1
|
Jung Y, Ahn HS, Park SH. Quantitative mapping of renal oxygen consumption using pseudo-continuous arterial spin labeling and quantitative susceptibility mapping in humans. Magn Reson Med 2025; 93:699-708. [PMID: 39221556 DOI: 10.1002/mrm.30288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To propose a new method for quantitatively mapping the renal metabolic rate of oxygen (RMRO2) and to evaluate the proposed method using a caffeine challenge. THEORY AND METHODS Pseudo-continuous arterial spin labeling (pCASL) and QSM sequences were used to obtain MR images in the kidney. Six healthy volunteers were scanned on caffeine and control days. The pCASL and QSM images were registered using DICOM information and rigid translation. The Fick principle was applied to estimate RMRO2. The results on caffeine and control days were compared to evaluate the capability of the proposed method to estimate renal oxygen consumption. A paired t-test was used to assess the statistical significance. RESULTS Estimated renal blood flow (RBF), QSM, and RMRO2 maps were consistent with those reported in the literature. RMRO2 values were higher than the cerebral metabolic rate of oxygen (CMRO2) and were significantly reduced on the caffeine days compared to the control days, consistent with findings from non-MRI literature. CONCLUSION The feasibility of measuring renal oxygen consumption using pCASL and QSM images was demonstrated. To the best of our knowledge, this work provides quantitative maps of renal oxygen consumption in humans for the first time. The results were consistent with the literature, including the statistically significant reduction in renal oxygen consumption with caffeine challenge. These findings suggest the potential utility of our technique in measuring renal oxygen consumption noninvasively, especially for patients with complications associated with contrast agents.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyun-Seo Ahn
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Johnson NE, Burma JS, Neill MG, Burkart JJ, Fletcher EKS, Smirl JD. Challenging dynamic cerebral autoregulation across the physiological CO 2 spectrum: Influence of biological sex and cardiac cycle. Exp Physiol 2025; 110:147-165. [PMID: 39557629 DOI: 10.1113/ep092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
This study applied alterations in partial pressure of end-tidal carbon dioxide (P ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) to challenge dynamic cerebral autoregulation (dCA) responses across the cardiac cycle in both biological sexes. A total of 20 participants (10 females and 10 males; aged 19-34 years) performed 4-min bouts of repeated squat-stand manoeuvres (SSMs) at 0.05 and 0.10 Hz (randomized orders) withP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ clamped at ∼40 mmHg. The protocol was repeated for hypercapnic (∼55 mmHg) and hypocapnic (∼20 mmHg) conditions. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) were insonated via transcranial Doppler ultrasound. Dynamic end-tidal forcing clampedP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and finger photoplethysmography quantified beat-to-beat changes in blood pressure. Linear regressions were performed for transfer function analysis metrics including power spectrum densities, coherence, phase, gain and normalized gain (nGain) with adjustment for sex. During hypercapnic conditions, phase metrics were reduced from eucapnic levels (all P < 0.009), while phase increased during the hypocapnic stage during both 0.05 and 0.10 Hz SSMs (all P < 0.037). Sex differences were present with females displaying greater gain and nGain systole metrics during 0.10 Hz SSMs (all P < 0.041). AcrossP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ stages, females displayed reduced buffering against systolic aspects of the cardiac cycle and augmented gain. Sex-related variances in dCA could explain sex differences in the occurrence of clinical conditions such as orthostatic intolerance and stroke, though the effect of fluctuating sex hormones and contraceptive use on dCA metrics is not yet understood.
Collapse
Affiliation(s)
- Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Joshua J Burkart
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2024. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
4
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
5
|
Kumar S, Ghosh S, Shanavas N, Sivaramakrishnan V, Dwari M, Das S. Development of pial collaterals by extension of pre-existing artery tips. Cell Rep 2024; 43:114771. [PMID: 39325624 DOI: 10.1016/j.celrep.2024.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
Pial collaterals provide protection from ischemic damage and improve the prognosis of stroke patients. The origin or precise sequence of events underlying pial collateral development is unclear and has prevented clinicians from adapting new vascularization and regeneration therapies. We use genetic lineage tracing and intravital imaging of mouse brains at cellular resolution to show that during embryogenesis, pial collateral arteries develop from extension and anastomoses of pre-existing artery tips in a VegfR2-dependent manner. This process of artery tip extension occurs on pre-determined microvascular tracks. Our data demonstrate that an arterial receptor, Cxcr4, earlier shown to drive artery cell migration and coronary collateral development, is dispensable for the formation and maintenance of pial collateral arteries. Our study shows that collateral arteries of the brain are built by a mechanism distinct from that of the heart.
Collapse
Affiliation(s)
- Suraj Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Swarnadip Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Niloufer Shanavas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Vinayak Sivaramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Manish Dwari
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India.
| |
Collapse
|
6
|
Bouchab H, Ishaq A, Limami Y, Saretzki G, Nasser B, El Kebbaj R. Antioxidant Effects of Cactus Seed Oil against Iron-Induced Oxidative Stress in Mouse Liver, Brain and Kidney. Molecules 2024; 29:4463. [PMID: 39339457 PMCID: PMC11433720 DOI: 10.3390/molecules29184463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In recent times, exploring the protective potential of medicinal plants has attracted increasing attention. To fight reactive oxygen species (ROS), which are key players in hepatic, cerebral and renal diseases, scientists have directed their efforts towards identifying novel compounds with antioxidant effects. Due to its unique composition, significant attention has been given to Cactus Seed Oil (CSO). Iron, as a metal, can be a potent generator of reactive oxygen species, especially hydroxyl radicals, via the Fenton and Haber-Weiss reactions. Here, we employed ferrous sulfate (FeSO4) to induce oxidative stress and DNA damage in mice. Then, we used CSO and Colza oil (CO) and evaluated the levels of the antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and glutathione [GSH]) as well as a metabolite marker for lipid peroxidation (malondialdehyde [MDA]) relating to the antioxidant balance in the liver, brain and kidney. In addition, we measured DNA damage levels in hepatic tissue and the effects of CSO on it. Our study found that iron-dependent GPx activity decreases in the liver and the kidney tissues. Additionally, while iron decreased SOD activity in the liver, it increased it in the kidney. Interestingly, iron treatment resulted in a significant increase in hepatic MDA levels. In contrast, in brain tissue, there was a significant decrease under iron treatment. In addition, we found varying protective effects of CSO in alleviating oxidative stress in the different tissues with ameliorating DNA damage after iron overload in a mouse liver model, adding compelling evidence to the protective potential of CSO.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (H.B.); (Y.L.)
- Higher Institute of Nursing Professions and Technical Health (ISPITS), Errachidia 52000, Morocco
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Science and Technology, Hassan First University of Settat, Settat 26000, Morocco;
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE2 4HH, UK; (A.I.); (G.S.)
| | - Abbas Ishaq
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE2 4HH, UK; (A.I.); (G.S.)
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (H.B.); (Y.L.)
| | - Gabriele Saretzki
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE2 4HH, UK; (A.I.); (G.S.)
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Science and Technology, Hassan First University of Settat, Settat 26000, Morocco;
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (H.B.); (Y.L.)
| |
Collapse
|
7
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
8
|
Kumari N, Prakash R, Siddiqui AJ, Waseem A, Khan MA, Raza SS. Endothelin-1-Induced Persistent Ischemia in a Chicken Embryo Model. Bio Protoc 2024; 14:e5060. [PMID: 39282233 PMCID: PMC11393046 DOI: 10.21769/bioprotoc.5061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/18/2024] Open
Abstract
Current ischemic models strive to replicate ischemia-mediated injury. However, they face challenges such as inadequate reproducibility, difficulties in translating rodent findings to humans, and ethical, financial, and practical constraints that limit the accuracy of extensive research. This study introduces a novel approach to inducing persistent ischemia in 3-day-old chicken embryos using endothelin-1. The protocol targets the right vitelline arteries, validated with Doppler blood flow imaging and molecular biology experiments. This innovative approach facilitates the exploration of oxidative stress, inflammatory responses, cellular death, and potential drug screening suitability utilizing a 3-day-old chicken embryo. Key features • This model enables the evaluation and investigation of the pathology related to persistent ischemia • This model allows for the assessment of parameters like oxidative stress, inflammation, and cellular death • This model enables quantification of molecular changes at the nucleic acid and protein levels • This model allows for the efficient screening of drugs and their targets Graphical overview.
Collapse
Affiliation(s)
- Neha Kumari
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Ravi Prakash
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Abu J Siddiqui
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Arshi Waseem
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Mohsin A Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Syed S Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Eldarov C, Starodubtseva N, Shevtsova Y, Goryunov K, Ionov O, Frankevich V, Plotnikov E, Sukhikh G, Zorov D, Silachev D. Dried Blood Spot Metabolome Features of Ischemic-Hypoxic Encephalopathy: A Neonatal Rat Model. Int J Mol Sci 2024; 25:8903. [PMID: 39201589 PMCID: PMC11354919 DOI: 10.3390/ijms25168903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology. Our study further explores the impact of HIE on the blood metabolome over time and investigated changes associated with hypothermia's therapeutic effects. Using a rat model of hypoxic-ischemic brain injury, we comprehensively analyzed dried blood spot samples for fat-soluble compounds using HPLC-MS. Our research shows significant changes in the blood metabolome after HIE, with a particularly rapid recovery of lipid metabolism observed. Significant changes in lipid metabolites were observed after 3 h of HIE, including increases in ceramides, carnitines, certain fatty acids, phosphocholines, and phosphoethanolamines, while sphingomyelins and N-acylethanolamines (NAEs) decreased (p < 0.05). Furthermore, NAEs were found to be significant features in the OPLS-DA model for HIE diagnosis, with an area under the curve of 0.812. TH showed a notable association with decreased concentrations of ceramides. Enrichment analysis further corroborated these observations, showing modulation in several key metabolic pathways, including arachidonic acid oxylipin metabolism, eicosanoid metabolism via lipooxygenases, and leukotriene C4 synthesis deficiency. Our study reveals dynamic changes in the blood metabolome after HIE and the therapeutic effects of hypothermia, which improves our understanding of the pathophysiology of HIE and could lead to the development of new rapid diagnostic approaches for neonatal HIE.
Collapse
Affiliation(s)
- Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Dmitry Zorov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (C.E.); (N.S.); (Y.S.); (K.G.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
10
|
Amulya E, Bahuguna D, Negi M, Phatale V, Sikder A, Vambhurkar G, Katta CB, Dandekar MP, Madan J, Srivastava S. Lipid engineered nanomaterials: A novel paradigm shift for combating stroke. APPLIED MATERIALS TODAY 2024; 38:102194. [DOI: 10.1016/j.apmt.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Li X, Huang Z, Tian Y, Chen X, Wu H, Wang T. Association between plasma long-chain polyunsaturated n-3 fatty acids concentrations and cognitive function: findings from NHANES III. Front Psychol 2024; 15:1305570. [PMID: 38756498 PMCID: PMC11098013 DOI: 10.3389/fpsyg.2024.1305570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background With increased life expectancy, cognitive decline has emerged as a prevalent neurodegenerative disorder. Objective This study aimed to examine the correlation between concentrations of Plasma long-chain n-3 polyunsaturated fatty acids (LCPUFAs) and cognitive performance in elderly Americans. Methods Data were analyzed from older adults enrolled in two NHANES cycles. Participants completed four cognitive assessments, including the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). Linear regression and restricted cubic spline modeling examined associations between plasma LCPUFAs levels and cognitive test outcomes. Results The cohort included 610 adults aged 69 years on average, 300 (49.2%) males and 310 (50.8%) females. The median LCPUFAs concentration was 309.4 μmol/L, with an interquartile range of 244.7-418.9 μmol/L. In unadjusted and adjusted generalized linear regression model analyses, circulating LCPUFAs exhibited significant positive correlations with DRT performance. No relationships were detected among those with chronic conditions (chronic heart failure, stroke, diabetes). A significant association between LCPUFAs levels and DRT scores was evident in males but not females. Conclusion Plasma LCPUFAs concentrations were significantly associated with DRT performance in males free of chronic illnesses, including heart failure, stroke, and diabetes.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zijie Huang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yueqin Tian
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Choudhary RC, Kuschner CE, Kazmi J, Mcdevitt L, Espin BB, Essaihi M, Nishikimi M, Becker LB, Kim J. The Role of Phospholipid Alterations in Mitochondrial and Brain Dysfunction after Cardiac Arrest. Int J Mol Sci 2024; 25:4645. [PMID: 38731864 PMCID: PMC11083216 DOI: 10.3390/ijms25094645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The human brain possesses three predominate phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which account for approximately 35-40%, 35-40%, and 20% of the brain's phospholipids, respectively. Mitochondrial membranes are relatively diverse, containing the aforementioned PC, PE, and PS, as well as phosphatidylinositol (PI) and phosphatidic acid (PA); however, cardiolipin (CL) and phosphatidylglycerol (PG) are exclusively present in mitochondrial membranes. These phospholipid interactions play an essential role in mitochondrial fusion and fission dynamics, leading to the maintenance of mitochondrial structural and signaling pathways. The essential nature of these phospholipids is demonstrated through the inability of mitochondria to tolerate alteration in these specific phospholipids, with changes leading to mitochondrial damage resulting in neural degeneration. This review will emphasize how the structure of phospholipids relates to their physiologic function, how their metabolism facilitates signaling, and the role of organ- and mitochondria-specific phospholipid compositions. Finally, we will discuss the effects of global ischemia and reperfusion on organ- and mitochondria-specific phospholipids alongside the novel therapeutics that may protect against injury.
Collapse
Affiliation(s)
- Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Liam Mcdevitt
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Blanca B. Espin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Mohammed Essaihi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (R.C.C.); (C.E.K.); (J.K.); (L.M.); (B.B.E.); (M.E.); (M.N.); (L.B.B.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
13
|
Alam J, Kalash A, Hassan MI, Rahman SZ. Agents at the Peak of US FDA Approval for the Treatment of Alzheimer's Disease. Neurol Res 2024; 46:318-325. [PMID: 38197595 DOI: 10.1080/01616412.2024.2302271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Where Alzheimer's disease (AD) is becoming a global health issue, the present anti-AD medications have also been exposed to produce only symptomatic outcomes. The pathological factors, like neuronal transmission impairment, amyloidal-tau constituents, oxidative damage, neuro-inflammation, synaptic dysfunction, infectious agents, and impairment of gut microbiota and vitamins' levels; all favor the disease's progression and sustainability. The researchers have investigated several drugable molecules against these factors; however, no treatment could have been discovered yet to prevent the disease's progression rather than anti-amyloidal antibodies. After a comprehensive review of the literature and the clinical registry (clinicaltrials.gov), the authors of this manuscript have explored drug molecules that are under phase-3 of clinical trials and at the peak of getting approval for the management of AD. The inclusion and exclusion criteria for clinical trials were decided by considering the basis of a drug's approval. We included only the clinical trials were found in stages of Enrolling-by-Invitation, Recruiting, Not Recruiting (But active), and Not Recruiting (Not active) while excluding Completed, Terminated, Suspended, Withdrawn, or the trials of Unknown Status. We have found many potent drug molecules reached the clinical trials in phase-3 that could be futuristic anti-AD agents. This review article aims to provide an update on the prospective potential anti-AD medicines and to reveal the therapeutic targets of great significance for designing further a possible drug development strategy against AD pathology.
Collapse
Affiliation(s)
- Jahngeer Alam
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Anushka Kalash
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Syed Ziaur Rahman
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
14
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
16
|
Daher A, Payne S. The conducted vascular response as a mediator of hypercapnic cerebrovascular reactivity: A modelling study. Comput Biol Med 2024; 170:107985. [PMID: 38245966 DOI: 10.1016/j.compbiomed.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
It is well established that the cerebral blood flow (CBF) shows exquisite sensitivity to changes in the arterial blood partial pressure of CO2 ( [Formula: see text] ), which is reflected by an index termed cerebrovascular reactivity. In response to elevations in [Formula: see text] (hypercapnia), the vessels of the cerebral microvasculature dilate, thereby decreasing the vascular resistance and increasing CBF. Due to the challenges of access, scale and complexity encountered when studying the microvasculature, however, the mechanisms behind cerebrovascular reactivity are not fully understood. Experiments have previously established that the cholinergic release of the Acetylcholine (ACh) neurotransmitter in the cortex is a prerequisite for the hypercapnic response. It is also known that ACh functions as an endothelial-dependent agonist, in which the local administration of ACh elicits local hyperpolarization in the vascular wall; this hyperpolarization signal is then propagated upstream the vascular network through the endothelial layer and is coupled to a vasodilatory response in the vascular smooth muscle (VSM) layer in what is known as the conducted vascular response (CVR). Finally, experimental data indicate that the hypercapnic response is more strongly correlated with the CO2 levels in the tissue than in the arterioles. Accordingly, we hypothesize that the CVR, evoked by increases in local tissue CO2 levels and a subsequent local release of ACh, is responsible for the CBF increase observed in response to elevations in [Formula: see text] . By constructing physiologically grounded dynamic models of CBF and control in the cerebral vasculature, ones that integrate the available knowledge and experimental data, we build a new model of the series of signalling events and pathways underpinning the hypercapnic response, and use the model to provide compelling evidence that corroborates the aforementioned hypothesis. If the CVR indeed acts as a mediator of the hypercapnic response, the proposed mechanism would provide an important addition to our understanding of the repertoire of metabolic feedback mechanisms possessed by the brain and would motivate further in-vivo investigation. We also model the interaction of the hypercapnic response with dynamic cerebral autoregulation (dCA), the collection of mechanisms that the brain possesses to maintain near constant CBF despite perturbations in pressure, and show how the dCA mechanisms, which otherwise tend to be overlooked when analysing experimental results of cerebrovascular reactivity, could play a significant role in shaping the CBF response to elevations in [Formula: see text] . Such in-silico models can be used in tandem with in-vivo experiments to expand our understanding of cerebrovascular diseases, which continue to be among the leading causes of morbidity and mortality in humans.
Collapse
Affiliation(s)
- Ali Daher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom.
| | - Stephen Payne
- Institute of Applied Mechanics, National Taiwan University, Taiwan
| |
Collapse
|
17
|
Finlayson L, McMillan L, Suveges S, Steele D, Eftimie R, Trucu D, Brown CTA, Eadie E, Hossain-Ibrahim K, Wood K. Simulating photodynamic therapy for the treatment of glioblastoma using Monte Carlo radiative transport. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:025001. [PMID: 38322729 PMCID: PMC10846422 DOI: 10.1117/1.jbo.29.2.025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Significance Glioblastoma (GBM) is a rare but deadly form of brain tumor with a low median survival rate of 14.6 months, due to its resistance to treatment. An independent simulation of the INtraoperative photoDYnamic therapy for GliOblastoma (INDYGO) trial, a clinical trial aiming to treat the GBM resection cavity with photodynamic therapy (PDT) via a laser coupled balloon device, is demonstrated. Aim To develop a framework providing increased understanding for the PDT treatment, its parameters, and their impact on the clinical outcome. Approach We use Monte Carlo radiative transport techniques within a computational brain model containing a GBM to simulate light path and PDT effects. Treatment parameters (laser power, photosensitizer concentration, and irradiation time) are considered, as well as PDT's impact on brain tissue temperature. Results The simulation suggests that 39% of post-resection GBM cells are killed at the end of treatment when using the standard INDYGO trial protocol (light fluence = 200 J / cm 2 at balloon wall) and assuming an initial photosensitizer concentration of 5 μ M . Increases in treatment time and light power (light fluence = 400 J / cm 2 at balloon wall) result in further cell kill but increase brain cell temperature, which potentially affects treatment safety. Increasing the p hotosensitizer concentration produces the most significant increase in cell kill, with 61% of GBM cells killed when doubling concentration to 10 μ M and keeping the treatment time and power the same. According to these simulations, the standard trial protocol is reasonably well optimized with improvements in cell kill difficult to achieve without potentially dangerous increases in temperature. To improve treatment outcome, focus should be placed on improving the photosensitizer. Conclusions With further development and optimization, the simulation could have potential clinical benefit and be used to help plan and optimize intraoperative PDT treatment for GBM.
Collapse
Affiliation(s)
- Louise Finlayson
- SUPA, University of St Andrews, School of Physics and Astronomy, St Andrews, United Kingdom
| | - Lewis McMillan
- SUPA, University of St Andrews, School of Physics and Astronomy, St Andrews, United Kingdom
| | - Szabolcs Suveges
- University of Dundee, Division of Mathematics, Dundee, United Kingdom
| | - Douglas Steele
- University of Dundee, Medical School, Division Imaging Science and Technology, Dundee, United Kingdom
| | - Raluca Eftimie
- Université de Bourgogne Franche-Comté, Laboratoire Mathématiques de Besançon, Besançon, France
| | - Dumitru Trucu
- University of Dundee, Division of Mathematics, Dundee, United Kingdom
| | | | - Ewan Eadie
- Ninewells Hospital, Photobiology Unit, Dundee, United Kingdom
| | - Kismet Hossain-Ibrahim
- University of Dundee, School of Medicine, Division Cellular and Molecular Medicine, Dundee, United Kingdom
- Ninewells Hospital and Medical School, Department of Neurosurgery, Dundee, United Kingdom
| | - Kenneth Wood
- SUPA, University of St Andrews, School of Physics and Astronomy, St Andrews, United Kingdom
| |
Collapse
|
18
|
Polis B, Samson AO. Enhancing cognitive function in older adults: dietary approaches and implications. Front Nutr 2024; 11:1286725. [PMID: 38356861 PMCID: PMC10864441 DOI: 10.3389/fnut.2024.1286725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Natural aging encompasses physiological and psychological changes that impact overall health and quality of life. Mitigating these effects requires physical and mental exercise, coupled with proper nutrition. Notably, protein malnutrition emerges as a potential risk factor for senile dementia, with insufficient intake correlating with premature cognitive decline. Adequate protein intake in the elderly positively associates with memory function and lowers cognitive impairment risk. Considering diet as a modifiable risk factor for cognitive decline, extensive research has explored diverse dietary strategies to prevent dementia onset in older adults. However, conclusive results remain limited. This review aims to synthesize recent evidence on effective dietary approaches to enhance cognitive function and prognosis in older individuals. Specifically, the study evaluates complex multicomponent programs, protein-rich diets, and branched-chain amino acid supplementation. By addressing the nexus of nutrition and cognitive health, this review contributes to understanding viable interventions for promoting cognitive well-being in aging populations.
Collapse
Affiliation(s)
- Baruh Polis
- Laboratory of Computational Biology and Drug Discovery, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | |
Collapse
|
19
|
Salvagno M, Geraldini F, Coppalini G, Robba C, Gouvea Bogossian E, Annoni F, Vitali E, Sterchele ED, Balestra C, Taccone FS. The Impact of Inotropes and Vasopressors on Cerebral Oxygenation in Patients with Traumatic Brain Injury and Subarachnoid Hemorrhage: A Narrative Review. Brain Sci 2024; 14:117. [PMID: 38391692 PMCID: PMC10886736 DOI: 10.3390/brainsci14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Federico Geraldini
- Department of Anesthesia and Intensive Care, Ospedale Università di Padova, 35128 Padova, Italy
| | - Giacomo Coppalini
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, 20089 Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milano, Italy
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, 16132 Genova, Italy
- Dipartimento di Scienze Chirurgiche Diagnostiche e Integrate, Università di Genova, 16132 Genova, Italy
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Eva Vitali
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Costantino Balestra
- Department Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| |
Collapse
|
20
|
Mathew AR, Di Matteo G, La Rosa P, Barbati SA, Mannina L, Moreno S, Tata AM, Cavallucci V, Fidaleo M. Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms. Int J Mol Sci 2024; 25:590. [PMID: 38203763 PMCID: PMC10778862 DOI: 10.3390/ijms25010590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Saviana Antonella Barbati
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Sandra Moreno
- Department of Science, University Roma Tre, 00146 Rome, Italy;
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza University of Rome, 00185 Rome, Italy
| | - Virve Cavallucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
21
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
22
|
Kueck PJ, Morris JK, Stanford JA. Current Perspectives: Obesity and Neurodegeneration - Links and Risks. Degener Neurol Neuromuscul Dis 2023; 13:111-129. [PMID: 38196559 PMCID: PMC10774290 DOI: 10.2147/dnnd.s388579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Obesity is increasing in prevalence across all age groups. Long-term obesity can lead to the development of metabolic and cardiovascular diseases through its effects on adipose, skeletal muscle, and liver tissue. Pathological mechanisms associated with obesity include immune response and inflammation as well as oxidative stress and consequent endothelial and mitochondrial dysfunction. Recent evidence links obesity to diminished brain health and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Both AD and PD are associated with insulin resistance, an underlying syndrome of obesity. Despite these links, causative mechanism(s) resulting in neurodegenerative disease remain unclear. This review discusses relationships between obesity, AD, and PD, including clinical and preclinical findings. The review then briefly explores nonpharmacological directions for intervention.
Collapse
Affiliation(s)
- Paul J Kueck
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jill K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John A Stanford
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
23
|
Djite M, Chao de la Barca JM, Bocca C, Gaye NM, Barry NOK, Mbacke MN, Cissé O, Kandji PM, Thioune NM, Coly-Gueye NF, Ndour EHM, Gueye-Tall F, Diop AG, Simard G, Mirebeau-Prunier D, Gueye PM, Reynier P. A Metabolomic Signature of Ischemic Stroke Showing Acute Oxidative and Energetic Stress. Antioxidants (Basel) 2023; 13:60. [PMID: 38247484 PMCID: PMC10812657 DOI: 10.3390/antiox13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolomics is a powerful data-driven tool for in-depth biological phenotyping that could help identify the specific metabolic profile of cryptogenic strokes, for which no precise cause has been identified. We performed a targeted quantitative metabolomics study in West African patients who had recently suffered an ischemic stroke, which was either cryptogenic (n = 40) or had a clearly identified cause (n = 39), compared to a healthy control group (n = 40). Four hundred fifty-six metabolites were accurately measured. Multivariate analyses failed to reveal any metabolic profile discriminating between cryptogenic ischemic strokes and those with an identified cause but did show superimposable metabolic profiles in both groups, which were clearly distinct from those of healthy controls. The blood concentrations of 234 metabolites were significantly affected in stroke patients compared to controls after the Benjamini-Hochberg correction. Increased methionine sulfoxide and homocysteine concentrations, as well as an overall increase in saturation of fatty acids, were indicative of acute oxidative stress. This signature also showed alterations in energetic metabolism, cell membrane integrity, monocarbon metabolism, and neurotransmission, with reduced concentrations of several metabolites known to be neuroprotective. Overall, our results show that cryptogenic strokes are not pathophysiologically distinct from ischemic strokes of established origin, and that stroke leads to intense metabolic remodeling with marked oxidative and energetic stresses.
Collapse
Affiliation(s)
- Moustapha Djite
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Juan Manuel Chao de la Barca
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| | - Cinzia Bocca
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| | - Ndiaga Matar Gaye
- Clinique Neurologique, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (N.M.G.); (O.C.); (A.G.D.)
| | - Néné Oumou Kesso Barry
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Mame Ndoumbé Mbacke
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Ousmane Cissé
- Clinique Neurologique, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (N.M.G.); (O.C.); (A.G.D.)
| | - Pape Matar Kandji
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Ndèye Marème Thioune
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | | | - El Hadji Malick Ndour
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
| | - Fatou Gueye-Tall
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
| | - Amadou Gallo Diop
- Clinique Neurologique, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (N.M.G.); (O.C.); (A.G.D.)
| | - Gilles Simard
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
| | - Delphine Mirebeau-Prunier
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| | - Papa Madieye Gueye
- Laboratoire de Biochimie Pharmaceutique, Faculté de Médecine, Pharmacie, Université Cheikh Anta Diop, Dakar 2238, Senegal; (N.O.K.B.); (E.H.M.N.); (F.G.-T.); (P.M.G.)
- Laboratoire de Biochimie, Centre Hospitalier National Universitaire (CHNU) de FANN, Dakar 45701, Senegal; (M.N.M.); (P.M.K.); (N.M.T.)
| | - Pascal Reynier
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France; (J.M.C.d.l.B.); (C.B.); (G.S.); (D.M.-P.); (P.R.)
- Unité Mixte de Recherche (UMR) MITOVASC, Institut National de la Santé et de la Recherche Médicale (INSERM U-1083), Centre National de la Recherche Scientifique (CNRS 6015), Université d’Angers, 49933 Angers, France
| |
Collapse
|
24
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
25
|
Moreton N, Puzio M, McCormack J, O'Connor JJ. The effects of prolyl hydroxylase inhibition during and post, hypoxia, oxygen glucose deprivation and oxidative stress, in isolated rat hippocampal slices. Brain Res Bull 2023; 205:110822. [PMID: 37984622 DOI: 10.1016/j.brainresbull.2023.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The contributions of hypoxia and oxidative stress to the pathophysiology of acute ischemic stroke are well established and can lead to disruptions in synaptic signaling. Hypoxia and oxidative stress lead to the neurotoxic overproduction of reactive oxygen species (ROS) and the stabilization of hypoxia inducible factors (HIF). Compounds such as prolyl-4-hydroxylase domain enzyme inhibitors (PHDIs) have been shown to have a preconditioning and neuroprotective effect against ischemic insults such as hypoxia, anoxia, oxygen glucose deprivation (OGD) or H2O2. Therefore, this study explored the effects of two PHDIs, JNJ-42041935 (10 µM) and roxadustat (100 µM) on cell viability using organotypic hippocampal slice cultures. We also assessed the effects of these compounds on synaptic transmission during and post hypoxia, OGD and H2O2 application in isolated rat hippocampal slices using field recording electrophysiological techniques and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit trafficking using immunohistochemistry. Our organotypic data demonstrated a protective role for both inhibitors, where slices had significantly less cell death post anoxia and OGD compared to controls. We also report a distinct modulatory role for both JNJ-42041935 and roxadustat on fEPSP slope post hypoxia and OGD but not H2O2. In addition, we report that application of roxadustat impaired long-term potentiation, but only when applied post-hypoxia. This inhibitory effect was not reversed with co-application of the cyclin-dependent kinase 5 (CDK-5) inhibitor, roscovitine (10 µM), suggesting a CDK-5 independent synaptic AMPAR trafficking mechanism. Both hypoxia and OGD induced a reduction in synaptic AMPA GluA2 subunits, the OGD effect being reversed by prior treatment with both JNJ-42041935 and roxadustat. These results suggest an important role for PHDs in synaptic signaling and plasticity during episodes of ischemic stress.
Collapse
Affiliation(s)
- Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martina Puzio
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janet McCormack
- UCD Research Pathology Core, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Guan Y, Liu T, Xu F, Xie S, Gu W, Bie Y. Integration of 16S rRNA gene sequencing and LC/MS-based metabolomic analysis of early biomarkers of acute ischaemic stroke in Tibetan miniature pigs. J Microbiol Methods 2023; 215:106846. [PMID: 37863204 DOI: 10.1016/j.mimet.2023.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Acute ischaemic stroke (AIS) is a complex, systemic, pathological, and physiological process. Systemic inflammatory responses and disorders of the gut microbiome contribute to increased mortality and disability following AIS. We conducted 16S high-throughput sequencing and ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry-based non-targeted metabolomic analyses of the plasma from a Tibetan miniature pig middle cerebral artery occlusion (MCAO) model. A significant decrease in the abundance of Firmicutes and a significant increase in the abundance of Actinobacteria were observed after the onset of AIS. Among the plasma metabolites, the levels of phospholipids and amino acids were considerably altered. Loading values and differential metabolite-bacterial group association analyses of the metabolome and microbiome indicated a correlation between the microbiome and metabolome of Tibetan miniature pigs after MCAO. Furthermore, significant changes were observed in the ABC transporter pathway and purine metabolism in the gut microbiome-plasma metabolome during the early stage of AIS. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis showed that arginine, proline, and cyanoamino acid metabolism was upregulated while ABC transporter metabolism pathway and carbohydrate digestion and absorption were substantially downregulated. The results of this study suggest that AIS affects the gut microbiota and plasma metabolites in Tibetan miniature pigs and that faecal microbiota transplantation could be a potential therapeutic approach for AIS.
Collapse
Affiliation(s)
- Yajin Guan
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Tianping Liu
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Fei Xu
- Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Shuilin Xie
- Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China.
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510000, China.
| | - Yanan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510000, China.
| |
Collapse
|
27
|
Luo Y, Chatre L, Melhem S, Al-Dahmani ZM, Homer NZM, Miedema A, Deelman LE, Groves MR, Feelisch M, Morton NM, Dolga A, van Goor H. Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain. Redox Biol 2023; 68:102965. [PMID: 38000344 PMCID: PMC10701433 DOI: 10.1016/j.redox.2023.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst-/- mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst-/- mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction.
Collapse
Affiliation(s)
- Yang Luo
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands; University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie University, ISTCT UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Shaden Melhem
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zayana M Al-Dahmani
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburghh, United Kingdom
| | - Anneke Miedema
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Leo E Deelman
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Matthew R Groves
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amalia Dolga
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| |
Collapse
|
28
|
Augusto-Oliveira M, Arrifano GP, Leal-Nazaré CG, Santos-Sacramento L, Lopes-Araújo A, Royes LFF, Crespo-Lopez ME. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol Neurobiol 2023; 60:6950-6974. [PMID: 37518829 DOI: 10.1007/s12035-023-03492-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Caio G Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica Do Exercício, Centro de Educacão Física E Desportos, Universidade Federal de Santa Maria, Santa Maria, RGS, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| |
Collapse
|
29
|
Sadiq AO, Awotidebe AW, Saeys W, Truijen S, Wong TWL, Ng SSM, Abdullahi A. Prevalence, associated factors and predictors of post stroke pneumonia in a Nigerian population: A retrospective study. J Stroke Cerebrovasc Dis 2023; 32:107404. [PMID: 37813084 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVES Stroke can trigger an immune response that can raise the risk of infection, alter tracheal epithelium, reduce pulmonary clearance and impair secretions drainage capacity. Infection, altered tracheal epithelium, reduced pulmonary clearance, impaired secretions drainage capacity and aspiration can cause pneumonia after stroke. The aim of this study is to find out the prevalence of post stroke pneumonia in a Nigerian population and factors that are associated with it. MATERIALS AND METHOD Study data was extracted from the case files of patients with stroke who were managed between 1st January, 2011 and 1st February, 2021 in the study setting. RESULTS The result showed that, there was a record of only 591 patients with stroke (mean age, 62.78 ± 14.86 years) who were managed in the two hospitals during the period of the study. Out of this number, only 102 (17.3 %) had pneumonia. Presence of the pneumonia was only significantly (p < 0.05) associated with sex, type of stroke, lower limb muscle power, and outcome (died or alive). However, only those with ischaemic stroke are less likely to have pneumonia (Odds ratio= 0.467; CI: 0.275 to 0.791, p= 0.005), and patients who survived the stroke and are alive are less likely to develop pneumonia (Odds ratio= 0.150; CI: 0.092 to 0.245, p < 0.001). CONCLUSIONS Pneumonia occurs to a large extent after stroke. Therefore, it is important measures are taken to prevent it or complications arising from it especially in those with a hemorrhagic stroke.
Collapse
Affiliation(s)
| | | | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Belgium
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Nigeria.
| |
Collapse
|
30
|
Park W, Lee JS, Gao G, Kim BS, Cho DW. 3D bioprinted multilayered cerebrovascular conduits to study cancer extravasation mechanism related with vascular geometry. Nat Commun 2023; 14:7696. [PMID: 38001146 PMCID: PMC10673893 DOI: 10.1038/s41467-023-43586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebral vessels are composed of highly complex structures that facilitate blood perfusion necessary for meeting the high energy demands of the brain. Their geometrical complexities alter the biophysical behavior of circulating tumor cells in the brain, thereby influencing brain metastasis. However, recapitulation of the native cerebrovascular microenvironment that shows continuities between vascular geometry and metastatic cancer development has not been accomplished. Here, we apply an in-bath 3D triaxial bioprinting technique and a brain-specific hybrid bioink containing an ionically crosslinkable hydrogel to generate a mature three-layered cerebrovascular conduit with varying curvatures to investigate the physical and molecular mechanisms of cancer extravasation in vitro. We show that more tumor cells adhere at larger vascular curvature regions, suggesting that prolongation of tumor residence time under low velocity and wall shear stress accelerates the molecular signatures of metastatic potential, including endothelial barrier disruption, epithelial-mesenchymal transition, inflammatory response, and tumorigenesis. These findings provide insights into the underlying mechanisms driving brain metastases and facilitate future advances in pharmaceutical and medical research.
Collapse
Affiliation(s)
- Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
31
|
Shevtsova Y, Eldarov C, Starodubtseva N, Goryunov K, Chagovets V, Ionov O, Plotnikov E, Silachev D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1693. [PMID: 37892356 PMCID: PMC10605414 DOI: 10.3390/children10101693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
A study was performed to determine early metabolomic markers of ischemic hypoxic encephalopathy (HIE) using a Rice-Vannucci model for newborn rats. Dried blood spots from 7-day-old male and female rat pups, including 10 HIE-affected animals and 16 control animals, were analyzed by liquid chromatography coupled with mass spectrometry (HPLC-MS) in positive and negative ion recording modes. Multivariate statistical analysis revealed two distinct clusters of metabolites in both HPLC-MS modes. Subsequent univariate statistical analysis identified 120 positive and 54 negative molecular ions that exhibited statistically significant change in concentration, with more than a 1.5-fold difference after HIE. In the HIE group, the concentrations of steroid hormones, saturated mono- and triglycerides, and phosphatidylcholines (PCs) were significantly decreased in positive mode. On the contrary, the concentration of unsaturated PCs was increased in the HIE group. Among negatively charged molecular ions, the greatest variations were found in the categories of phosphatidylcholines, phosphatidylinositols, and triglycerides. The major metabolic pathways associated with changed metabolites were analyzed for both modes. Metabolic pathways such as steroid biosynthesis and metabolism fatty acids were most affected. These results underscored the central role of glycerophospholipid metabolism in triggering systemic responses in HIE. Therefore, lipid biomarkers' evaluation by targeted HPLC-MS research could be a promising approach for the early diagnosis of HIE.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
32
|
Liu Q, Li K, He H, Miao Z, Cui H, Wu J, Ding S, Wen Z, Chen J, Lu X, Li J, Zheng L, Wang S. The markers and risk stratification model of intracranial aneurysm instability in a large Chinese cohort. Sci Bull (Beijing) 2023; 68:1162-1175. [PMID: 37210332 DOI: 10.1016/j.scib.2023.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/22/2023]
Abstract
Intracranial aneurysm is the leading cause of nontraumatic subarachnoid hemorrhage. Evaluating the unstable (rupture and growth) risk of aneurysms is helpful to guild decision-making for unruptured intracranial aneurysms (UIA). This study aimed to develop a model for risk stratification of UIA instability. The UIA patients from two prospective, longitudinal multicenter Chinese cohorts recruited from January 2017 to January 2022 were set as the derivation cohort and validation cohort. The primary endpoint was UIA instability, comprising aneurysm rupture, growth, or morphology change, during a 2-year follow-up. Intracranial aneurysm samples and corresponding serums from 20 patients were also collected. Metabolomics and cytokine profiling analysis were performed on the derivation cohort (758 single-UIA patients harboring 676 stable UIAs and 82 unstable UIAs). Oleic acid (OA), arachidonic acid (AA), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) were significantly dysregulated between stable and unstable UIAs. OA and AA exhibited the same dysregulated trends in serums and aneurysm tissues. The feature selection process demonstrated size ratio, irregular shape, OA, AA, IL-1β, and TNF-α as features of UIA instability. A machine-learning stratification model (instability classifier) was constructed based on radiological features and biomarkers, with high accuracy to evaluate UIA instability risk (area under curve (AUC), 0.94). Within the validation cohort (492 single-UIA patients harboring 414 stable UIAs and 78 unstable UIAs), the instability classifier performed well to evaluate the risk of UIA instability (AUC, 0.89). Supplementation of OA and pharmacological inhibition of IL-1β and TNF-α could prevent intracranial aneurysms from rupturing in rat models. This study revealed the markers of UIA instability and provided a risk stratification model, which may guide treatment decision-making for UIAs.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China; Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi 214001, China
| | - Ke Li
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China
| | - Hongwei He
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China
| | - Zengli Miao
- Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi 214001, China
| | - Hongtu Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China; Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi 214001, China
| | - Shusi Ding
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China
| | - Zheng Wen
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China
| | - Jiyuan Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xiaojie Lu
- Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi 214001, China.
| | - Jiangan Li
- Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi 214001, China.
| | - Lemin Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China; The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China.
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100070, China; Department of Neurosurgery and Emergency Medicine, Jiangnan University Medical Center, Wuxi 214001, China.
| |
Collapse
|
33
|
Hartl SL, Žakelj S, Dolenc MS, Smrkolj V, Mavri J. How Azide Ion/Hydrazoic Acid Passes Through Biological Membranes: An Experimental and Computational Study. Protein J 2023:10.1007/s10930-023-10127-3. [PMID: 37289420 DOI: 10.1007/s10930-023-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Hydrazoic acid (HN3) and its deprotonated form azide ion (N3-) (AHA) are toxic because they inhibit the cytochrome c oxidase complex IV (CoX IV) embedded in the inner mitochondrial membrane that forms part of the enzyme complexes involved in cellular respiration. Critical to its toxicity is the inhibition of CoX IV in the central nervous system and cardiovascular system. Hydrazoic acid is an ionizable species and its affinity for membranes, and the associated permeabilities, depend on the pH values of aqueous media on both sides of the membranes. In this article, we address the permeability of AHA through the biological membrane. In order to understand the affinity of the membrane for the neutral and ionized form of azide, we measured the octanol/water partition coefficients at pH values of 2.0 and 8.0, which are 2.01 and 0.00034, respectively. Using a Parallel Artificial Membrane Permeability Assay (PAMPA) experiment, we measured the effective permeability through the membrane, which is logPe - 4.97 and - 5.26 for pH values of 7.4 and pH 8.0, respectively. Experimental permeability was used to validate theoretical permeability, which was estimated by numerically solving a Smoluchowski equation for AHA diffusion through the membrane. We demonstrated that the rate of permeation through the cell membrane of 8.46·104 s-1 is much higher than the rate of the chemical step of CoX IV inhibition by azide of 200 s-1. The results of this study show that transport through the membrane does not represent the rate-limiting step and therefore does not control the rate of CoX IV inhibition in the mitochondria. However, the observed dynamics of azide poisoning is controlled by circulatory transport that takes place on a time scale of minutes.
Collapse
Affiliation(s)
- Simona Lojevec Hartl
- National Institute of Chemistry, Center for Validation Technologies and Analytics, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | - Vladimir Smrkolj
- University of Ljubljana, Faculty of Medicine, Institute of Anatomy, Ljubljana, Slovenia.
| | - Janez Mavri
- National Institute of Chemistry, Laboratory of Computational Biochemistry and Drug Design, Ljubljana, Slovenia.
| |
Collapse
|
34
|
Tajonar K, Gonzalez-Ronquillo M, Relling A, Nordquist RE, Nawroth C, Vargas-Bello-Pérez E. Toward assessing the role of dietary fatty acids in lamb's neurological and cognitive development. Front Vet Sci 2023; 10:1081141. [PMID: 36865439 PMCID: PMC9971820 DOI: 10.3389/fvets.2023.1081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding and measuring sheep cognition and behavior can provide us with measures to safeguard the welfare of these animals in production systems. Optimal neurological and cognitive development of lambs is important to equip individuals with the ability to better cope with environmental stressors. However, this development can be affected by nutrition with a special role from long-chain fatty acid supply from the dam to the fetus or in lamb's early life. Neurological development in lambs takes place primarily during the first two trimesters of gestation. Through late fetal and early postnatal life, the lamb brain has a high level of cholesterol synthesis. This rate declines rapidly at weaning and remains low throughout adulthood. The main polyunsaturated fatty acids (PUFA) in the brain are ω-6 arachidonic acid and ω-3 docosahexaenoic acid (DHA), which are elements of plasma membranes' phospholipids in neuronal cells. DHA is essential for keeping membrane integrity and is vital for normal development of the central nervous system (CNS), and its insufficiency can damage cerebral functions and the development of cognitive capacities. In sheep, there is evidence that supplying PUFA during gestation or after birth may be beneficial to lamb productive performance and expression of species-specific behaviors. The objective of this perspective is to discuss concepts of ruminant behavior and nutrition and reflect on future research directions that could help to improve our knowledge on how dietary fatty acids (FA) relate to optimal neurological and cognitive development in sheep.
Collapse
Affiliation(s)
- Karen Tajonar
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Manuel Gonzalez-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Alejandro Relling
- Department of Animal Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Rebecca E. Nordquist
- Unit Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Christian Nawroth
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Christian Nawroth ✉
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom,Einar Vargas-Bello-Pérez ✉
| |
Collapse
|
35
|
Tavabe NR, Kheiri S, Dehghani M, Mohammadian-Hafshejani A. A Systematic Review and Meta-Analysis of the Relationship between Receiving the Flu Vaccine with Acute Cerebrovascular Accident and Its Hospitalization in the Elderly. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2606854. [PMID: 36814798 PMCID: PMC9940958 DOI: 10.1155/2023/2606854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023]
Abstract
Background and Aims In recent years, various studies have been conducted worldwide to investigate the relationship between receiving the flu vaccine with acute cerebrovascular accident or stroke and its hospitalization in the elderly; however, the results of these studies are contradictory. Therefore, this study was aimed at investigating the relationship between receiving the flu vaccine with stroke and its hospitalization in the elderly. Methods This study is a systematic review and meta-analysis of studies examining the relationship between receiving the flu vaccine with stroke and its hospitalization in the elderly during the years 1980 to 2021 which have been published in ISI Web of Science, Scopus PubMed, Cochrane, Science Direct, Google Scholar, and Embase. All analyses were performed by Stata 15, and the significance level in this study was considered <0.05. Results In the systematic search, 3088 articles were retrieved, considering the study criteria; finally, 14 studies were included in the meta-analysis. Based on the results of the meta-analysis, the odds ratio (OR) of occurrence and hospitalization of stroke compared to the nonvaccinated group in vaccine recipients is equal to 0.84 (95% confidence interval (CI): 0.78-0.90, P value ≤ 0.001). Publication bias was not observed in this study (P value = 0.101). Conclusion Getting the flu vaccine can reduce the risk of occurrence and hospitalization of stroke in the elderly by 16% (10%-22%). Therefore, receiving this vaccine as a preventive intervention for stroke in the elderly may be promising.
Collapse
Affiliation(s)
- Nilay Rezaei Tavabe
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soleiman Kheiri
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Dehghani
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
36
|
Basak S, Duttaroy AK. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod Sci 2023; 30:408-427. [PMID: 35676498 DOI: 10.1007/s43032-022-00989-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs), especially omega-3 (n-3) and n-6 long-chain (LC) PUFAs, are indispensable for the fetus' brain supplied by the placenta. Despite being highly unsaturated, n-3 LCPUFA-docosahexaenoic acid (DHA) plays a protective role as an antioxidant in the brain. Deficiency of DHA during fetal development may cause irreversible damages in neurodevelopment programming. Dietary PUFAs can impact placental structure and functions by regulating early placentation processes, such as angiogenesis. They promote remodeling of uteroplacental architecture to facilitate increased blood flow and surface area for nutrient exchange. The placenta's fatty acid transfer depends on the uteroplacental vascular development, ensuring adequate maternal circulatory fatty acids transport to fulfill the fetus' rapid growth and development requirements. Maternal n-3 PUFA deficiency predominantly leads to placental epigenetic changes than other fetal developing organs. A global shift in DNA methylation possibly transmits epigenetic instability in developing fetuses due to n-3 PUFA deficiency. Thus, an optimal level of maternal omega-3 (n-3) PUFAs may protect the placenta's structural and functional integrity and allow fetal growth by controlling the aberrant placental epigenetic changes. This narrative review summarizes the recent advances and underpins the roles of maternal PUFAs on the structure and functions of the placenta and their relevance to fetal growth and brain development.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Morelli AM, Scholkmann F. The Significance of Lipids for the Absorption and Release of Oxygen in Biological Organisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1438:93-99. [PMID: 37845446 DOI: 10.1007/978-3-031-42003-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A critically important step for the uptake and transport of oxygen (O2) in living organisms is the crossing of the phase boundary between gas (or water) and lipid/proteins in the cell. Classically, this transport across the phase boundary is explained as a transport by proteins or protein-based structures. In our contribution here, we want to show the significance of passive transport of O2 also (and in some cases probably predominantly) through lipids in many if not all aerobic organisms. In plants, the significance of lipids for gas exchange (absorption of CO2 and release of O2) is well recognized. The leaves of plants have a cuticle layer as the last film on both sides formed by polyesters and lipids. In animals, the skin has sebum as its last layer consisting of a mixture of neutral fatty esters, cholesterol and waxes which are also at the border between the cells of the body and the air. The last cellular layers of skin are not vascularized therefore their metabolism totally depends on this extravasal O2 absorption, which cannot be replenished by the bloodstream. The human body absorbs about 0.5% of O2 through the skin. In the brain, myelin, surrounding nerve cell axons and being formed by oligodendrocytes, is most probably also responsible for enabling O2 transport from the extracellular space to the cells (neurons). Myelin, being not vascularized and consisting of water, lipids and proteins, seems to absorb O2 in order to transport it to the nerve cell axon as well as to perform extramitochondrial oxidative phosphorylation inside the myelin structure around the axons (i.e., myelin synthesizes ATP) - similarly to the metabolic process occurring in concentric multilamellar structures of cyanobacteria. Another example is the gas transport in the lung where lipids play a crucial role in the surfactant ensuring incorporation of O2 in the alveoli where there are lamellar body and tubular myelin which form multilayered surface films at the air-membrane border of the alveolus. According to our view, the role played by lipids in the physical absorption of gases appears to be crucial to the existence of many, if not all, of the living aerobic species.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland.
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity. Biometals 2022:10.1007/s10534-022-00482-6. [PMID: 36564665 DOI: 10.1007/s10534-022-00482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Arsenic (As) is a toxic metalloid that is widely distributed in the earth's crust. People are continuously exposed to this toxicant in their food and drinking water. Inorganic arsenic occurs in two oxidation states, arsenite 3+ (iAs3+) and arsenate 5+ (iAs5+). The most toxic form is its trivalent form which interferes with the electron transfer cycle and induces overproduction of reactive oxygen species, leading to depletion of the antioxidant defense system, as well as altering fatty acid levels and mitochondrial action. Since arsenic crosses the blood-brain barrier, it can damage cells in different regions of the brain, causing neurological disorders through the induction of oxidative stress, inflammation, DNA damage, and cell death. Hydroxytyrosol, taurine, alpha-lipoic acid, ellagic acid, and thymoquinone have been shown to effectively alleviate arsenic-induced neurotoxicity. The protective effects are the result of the anti-oxidative and anti-inflammatory properties of the phytochemicals and in particular their anti-apoptotic function via the Nrf2 and PI3/Akt/SIRT1 signaling pathways.
Collapse
|
39
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
40
|
Mori MP, Penjweini R, Knutson JR, Wang PY, Hwang PM. Mitochondria and oxygen homeostasis. FEBS J 2022; 289:6959-6968. [PMID: 34235856 PMCID: PMC8790743 DOI: 10.1111/febs.16115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023]
Abstract
Molecular oxygen possesses a dual nature due to its highly reactive free radical property: it is capable of oxidizing metabolic substrates to generate cellular energy, but can also serve as a substrate for genotoxic reactive oxygen species generation. As a labile substance upon which aerobic life depends, the mechanisms for handling cellular oxygen have been fine-tuned and orchestrated in evolution. Protection from atmospheric oxygen toxicity as originally posited by the Endosymbiotic Theory of the Mitochondrion is likely to be one basic principle underlying oxygen homeostasis. We briefly review the literature on oxygen homeostasis both in vitro and in vivo with a focus on the role of the mitochondrion where the majority of cellular oxygen is consumed. The insights gleaned from these basic mechanisms are likely to be important for understanding disease pathogenesis and developing strategies for maintaining health.
Collapse
Affiliation(s)
- Mateus P. Mori
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Ping-yuan Wang
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| | - Paul M. Hwang
- Cardiovascular Branch; National Heart, Lung, and Blood Institute; National Institutes of Health; Bethesda, Maryland, USA
| |
Collapse
|
41
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
42
|
Daneshimehr F, Barabadi Z, Abdolahi S, Soleimani M, Verdi J, Ebrahimi-Barough S, Ai J. Angiogenesis and Its Targeting in Glioblastoma with Focus on Clinical Approaches. CELL JOURNAL 2022; 24:555-568. [PMID: 36259473 PMCID: PMC9617020 DOI: 10.22074/cellj.2022.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 01/25/2023]
Abstract
Angiogenesis is a characteristic of glioblastoma (GBM), the most fatal and therapeutic-resistant brain tumor. Highly expressed angiogenic cytokines and proliferated microvascular system made anti-angiogenesis treatments a thoroughly plausible approach for GBM treatment. Many trials have proved to be not only as a safe but also as an effective approach in GBM retardation in a certain time window as seen in radiographic response rates; however, they have failed to implement significant improvements in clinical manifestation whether alone or in combination with radio/chemotherapy. Bevasizumab, an anti-vascular endothelial growth factor-A (VEGF-A) antibody, is the only agent that exerts meaningful clinical influence by improving progression-free survival (PFS) and partially alleviate clinical symptoms, nevertheless, it could not prolong the overall survival (OS) in patients with GBM. The data generated from phase II trials clearly revealed a correlation between elevated reperfusion, subsequent to vascular normalization induction, and improved clinical outcomes which explicitly indicates anti-angiogenesis treatments are beneficial. In order to prolong these initial benefits observed in a certain period of time after anti-angiogenesis targeting, some aspects of the therapy should be tackled: recognition of other bypass angiogenesis pathways activated following antiangiogenesis therapy, identification of probable pathways that induce insensitivity to shortage of blood supply, and classifying the patients by mapping their GBM-related gene profile as biomarkers to predict their responsiveness to therapy. Herein, the molecular basis of brain vasculature development in normal and tumoral conditions is briefly discussed and it is explained how "vascular normalization" concept opened a window to a better comprehension of some adverse effects observed in anti-angiogenesis therapy in clinical condition. Then, the most targeted angiogenesis pathways focused on ligand/receptor interactions in GBM clinical trials are reviewed. Lastly, different targeting strategies applied in anti-angiogenesis treatment are discussed.
Collapse
Affiliation(s)
- Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of
Medical Sciences, Hamadan, Iran
| | - Shahrokh Abdolahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran,P.O.Box: 14177-55469Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies
in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
43
|
Moreton N, Puzio M, O’Connor JJ. The effects of the superoxide dismutase mimetic, MnTMPyP, post hypoxia and oxygen glucose deprivation, in isolated rat hippocampal slices. Brain Res Bull 2022; 190:105-115. [DOI: 10.1016/j.brainresbull.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
|
44
|
Abdelgawad MA, Elkanzi NA, Musa A, Ghoneim MM, Ahmad W, Elmowafy M, Abdelhaleem Ali AM, Abdelazeem AH, Bukhari SN, El-Sherbiny M, Abourehab MA, Bakr RB. Optimization of pyrazolo[1,5-a]pyrimidine based compounds with pyridine scaffold: Synthesis, biological evaluation and molecular modeling study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Tran KA, Baldwin-Leclair A, DeOre BJ, Antisell M, Galie PA. Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model. J Cell Physiol 2022; 237:3872-3882. [PMID: 35901247 DOI: 10.1002/jcp.30840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
A variety of biophysical properties are known to regulate angiogenic sprouting, and in vitro systems can parse the individual effects of these factors in a controlled setting. Here, a three-dimensional brain microvascular model interrogates how variables including extracellular matrix composition, fluid shear stress, and radius of curvature affect angiogenic sprouting of cerebral endothelial cells. Tracking endothelial migration over several days reveals that application of fluid shear stress and enlarged vessel radius of curvature both attenuate sprouting. Computational modeling informed by oxygen consumption assays suggests that sprouting correlates to reduced oxygen concentration: both fluid shear stress and vessel geometry alter the local oxygen levels dictated by both ambient conditions and cellular respiration. Moreover, increasing cell density and consequently lowering the local oxygen levels yields significantly more sprouting. Further analysis reveals that the magnitude of oxygen concentration is not as important as its spatial concentration gradient: decreasing ambient oxygen concentration causes significantly less sprouting than applying an external oxygen gradient to the vessels. In contrast, barriergenesis is dictated by shear stress independent of local oxygen concentrations, suggesting that different mechanisms mediate angiogenesis and barrier formation and that angiogenic sprouting can occur without compromising the barrier. Overall, these results improve our understanding of how specific biophysical variables regulate the function and activation of cerebral vasculature, and identify spatial oxygen gradients as the driving factor of angiogenesis in the brain.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | | | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Morgan Antisell
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
46
|
Pereira TJ, Wasef S, Ivry I, Assadpour E, Adeyinka B, Edgell H. Menstrual cycle and oral contraceptives influence cerebrovascular dynamics during hypercapnia. Physiol Rep 2022; 10:e15373. [PMID: 35822289 PMCID: PMC9277257 DOI: 10.14814/phy2.15373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023] Open
Abstract
Women experience fluctuating orthostatic intolerance during the menstrual cycle, suggesting sex hormones may influence cerebral blood flow. Young (aged 18-30) healthy women, either taking oral contraceptives (OC; n = 14) or not taking OC (NOC; n = 12), were administered hypercapnic gas (5%) for 5 min in the low hormone (LH; placebo pill) and high hormone (HH; active pill) menstrual phases. Hemodynamic and cerebrovascular variables were continuously measured. Cerebral blood velocity changes were monitored using transcranial doppler ultrasound of the middle cerebral artery to determine cerebrovascular reactivity. Cerebral autoregulation was assessed using steady-state analysis (static cerebral autoregulation) and transfer function analysis (dynamic cerebral autoregulation; dCA). In response to hypercapnia, menstrual phase did not influence static cardiovascular or cerebrovascular responses (all p > 0.07); however, OC users had a greater increase of mean middle cerebral artery blood velocity compared to NOC (NOC-LH 12 ± 6 cm/s vs. NOC-HH 16 ± 9 cm/s; OC-LH 18 ± 5 cm/s vs. OC-HH 17 ± 11 cm/s; p = 0.048). In all women, hypercapnia improved high frequency (HF) and very low frequency (VLF) cerebral autoregulation (decreased nGain; p = 0.002 and <0.001, respectively), whereas low frequency (LF) Phase decreased in NOC-HH (p = 0.001) and OC-LH (p = 0.004). Therefore, endogenous sex hormones reduce LF dCA during hypercapnia in the HH menstrual phase. In contrast, pharmaceutical sex hormones (OC use) have no acute influence (HH menstrual phase) yet elicit a chronic attenuation of LF dCA (LH menstrual phase) during hypercapnia.
Collapse
Affiliation(s)
- Tania J. Pereira
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Sara Wasef
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Ilana Ivry
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Elnaz Assadpour
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | | | - Heather Edgell
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
- Muscle Health Research CentreYork UniversityTorontoOntarioCanada
| |
Collapse
|
47
|
Wu Y, Wang W, Kou N, Wang M, Yang L, Miao Y, Tang Z, Gu Y, Ma Y, Xue M, Shi D. Panax Notoginseng Saponins Combined with Dual Antiplatelet Drugs Potentiates Anti-Thrombotic Effect with Alleviated Gastric Injury in A Carotid Artery Thrombosis Rat Model. J Stroke Cerebrovasc Dis 2022; 31:106597. [PMID: 35716522 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To observe the combination effects of Panax notoginseng saponins (PNS)and dual antiplatelet drugs (DAPT), and to explore the mechanism via cyclooxygenase /prostaglandin pathway. METHODS Right carotid artery thrombosis was induced in Wistar rats by infiltration with 70% FeCl3, and the animals were randomly divided into sham group, model group, DAPT group and PNS + DAPT group, intragastrically treated for 4 weeks. The cerebral pia mater microcirculation was observed in vivo after anesthetizing by anatomical microscope. The wet weight of carotid artery thrombosis was measured. Gastric mucosal injury was observed by hematoxylin and eosin staining. Platelet aggregation rate was detected with adenosine diphosphate -induced turbidimetry. Platelet CD62p expression was detected by flow cytometry. Concentrations of 6-Ketoprostaglandin F1 alpha, prostaglandin E2 in gastric mucosa and thromboxane B2, 6-Ketoprostaglandin F1 alpha, tissue plasminogen activator, plasminogen activator inhibitor, and fibrin fragment D in the plasma were measured by radioimmunoassay. RESULTS PNS and DAPT increased the blood flow volume of cerebral pia mater and decreased erythrocyte aggregation and leukocyte adhesion of model rats. Compared to DAPT, PNS and DAPT further reduced the weight of carotid artery thrombosis with enhanced inhibition of platelet aggregation, increased tissue plasminogen activator levels and decreased fibrin fragment D levels. PNS and DAPT alleviated gastric injury induced by dual antiplatelet drugs and upregulated the expression of 6-Ketoprostaglandin F1 alpha in the gastric mucosa compared with DAPT. CONCLUSIONS PNS combined with DAPT increased anti-thrombosis effects of DAPT and mitigated DAPT-related gastric injury. The underlying mechanisms may be associated with enhanced antiplatelet aggregation and activation of the fibrinolytic system and up-regulation of 6-Ketoprostaglandin F1 alpha expression in gastric mucosa.
Collapse
Affiliation(s)
- Yanyan Wu
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100091, China
| | - Wenting Wang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Na Kou
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Wang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Yang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ziwei Tang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yimeng Gu
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Vienna General Hospital, Medical University of Vienna, Vienna 1090, Austria
| | - Mei Xue
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Dazhuo Shi
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
48
|
Dhote V, Mandloi AS, Singour PK, Kawadkar M, Ganeshpurkar A, Jadhav MP. Neuroprotective effects of combined trimetazidine and progesterone on cerebral reperfusion injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100108. [PMID: 35602337 PMCID: PMC9118508 DOI: 10.1016/j.crphar.2022.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Cerebral ischemia-reperfusion injury induces multi-dimensional damage to neuronal cells through exacerbation of critical protective mechanisms. Targeting more than one mechanism simultaneously namely, inflammatory responses and metabolic energy homeostasis could provide additional benefits to restrict or manage cerebral injury. Being proven neuroprotective agents both, progesterone (PG) and trimetazidine (TMZ) has the potential to add on the individual therapeutic outcomes. We hypothesized the simultaneous administration of PG and TMZ could complement each other to synergize, or at least enhance neuroprotection in reperfusion injury. We investigated the combination of PG and TMZ on middle cerebral artery occlusion (MCAO) induced cerebral reperfusion injury in rats. Molecular docking on targets of energy homeostasis and apoptosis assessed the initial viability of PG and TMZ for neuroprotection. Animal experimentation with MCA induced ischemia-reperfusion (I/R) injury in rats was performed on five randomized groups. Sham operated control group received vehicle (saline) while the other four I-R groups were pre-treated with vehicle (saline), PG (8 mg/kg), TMZ treated (25 mg/kg), and PG + TMZ (8 and 25 mg/kg) for 7 days by intraperitoneal route. Neurological deficit, infarct volume, and oxidative stress were evaluated to assess the extent of injury in rats. Inflammatory reactivity and apoptotic activity were determined with alterations in myeloperoxidase (MPO) activity, blood-brain barrier (BBB) permeability, and DNA fragments. Reperfusion injury inflicted cerebral infarct, neurological deficit, and shattered BBB integrity. The combination treatment of PG and TMZ restricted cellular damage indicated by significant (p < 0.05) decrease in infarct volume and improvement in free radical scavenging ability (SOD activity and GSH level). MPO activity and LPO decreased which contributed in improved BBB integrity in treated rats. We speculate that inhibition of inflammatory and optimum energy utilization would critically contribute to observed neuroprotection with combined PG and TMZ treatment. Further exploration of this neuroprotective approach for post-recovery cognitive improvement is worth investigating. Molecular docking study. Drug repurposing. Combinatorial approach. Network Pharmacology.
Collapse
|
49
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
50
|
Cai D, Luo Z, Su J, Gan H, Wang Z, Liu X, Li S, Wu J, Chen J, Ma R, Huang M, Zhong G. Exposure-Response Analysis and Mechanism of Ginkgolide B’s Neuroprotective Effect in Acute Cerebral Ischemia/Reperfusion Stage in Rat. Biol Pharm Bull 2022; 45:409-420. [DOI: 10.1248/bpb.b21-00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dake Cai
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Zhongxing Luo
- The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Jiyan Su
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University
| | - Haining Gan
- Department of Pharmacology of Traditional Chinese Medicine, The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine
| | | | - Xiaolin Liu
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Siyi Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine
| | - Jingjing Wu
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University
| | - Jiangying Chen
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Renqiang Ma
- Guangzhou Boji Medical Biotechnological Co., Ltd
| | - Min Huang
- School of Pharmaceutical Science, Sun Yat-sen University
| | - Guoping Zhong
- School of Pharmaceutical Science, Sun Yat-sen University
| |
Collapse
|