1
|
Soobben M, Sayed Y, Achilonu I. Exploring the evolutionary trajectory and functional landscape of cannabinoid receptors: A comprehensive bioinformatic analysis. Comput Biol Chem 2024; 112:108138. [PMID: 38943725 DOI: 10.1016/j.compbiolchem.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
The bioinformatic analysis of cannabinoid receptors (CBRs) CB1 and CB2 reveals a detailed picture of their structure, evolution, and physiological significance within the endocannabinoid system (ECS). The study highlights the evolutionary conservation of these receptors evidenced by sequence alignments across diverse species including humans, amphibians, and fish. Both CBRs share a structural hallmark of seven transmembrane (TM) helices, characteristic of class A G-protein-coupled receptors (GPCRs), which are critical for their signalling functions. The study reports a similarity of 44.58 % between both CBR sequences, which suggests that while their evolutionary paths and physiological roles may differ, there is considerable conservation in their structures. Pathway databases like KEGG, Reactome, and WikiPathways were employed to determine the involvement of the receptors in various signalling pathways. The pathway analyses integrated within this study offer a detailed view of the CBRs interactions within a complex network of cannabinoid-related signalling pathways. High-resolution crystal structures (PDB ID: 5U09 for CB1 and 5ZTY for CB2) provided accurate structural information, showing the binding pocket volume and surface area of the receptors, essential for ligand interaction. The comparison between these receptors' natural sequences and their engineered pseudo-CBRs (p-CBRs) showed a high degree of sequence identity, confirming the validity of using p-CBRs in receptor-ligand interaction studies. This comprehensive analysis enhances the understanding of the structural and functional dynamics of cannabinoid receptors, highlighting their physiological roles and their potential as therapeutic targets within the ECS.
Collapse
MESH Headings
- Computational Biology
- Humans
- Amino Acid Sequence
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/genetics
- Receptors, Cannabinoid/metabolism
- Receptors, Cannabinoid/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/genetics
- Evolution, Molecular
- Animals
- Sequence Alignment
Collapse
Affiliation(s)
- Marushka Soobben
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
2
|
Morales P, Scharf MM, Bermudez M, Egyed A, Franco R, Hansen OK, Jagerovic N, Jakubík J, Keserű GM, Kiss DJ, Kozielewicz P, Larsen O, Majellaro M, Mallo-Abreu A, Navarro G, Prieto-Díaz R, Rosenkilde MM, Sotelo E, Stark H, Werner T, Wingler LM. Progress on the development of Class A GPCR-biased ligands. Br J Pharmacol 2024. [PMID: 39261899 DOI: 10.1111/bph.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 09/13/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Magdalena M Scharf
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcel Bermudez
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Attila Egyed
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Olivia K Hansen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - György M Keserű
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana Mallo-Abreu
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Tobias Werner
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Ekambaram S, Wang J, Dokholyan NV. CANDI: A Web Server for Predicting Molecular Targets and Pathways of Cannabis-Based Therapeutics. RESEARCH SQUARE 2024:rs.3.rs-4744915. [PMID: 39149470 PMCID: PMC11326374 DOI: 10.21203/rs.3.rs-4744915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Cannabis sativa with a rich history of traditional medicinal use, has garnered significant attention in contemporary research for its potential therapeutic applications in various human diseases, including pain, inflammation, cancer, and osteoarthritis. However, the specific molecular targets and mechanisms underlying the synergistic effects of its diverse phytochemical constituents remain elusive. Understanding these mechanisms is crucial for developing targeted, effective cannabis-based therapies. Methods To investigate the molecular targets and pathways involved in the synergistic effects of cannabis compounds, we utilized DRIFT, a deep learning model that leverages attention-based neural networks to predict compound-target interactions. We considered both whole plant extracts and specific plant-based formulations. Predicted targets were then mapped to the Reactome pathway database to identify the biological processes affected. To facilitate the prediction of molecular targets and associated pathways for any user-specified cannabis formulation, we developed CANDI (Cannabis-derived compound Analysis and Network Discovery Interface), a web-based server. This platform offers a user-friendly interface for researchers and drug developers to explore the therapeutic potential of cannabis compounds. Results Our analysis using DRIFT and CANDI successfully identified numerous molecular targets of cannabis compounds, many of which are involved in pathways relevant to pain, inflammation, cancer, and other diseases. The CANDI server enables researchers to predict the molecular targets and affected pathways for any specific cannabis formulation, providing valuable insights for developing targeted therapies. Conclusions By combining computational approaches with knowledge of traditional cannabis use, we have developed the CANDI server, a tool that allows us to harness the therapeutic potential of cannabis compounds for the effective treatment of various disorders. By bridging traditional pharmaceutical development with cannabis-based medicine, we propose a novel approach for botanical-based treatment modalities.
Collapse
|
4
|
Andersen HK, Vardakas DG, Lamothe JA, Perault TEA, Walsh KB, Laprairie RB. Comparing CB1 receptor GIRK channel responses to receptor internalization using a kinetic imaging assay. Sci Rep 2024; 14:18314. [PMID: 39112591 PMCID: PMC11306342 DOI: 10.1038/s41598-024-68451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the β-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The β-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.
Collapse
Affiliation(s)
- Haley K Andersen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Duncan G Vardakas
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Julie A Lamothe
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tannis E A Perault
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kenneth B Walsh
- Pharmacology, Physiology, and Neuroscience, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Bodke S, Joshi N, Alavala RR, Suares D. In silico exploration of CB2 receptor agonist in the management of neuroinflammatory conditions by pharmacophore modeling. Comput Biol Chem 2024; 110:108049. [PMID: 38507844 DOI: 10.1016/j.compbiolchem.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Endocannabinoid system plays a pivotal role in controlling neuroinflammation, and modulating this system may not only aid in managing symptoms of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Epilepsy, Central and Peripheral neuropathic pain, but also, have the potential to target these diseases at an early-stage. In the present study, six different pharmacophore hypotheses were generated from Cannabidiol (CBD)-Cannabinoid Receptor subtype-2 (CB2) and then Zinc database was screened for identification of hit molecules. Identified 215 hit molecules were subjected to preliminary screening with ADMET and drug likeness properties, and about 48 molecules were found with no violations and toxicity properties. In molecular docking studies, six compounds showed better binding energy than CBD and β-caryophyllene (known inhibitor of CB2). These six molecules were designated as leads and subjected to re-docking with glide tool and Lead1 (ZINC000078815430) showed docking score of -9.877 kcal/mol, whereas CBD and β-caryophyllene showed score of -9.664 and -8.499 kcal/mol, respectively. Lead1 and CBD were evaluated for stability studies with Desmond tool by molecular dynamic simulation studies. Lead1 showed better stability than CBD in all studied parameters such as RMSD, RMSF, SSE, Rg, SASA, etc. In MM-GBSA free energy calculations, ΔGbinding energy of CB2-CBD complex and CB2-Lead1 were found to be -103.13±11.19 and -107.94±5.42 kcal/mol, respectively. Six lead molecules stated in the study hold promise with respect to CBD agonistic activity for treating and/or managing chronic conditions and can be explored as an alternative for early-stage cure, which has not yet been experimentally explored.
Collapse
Affiliation(s)
- Shlok Bodke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai 400056, India
| | - Nachiket Joshi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai 400056, India
| | - Rajasekhar Reddy Alavala
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai 400056, India.
| | - Divya Suares
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai 400056, India.
| |
Collapse
|
6
|
Hebert FO, Mongeau-Pérusse V, Rizkallah E, Mahroug A, Bakouni H, Morissette F, Brissette S, Bruneau J, Dubreucq S, Jutras-Aswad D. Absence of Evidence for Sustained Effects of Daily Cannabidiol Administration on Anandamide Plasma Concentration in Individuals with Cocaine Use Disorder: Exploratory Findings from a Randomized Controlled Trial. Cannabis Cannabinoid Res 2024. [PMID: 38770686 DOI: 10.1089/can.2023.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Background: Cannabidiol (CBD) has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders, including substance use disorders. Pre-clinical evidence suggests that CBD can increase anandamide (AEA) plasma concentration, possibly mediating some of its therapeutic properties. Whether CBD exerts such an effect on AEA in individuals with cocaine use disorder (CUD) remains unknown. Aims: To explore the sustained effects of daily CBD administration on AEA plasma concentrations compared with placebo in CUD. Methods: We used data from a randomized, double-blind, placebo-controlled trial evaluating CBD's efficacy in CUD. Seventy-eight individuals were randomized to receive a daily oral dose of 800 mg CBD (n = 40) or a placebo (n = 38). Participants stayed in an inpatient detoxification setting for 10 days, after which they were followed in an outpatient setting for 12 weeks. AEA plasma concentration was measured at baseline and at 23-h post CBD ingestion on day 8 and week 4. A generalized estimating equation model was used to assess CBD's effects on AEA, and sensitivity analyses were computed using Bayesian linear regressions. Results: Sixty-four participants were included in the analysis. Similar mean AEA plasma concentrations in both treatment groups (p = 0.357) were observed. At day 8, mean AEA plasma concentrations (± standard deviation) were 0.26 (± 0.07) ng/mL in the CBD group and 0.29 (± 0.08) ng/mL in the placebo group (p = 0.832; Bayes factor [BF] = 0.190). At week 4, they were 0.27 (± 0.09) ng/mL in the CBD group and 0.30 (± 0.09) ng/mL in the placebo group (p = 0.181; BF = 0.194). Conclusion: While not excluding any potential acute and short-term effect, daily CBD administration did not exert a sustained impact on AEA plasma concentrations in individuals with CUD compared with placebo. Registration: clinicaltrials.gov (NCT02559167).
Collapse
Affiliation(s)
| | - Violaine Mongeau-Pérusse
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Elie Rizkallah
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Amani Mahroug
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Hamzah Bakouni
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Florence Morissette
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Suzanne Brissette
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Family and Emergency Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Bruneau
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Family and Emergency Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Simon Dubreucq
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Didier Jutras-Aswad
- Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
7
|
Durydivka O, Palivec P, Gazdarica M, Mackie K, Blahos J, Kuchar M. Hexahydrocannabinol (HHC) and Δ 9-tetrahydrocannabinol (Δ 9-THC) driven activation of cannabinoid receptor 1 results in biased intracellular signaling. Sci Rep 2024; 14:9181. [PMID: 38649680 PMCID: PMC11035541 DOI: 10.1038/s41598-024-58845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
The Cannabis sativa plant has been used for centuries as a recreational drug and more recently in the treatment of patients with neurological or psychiatric disorders. In many instances, treatment goals include relief from posttraumatic disorders, anxiety, or to support treatment of chronic pain. Ligands acting on cannabinoid receptor 1 (CB1R) are also potential targets for the treatment of other health conditions. Using an evidence-based approach, pharmacological investigation of CB1R agonists is timely, with the aim to provide chronically ill patients relief using well-defined and characterized compounds from cannabis. Hexahydrocannabinol (HHC), currently available over the counter in many countries to adults and even children, is of great interests to policy makers, legal administrators, and healthcare regulators, as well as pharmacologists. Herein, we studied the pharmacodynamics of HHC epimers, which activate CB1R. We compared their key CB1R-mediated signaling pathway activities and compared them to the pathways activated by Δ9-tetrahydrocannabinol (Δ9-THC). We provide evidence that activation of CB1R by HHC ligands is only broadly comparable to those mediated by Δ9-THC, and that both HHC epimers have unique properties. Together with the greater chemical stability of HHC compared to Δ9-THC, these molecules have a potential to become a part of modern medicine.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technicka 3, Prague, Czech Republic.
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technicka 3, Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, 1101 E. 10th St., Bloomington, IN, 47405, USA
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technicka 3, Prague, Czech Republic.
- Psychedelic Research Center, National Institute of Mental Health, Topolová 748, Klecany, Czech Republic.
| |
Collapse
|
8
|
Ryalls B, Patel M, Sparkes E, Banister SD, Finlay DB, Glass M. Investigating selectivity and bias for G protein subtypes and β-arrestins by synthetic cannabinoid receptor agonists at the cannabinoid CB 1 receptor. Biochem Pharmacol 2024; 222:116052. [PMID: 38354957 DOI: 10.1016/j.bcp.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and β-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and β-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of β-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and β-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards β-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.
Collapse
Affiliation(s)
- Beth Ryalls
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Monica Patel
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Eric Sparkes
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Samuel D Banister
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David B Finlay
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand
| | - Michelle Glass
- Department of Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand. PO Box 56, Dunedin 9054, New Zealand; Institute of Environmental Science and Research Limited (ESR) Kenepuru Science Centre: 34 Kenepuru Drive, Kenepuru, Porirua 5022, New Zealand.
| |
Collapse
|
9
|
Thomas A, Lobingier BT, Schultz C, Laguerre A. Cannabinoid Receptor Signaling is Dependent on Sub-Cellular Location. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586146. [PMID: 38562854 PMCID: PMC10983902 DOI: 10.1101/2024.03.21.586146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
G protein-coupled receptors (GPCRs) are membrane bound signaling molecules that regulate many aspects of human physiology. Recent advances have demonstrated that GPCR signaling can occur both at the cell surface and internal cellular membranes. Our findings suggest that cannabinoid receptor 1 (CB1) signaling is highly dependent on its subcellular location. We find that intracellular CB1 receptors predominantly couple to Gαi while plasma membrane receptors couple to Gαs. Here we show subcellular location of CB1, and its signaling, is contingent on the choice of promoters and receptor tags. Heterologous expression with a strong promoter or N-terminal tag resulted in CB1 predominantly localizing to the plasma membrane and signaling through Gαs. Conversely, CB1 driven by low expressing promoters and lacking N-terminal genetic tags largely localized to internal membranes and signals via Gαi. Lastly, we demonstrate that genetically encodable non-canonical amino acids (ncAA) offer a solution to the problem of non-native N-terminal tags disrupting CB1 signaling. We identified sites in CB1R and CB2R which can be tagged with fluorophores without disrupting CB signaling or trafficking using (trans-cyclooctene attached to lysine (TCO*A)) and copper-free click chemistry to attach fluorophores in live cells. Together, our data demonstrate the origin of location bias in cannabinoid signaling which can be experimentally controlled and tracked in living cells through promoters and novel CBR tagging strategies.
Collapse
Affiliation(s)
- Alix Thomas
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| | - Braden T Lobingier
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| | - Carsten Schultz
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| | - Aurélien Laguerre
- Oregon Health and Science University, Department of Chemical Physiology and Biochemistry, Portland, OR, 97239, USA
| |
Collapse
|
10
|
Chandy M, Nishiga M, Wei TT, Hamburg NM, Nadeau K, Wu JC. Adverse Impact of Cannabis on Human Health. Annu Rev Med 2024; 75:353-367. [PMID: 37582489 PMCID: PMC10947506 DOI: 10.1146/annurev-med-052422-020627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cannabis, the most commonly used recreational drug, is illicit in many areas of the world. With increasing decriminalization and legalization, cannabis use is increasing in the United States and other countries. The adverse effects of cannabis are unclear because its status as a Schedule 1 drug in the United States restricts research. Despite a paucity of data, cannabis is commonly perceived as a benign or even beneficial drug. However, recent studies show that cannabis has adverse cardiovascular and pulmonary effects and is linked with malignancy. Moreover, case reports have shown an association between cannabis use and neuropsychiatric disorders. With growing availability, cannabis misuse by minors has led to increasing incidences of overdose and toxicity. Though difficult to detect, cannabis intoxication may be linked to impaired driving and motor vehicle accidents. Overall, cannabis use is on the rise, and adverse effects are becoming apparent in clinical data sets.
Collapse
Affiliation(s)
- Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA;
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Western University, London, Ontario, Canada;
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA;
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tzu-Tang Wei
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA;
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Naomi M Hamburg
- Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine and Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kari Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA;
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Nocheva H, Stoynev N, Vodenicharov V, Krastev D, Krastev N, Mileva M. Cannabinoid and Serotonergic Systems: Unraveling the Pathogenetic Mechanisms of Stress-Induced Analgesia. Biomedicines 2024; 12:235. [PMID: 38275406 PMCID: PMC10813752 DOI: 10.3390/biomedicines12010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
The perception of "stress" triggers many physiological and behavioral responses, collectively called the stress response. Such a complex process allows for coping with stress and also triggers severe pathology. Because of the multidirectional effect of stress on the body, multiple systems participate in its pathogenesis, with the endogenous cannabinoid and the serotoninergic ones among them. These two systems also take part in the pain perception decrease, known as stress-induced analgesia (SIA), which can then be taken as an indirect indicator of the stress response. The aim of our study was to study the changes in cold SIA (c-SIA) resulting from the exogenous activation of cannabinoid receptor type 1 (CB1) and 5-hydroxytryptamine (5-HT, serotonin) receptor type 1A (5-HT1A). Various combinations of agonists and/or antagonists of CB1 and 5-HT1A, before or after 1 h of cold exposure, were applied, since we presumed that the exogenous activation of the receptors before the cold exposure would influence the pathogenesis of the stress response, while their activation after the stressful trigger would influence the later development. Our results show that the serotonergic system "maintained" c-SIA in the pre-stress treatment, while the cannabinoids' modulative effect was more prominent in the post-stress treatment. Here, we show the interactions of the two systems in the stress response. The interpretation and understanding of the mechanisms of interaction between CB1 and 5-HT1A may provide information for the prevention and control of adverse stress effects, as well as suggest interesting directions for the development of targeted interventions for the control of specific body responses.
Collapse
Affiliation(s)
- Hristina Nocheva
- Department of Physiology and Pathophysiology, Medical Faculty, Medical University, 2 Zdrave Str., 1431 Sofia, Bulgaria; (H.N.); (N.S.)
| | - Nikolay Stoynev
- Department of Physiology and Pathophysiology, Medical Faculty, Medical University, 2 Zdrave Str., 1431 Sofia, Bulgaria; (H.N.); (N.S.)
| | - Vlayko Vodenicharov
- Department of Epidemiology and Hygiene, Medical Faculty, Medical University, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Dimo Krastev
- Department of Anatomy and Physiology, South-West University “Neofit Rilski”, Blagoevgrad, 66, Ivan Mihaylov Str., 2700 Blagoevgrad, Bulgaria;
| | - Nikolay Krastev
- Department of Anatomy, Faculty of Medicine, Medical University, 2, Zdrave Str., 1431 Sofia, Bulgaria;
| | - Milka Mileva
- Institute of Microbiology “Stephan Angeloff”, Bulgarian Academy of Sciences, 26, Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
12
|
Ye IB, Hines GL. Marijuana and Vascular Disease: A Review. Cardiol Rev 2024:00045415-990000000-00185. [PMID: 38189379 DOI: 10.1097/crd.0000000000000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Marijuana use is common and increasing due to decriminalization, legalization, and expansion of medical use. As a result, the proportion of vascular patients with marijuana is also expected to increase, raising questions if cannabis use affects the incidence and outcomes of vascular disease. Active ingredients of cannabis have been shown to interact with receptors found on vascular endothelium, promoting oxidative stress and endothelial dysfunction. However, current clinical studies have yet to demonstrate a relationship between marijuana use and atherosclerosis. Nonetheless, cannabis arteritis is a rare condition where cannabis is hypothesized to induce vascular inflammation. Future research with high-quality studies is needed to clarify the impact of marijuana use on vascular diseases.
Collapse
Affiliation(s)
- Ivan B Ye
- From the Division of Vascular Surgery, NYU Langone Hospital-Long Island, Mineola, NY
| | | |
Collapse
|
13
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Steinmüller SAM, Fender J, Deventer MH, Tutov A, Lorenz K, Stove CP, Hislop JN, Decker M. Visible-Light Photoswitchable Benzimidazole Azo-Arenes as β-Arrestin2-Biased Selective Cannabinoid 2 Receptor Agonists. Angew Chem Int Ed Engl 2023; 62:e202306176. [PMID: 37269130 DOI: 10.1002/anie.202306176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
The cannabinoid 2 receptor (CB2 R) has high therapeutic potential for multiple pathogenic processes, such as neuroinflammation. Pathway-selective ligands are needed to overcome the lack of clinical success and to elucidate correlations between pathways and their respective therapeutic effects. Herein, we report the design and synthesis of a photoswitchable scaffold based on the privileged structure of benzimidazole and its application as a functionally selective CB2 R "efficacy-switch". Benzimidazole azo-arenes offer huge potential for the broad extension of photopharmacology to a wide range of optically addressable biological targets. We used this scaffold to develop compound 10 d, a "trans-on" agonist, which serves as a molecular probe to study the β-arrestin2 (βarr2) pathway at CB2 R. βΑrr2 bias was observed in CB2 R internalization and βarr2 recruitment, while no activation occurred when looking at Gα16 or mini-Gαi . Overall, compound 10 d is the first light-dependent functionally selective agonist to investigate the complex mechanisms of CB2 R-βarr2 dependent endocytosis.
Collapse
Affiliation(s)
- Sophie A M Steinmüller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julia Fender
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Anna Tutov
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
15
|
Bouma J, Broekhuis JD, van der Horst C, Kumar P, Ligresti A, van der Stelt M, Heitman LH. Dual allosteric and orthosteric pharmacology of synthetic analog cannabidiol-dimethylheptyl, but not cannabidiol, on the cannabinoid CB 2 receptor. Biochem Pharmacol 2023; 218:115924. [PMID: 37972874 DOI: 10.1016/j.bcp.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.
Collapse
Affiliation(s)
- Jara Bouma
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Jeremy D Broekhuis
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Cas van der Horst
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University & Oncode Institute, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands.
| |
Collapse
|
16
|
Papadogkonaki S, Spyridakos D, Lapokonstantaki E, Chaniotakis N, Makriyannis A, Malamas MS, Thermos K. Investigating the Effects of Exogenous and Endogenous 2-Arachidonoylglycerol on Retinal CB1 Cannabinoid Receptors and Reactive Microglia in Naive and Diseased Retina. Int J Mol Sci 2023; 24:15689. [PMID: 37958673 PMCID: PMC10650178 DOI: 10.3390/ijms242115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.
Collapse
Affiliation(s)
- Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | | | - Nikos Chaniotakis
- Department of Chemistry, University of Crete, Heraklion, 71003 Crete, Greece; (E.L.); (N.C.)
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| |
Collapse
|
17
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
18
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
19
|
Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog Lipid Res 2023; 91:101239. [PMID: 37385352 DOI: 10.1016/j.plipres.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Fiorenza
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy
| |
Collapse
|
20
|
Bányai B, Répás C, Miklós Z, Johnsen J, Horváth EM, Benkő R. Delta 9-tetrahydrocannabinol conserves cardiovascular functions in a rat model of endotoxemia: Involvement of endothelial molecular mechanisms and oxidative-nitrative stress. PLoS One 2023; 18:e0287168. [PMID: 37327228 PMCID: PMC10275432 DOI: 10.1371/journal.pone.0287168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
In endotoxemic models, the inflammatory parameters are altered to a favorable direction as a response to activation of cannabinoid receptors 1 and 2. The phytocannabinoid Δ9-tetrahydrocannabinol (THC) is an agonist/partial antagonist of both cannabinoid receptors. This report targets the effects of THC on the cardiovascular system of endotoxemic rats. In our 24-hour endotoxemic rat model (E. coli derived lipopolysaccharide, LPS i.v. 5mg/kg) with THC treatment (LPS+THC 10 mg/kg i.p.), we investigated cardiac function by echocariography and endothelium-dependent relaxation of the thoracic aorta by isometric force measurement compared to vehicle controls. To evaluate the molecular mechanism, we measured endothelial NOS and COX-2 density by immunohistochemistry; and determined the levels of cGMP, the oxidative stress marker 4-hydroxynonenal, the nitrative stress marker 3-nitrotyrosine, and poly(ADP-ribose) polymers. A decrease in end-systolic and end-diastolic ventricular volumes in the LPS group was observed, which was absent in LPS+THC animals. Endothelium-dependent relaxation was worsened by LPS but not in the LPS+THC group. LPS administration decreased the abundance of cannabinoid receptors. Oxidative-nitrative stress markers showed an increment, and cGMP, eNOS staining showed a decrement in response to LPS. THC only decreased the oxidative-nitrative stress but had no effect on cGMP and eNOS density. COX-2 staining was reduced by THC. We hypothesize that the reduced diastolic filling in the LPS group is a consequence of vascular dysfunction, preventable by THC. The mechanism of action of THC is not based on its local effect on aortic NO homeostasis. The reduced oxidative-nitrative stress and the COX-2 suggest the activation of an anti-inflammatory pathway.
Collapse
Affiliation(s)
- Bálint Bányai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Csaba Répás
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- Albert Schweitzer Hospital, Hatvan, Hungary
- Hungarian National Ambulance Service, Salgótarján, Hungary
| | - Zsuzsanna Miklós
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Johnny Johnsen
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Eszter M. Horváth
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Persia D, Mangiavacchi F, Marcotullio MC, Rosati O. Cannabinoids as multifaceted compounds. PHYTOCHEMISTRY 2023; 212:113718. [PMID: 37196772 DOI: 10.1016/j.phytochem.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Since ancient times, Cannabis and its preparations have found various applications such as for medical, recreational and industrial purposes. Subsequently the 1930s, legislation in many countries has restricted its use due to its psychotropic properties. More recently, the discovery of endocannabinoid system, including new receptors, ligands, and mediators, its role in maintaining the homeostasis of the human body and the possible implication in various physiological and pathophysiological processes has also been understood. Based on this evidence, researchers were able to develop new therapeutic targets for the treatment of various pathological disorders. For this purpose, Cannabis and cannabinoids were subjected for the evaluation of their pharmacological activities. The renewed interest in the medical use of cannabis for its potential therapeutic application has prompted legislators to take action to regulate the safe use of cannabis and products containing cannabinoids. However, each country has an enormous heterogeneity in the regulation of laws. Here, we are pleased to show a general and prevailing overview of the findings regarding cannabinoids and the multiple research fields such as chemistry, phytochemistry, pharmacology and analytics in which they are involved.
Collapse
Affiliation(s)
- Diana Persia
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Francesca Mangiavacchi
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy; Current Address: Department of Chemistry 'Ugo Schiff', Via Della Lastruccia, 16 - Università Degli Studi di Firenze, 50019, Sesto Fiorentino, Italy
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Ornelio Rosati
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy.
| |
Collapse
|
22
|
Ghosh A, Peyot ML, Leung YH, Ravenelle F, Madiraju SRM, Prentki M. A peripherally restricted cannabinoid-1 receptor inverse agonist promotes insulin secretion and protects from cytokine toxicity in human pancreatic islets. Eur J Pharmacol 2023; 944:175589. [PMID: 36773683 DOI: 10.1016/j.ejphar.2023.175589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
The cannabinoid receptor CB1R is expressed in pancreatic β-cells; CB1R increased activity is associated with diabetes, obesity, cardiovascular disorders as well as decreased insulin secretion and insulin resistance. CB1R was shown to signal through G-protein coupling as well as β-arrestins in β-cells. Peripherally restricted CB1R inverse agonists purportedly have beneficial effects on insulin secretion in β-cells, without the unwanted effects in the central nervous system. Here we show that a peripherally restricted CB1R inverse agonist, MRI-1891, augments glucose stimulated insulin secretion in isolated human pancreatic islets and mouse islets. The insulin secretion enhancing effect of MRI-1891 is comparable to exendin-4, an analogue of the glucagon like peptide-1 (GLP1). Moreover, MRI-1891 treatment protects isolated human islet cells against cytokine-induced apoptosis, similar to exendin-4. Thus, MRI-1891, a new class of CB1R inverse agonist, may be considered a potential therapeutic for both type 1 and type 2 diabetes because of its ability to protect pancreatic β-cells from cytokine toxicity and to promote insulin secretion.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - François Ravenelle
- Inversago Pharma Inc., 1100 Rene-Levesque West, Suite 1110, Montreal, QC, H3B 4N4, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montreal Diabetes Research Center, CRCHUM, 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
23
|
Piscura MK, Sepulveda DE, Maulik M, Guindon J, Henderson-Redmond AN, Morgan DJ. Cannabinoid Tolerance in S426A/S430A x β-Arrestin 2 Knockout Double-Mutant Mice. J Pharmacol Exp Ther 2023; 385:17-34. [PMID: 36669876 PMCID: PMC10029824 DOI: 10.1124/jpet.122.001367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Tolerance to compounds that target G protein-coupled receptors (GPCRs), such as the cannabinoid type-1 receptor (CB1R), is in part facilitated by receptor desensitization. Processes that mediate CB1R desensitization include phosphorylation of CB1R residues S426 and S430 by a GPCR kinase and subsequent recruitment of the β-arrestin2 scaffolding protein. Tolerance to cannabinoid drugs is reduced in S426A/S430A mutant mice and β-arrestin2 knockout (KO) mice according to previous work in vivo. However, the presence of additional phosphorylatable residues on the CB1R C-terminus made it unclear as to whether recruitment to S426 and S430 accounted for all desensitization and tolerance by β-arrestin2. Therefore, we assessed acute response and tolerance to the cannabinoids delta-9-tetrahydrocannabinol (Δ9-THC) and CP55,940 in S426A/S430A x β-arrestin2 KO double-mutant mice. We observed both delayed tolerance and increased sensitivity to the antinociceptive and hypothermic effects of CP55,940 in male S426A/S430A single- and double-mutant mice compared with wild-type littermates, but not with Δ9-THC. Female S426A/S430A single- and double-mutant mice were more sensitive to acute antinociception (CP55,940 and Δ9-THC) and hypothermia (CP55,940 only) exclusively after chronic dosing and did not differ in the development of tolerance. These results indicate that phosphorylation of S426 and S430 are likely responsible for β-arrestin2-mediated desensitization as double-mutant mice did not differ from the S426A/S430A single-mutant model in respect to cannabinoid tolerance and sensitivity. We also found antinociceptive and hypothermic effects from cannabinoid treatment demonstrated by sex-, agonist-, and duration-dependent features. SIGNIFICANCE STATEMENT: A better understanding of the molecular mechanisms involved in tolerance will improve the therapeutic potential of cannabinoid drugs. This study determined that further deletion of β-arrestin2 does not enhance the delay in cannabinoid tolerance observed in CB1R S426A/S430A mutant mice.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia (M.K.P., M.M., A.N.H.-R., D.J.M.); Department of Pharmacology (D.E.S.) and Graduate Program in Anatomy (M.K.P.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology and Neuroscience (J.G.) and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Diana E Sepulveda
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia (M.K.P., M.M., A.N.H.-R., D.J.M.); Department of Pharmacology (D.E.S.) and Graduate Program in Anatomy (M.K.P.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology and Neuroscience (J.G.) and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Malabika Maulik
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia (M.K.P., M.M., A.N.H.-R., D.J.M.); Department of Pharmacology (D.E.S.) and Graduate Program in Anatomy (M.K.P.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology and Neuroscience (J.G.) and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Josée Guindon
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia (M.K.P., M.M., A.N.H.-R., D.J.M.); Department of Pharmacology (D.E.S.) and Graduate Program in Anatomy (M.K.P.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology and Neuroscience (J.G.) and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Angela N Henderson-Redmond
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia (M.K.P., M.M., A.N.H.-R., D.J.M.); Department of Pharmacology (D.E.S.) and Graduate Program in Anatomy (M.K.P.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology and Neuroscience (J.G.) and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, West Virginia (M.K.P., M.M., A.N.H.-R., D.J.M.); Department of Pharmacology (D.E.S.) and Graduate Program in Anatomy (M.K.P.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology and Neuroscience (J.G.) and Center of Excellence for Translational Neuroscience and Therapeutics (J.G.), Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
24
|
Rokeby ACE, Natale BV, Natale DRC. Cannabinoids and the placenta: Receptors, signaling and outcomes. Placenta 2023; 135:51-61. [PMID: 36965349 DOI: 10.1016/j.placenta.2023.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Cannabis use during pregnancy is increasing. The improvement of pregnancy-related symptoms including morning sickness and management of mood and stress are among the most reported reasons for its use. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant cannabinoids found within the cannabis flower. The concentration of these components has drastically increased in the past 20 years. Additionally, many edibles contain only one cannabinoid and are marketed to achieve a specific goal, meaning there are an increasing number of pregnancies that are exposed to isolated cannabinoids. Both Δ9-THC and CBD cross the placenta and can impact the fetus directly, but the receptors through which cannabinoids act are also expressed throughout the placenta, suggesting that the effects of in-utero cannabinoid exposure may include indirect effects from the placenta. In-utero cannabis research focuses on short and long-term fetal health and development; however, these studies include little to no placenta analysis. Prenatal cannabinoid exposure is linked to small for gestational age and fetal growth-restricted babies. Compromised placental development is also associated with fetal growth restriction and the few studies (clinical and animal models) that included placental analysis, identify changes in placental vasculature and function in these cannabinoid-exposed pregnancies. In vitro studies further support cannabinoid impact on cell function in the different populations that comprise the placenta. In this article, we aim to summarize how phytocannabinoids can impact placental development and function. Specifically, the cannabinoids and their actions at the different receptors are described, with receptor localization throughout the human and murine placenta discussed. Findings from studies that included placental analysis and how cannabinoid signaling may modulate critical developmental processing including cell proliferation, angiogenesis and migration are described. Considering the current research, prenatal cannabinoid exposure may significantly impact placental development, and, as such, identifying windows of placental vulnerability for each cannabinoid will be critical to elucidate the etiology of fetal outcome studies.
Collapse
Affiliation(s)
- Abbey C E Rokeby
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bryony V Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada
| | - David R C Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
25
|
Iden JA, Raphael-Mizrahi B, Awida Z, Naim A, Zyc D, Liron T, Kasher M, Livshits G, Vered M, Gabet Y. The Anti-Tumorigenic Role of Cannabinoid Receptor 2 in Colon Cancer: A Study in Mice and Humans. Int J Mol Sci 2023; 24:ijms24044060. [PMID: 36835468 PMCID: PMC9961974 DOI: 10.3390/ijms24044060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
The endocannabinoid system, particularly cannabinoid receptor 2 (CB2 in mice and CNR2 in humans), has controversial pathophysiological implications in colon cancer. Here, we investigate the role of CB2 in potentiating the immune response in colon cancer in mice and determine the influence of CNR2 variants in humans. Comparing wild-type (WT) mice to CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in aging mice and subsequently used the AOM/DSS model of colitis-associated colorectal cancer and a model for hereditary colon cancer (ApcMin/+). Additionally, we analyzed genomic data in a large human population to determine the relationship between CNR2 variants and colon cancer incidence. Aging CB2-/- mice exhibited a higher incidence of spontaneous precancerous lesions in the colon compared to WT controls. The AOM/DSS-treated CB2-/- and ApcMin/+CB2-/- mice experienced aggravated tumorigenesis and enhanced splenic populations of immunosuppressive myeloid-derived suppressor cells along with abated anti-tumor CD8+ T cells. Importantly, corroborative genomic data reveal a significant association between non-synonymous variants of CNR2 and the incidence of colon cancer in humans. Taken together, the results suggest that endogenous CB2 activation suppresses colon tumorigenesis by shifting the balance towards anti-tumor immune cells in mice and thus portray the prognostic value of CNR2 variants for colon cancer patients.
Collapse
Affiliation(s)
- Jennifer Ana Iden
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bitya Raphael-Mizrahi
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zamzam Awida
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aaron Naim
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Zyc
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Liron
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Melody Kasher
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
26
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
27
|
Roque-Bravo R, Silva RS, Malheiro RF, Carmo H, Carvalho F, da Silva DD, Silva JP. Synthetic Cannabinoids: A Pharmacological and Toxicological Overview. Annu Rev Pharmacol Toxicol 2023; 63:187-209. [PMID: 35914767 DOI: 10.1146/annurev-pharmtox-031122-113758] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.
Collapse
Affiliation(s)
- Rita Roque-Bravo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rafaela Sofia Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Rui F Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| | - Diana Dias da Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; , .,Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, IUCS-CESPU, Gandra, Portugal
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, and UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; ,
| |
Collapse
|
28
|
Marini P, Cowie P, Ayar A, Bewick GS, Barrow J, Pertwee RG, MacKenzie A, Tucci P. M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter. Int J Mol Sci 2023; 24:ijms24021308. [PMID: 36674826 PMCID: PMC9867084 DOI: 10.3390/ijms24021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Philip Cowie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - John Barrow
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
29
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Bouma J, Soethoudt M, van Gils N, Xia L, van der Stelt M, Heitman LH. Cellular Assay to Study β-Arrestin Recruitment by the Cannabinoid Receptors 1 and 2. Methods Mol Biol 2023; 2576:189-199. [PMID: 36152187 DOI: 10.1007/978-1-0716-2728-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) are G protein-coupled receptors (GPCRs) that activate a variety of pathways upon activation by (partial) agonists including the G protein pathway and the recruitment of β-arrestins. Differences in the activation level of these pathways lead to biased signaling. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CB1R and CB2R using the PathHunter® assay. This is a cellular assay that uses a β-galactosidase complementation system which has a chemiluminescent read-out and can be performed in 384-well plates. We have successfully used this assay to characterize a set of reference ligands (both agonists, antagonists, and an inverse agonist) on human CB1R and CB2R, of which some examples will be presented here.
Collapse
Affiliation(s)
- Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marjolein Soethoudt
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Noortje van Gils
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lizi Xia
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
- Oncode Institute, Leiden, the Netherlands.
| |
Collapse
|
31
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
32
|
Basile MS, Mazzon E. The Role of Cannabinoid Type 2 Receptors in Parkinson's Disease. Biomedicines 2022; 10:biomedicines10112986. [PMID: 36428554 PMCID: PMC9687889 DOI: 10.3390/biomedicines10112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease and currently represents a clear unmet medical need. Therefore, novel preventive and therapeutic strategies are needed. Cannabinoid type 2 (CB2) receptors, one of the components of the endocannabinoid system, can regulate neuroinflammation in PD. Here, we review the current preclinical and clinical studies investigating the CB2 receptors in PD with the aim to clarify if these receptors could have a role in PD. Preclinical data show that CB2 receptors could have a neuroprotective action in PD and that the therapeutic targeting of CB2 receptors could be promising. Indeed, it has been shown that different CB2 receptor-selective agonists exert protective effects in different PD models. Moreover, the alterations in the expression of CB2 receptors observed in brain tissues from PD animal models and PD patients suggest the potential value of CB2 receptors as possible novel biomarkers for PD. However, to date, there is no direct evidence of the role of CB2 receptors in PD. Further studies are strongly needed in order to fully clarify the role of CB2 receptors in PD and thus pave the way to novel possible diagnostic and therapeutic opportunities for PD.
Collapse
Affiliation(s)
- Maria Sofia Basile
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
33
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
34
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
35
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
36
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
37
|
Niknam Y, Iyer P, Campbell MA, Moran F, Sandy MS, Zeise L. Animal evidence considered in determination of cannabis smoke and Δ 9 -tetrahydrocannabinol as causing reproductive toxicity (developmental endpoint): Part III. Proposed neurodevelopmental mechanisms of action. Birth Defects Res 2022; 114:1169-1185. [PMID: 36125082 DOI: 10.1002/bdr2.2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022]
Abstract
This review summarizes the most common potential pathways of neurodevelopmental toxicity due to perinatal exposure to Δ9 -tetrahydrocannabinol (Δ9 -THC) that lead to behavioral and other adverse outcomes (AOs). This is Part III in a set of reviews highlighting the animal-derived data considered by California's Developmental and Reproductive Toxicant Identification Committee (DARTIC) in 2019. The Hazard Identification Document (HID) provided to the DARTIC included a summary of human, whole animal, and mechanistic data on the neurodevelopmental toxicity of cannabis smoke and Δ9 -THC. The literature search for mechanistic data has been updated through 2020. We focus on mechanistic pathways relating to behavioral and other neurodevelopmental outcomes of perinatal exposure to Δ9 -THC. The endocannabinoid system (EC system) plays a crucial role in many processes involved in neurodevelopment and exposure to Δ9 -THC can alter these processes. Whole animal studies report changes in cognitive ability, behavior, and motor function after prenatal exposure to Δ9 -THC. Findings from mechanistic studies add to this evidence and further provide information regarding the pathways leading to these outcomes. Neuromechanistic studies can bridge the gaps between molecular initiating events and apical neurodevelopmental endpoints caused by a chemical. They offer insight into potential alterations in the same pathways by other chemicals that can also result in AOs. Studies of cannabinoid receptor agonist-induced molecular alterations and provide deep biological plausibility at the mechanistic level for the cognitive, behavioral, and motor impairments observed in animal studies after perinatal exposure to Δ9 -THC.
Collapse
Affiliation(s)
- Yassaman Niknam
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Poorni Iyer
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Marlissa A Campbell
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| |
Collapse
|
38
|
TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23:ijms231710016. [PMID: 36077412 PMCID: PMC9456209 DOI: 10.3390/ijms231710016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.
Collapse
|
39
|
Correia LC, Ferreira JV, de Lima HB, Silva GM, da Silva CHTP, de Molfetta FA, Hage-Melim LIS. Pharmacophore-based virtual screening from phytocannabinoids as antagonist r-CB1. J Mol Model 2022; 28:258. [PMID: 35978141 DOI: 10.1007/s00894-022-05219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function. The endocannabinoid system is related to obesity by increasing orexigenic signals and reducing satiety signals. Cannabis sativa is a medicinal plant of polypharmaceutical potential that has been widely studied for various medicinal purposes. The in silico evaluation of their natural cannabinoids (also called phytocannabinoids) for anti-obesity purpose stems from the existence of synthetic cannabinoid compounds that have already presented this result, but which did not guarantee patient safety. In order to find new molecules from C. sativa phytocannabinoids, with the potential to interact peripherally with the pharmacological target cannabinoid receptor 1, a pharmacophore-based virtual screening was performed, including the evaluation of physicochemical, pharmacokinetic, toxicological predictions and molecular docking. The results obtained from the ZINC12 database pointed to Zinc 69 (ZINC33053402) and Zinc 70 (ZINC19084698) molecules as promising anti-obesity agents. Molecular dynamics (MD) studies disclose that both complexes were stable by analyzing the RMSD (root mean square deviation) values, and the binding free energy values demonstrate that the selected structures can interact and inhibit their catalytic activity.
Collapse
Affiliation(s)
- Lenir C Correia
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Jaderson V Ferreira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Henrique B de Lima
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil
| | - Guilherme M Silva
- Computational Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry. School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Chemistry. School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fábio A de Molfetta
- Laboratório de Modelagem Molecular, Federal University of Pará, Belém-PA, Brazil
| | - Lorane I S Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Rod. JK, Km 02, Macapá, Brazil.
| |
Collapse
|
40
|
Tambat N, Mulani SK, Ahmad A, Shaikh SB, Ahmed K. Pyrazine Derivatives—Versatile Scaffold. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
43
|
Augustin SM, Lovinger DM. Synaptic changes induced by cannabinoid drugs and cannabis use disorder. Neurobiol Dis 2022; 167:105670. [DOI: 10.1016/j.nbd.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022] Open
|
44
|
Wei TT, Chandy M, Nishiga M, Zhang A, Kumar KK, Thomas D, Manhas A, Rhee S, Justesen JM, Chen IY, Wo HT, Khanamiri S, Yang JY, Seidl FJ, Burns NZ, Liu C, Sayed N, Shie JJ, Yeh CF, Yang KC, Lau E, Lynch KL, Rivas M, Kobilka BK, Wu JC. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell 2022; 185:1676-1693.e23. [PMID: 35489334 PMCID: PMC9400797 DOI: 10.1016/j.cell.2022.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.
Collapse
Affiliation(s)
- Tzu-Tang Wei
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, Taiwan
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Amit Manhas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA
| | - Johanne Marie Justesen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Hung-Ta Wo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Saereh Khanamiri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Johnson Y Yang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | | | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Fan Yeh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manuel Rivas
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
45
|
Scipioni L, Ciaramellano F, Carnicelli V, Leuti A, Lizzi AR, De Dominicis N, Oddi S, Maccarrone M. Microglial Endocannabinoid Signalling in AD. Cells 2022; 11:1237. [PMID: 35406803 PMCID: PMC8997504 DOI: 10.3390/cells11071237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation in Alzheimer's disease (AD) has been recently identified as a major contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. Here, we review the current literature regarding the involvement of this signalling system in modulating microglial phenotypes and activity in the context of homeostasis and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| | - Francesca Ciaramellano
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Alessandro Leuti
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Noemi De Dominicis
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| |
Collapse
|
46
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
47
|
Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022; 19:23. [PMID: 35307032 PMCID: PMC8935726 DOI: 10.1186/s12987-022-00322-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Adenylyl cyclases (ADCYs), by generating second messenger cAMP, play important roles in various cellular processes. Their expression, regulation and functions in the CNS, however, remain largely unknown. In this review, we first introduce the classification and structure of ADCYs, followed by a discussion of the regulation of mammalian ADCYs (ADCY1-10). Next, the expression and function of each mammalian ADCY isoform are summarized in a region/cell-specific manner. Furthermore, the effects of GPCR-ADCY signaling on blood-brain barrier (BBB) integrity are reviewed. Last, current challenges and future directions are discussed. We aim to provide a succinct review on ADCYs to foster new research in the future.
Collapse
Affiliation(s)
- Karan Devasani
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
48
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
49
|
Sparkes E, Cairns EA, Kevin RC, Lai F, Grafinger KE, Chen S, Deventer MH, Ellison R, Boyd R, Martin LJ, McGregor IS, Gerona RR, Hibbs DE, Auwärter V, Glass M, Stove C, Banister SD. Structure-activity relationships of valine, tert-leucine, and phenylalanine amino acid-derived synthetic cannabinoid receptor agonists related to ADB-BUTINACA, APP-BUTINACA, and ADB-P7AICA. RSC Med Chem 2022; 13:156-174. [PMID: 35308023 PMCID: PMC8864554 DOI: 10.1039/d1md00242b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/14/2021] [Indexed: 11/01/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain one the most prevalent classes of new psychoactive substances (NPS) worldwide, and examples are generally poorly characterised at the time of first detection. We have synthesised a systematic library of amino acid-derived indole-, indazole-, and 7-azaindole-3-carboxamides related to recently detected drugs ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA, and characterised these ligands for in vitro binding and agonist activity at cannabinoid receptor subtypes 1 and 2 (CB1 and CB2), and in vivo cannabimimetic activity. All compounds showed high affinity for CB1 (K i 0.299-538 nM) and most at CB2 (K i = 0.912-2190 nM), and most functioned as high efficacy agonists of CB1 and CB2 in a fluorescence-based membrane potential assay and a βarr2 recruitment assay (NanoBiT®), with some compounds being partial agonists in the NanoBiT® assay. Key structure-activity relationships (SARs) were identified for CB1/CB2 binding and CB1/CB2 functional activities; (1) for a given core, affinities and potencies for tert-leucinamides (ADB-) > valinamides (AB-) ≫ phenylalaninamides (APP-); (2) for a given amino acid side-chain, affinities and potencies for indazoles > indoles ≫ 7-azaindoles. Radiobiotelemetric evaluation of ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA in mice demonstrated that ADB-BUTINACA and ADB-P7AICA were cannabimimetic at 0.1 mg kg-1 and 10 mg kg-1 doses, respectively, as measured by pronounced decreases in core body temperature. APP-BUTINACA failed to elicit any hypothermic response up to the maximally tested 10 mg kg-1 dose, yielding an in vivo potency ranking of ADB-BUTINACA > ADB-P7AICA > APP-BUTINACA.
Collapse
Affiliation(s)
- Eric Sparkes
- School of Chemistry, The University of Sydney NSW 2006 Australia
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79104 Freiburg Germany
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago Dunedin 9016 New Zealand
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco CA 94143 USA
| | - Rochelle Boyd
- School of Chemistry, The University of Sydney NSW 2006 Australia
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
| | - Lewis J Martin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco CA 94143 USA
| | - David E Hibbs
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79104 Freiburg Germany
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago Dunedin 9016 New Zealand
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Samuel D Banister
- School of Chemistry, The University of Sydney NSW 2006 Australia
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
| |
Collapse
|
50
|
Young AP, Denovan-Wright EM. The Dynamic Role of Microglia and the Endocannabinoid System in Neuroinflammation. Front Pharmacol 2022; 12:806417. [PMID: 35185547 PMCID: PMC8854262 DOI: 10.3389/fphar.2021.806417] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the brain, can take on a range of pro- or anti-inflammatory phenotypes to maintain homeostasis. However, the sustained activation of pro-inflammatory microglia can lead to a state of chronic neuroinflammation characterized by high concentrations of neurotoxic soluble factors throughout the brain. In healthy brains, the inflammatory processes cease and microglia transition to an anti-inflammatory phenotype, but failure to halt the pro-inflammatory processes is a characteristic of many neurological disorders. The endocannabinoid system has been identified as a promising therapeutic target for chronic neuroinflammation as there is evidence that synthetic and endogenously produced cannabinoids temper the pro-inflammatory response of microglia and may encourage a switch to an anti-inflammatory phenotype. Activation of cannabinoid type 2 (CB2) receptors has been proposed as the mechanism of action responsible for these effects. The abundance of components of the endocannabinoid system in microglia also change dynamically in response to several brain pathologies. This can impact the ability of microglia to synthesize and degrade endocannabinoids or react to endogenous and exogenous cannabinoids. Cannabinoid receptors also participate in the formation of receptor heteromers which influences their function specifically in cells that express both receptors, such as microglia. This creates opportunities for drug-drug interactions between CB2 receptor-targeted therapies and other classes of drugs. In this article, we review the roles of pro- and anti-inflammatory microglia in the development and resolution of neuroinflammation. We also discuss the fluctuations observed in the components of the endocannabinoid in microglia and examine the potential of CB2 receptors as a therapeutic target in this context.
Collapse
|