyreactive binding to functional effects on microbial physiology in vivo11-17. Here we use recombinant dimeric monoclonal IgAs (mIgAs) to finely map the intestinal plasma cell response to microbial colonization with a single microorganism in mice. We identify a range of antigen-specific mIgA molecules targeting defined surface and nonsurface membrane antigens. Secretion of individual dimeric mIgAs targeting different antigens in vivo showed distinct alterations in the function and metabolism of intestinal bacteria, largely through specific binding. Even in cases in which the same microbial antigen is targeted, microbial metabolic alterations differed depending on IgA epitope specificity. By contrast, bacterial surface coating generally reduced motility and limited bile acid toxicity. The overall intestinal IgA response to a single microbe therefore contains parallel components with distinct effects on microbial carbon-source uptake, bacteriophage susceptibility, motility and membrane integrity.
Collapse
|
27
|
Jahnsen FL, Johansen F. Legends of allergology and immunology: Per Brandtzaeg - Pillar of mucosal immunology. Allergy 2021; 76:2634-2635. [PMID: 33752264 DOI: 10.1111/all.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Frode L. Jahnsen
- Department of Pathology University of Oslo and Oslo University Hospital Oslo Norway
| | | |
Collapse
|
28
|
Merten H, Brandl F, Zimmermann M, Schaefer JV, Irpinio L, Sand KMK, Nilsen J, Andersen JT, Zangemeister-Wittke U, Plückthun A. Half-life extension of efficiently produced DARPin serum albumin fusions as a function of FcRn affinity and recycling. Eur J Pharm Biopharm 2021; 167:104-113. [PMID: 34303832 DOI: 10.1016/j.ejpb.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Serum albumin shows slow clearance from circulation due to neonatal Fc receptor (FcRn)-mediated recycling and has been used for half-life extension. We report here fusions to a high-affinity DARPin, binding to Epithelial Cell Adhesion Molecule (EpCAM). We developed a novel, efficient expression system for such fusion proteins in Pichia pastoris with titers above 300 mg/L of lab-scale shake-flask culture. Since human serum albumin (HSA) does not bind to the murine FcRn, half-lives of therapeutic candidates are frequently measured in human FcRn transgenic mice, limiting useable tumor models. Additionally, serum albumins with extended half-life have been designed. We tested HSA7, motivated by its previously claimed extraordinarily long half-life in mice, which we could not confirm. Instead, we determined a half-life of only 29 h for HSA7, comparable to MSA. The fusion of HSA7 to a DARPin showed a similar half-life. To rationalize these findings, we measured binding kinetics and affinities to murine and human FcRn. Briefly, HSA7 showed affinity to murine FcRn only in the micromolar range, comparable to MSA to its cognate murine FcRn, and an affinity in the nanomolar range only to the human FcRn. This explains the comparable half-life of MSA and HSA7 in mice, while wild-type-HSA has a half-life of only 21 h, as it does not bind the murine FcRn and is not recycled. Thus, HSA-fusions with improved FcRn-affinity, such as HSA7, can be used for preclinical experiments in mice when FcRn transgenes cannot be used, as they reflect better the complex FcRn-mediated recycling and distribution mechanisms.
Collapse
Affiliation(s)
- Hannes Merten
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Martina Zimmermann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Linda Irpinio
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Kine M K Sand
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0372 Oslo, Norway; Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, N-0318 Oslo, Norway
| | - Jeannette Nilsen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0372 Oslo, Norway; Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, N-0318 Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, N-0372 Oslo, Norway; Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, N-0318 Oslo, Norway
| | - Uwe Zangemeister-Wittke
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
29
|
Olafsson S, Anderson CA. Somatic mutations provide important and unique insights into the biology of complex diseases. Trends Genet 2021; 37:872-881. [PMID: 34226062 DOI: 10.1016/j.tig.2021.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Somatic evolution of cells within the body is well known to lead to cancers. However, spread of somatic mutations within a tissue over time may also contribute to the pathogenesis of non-neoplastic diseases. Recent years have seen the publication of many studies aiming to characterize somatic evolution in healthy tissues. A logical next step is to extend such work to diseased conditions. As our understanding of the interplay between somatic mutations and non-neoplastic disease grows, opportunities for the joint study of germline and somatic variants will present themselves. Here, we present our thoughts on the utility of somatic mutations for understanding both the causes and consequences of common complex disease and the challenges that remain for the joint study of the soma and germline.
Collapse
Affiliation(s)
| | - Carl A Anderson
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
30
|
Wagner C, Torow N, Hornef MW, Lelouard H. Spatial and temporal key steps in early-life intestinal immune system development and education. FEBS J 2021; 289:4731-4757. [PMID: 34076962 DOI: 10.1111/febs.16047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Education of our intestinal immune system early in life strongly influences adult health. This education strongly relies on series of events that must occur in well-defined time windows. From initial colonization by maternal-derived microbiota during delivery to dietary changes from mother's milk to solid foods at weaning, these early-life events have indeed long-standing consequences on our immunity, facilitating tolerance to environmental exposures or, on the contrary, increasing the risk of developing noncommunicable diseases such as allergies, asthma, obesity, and inflammatory bowel diseases. In this review, we provide an outline of the recent advances in our understanding of these events and how they are mechanistically related to intestinal immunity development and education. First, we review the susceptibility of neonates to infections and inflammatory diseases, related to their immune system and microbiota changes. Then, we highlight the maternal factors involved in protection and education of the mucosal immune system of the offspring, the role of the microbiota, and the nature of neonatal immune system until weaning. We also present how the development of some immune responses is intertwined in temporal and spatial windows of opportunity. Finally, we discuss pending questions regarding the neonate particular immune status and the activation of the intestinal immune system at weaning.
Collapse
Affiliation(s)
- Camille Wagner
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | | |
Collapse
|
31
|
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,*Correspondence: Koji Hase,
| |
Collapse
|
32
|
Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunol 2021; 12:673708. [PMID: 33968085 PMCID: PMC8100306 DOI: 10.3389/fimmu.2021.673708] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal surface is constitutively exposed to diverse antigens, such as food antigens, food-borne pathogens, and commensal microbes. Intestinal epithelial cells have developed unique barrier functions that prevent the translocation of potentially hostile antigens into the body. Disruption of the epithelial barrier increases intestinal permeability, resulting in leaky gut syndrome (LGS). Clinical reports have suggested that LGS contributes to autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and celiac disease. Furthermore, the gut commensal microbiota plays a critical role in regulating host immunity; abnormalities of the microbial community, known as dysbiosis, are observed in patients with autoimmune diseases. However, the pathological links among intestinal dysbiosis, LGS, and autoimmune diseases have not been fully elucidated. This review discusses the current understanding of how commensal microbiota contributes to the pathogenesis of autoimmune diseases by modifying the epithelial barrier.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.,International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Qu Y, Kahl S, Miska KB, Schreier LL, Russell B, Elsasser TH, Proszkowiec-Weglarz M. The effect of delayed feeding post-hatch on caeca development in broiler chickens. Br Poult Sci 2021; 62:731-748. [PMID: 33834926 DOI: 10.1080/00071668.2021.1912291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Broiler chicks are frequently deprived of food up to 72 h due to uneven hatching rates, management procedures and transportation to farms. Little is known about the effect of delayed feeding due to extended hatching times on the early neonatal development of the caeca. Therefore, the objective of this study was to investigate the developmental changes and effects of a 48-h delay in feed access immediately post-hatch (PH) on the caeca.2. After hatch, birds (Ross 708) were randomly divided into two treatment groups (n = 6 battery pen/treatment). One group (early fed; EF) received feed and water immediately after hatch, while the second group (late fed; LF) had access to water but had delayed access to feed for 48 h. Contents averaging across all regions of the caeca were collected for mRNA expression as well as for histological analysis at -48, 0, 4 h PH and then at 1, 2, 3, 4, 6, 8, 10, 12 and 14 days PH.3. Expression of MCT-1 (a nutrient transporter), Cox7A2 (related to mitochondrial function) IgA, pIgR, and ChIL-8 (immune function) genes was affected by delayed access to feed that was dependent by the time PH. Expression of immune and gut barrier function-related genes (LEAP2 and MUC2, respectively) was increased in LF group. There was no effect of feed delay on expression of genes related to mitochondrial functions in the caeca, although developmental changes were observed (ATP5F1B, Cox4|1). Caecal mucus and muscle thickness were affected by delayed access to feed during caeca development.4. The data suggested a limited effect of delayed feed access PH on the developmental changes in caecal functions. However, the caeca seemed to be relatively resistant to delayed access to feed early PH, with only a few genes affected.
Collapse
Affiliation(s)
- Y Qu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - S Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - K B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - L L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - B Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - T H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - M Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| |
Collapse
|
34
|
Iftekhar A, Sigal M. Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int J Med Microbiol 2021; 311:151486. [PMID: 33684844 DOI: 10.1016/j.ijmm.2021.151486] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a monolayer of polarized columnar cells that act as a border between the host and its environment and are the first line of defence against the luminal microbes. In addition to providing a physical barrier, the epithelium possesses a multitude of active mechanisms to fight invading pathogens and regulate the composition and spatial distribution of commensals. The different epithelial cell types have unique functions in this context, and crosstalk with the immune system further modulates their intricate antimicrobial responses. The epithelium is organized into clonal crypt units with a high cellular turnover that is driven by stem cells located at the base. There is increasing evidence that this anatomical organization, the stem cell turnover, and the lineage determination processes are essential for barrier maintenance. These processes can be modulated by microbes directly or by the immune responses to enteric pathogens, resulting in a rapid and efficient adaptation of the epithelium to environmental perturbations, injuries, and infections. Here we discuss the complex host-microbial interactions that shape the mucosa and how the epithelium maintains and re-establishes homeostasis after infection.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
35
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
36
|
An integrin αEβ7-dependent mechanism of IgA transcytosis requires direct plasma cell contact with intestinal epithelium. Mucosal Immunol 2021; 14:1347-1357. [PMID: 34417548 PMCID: PMC8528714 DOI: 10.1038/s41385-021-00439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023]
Abstract
Efficient IgA transcytosis is critical for the maintenance of a homeostatic microbiota. In the canonical model, locally-secreted dimeric (d)IgA reaches the polymeric immunoglobulin receptor (pIgR) on intestinal epithelium via simple diffusion. A role for integrin αE(CD103)β7 during transcytosis has not been described, nor its expression by intestinal B cell lineage cells. We found that αE-deficient (αE-/-) mice have a luminal IgA deficit, despite normal antibody-secreting cells (ASC) recruitment, local IgA production and increased pIgR expression. This deficit was not due to dendritic cell (DC)-derived retinoic acid (RA) nor class-switching defects, as stool from RAG-/- mice reconstituted with αE-/- B cells was also IgA deficient. Flow cytometric, ultrastructural and transcriptional profiling showed that αEβ7-expressing ASC represent an undescribed subset of terminally-differentiated intestinal plasma cells (PC) that establishes direct cell to cell contact with intestinal epithelium. We propose that IgA not only reaches pIgR through diffusion, but that αEβ7+ PC dock with E-cadherin-expressing intestinal epithelium to directly relay IgA for transcytosis into the intestinal lumen.
Collapse
|
37
|
Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, Fuseini H, Gutor S, Han W, Schaff J, Vasiukov G, Xin MK, Newcomb DC, Jin L, Blackwell TS, Polosukhin VV. Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol 2021; 14:431-442. [PMID: 32968197 PMCID: PMC7946625 DOI: 10.1038/s41385-020-00344-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/04/2023]
Abstract
Although activation of adaptive immunity is a common pathological feature of chronic obstructive pulmonary disease (COPD), particularly during later stages of the disease, the underlying mechanisms are poorly understood. In small airways of COPD patients, we found that localized disruption of the secretory immunoglobulin A (SIgA)-containing mucosal immunobarrier correlated with lymphocyte accumulation in airway walls and development of tertiary lymphoid structures (TLS) around small airways. In SIgA-deficient mice, we observed bacterial invasion into the airway epithelial barrier with lymphocytic infiltration and TLS formation, which correlated with the progression of COPD-like pathology with advanced age. Depletion of either CD4+ or CD8+ T lymphocytes reduced the severity of emphysema in SIgA-deficient mice, indicating that adaptive immune activation contributes to progressive lung destruction. Further studies revealed that lymphocyte infiltration into the lungs of SIgA-deficient mice was dependent on monocyte-derived dendritic cells (moDCs), which were recruited through a CCR2-dependent mechanism in response to airway bacteria. Consistent with these results, we found that moDCs were increased in lungs of COPD patients, along with CD4+ and CD8+ effector memory T cells. Together, these data indicate that endogenous bacteria in SIgA-deficient airways orchestrate a persistent and pathologic T lymphocyte response through monocyte recruitment and moDC differentiation.
Collapse
Affiliation(s)
- Bradley W. Richmond
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Samira Mansouri
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Ana Serezani
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Novitskiy
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jessica B. Blackburn
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Rui-Hong Du
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Hubaida Fuseini
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Gutor
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Wei Han
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jacob Schaff
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Georgii Vasiukov
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Matthew K. Xin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Dawn C. Newcomb
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Lei Jin
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Timothy S. Blackwell
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Vasiliy V. Polosukhin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
38
|
Zhang B, Liu E, Gertie JA, Joseph J, Xu L, Pinker EY, Waizman DA, Catanzaro J, Hamza KH, Lahl K, Gowthaman U, Eisenbarth SC. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci Immunol 2020; 5:5/47/eaay2754. [PMID: 32385053 DOI: 10.1126/sciimmunol.aay2754] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Immunoglobulin A (IgA) is the dominant antibody isotype in the gut and has been shown to regulate microbiota. Mucosal IgA is also widely believed to prevent food allergens from penetrating the gut lining. Even though recent work has elucidated how bacteria-reactive IgA is induced, little is known about how IgA to food antigens is regulated. Although IgA is presumed to be induced in a healthy gut at steady state via dietary exposure, our data do not support this premise. We found that daily food exposure only induced low-level, cross-reactive IgA in a minority of mice. In contrast, induction of significant levels of peanut-specific IgA strictly required a mucosal adjuvant. Although induction of peanut-specific IgA required T cells and CD40L, it was T follicular helper (TFH) cell, germinal center, and T follicular regulatory (TFR) cell-independent. In contrast, IgG1 and IgE production to peanut required TFH cells. These data suggest an alternative paradigm in which the cellular mechanism of IgA production to food antigens is distinct from IgE and IgG1. We developed an equivalent assay to study this process in stool samples from healthy, nonallergic humans, which revealed substantial levels of peanut-specific IgA that were stable over time. Similar to mice, patients with loss of CD40L function had impaired titers of gut peanut-specific IgA. This work challenges two widely believed but untested paradigms about antibody production to dietary antigens: (i) the steady state/tolerogenic response to food antigens includes IgA production and (ii) TFH cells drive food-specific gut IgA.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lan Xu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elisha Y Pinker
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Columbia University, New York, NY 10027, USA
| | - Daniel A Waizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jason Catanzaro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.,Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kedir Hussen Hamza
- Department for Experimental Medicine, Immunology Section, Lund University, Lund 221 84, Sweden
| | - Katharina Lahl
- Department for Experimental Medicine, Immunology Section, Lund University, Lund 221 84, Sweden.,Division of Biopharma, Institute for Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
39
|
Jones K, Savulescu AF, Brombacher F, Hadebe S. Immunoglobulin M in Health and Diseases: How Far Have We Come and What Next? Front Immunol 2020; 11:595535. [PMID: 33193450 PMCID: PMC7662119 DOI: 10.3389/fimmu.2020.595535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
B lymphocytes are important in secreting antibodies that protect against invading pathogens such as viruses, bacteria, parasites, and also in mediating pathogenesis of allergic diseases and autoimmunity. B lymphocytes develop in the bone marrow and contain heavy and light chains, which upon ligation form an immunoglobulin M (IgM) B cell receptor (BCR) expressed on the surface of naïve immature B cells. Naïve B cells expressing either IgM or IgD isotypes are thought to play interchangeable functions in antibody responses to T cell-dependent and T cell-independent antigens. IgM short-lived plasma cells (SLPCs) and antigen-specific IgM memory B cells (MBCs-M) are critical in the first few days of infection, as well as long-term memory induced by vaccination, respectively. At mucosal surfaces, IgM is thought to play a critical part in promoting mucosal tolerance and shaping microbiota together with IgA. In this review, we explore how IgM structure and BCR signaling shapes B cell development, self and non-self-antigen-specific antibody responses, responses to infectious (such as viruses, parasites, and fungal) and non-communicable diseases (such as autoimmunity and allergic asthma). We also explore how metabolism could influence other B cell functions such as mucosal tolerance and class switching. Finally, we discuss some of the outstanding critical research questions in both experimental and clinical settings targeting IgM.
Collapse
Affiliation(s)
- Katelyn Jones
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
40
|
Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C, Dorgham K, Rajkumar A, Autaa G, El-Kafsi H, Charuel JL, Juste C, Jönsson F, Candela T, Wardemann H, Aubry A, Capito C, Brisson H, Tresallet C, Cummings RD, Larsen M, Yssel H, von Gunten S, Gorochov G. Human IgA binds a diverse array of commensal bacteria. J Exp Med 2020; 217:133553. [PMID: 31891367 PMCID: PMC7062531 DOI: 10.1084/jem.20181635] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/10/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
In humans, several grams of IgA are secreted every day in the intestinal lumen. While only one IgA isotype exists in mice, humans secrete IgA1 and IgA2, whose respective relations with the microbiota remain elusive. We compared the binding patterns of both polyclonal IgA subclasses to commensals and glycan arrays and determined the reactivity profile of native human monoclonal IgA antibodies. While most commensals are dually targeted by IgA1 and IgA2 in the small intestine, IgA1+IgA2+ and IgA1−IgA2+ bacteria coexist in the colon lumen, where Bacteroidetes is preferentially targeted by IgA2. We also observed that galactose-α terminated glycans are almost exclusively recognized by IgA2. Although bearing signs of affinity maturation, gut-derived IgA monoclonal antibodies are cross-reactive in the sense that they bind to multiple bacterial targets. Private anticarbohydrate-binding patterns, observed at clonal level as well, could explain these apparently opposing features of IgA, being at the same time cross-reactive and selective in its interactions with the microbiota.
Collapse
Affiliation(s)
- Delphine Sterlin
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jehane Fadlallah
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivia Adams
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Claire Fieschi
- Université Paris Diderot Paris 7, Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, EA 3518, Paris, France
| | - Christophe Parizot
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Asok Rajkumar
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gaëlle Autaa
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hela El-Kafsi
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Luc Charuel
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Catherine Juste
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Institut national de la santé et de la recherche médicale, Paris, France
| | - Thomas Candela
- EA 4043, Unité Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Alexandra Aubry
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Carmen Capito
- EA 4043, Unité Bactéries Pathogènes et Santé, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Hélène Brisson
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Christophe Tresallet
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Martin Larsen
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hans Yssel
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Guy Gorochov
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre d'Immunologie et des Maladies Infectieuses, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
41
|
Ryu B, Baek J, Kim H, Lee JH, Kim J, Jeong YH, Lee SG, Kang KR, Oh MS, Kim EY, Kim CY, Chung HM. Anti-Inflammatory Effects of M-MSCs in DNCB-Induced Atopic Dermatitis Mice. Biomedicines 2020; 8:biomedicines8100439. [PMID: 33096640 PMCID: PMC7589030 DOI: 10.3390/biomedicines8100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease caused by an imbalance between Th1 and Th2 cells. AD patients suffer from pruritus, excessive dryness, red or inflamed skin, and complications such as sleep disturbances and depression. Although there are currently many AD treatments available there are insufficient data on their long-term stability and comparative effects. Moreover, they have limitations due to various side effects. Multipotent mesenchymal stem cells (M-MSCs) might have potential for next-generation AD therapies. MSCs are capable of immune function regulation and local inflammatory response inhibition. M-MSCs, derived from human embryonic stem cells (hESC), additionally have a stable supply. In L507 antibody array, M-MSCs generally showed similar tendencies to bone marrow-derived mesenchymal stem cells (BM-MSCs), although the immunoregulatory function of M-MSCs seemed to be superior to BM-MSCs. Based on the characteristics of M-MSCs on immunoregulatory functions, we tested a M-MSC conditioned media concentrate (MCMC) in mice with AD lesions on their dorsal skin. MCMC significantly decreased RNA expression levels of inflammatory cytokines in the mouse dorsal skin. It also suppressed serum IgE levels. In addition, significant histopathologic alleviation was identified. In conclusion, secretions of M-MSCs have the potential to effectively improve AD-related inflammatory lesions. M-MSCs showed potential for use in next-generation AD treatment.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (B.R.); (J.K.)
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Hana Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Ji-Heon Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (B.R.); (J.K.)
| | - Young-Hoon Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
| | - Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | | | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Correspondence: (C.-Y.K.); (H.M.C.); Tel.: +82-10-9140-0136; Fax: +82-2-455-9012
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (H.K.); (J.-H.L.); (Y.-H.J.); (S.-G.L.); (K.-R.K.); (M.-S.O.)
- Mireacellbio Co., Ltd., Seoul 04795, Korea;
- Correspondence: (C.-Y.K.); (H.M.C.); Tel.: +82-10-9140-0136; Fax: +82-2-455-9012
| |
Collapse
|
42
|
Proszkowiec-Weglarz M, Schreier LL, Kahl S, Miska KB, Russell B, Elsasser TH. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult Sci 2020; 99:4714-4729. [PMID: 32988506 PMCID: PMC7598124 DOI: 10.1016/j.psj.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/03/2020] [Accepted: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
The gut not only plays a key role in digestion and absorption of nutrients but also forms a physical barrier and first line of defense between the host and the luminal environment. A functional gut barrier (mucus and epithelial cells with tight junctions [TJ]) is essential for optimal health and efficient production in poultry. In current broiler system, chicks are deprived of food and water up to 72 h due to uneven hatching, hatchery procedures, and transportation. Post-hatch feed delay results in lower BW, higher FCR and mortality, and delayed post-hatch gut development. Little is known about the effects of early neonatal development and delayed feeding immediately post-hatch on gut barrier function in chickens. Therefore, the aim of the present study was to characterize the expression pattern of gut barrier-related and TJ-related genes in the small intestine of broiler chickens during early development and delay in access to feed. Newly hatched chicks received feed and water immediately after hatch or were subjected to 48 h delayed access to feed to mimic commercial hatchery setting and operations. Birds were sampled (n = 6) at -48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h post-hatch. Jejunum and ileum were collected, cleaned of digesta, and snap-frozen in liquid nitrogen or fixed in paraformaldehyde. The relative mRNA levels of gut barrier- and TJ-related protein genes were measured by quantitative PCR and analyzed by 2-way ANOVA. In both tissues, changes (P < 0.05) in gene expression pattern of gut barrier-related and TJ-related genes were detected due to delayed access to feed post-hatch and/or development. In general, expression of TJ-related genes was downregulated while mRNA levels of gut barrier-related genes were upregulated during development. Histological differences and changes in mucin staining due to age and treatment were observed. These results suggest that delayed access to feed post-hatch may affect TJ structure and/or function and therefore gut barrier function and overall health of the chicken small intestine.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | - Lori L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Katarzyna B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beverly Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Theodore H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
43
|
Sterlin D, Gorochov G. When Therapeutic IgA Antibodies Might Come of Age. Pharmacology 2020; 106:9-19. [PMID: 32950975 DOI: 10.1159/000510251] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extensive efforts have been made in optimizing monoclonal immunoglobulin (Ig)G antibodies for use in clinical practice. Accumulating evidence suggests that IgA or anti-FcαRI could also represent an exciting avenue toward novel therapeutic strategies. SUMMARY Here, we underline that IgA is more effective in recruiting neutrophils for tumor cell killing and is potently active against several pathogens, including rotavirus, poliovirus, influenza virus, and SARS-CoV-2. IgA could also be used to modulate excessive immune responses in inflammatory diseases. Furthermore, secretory IgA is emerging as a major regulator of gut microbiota, which impacts intestinal homeostasis and global health as well. As such, IgA could be used to promote a healthy microbiota in a therapeutic setting. Key messages: IgA combines multifaceted functions that can be desirable for immunotherapy.
Collapse
Affiliation(s)
- Delphine Sterlin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, AP-HP Hôpital Pitié-Salpêtrière, Paris, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, Paris, France
| | - Guy Gorochov
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, AP-HP Hôpital Pitié-Salpêtrière, Paris, France,
| |
Collapse
|
44
|
Goldinova A, Tan CX, Bouma G, Duijvestein M, Brand HS, de Boer NK. Oral health and salivary function in ulcerative colitis patients. United European Gastroenterol J 2020; 8:1067-1075. [PMID: 32878578 PMCID: PMC7724544 DOI: 10.1177/2050640620957138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Although ulcerative colitis primarily involves the colon, extra-intestinal
manifestations are common and oral and dental complaints are no
exception. Objective This study aims at evaluating oral and dental health problems and salivary
function and composition in ulcerative colitis patients and its correlation
with disease activity. Methods Xerostomia Inventory score, (unstimulated/stimulated) salivary flow rates,
salivary amylase and mucin/ Mucin 5B levels, self-reported oral and dental
complaints, the oral health related quality of life, Simple Clinical Colitis
Activity Index and inflammatory bowel disease-specific health related
quality of life were determined. Results The cohort consisted of 51 ulcerative colitis patients. Hyposalivation was
experienced by 16% of patients under resting conditions and 24% under
chewing-stimulated conditions. Xerostomia was not correlated with salivary
flow rates. Disease activity did not influence salivary amylase and Mucin 5B
concentrations. The Xerostomia Inventory score was correlated with the
Simple Clinical Colitis Activity Index (p = 0.042) and
inflammatory bowel disease-specific health related quality of life
(p = 0.001). Most reported oral health problems were
halitosis (29%) and aphthae (28%). Frequently reported dental problems were
cavities (35%) and gum problems (31%). Patients with active disease
experienced significantly more oral and dental complaints. The number of
oral problems was positively correlated with the Simple Clinical Colitis
Activity Index (p = 0.045) and negatively correlated with
the inflammatory bowel disease-specific health related quality of life
(p = 0.005). Conclusion The subjective feeling of a dry mouth (xerostomia) is related to disease
activity and disease activity-associated quality of life in ulcerative
colitis patients, whereas the objective saliva secretion rate is not. Oral
and dental health problems are frequently observed in patients with
ulcerative colitis, especially during active disease.
Collapse
Affiliation(s)
- Ariana Goldinova
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, AGEM institute, Amsterdam, The Netherlands
| | - Christopher Xw Tan
- Departments of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, AGEM institute, Amsterdam, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, AGEM institute, Amsterdam, The Netherlands
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Nanne K de Boer
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, AGEM institute, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Olafsson S, McIntyre RE, Coorens T, Butler T, Jung H, Robinson PS, Lee-Six H, Sanders MA, Arestang K, Dawson C, Tripathi M, Strongili K, Hooks Y, Stratton MR, Parkes M, Martincorena I, Raine T, Campbell PJ, Anderson CA. Somatic Evolution in Non-neoplastic IBD-Affected Colon. Cell 2020; 182:672-684.e11. [PMID: 32697969 PMCID: PMC7427325 DOI: 10.1016/j.cell.2020.06.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/01/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with increased risk of gastrointestinal cancers. We whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from our previous publication on the mutation landscape of the normal colon. The average mutation rate of affected colonic epithelial cells is 2.4-fold that of healthy colon, and this increase is mostly driven by acceleration of mutational processes ubiquitously observed in normal colon. In contrast to the normal colon, where clonal expansions outside the confines of the crypt are rare, we observed widespread millimeter-scale clonal expansions. We discovered non-synonymous mutations in ARID1A, FBXW7, PIGR, ZC3H12A, and genes in the interleukin 17 and Toll-like receptor pathways, under positive selection in IBD. These results suggest distinct selection mechanisms in the colitis-affected colon and that somatic mutations potentially play a causal role in IBD pathogenesis.
Collapse
Affiliation(s)
| | | | - Tim Coorens
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Timothy Butler
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Hyunchul Jung
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Philip S Robinson
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; University of Cambridge, Department of Paediatrics, Cambridge CB2 0QQ, UK
| | - Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Hematology, Erasmus University Medical Center, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Kenneth Arestang
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridgeshire CB2 0QQ, UK
| | - Claire Dawson
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridgeshire CB2 0QQ, UK
| | - Monika Tripathi
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridgeshire CB2 0QQ, UK
| | - Konstantina Strongili
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridgeshire CB2 0QQ, UK
| | - Yvette Hooks
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Miles Parkes
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridgeshire CB2 0QQ, UK
| | | | - Tim Raine
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridgeshire CB2 0QQ, UK
| | | | - Carl A Anderson
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
46
|
Villot C, Chen Y, Pedgerachny K, Chaucheyras-Durand F, Chevaux E, Skidmore A, Guan LL, Steele MA. Early supplementation of Saccharomyces cerevisiae boulardii CNCM I-1079 in newborn dairy calves increases IgA production in the intestine at 1 week of age. J Dairy Sci 2020; 103:8615-8628. [PMID: 32684462 DOI: 10.3168/jds.2020-18274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023]
Abstract
The early development of immunity and microbiota in the gut of newborn calves can have life-long consequences. Gut microbiota and the intestinal barrier interplay after birth, establishing a homeostatic state whereby mucosal cells cohabit with microorganisms to develop a healthy gut. We hypothesized that postnatal codevelopment of gut immunity and microbiota could be influenced by early-life supplementation with live yeast. Starting from birth, calves either received a daily supplementation of Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB, 10 × 109 cfu/d, n = 10) in the morning meal for 7 d or no supplementation (n = 10). Each animal received 2 adequate colostrum replacer meals at 2 and 12 h of life (expected total IgG fed = 300 g) before being fed milk replacer twice a day. Passive transfer of immunity (total protein, IgG, and IgA) through colostrum was evaluated and endogenous production of IgA was investigated by measuring IgA-producing plasma cells, IgA relative gene expression (PIGR and CD79A), and secretory IgA concentration in the gut. The concentration of targeted microbial groups was evaluated with quantitative PCR in the gut digesta collected at d 7 of life. Early SCB supplementation did not impair immunoglobulin absorption and all calves had successful passive transfer of immunity (serum IgG concentration >15 mg/mL at d 1 and d 7 of age). Although the expression of IgA relative gene expression (PIGR and CD79A) was not different, SCB calves had higher secretory IgA concentrations in the ileum (1.98 ± 0.12 mg/g of dry matter; DM) and colon (1.45 ± 0.12 mg/g of DM) digesta compared with control animals (1.18 and 0.59 ± 0.12 mg/g of DM, respectively). In addition, the number of IgA-producing plasma cells were greater in both ileum (2.55 ± 0.40 cells/mm2) and colon (3.03 ± 0.40 cells/mm2) tissues for SCB calves compared with control (respectively 1.00 ± 0.40 and 0.60 ± 0.42 cells/mm2). Endogenous IgA production in the gut of SCB calves was enhanced, which could make them less prone to pathogen intrusion. In addition, SCB calves had higher Lactobacillus and tended to have higher Faecalibacterium prausnitzii in the jejunum compared with control calves, which suggests that SCB supplementation during early-life gut colonization may have a positive effect in newborn calves. Direct SCB supplementation or the cross-talk between SCB and bacteria may be responsible for stimulating IgA production and may play a key role in shaping early colonization in the gut of newborn calves.
Collapse
Affiliation(s)
- C Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada; Lallemand SAS, F-31702 Blagnac, France
| | - Y Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada; Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - K Pedgerachny
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | | | - E Chevaux
- Lallemand SAS, F-31702 Blagnac, France
| | - A Skidmore
- Lallemand Specialties Inc, Milwaukee, WI 53218
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - M A Steele
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada; Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
47
|
Gunasekaran B, Gothandam KM. A review on edible vaccines and their prospects. ACTA ACUST UNITED AC 2020; 53:e8749. [PMID: 31994600 PMCID: PMC6984374 DOI: 10.1590/1414-431x20198749] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
For a long time, vaccines have been the main mode of defense and protection against several bacterial, viral, and parasitic diseases. However, the process of production and purification makes them expensive and unaffordable to many developing nations. An edible vaccine is when the antigen is expressed in the edible part of the plant. This reduces the cost of production of the vaccine because of ease of culturing. In this article, various types of edible vaccines that include algal and probiotics in addition to plants are discussed. Various diseases against which research has been carried out are also reviewed. This article focused on the conception of edible vaccines highlighting the various ways by which vaccines can be delivered.
Collapse
Affiliation(s)
- B Gunasekaran
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K M Gothandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
48
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
49
|
Wu M, Xiao H, Shao F, Tan B, Hu S. Arginine accelerates intestinal health through cytokines and intestinal microbiota. Int Immunopharmacol 2019; 81:106029. [PMID: 31757675 DOI: 10.1016/j.intimp.2019.106029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/24/2023]
Abstract
Arginine supplementation improves intestinal damage and intestinal immunity, but the underlying mechanism of the effects of arginine supplementation on intestinal SIgA secretion is largely unknown. Therefore, this study was conducted to investigate the underlying pathway on the effects of arginine supplementation in secretory IgA (SIgA) production in mice. The results showed that 0.4% arginine supplementation promoted (P < 0.05) SIgA production in intestinal lumina and IgA+ plasma cell numbers in the ileum of mouse. Arginine supplementation significantly increased (P < 0.05) cytokines expression in mouse ileal associated with T cell-dependent and T cell-independent pathways of SIgA induction, including IL-5, IL-6, IL-13, transforming growth factor (TGF-)β2, TGF-β3, TGF-βR2, a proliferation-inducing ligand (APRIL), B cell-activating factor (BAFF), vasoactive intestinal peptide (VIP) receptor, and retinal dehydrogenases. Further study showed that 0.4% arginine supplementation markly decreased (P < 0.05) bacterial loads in mouse mesenteric lymph nodes and increased bacterial invasion into the mouse ileal wall, while supplementation of antibiotic abrogated the influence of arginine supplementation on SIgA secretion. Therefore, these data suggest that arginine supplementation might promote SIgA secretion through cytokines and intestinal microbiota might play an important role in SIgA secretion by arginine supplementation in the mouse intestine.
Collapse
Affiliation(s)
- Miaomiao Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China.
| | - Fangyuan Shao
- Faculty of Health Sciences, University of Macau, Macau
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou 510640, China.
| |
Collapse
|
50
|
Kong C, Elderman M, Cheng L, de Haan BJ, Nauta A, de Vos P. Modulation of Intestinal Epithelial Glycocalyx Development by Human Milk Oligosaccharides and Non-Digestible Carbohydrates. Mol Nutr Food Res 2019; 63:e1900303. [PMID: 31140746 PMCID: PMC6771538 DOI: 10.1002/mnfr.201900303] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/26/2019] [Indexed: 12/11/2022]
Abstract
SCOPE The epithelial glycocalyx development is of great importance for microbial colonization. Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) may modulate glycocalyx development. METHODS AND RESULTS The effects of hMOs and NDCs on human gut epithelial cells (Caco2) are investigated by quantifying thickness and area coverage of adsorbed albumin, heparan sulfate (HS), and hyaluronic acid (HA) in the glycocalyx. Effects of hMOs (2'-FL and 3-FL) and NDCs [inulins with degrees of polymerization (DP) (DP3-DP10, DP10-DP60, DP30-DP60) and pectins with degrees of methylation (DM) (DM7, DM55, DM69)] are tested using immunofluorescence staining at 1 and 5 days stimulation. HMOs show a significant enhancing effect on glycocalyx development but effects are structure-dependent. 3-FL induces a stronger albumin adsorption and increases HS and HA stronger than 2'-FL. The DP3-DP10, DP30-60 inulins also increase glycocalyx development in a structure-dependent manner as DP3-DP10 selectively increases HS, while DP30-DP60 specifically increases HA. Pectins have less effects, and only increase albumin adsorption. CONCLUSION Here, it is shown that 2'-FL and 3-FL and inulins stimulate glycocalyx development in a structure-dependent fashion. This may contribute to formulation of effective hMO and NDC formulations in infant formulas to support microbial colonization and gut barrier function.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Marlies Elderman
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Lianghui Cheng
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Bart J. de Haan
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| | - Arjen Nauta
- FrieslandCampinaStationsplein 43818 LEAmersfoortThe Netherlands
| | - Paul de Vos
- Immunoendocrinology GroupDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenHanzeplein 19700 RBGroningenThe Netherlands
| |
Collapse
|