1
|
Gillies NA, Lovell AL, Waldie KE, Wall CR. The effect of fruits and vegetables on children's mental and cognitive health: A systematic review of intervention studies and perspective for future research. Nutrition 2025; 130:112615. [PMID: 39602837 DOI: 10.1016/j.nut.2024.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES To synthesize evidence from fruit and vegetable intervention studies investigating mental or cognitive health outcomes (or both) in children ≤10 y. Our aim was to understand the efficacy of such interventions in improving measures of cognitive performance or mental health and to identify successful intervention elements to inform future research. METHODS We conducted a systematic search of the Cochrane, Embase, PubMed, and CINAHL databases for articles published before August 2022 (PROSPERO registration no. CRD42022356571). A narrative synthesis was conducted according to the Synthesis Without Meta-Analysis guidelines. RESULTS Of the 4686 articles identified, only 7 of the 17 full texts screened were included in the final review. No studies investigated the efficacy of interventions using "whole" fruits or vegetables. Six studies examined the effects of blueberries using drinks made from fresh (1 cup) or freeze-dried (30 g) blueberries and one study evaluated a mulberry powder-based drink. Sample sizes ranged from 14 to 54, and most studies were acute interventions with outcomes measured in a 2- to 3-h window (n = 6). Through a narrative synthesis of direction of responses, measures of executive function appeared sensitive to intervention effects in both acute and longer-term settings. Some concerns of risk of bias were evident, according to the RoB 2 tool, related to incomplete reporting of methodological aspects. CONCLUSIONS The studies identified through this systematic review could not directly address the planned research question, resulting in poor certainty of evidence. Future research with whole fruit and vegetable interventions could better inform population health strategies for improved mental and cognitive health outcomes in children.
Collapse
Affiliation(s)
- Nicola A Gillies
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Amy L Lovell
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Karen E Waldie
- School of Psychology, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Clare R Wall
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Yang J, Ning M, Tian Y, Chen Z, Liu Y, Yu Q, Li X, Huang C, Li Y, Wu X. Association between bubble tea consumption and mental health among adults in mainland China: A national cross-sectional analysis of cohort study. J Affect Disord 2025; 369:1115-1121. [PMID: 39447968 DOI: 10.1016/j.jad.2024.10.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Bubble tea has emerged as an essential beverage in the daily lives of many individuals, which is particularly pronounced among nurses. However, few studies have investigated the potential effects of bubble tea consumption on mental health among nurses. In this study, we aimed to investigate the association between bubble tea consumption and mental health among nurses. METHODS A cross-sectional analysis using baseline data from the Nurses' Mental Health Study (NMHS), a national cohort study. Odds ratios (ORs) were employed to evaluate the relationship between bubble tea consumption and mental health. RESULTS A total of 132,910 participants were enumerated nationwide in our survey. 8666 (6.52 %) were male and 124,244 (93.48 %) were female. The median age of participants was 34 years. After adjusting for potential confounders, the odds ratios (ORs) for depressive symptoms, anxiety symptoms, psychiatric diagnosis, fatigue, burnout, loneliness, and well-being trend changed across categories of bubble tea consumption. Low frequency of bubble tea consumption was associated with a lower risk of suicidal ideation, while high frequency of consumption was related to an increased suicidal risk. The relation between bubble tea and mental health varies with gender and age. CONCLUSIONS This large-sample cross-sectional study found that consumption of bubble tea was significantly associated with increased anxiety, depression, psychiatric diagnosis, fatigue, job burnout and loneliness, and decreased well-being among nurses. Moreover, research indicates that limited consumption of bubble tea may be correlated with a reduction in suicidal ideation, whereas excessive consumption may be linked to an increase in such ideation.
Collapse
Affiliation(s)
- Jiaxin Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.; Cent South Univ, Sch Comp Sci & Engn, 932 Lushan South Rd., Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng Ning
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.; Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yusheng Tian
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zengyu Chen
- School of Nursing, University of Washington-Seattle, Seattle, WA, USA
| | - Yiting Liu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Yu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.; Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuting Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chongmei Huang
- School of Nursing at Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Yamin Li
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.; Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| | - Xinjuan Wu
- Department of Nursing, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Bizzozero-Peroni B, Martínez-Vizcaíno V, Fernández-Rodríguez R, Jiménez-López E, Núñez de Arenas-Arroyo S, Saz-Lara A, Díaz-Goñi V, Mesas AE. The impact of the Mediterranean diet on alleviating depressive symptoms in adults: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:29-39. [PMID: 38219230 DOI: 10.1093/nutrit/nuad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
CONTEXT High adherence to the Mediterranean diet (MD) has been associated with a reduced risk of depression in prospective cohort studies, but whether MD interventions are effective among adults with depression is uncertain. OBJECTIVE This study aimed to synthesize findings on the effects of MD interventions on the severity of depressive symptoms in adults with depression. DATA SOURCES PubMed, Cochrane CENTRAL, PsycINFO, Scopus, and Web of Science were systematically searched from database inception to March 2023. The Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines and the Cochrane recommendations were followed. We included randomized controlled trials (RCTs) comparing outcomes after MD interventions with outcomes for control conditions in adults with depressive disorders or depressive symptoms. DATA EXTRACTION Two authors extracted the data independently. The Sidik-Jonkman estimator, the I2 metric, and the prediction interval were used to estimate between-study heterogeneity. To determine the risk of bias and the certainty of evidence from RCTs, we used the Cochrane Collaboration's Risk of Bias 2 and Grades of Recommendation, Assessment, Development, and Evaluation tools, respectively. DATA ANALYSIS In total, 1507 participants (mean age range: 22.0 years-53.3 years) with depression were initially included in the 5 RCTs of this review. Compared with control conditions, MD interventions significantly reduced depressive symptoms among young and middle-aged adults with major depression or mild to moderate depressive symptoms (standardized mean difference: -0.53; 95% confidence interval: -0.90 to -0.16; I2 = 87.1%). The prediction interval ranged from -1.86 to 0.81. The overall risk of bias was within the range of "some concerns" to "high," while the certainty of evidence was low. CONCLUSION MD interventions appear to have substantial potential for alleviating depressive symptoms in people experiencing major or mild depression. However, to establish robust recommendations, there remains a need for high-quality, large-scale, and long-term RCTs. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022341895.
Collapse
Affiliation(s)
- Bruno Bizzozero-Peroni
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Department of Physical Education and Health, Higher Institute of Physical Education, Universidad de la República, Rivera, Uruguay
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Grupo de Investigación en Educación Física, Salud y Calidad de Vida, Facultad de Educación, Universidad Autónoma de Chile, Temuco, Chile
| | | | - Estela Jiménez-López
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
- Department of Psychiatry, Hospital Virgen de La Luz, Cuenca, Spain
- Network Centre for Biomedical Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Valentina Díaz-Goñi
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Arthur Eumann Mesas
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
4
|
Berding K, Bastiaanssen TFS, Moloney GM, Clarke G, Dinan TG, Cryan JF. Adherence to a psychobiotic diet stabilizes the microbiome and reduces perceived stress: plenty of food for thought. Mol Psychiatry 2025; 30:349-350. [PMID: 39020105 DOI: 10.1038/s41380-024-02674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Rucklidge JJ, Bruton A, Welsh A, Ast H, Johnstone JM. Annual Research Review: Micronutrients and their role in the treatment of paediatric mental illness. J Child Psychol Psychiatry 2024. [PMID: 39703999 DOI: 10.1111/jcpp.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 12/21/2024]
Abstract
The aim of this narrative review is to summarize evidence relating the importance of nutrient intake from diet and supplementation for paediatric mental health. We begin by reviewing several mechanisms by which nutrients maximize brain health, including enabling metabolic reactions to occur, supporting mitochondrial function, reducing inflammation and assisting with detoxification. Circumstances that may contribute to an individual requiring additional nutrients beyond what are available in the diet, such as consumption of nutritionally depleted food, individual differences in biological need, long-term medication use and gut-brain health needs are then reviewed. These factors underpin the importance of tackling deficiencies relative to individual metabolic requirements with a broad spectrum of micronutrients, as opposed to a single nutrient approach, to address personal metabolic needs and/or environmentally induced nutrient depletions. The evidence for treating psychological symptoms with supplementary micronutrients is presented, summarizing research using broad-spectrum micronutrients in the treatment of mental health issues including aggression, autism spectrum disorder, attention-deficit/hyperactivity disorder and emotional dysregulation, often with medium between-group effect sizes compared with placebo, with clinically meaningful changes. The breadth and consistency of the findings highlight the importance of receiving a complete foundation of nutrients to optimize brain health; however, the small number of studies identifies the importance of future work to replicate these preliminary findings. Documented safety in 8-week randomized controlled trials with open-label extensions up to 16 weeks and longer-term follow-up for 1.5-5 years in smaller samples provide reassurance that this treatment approach does not result in serious adverse events. We provide recommendations for future research including consistency in micronutrient interventions, scalable delivery models, effectiveness and implementation studies and the need to investigate these interventions in the prevention and management of less-studied childhood psychiatric conditions.
Collapse
Affiliation(s)
- Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Alisha Bruton
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health Science University, Portland, Oregon, USA
| | - Alanna Welsh
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health Science University, Portland, Oregon, USA
| | - Hayleigh Ast
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health Science University, Portland, Oregon, USA
| | - Jeanette M Johnstone
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Owolo O, Audu HJ, Afolayan AO, Ayeni FA. Pepper power: short-term impact of pepper consumption on the gut bacteriome composition in healthy volunteers. PeerJ 2024; 12:e18707. [PMID: 39686991 PMCID: PMC11648697 DOI: 10.7717/peerj.18707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background Pepper from Capsicum species is a well-established spice with a rich history of culinary use. Some observations have linked its consumption to gastrointestinal discomfort and alterations in stool patterns while it is considered beneficial in some cultures. However, there is lack of information on the direct effect of pepper consumption on human gut microbiota, we conducted dietary intervention studies to assess the impact of pepper on gut bacteriome composition in humans. Methods Ten healthy volunteers were recruited, and each person received 200 ml of 0.14 g/ml fresh Habanero Pepper (Capsicum chinense) daily over a 4-day period after which they abstained from pepper consumption for the subsequent 4 days before resumption of their normal diet. Stool samples were collected at baseline, after pepper consumption, after 4 days without pepper and after 4- and 6-days resumption of normal diet. We sequenced the V3-V4 region of the 16S rRNA gene and analyzed microbial diversity and composition using the QIIME2 pipeline and relevant R packages. Results Consumption of pepper over a 4-day period led to a higher abundance of Verrucomicrobia, a phylum rarely found in significant proportions at other time points. There was a gradual depletion of Shigella and Staphylococcus spp. from baseline untill the end of the study. Other taxa showed timepoint specific associations, emphasizing the potential impact of short-term dietary interventions on the relative abundance of these genera. Conclusions Our study adds nuance to the understanding of diet-microbiota interactions, highlighting the intricate relationship between pepper consumption and gut bacteriome composition. Further exploration of these dynamics holds promise for personalized dietary recommendations and targeted interventions to support gut microbial health.
Collapse
Affiliation(s)
- Oluwafayoke Owolo
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Haruna J. Audu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ayorinde O. Afolayan
- Institute for Infection Prevention and Control, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany
| | - Funmilola A. Ayeni
- Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| |
Collapse
|
7
|
Moreno-Altamirano L, Robles-Rivera K, Castelán-Sánchez HG, Vaca-Paniagua F, Iñarritu Pérez MDC, Hernández-Valencia SE, Cruz-Casarrubias C, García-García JJ, Ruíz de la Cruz M, Martínez-Gregorio H, Díaz Velásquez CE, Soto-Estrada G, Navarro-Ocaña A, Carrillo-Medina S. Gut Microbiota: Association with Fiber Intake, Ultra-Processed Food Consumption, Sex, Body Mass Index, and Socioeconomic Status in Medical Students. Nutrients 2024; 16:4241. [PMID: 39683634 DOI: 10.3390/nu16234241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiota plays a vital role in various physical and physiological processes, including immune system regulation, neurotransmitter production, inflammatory response modulation, and the inhibition of pathogenic organisms. An imbalance in the microbial community, known as dysbiosis, has been associated with numerous health issues. Biological influences, health behaviors, socioeconomic determinants, and nutritional status can disrupt this balance. OBJECTIVE To evaluate the differences in the gut microbiota composition in medical students according to fiber intake, ultra-processed food (UPF) consumption, sex, body mass index, and socioeconomic status. METHODS A cross-sectional study was conducted with 91 medical students, and 82 fecal samples were analyzed. Sociodemographic and dietary data were collected via questionnaires, UPF consumption was assessed using the NOVA classification, and trained nutritionists performed anthropometry. DNA extraction and 16S rRNA sequencing were performed for the microbial analysis. Bioinformatics and statistical tests included the Dunn and Kruskal-Wallis tests, a PCoA analysis, PERMANOVA, ANOVA, Spearman's rank correlation, and alpha and beta diversity metrics. RESULTS Dietary fiber intake strongly influences gut microbiota composition. Lower fiber intake was associated with a higher prevalence of Parabacteroides and Muribaculaceae. Prevotella was more prevalent in individuals with lower UPF intake, while Phascolarctobacterium was prevalent in those with higher UPF consumption. Significant differences were associated with sex and UPF consumption but not BMI or SES. Women consumed more UPF, which correlated with distinct gut microbiota profiles. CONCLUSIONS This study highlights the significant impact of diet, particularly fiber intake and UPF, on gut microbiota composition, emphasizing the importance of dietary habits in maintaining gut health.
Collapse
Affiliation(s)
- Laura Moreno-Altamirano
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Karina Robles-Rivera
- Research Department, Secretariat of Clinical Education, Medical Internship and Social Service, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Hugo G Castelán-Sánchez
- Department of Pathology and Laboratory Medicine, Western University, Dental Sciences Building, Rm. 4044, London, Ontario N6A 5C1, Canada
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - María Del Carmen Iñarritu Pérez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Sandra Elvia Hernández-Valencia
- National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
| | - Carlos Cruz-Casarrubias
- Center for Nutrition and Health Research, Mexican National Institute of Public Health, Fray Pedro de Gante 12, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Juan José García-García
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Miguel Ruíz de la Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - Guadalupe Soto-Estrada
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Armando Navarro-Ocaña
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Copilco, Coyoacán, Mexico City 04510, Mexico
| | - Santiago Carrillo-Medina
- Centro de Investigación Trials in Medicine S.C., Avenida Álvaro Obregón 121 Floor 15 Suite 1504, Cuauhtemoc, Mexico City 06700, Mexico
| |
Collapse
|
8
|
Barrera-Chamorro L, Fernandez-Prior A, Claro-Cala CM, Del Rio-Vazquez JL, Rivero-Pino F, Montserrat-de la Paz S. Unveiling the neuroprotective impact of virgin olive oil ingestion via the microbiota-gut-brain axis. Food Funct 2024. [PMID: 39648863 DOI: 10.1039/d4fo04560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The gut-brain axis, a complex system of two-way communication between both organs, plays a key role in overall health. This comprehensive review explores the possible neuromodulatory effects upon consumption of virgin olive oil (VOO) via changes in the gut microbiota. The components found in VOO, such as polyphenols and monounsaturated fatty acids, and their function in influencing the composition of the gut microbiota, focusing on those known to possess neuroactive characteristics, based on a thorough analysis of the literature were investigated. Studies suggest that these compounds, such as hydroxytyrosol and ferulic acid, may protect against neuronal death and inhibit amyloid-β plaques (Aβ) formation. Furthermore, preclinical and clinical research indicates that VOO may promote the growth of beneficial bacteria, such as Lactobacillus and Bifidobacterium, and increase the production of short-chain fatty acids (SCFAs). These changes could be related to improved cognitive function, mood regulation, and neuroprotection. However, limitations of these studies (short duration of studies, the variability in VOO composition and the lack of standardized methodologies) need to be overcome. Furthermore, the limited number of human trials and incomplete understanding of the gut-brain axis make it difficult to establish causality and clinical application of the findings. For this reason, future research should focus on long-term clinical trials with larger cohorts, standardised characterisation of VOO and on exploring the synergistic effects with other dietary components. Furthermore, mechanistic studies should aim to uncover the molecular pathways involved in the gut-brain axis to develop specific dietary interventions for neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Luna Barrera-Chamorro
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| | - Africa Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| | - Carmen M Claro-Cala
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Jose L Del Rio-Vazquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Dr Fedriani s/n, 41009 Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain
| |
Collapse
|
9
|
Sugden SG, Merlo G. Using lifestyle interventions and the gut microbiota to improve PTSD symptoms. Front Neurosci 2024; 18:1488841. [PMID: 39691626 PMCID: PMC11649671 DOI: 10.3389/fnins.2024.1488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
Posttraumatic stress disorder is part of a spectrum of psychological symptoms that are frequently linked with a single defining traumatic experience. Symptoms can vary over the lifespan in intensity based on additional life stressors, individual stability, and connectedness to purpose. Historically, treatment has centered on psychotropic agents and individual and group therapy to increase the individual's window of tolerance, improve emotional dysregulation, and strengthen relationships. Unfortunately, there is a growing segment of individuals with posttraumatic stress disorder who do not respond to these traditional treatments, perhaps because they do not address the multidirectional relationships between chronic cortisol, changes in the brain gut microbiota system, neuroinflammation, and posttraumatic symptoms. We will review the literature and explain how trauma impacts the neuroendocrine and neuroimmunology within the brain, how these processes influence the brain gut microbiota system, and provide a mechanism for the development of posttraumatic stress disorder symptoms. Finally, we will show how the lifestyle psychiatry model provides symptom amelioration.
Collapse
Affiliation(s)
- Steven G. Sugden
- Department of Psychiatry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Gia Merlo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Arbabi F, Shapoury R, Haghi F, Zeighami H, Pirzeh R. Investigating the bacterial profiles of Lactobacillus, Bifidobacterium, Actinobacteria, Fusobacterium, Firmicutes, and Bacteroides in stool samples from patients with severe depression and healthy individuals. Psychoneuroendocrinology 2024; 170:107090. [PMID: 39217732 DOI: 10.1016/j.psyneuen.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Depression is a multifaceted mental health disorder with complex etiology and significant global burden. Recent research indicates that the gut microbiota plays a role in the pathophysiology of depression, highlighting the potential role of specific bacterial species in influencing mood and cognitive function. In this study, we aimed to investigate the presence, copy numbers, and Ct values of selected bacterial species in stool samples from depressed patients (n=50) compared to control subjects (n=50). Our findings revealed significant differences in the abundance of Fusobacterium spp., Bifidobacterium spp., Lactobacillus spp., Bacteroidetes phylum, Firmicutes phylum, and Actinobacteria spp. between the two groups. Dysregulation of the gut microbiota, characterized by decreased presence of beneficial bacteria (e.g., Bifidobacterium spp., Lactobacillus spp.) and altered abundance of potentially pathogenic bacteria (e.g., Fusobacterium spp.), may contribute to the development or exacerbation of depression. These findings support the emerging concept of the gut-brain axis and its role in mental health. However, further research is needed to better understand the underlying mechanisms and explore the therapeutic potential of microbiota-targeted interventions for depression. Understanding the intricate interplay between the gut microbiota and depression could pave the way for novel treatment strategies and personalized approaches in mental health care.
Collapse
Affiliation(s)
- Fatemeh Arbabi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Reza Shapoury
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Fakhri Haghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Habib Zeighami
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Reza Pirzeh
- Shahid Beheshti Hospital, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
11
|
Aslam H, Lotfaliany M, So D, Berding K, Berk M, Rocks T, Hockey M, Jacka FN, Marx W, Cryan JF, Staudacher HM. Fiber intake and fiber intervention in depression and anxiety: a systematic review and meta-analysis of observational studies and randomized controlled trials. Nutr Rev 2024; 82:1678-1695. [PMID: 38007616 PMCID: PMC11551482 DOI: 10.1093/nutrit/nuad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023] Open
Abstract
CONTEXT Dietary fibers hold potential to influence depressive and anxiety outcomes by modulating the microbiota-gut-brain axis, which is increasingly recognized as an underlying factor in mental health maintenance. OBJECTIVE Evidence for the effects of fibers on depressive and anxiety outcomes remains unclear. To this end, a systematic literature review and a meta-analysis were conducted that included observational studies and randomized controlled trials (RCTs). DATA SOURCES The PubMed, Embase, CENTRAL, CINAHL, and PsychINFO databases were searched for eligible studies. DATA EXTRACTION Study screening and risk-of-bias assessment were conducted by 2 independent reviewers. DATA ANALYSIS Meta-analyses via random effects models were performed to examine the (1) association between fiber intake and depressive and anxiety outcomes in observational studies, and (2) effect of fiber intervention on depressive and anxiety outcomes compared with placebo in RCTs. A total of 181 405 participants were included in 23 observational studies. In cross-sectional studies, an inverse association was observed between fiber intake and depressive (Cohen's d effect size [d]: -0.11; 95% confidence interval [CI]: -0.16, -0.05) and anxiety (d = -0.25; 95%CI, -0.38, -0.12) outcomes. In longitudinal studies, there was an inverse association between fiber intake and depressive outcomes (d = -0.07; 95%CI, -0.11, -0.04). In total, 740 participants were included in 10 RCTs, all of whom used fiber supplements. Of note, only 1 RCT included individuals with a clinical diagnosis of depression. No difference was found between fiber supplementation and placebo for depressive (d = -0.47; 95%CI, -1.26, 0.31) or anxiety (d = -0.30; 95%CI, -0.67, 0.07) outcomes. CONCLUSION Although observational data suggest a potential benefit for higher fiber intake for depressive and anxiety outcomes, evidence from current RCTs does not support fiber supplementation for improving depressive or anxiety outcomes. More research, including RCTs in clinical populations and using a broad range of fibers, is needed. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021274898.
Collapse
Affiliation(s)
- Hajara Aslam
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Mojtaba Lotfaliany
- IMPACT, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Daniel So
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
- Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Tetyana Rocks
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Meghan Hockey
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Felice N Jacka
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
- Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wolfgang Marx
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - John F Cryan
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Heidi M Staudacher
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Schneider E, Schmidt R, Cryan JF, Hilbert A. A Role for the Microbiota-Gut-Brain Axis in Avoidant/Restrictive Food Intake Disorder: A New Conceptual Model. Int J Eat Disord 2024; 57:2321-2328. [PMID: 39542726 PMCID: PMC11629072 DOI: 10.1002/eat.24326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Avoidant/restrictive food intake disorder (ARFID) is an eating disorder characterized by a severely restrictive diet leading to significant physical and/or psychosocial sequelae. Largely owing to the phenotypic heterogeneity, the underlying pathophysiological mechanisms are relatively unknown. Recently, the communication between microorganisms within the gastrointestinal tract and the brain-the so-called microbiota-gut-brain axis-has been implicated in the pathophysiology of eating disorders. This Spotlight review sought to investigate and conceptualize the possible ways that the microbiota-gut-brain axis is involved in ARFID to drive future research in this area. METHOD By relating core symptoms of ARFID to gut microbiota and its signaling pathways to the brain, we evaluated how the gut microbiota is potentially involved in the pathophysiology of ARFID. RESULTS We hypothesized that the restricted type and amount of food intake characteristic of ARFID diminishes gut microbial diversity, including beneficial bacteria and their metabolites capable of signaling to the brain, to modulate biopsychological pathways relevant to ARFID: homeostatic signaling, food reward, interoception, sensory sensitivity, disgust, perseveration, fear-based learning, and mood. Candidate signaling mechanisms include microbial-induced effects on inflammation, cortisol, and neurotransmitters such as dopamine and serotonin. DISCUSSION Through reviewing the extant evidence, we conceptualized a new theoretical framework of ARFID with an emphasis on microbiota-gut-brain axis signaling to inform future research. Although more research is necessary to evaluate this theoretical model, the tentative evidence suggests that therapeutics specifically targeting the gut microbiota for the treatment of ARFID symptomatology warrants more investigation.
Collapse
Affiliation(s)
| | - Ricarda Schmidt
- Department of Psychosomatic Medicine and Psychotherapy, Research Unit Behavioral Medicine, Integrated Research and Treatment Center AdiposityDiseasesUniversity of Leipzig Medical CenterLeipzigGermany
- German Center for Child and Adolescent Health (DZKJ), partner Site Leipzig/DresdenLeipzigGermany
| | - John F. Cryan
- APC Microbiome Ireland, University College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Anja Hilbert
- Department of Psychosomatic Medicine and Psychotherapy, Research Unit Behavioral Medicine, Integrated Research and Treatment Center AdiposityDiseasesUniversity of Leipzig Medical CenterLeipzigGermany
- German Center for Child and Adolescent Health (DZKJ), partner Site Leipzig/DresdenLeipzigGermany
| |
Collapse
|
13
|
Finnegan YE, Neill HR, Prpa EJ, Pot B. "Gut" to grips with the science of the microbiome - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e11. [PMID: 39703540 PMCID: PMC11658944 DOI: 10.1017/gmb.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 12/21/2024]
Abstract
The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.
Collapse
Affiliation(s)
- Yvonne E. Finnegan
- Yvonne Finnegan FINNE Nutrition & Regulatory Consultancy, Kilkenny, Ireland
| | | | | | - Bruno Pot
- Yakult Europe BV, Science Department, Almere, The Netherlands
| |
Collapse
|
14
|
Mörkl S, Varnagy A, Wagner-Skacel J, Lahousen T, Brodtrager D, Sallmutter K, Bengesser SA, Painold A, Narrath M, Pieter L, Butler MI, Mueller-Stierlin A, Reininghaus EZ, Lackner S, Holasek S. Culinary Medicine Cooking Workshops as Add-On Therapy for Inpatients with Depression and Eating Disorders. Nutrients 2024; 16:3973. [PMID: 39599759 PMCID: PMC11597544 DOI: 10.3390/nu16223973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Culinary medicine integrates healthy eating with positive food experiences, offering a holistic approach to treating mental health disorders, such as depression and eating disorders, where disruptions in eating habits and mood are common. While traditional psychiatric treatments focus on medication and psychotherapy, culinary workshops provide a novel intervention for inpatient care. This study evaluated the effectiveness of culinary medicine cooking workshops as a supplementary treatment for psychiatric inpatients with depression and eating disorders. METHODS We assessed the feasibility of five cooking workshops led by a professional chef and nutritional therapist in 39 psychiatric inpatients (depression, n = 29; eating disorders, n = 10). Participants completed questionnaires on dietary habits, mood, and workshop feedback before and after the intervention. RESULTS The workshops were highly accepted, with 90% of participants reporting they would recommend them for recovery. Significant improvements were observed in mood (p < 0.001), sadness (p < 0.001), hopelessness (p = 0.002), and tiredness (p = 0.003) across the overall group. Patients with depression showed improvements in nearly all mood subscales, while those with eating disorders improved in sadness (p = 0.029). CONCLUSIONS Culinary medicine workshops are a promising tool for enhancing mood and reducing hopelessness and tiredness in inpatients with depression. They also promote sustainable lifestyle changes that may benefit long-term physical and mental health. Future studies should explore the long-term impact of these interventions on psychiatric disorders.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, 8036 Graz, Austria; (S.M.); (A.V.); (J.W.-S.)
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Attila Varnagy
- Division of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, 8036 Graz, Austria; (S.M.); (A.V.); (J.W.-S.)
- Department of Agriculture, Ecotrophology and Landscape Development, Hochschule Anhalt, University of Applied Sciences, 06406 Bernburg, Germany
| | - Jolana Wagner-Skacel
- Division of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, 8036 Graz, Austria; (S.M.); (A.V.); (J.W.-S.)
| | - Theresa Lahousen
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Daniel Brodtrager
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Karl Sallmutter
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Susanne A. Bengesser
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Annamaria Painold
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Martin Narrath
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Lisa Pieter
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Mary I. Butler
- Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 K8AF Cork, Ireland;
| | | | - Eva Z. Reininghaus
- Division of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (D.B.); (K.S.); (S.A.B.); (A.P.); (M.N.); (L.P.); (E.Z.R.)
| | - Sonja Lackner
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
15
|
Jiao F, Zhou L, Wu Z. The microbiota-gut-brain axis: a potential target in the small-molecule compounds and gene therapeutic strategies for Parkinson's disease. Neurol Sci 2024:10.1007/s10072-024-07878-x. [PMID: 39546084 DOI: 10.1007/s10072-024-07878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUNDS Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. OBJECTIVES In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. CONCLUSIONS Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, No. 45, Jianshe South Road, Jining City, Shandong Province, 272067, P. R. China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, P. R. China.
| | - Lincong Zhou
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Zaixin Wu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| |
Collapse
|
16
|
González-Velázquez G, Aguirre-Garrido JF, Oros-Pantoja R, Salinas-Velarde ID, Contreras I, Estrada JA, Soto-Piña AE. Supplementation with inulin reverses cognitive flexibility alterations and modulates the gut microbiota in high-fat-fed mice. Front Behav Neurosci 2024; 18:1445154. [PMID: 39568732 PMCID: PMC11577567 DOI: 10.3389/fnbeh.2024.1445154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Alterations in cognitive performance are associated with inadequate nutritional states and diet composition. Prebiotics, such as inulin, are substances that can modulate the gut microbiome and, consequently, brain function by producing metabolites such as short-chain fatty acids (SCFAs). This study aimed to evaluate the effect of supplementation with inulin on cognitive flexibility, body composition, and gut microbiota in a murine model exposed to a high-fat (HF) diet. Methods CD1 mice were divided into five groups: control fed a standard diet (C), high-fat diet (HF), inulin (I), high-fat diet with inulin (HFI), and manipulation control (M). Dietary supplementation was administered for 6 weeks. Cognitive flexibility was assessed using the Attentional Set-Shifting Test (AST). In addition, body composition was measured via electrical bioimpedance and adipose tissue compartments of each mouse were removed and weighed. Finally, gut microbiota metataxonomic was analyzed through metataxonomic bacterial 16S rRNA sequencing. Results We observed that HF group required more AST trials than the C, HFI, and I groups in the compound discrimination (CD) and extra-dimensional (ED) stages. Notably, the HFI group required fewer trials than the HF group in the ED stage (p = 0.0187). No significant differences in overall body composition were observed between the groups. However, the percentage of gonadal and peritoneal adipose tissue was significantly higher in the HF and I groups compared to the C group. Statistically significant differences in alpha diversity for gut microbiota were observed using the Shannon, Simpson, and Chao1 indices. The I group showed a decrease in bacterial diversity compared to the HF group. While no differences were observed between groups in the phyla Bacillota and Bacteroidotes, Clostridium bacteria represented a lower proportion of sequences in the I group compared to the C group. Additionally, Lactobacillus represented a lower proportion of sequences in the HF group compared to the C and I groups. Discussion These findings suggest that supplementation with inulin could be a useful approach to mitigate the negative effects of an HF diet on cognitive flexibility and modulate gut microbiota composition.
Collapse
Affiliation(s)
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | - Irazú Contreras
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José Antonio Estrada
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | |
Collapse
|
17
|
Baenas I, Camacho-Barcia L, Miranda-Olivos R, Solé-Morata N, Misiolek A, Jiménez-Murcia S, Fernández-Aranda F. Probiotic and prebiotic interventions in eating disorders: A narrative review. EUROPEAN EATING DISORDERS REVIEW 2024; 32:1085-1104. [PMID: 38297469 DOI: 10.1002/erv.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
AIMS The review aimed to summarise and discuss findings focused on therapeutic probiotic and prebiotic interventions in eating disorders (ED). METHODS Using PubMed/MEDLINE, Cochrane Library, and Web of Science all published studies were retrieved until February 2023, following PRISMA guidelines. From the 111 initial studies, 5 met the inclusion criteria for this review. RESULTS All studies included in this narrative review were focused on anorexia nervosa (AN). Three longitudinal, randomised, controlled trials aimed to evaluate interventions with probiotics (Lactobacillus reuteri, yoghurt with Lactobacillus, and Streptococcus) in children and adolescents. These studies primarily emphasised medical outcomes and anthropometric measures following the administration of probiotics. However, the findings yielded mixed results in terms of short-term weight gain or alterations in specific immunological parameters. With a lower level of evidence, supplementation with synbiotics (probiotic + prebiotic) has been associated with improvements in microbiota diversity and attenuation of inflammatory responses. CONCLUSIONS Research on probiotics and prebiotics in ED is limited, primarily focussing on anorexia nervosa (AN). Their use in AN regarding medical and anthropometric outcomes needs further confirmation and future research should be warranted to assess their impact on psychological and ED symptomatology, where there is a notable gap in the existing literature.
Collapse
Affiliation(s)
- Isabel Baenas
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
| | - Romina Miranda-Olivos
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Neus Solé-Morata
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandra Misiolek
- Proyecto Autoestima Relaciones y Trastornos Alimenticios (ART), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Psychology Services, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Clinical Psychology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviours, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
18
|
Higgs S, Aarts K, Adan RAH, Buitelaar JK, Cirulli F, Cryan JF, Dickson SL, Korosi A, van der Beek EM, Dye L. Policy Actions Required to Improve Nutrition for Brain Health. Nutr Rev 2024:nuae160. [PMID: 39471498 DOI: 10.1093/nutrit/nuae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Brain health is a pressing global concern. Poor diet quality is a recognized major environmental risk factor for brain disorders and one of the few that is modifiable. There is substantial evidence that nutrition impacts brain development and brain health across the life course. So why then is the full potential of nutrition not utilized to improve brain function? This commentary, which is based on discussions of the European Brain Research Area BRAINFOOD cluster, aims to highlight the most urgent research priorities concerning the evidence base in the area of nutrition and brain health and identifies 3 major issues that need to be addressed: (1) increase causal and mechanistic evidence on the link between nutrition and brain health, (2) produce effective messages/education concerning the role of food for brain health, and (3) provide funding to support collaborative working across diverse stakeholders.
Collapse
Affiliation(s)
- Suzanne Higgs
- School of Psychology, University of Birmingham, Birmingham B152TT, United Kingdom
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen 6500HB, The Netherlands
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - John F Cryan
- Department of Anatomy & Neuroscience and APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Suzanne L Dickson
- European Brain Council, Brussels 1000, Belgium
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41135, Sweden
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam 1090, The Netherlands
| | - Eline M van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen 9700, The Netherlands
| | - Louise Dye
- Institute for Sustainable Food, School of Psychology, University of Sheffield, Sheffield S1 4DP, United Kingdom
| |
Collapse
|
19
|
Schneider E, Balasubramanian R, Ferri A, Cotter PD, Clarke G, Cryan JF. Fibre & fermented foods: differential effects on the microbiota-gut-brain axis. Proc Nutr Soc 2024:1-16. [PMID: 39449646 DOI: 10.1017/s0029665124004907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The ability to manipulate brain function through the communication between the microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has emerged as a potential option to improve cognitive and emotional health. Dietary composition and patterns have demonstrated a robust capacity to modulate the microbiota-gut-brain axis. With their potential to possess pre-, pro-, post-, and synbiotic properties, dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and subsequent signalling to the brain. Despite this potential, few studies have directly examined the mechanisms that might explain the beneficial action of dietary fibre and fermented foods on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction. Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole food sources on cognitive and emotional functioning. Potential mediating effects of dietary fibre and fermented foods on brain health via the microbiota-gut-brain axis are described. Although more multimodal research that combines psychological assessments and biological sampling to compare each food type is needed, the evidence accumulated to date suggests that dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a cost-effective and convenient approach to improve cognitive and emotional functioning across the lifespan.
Collapse
Affiliation(s)
| | - Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Aimone Ferri
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Horovitz O. Nutritional Psychology: Review the Interplay Between Nutrition and Mental Health. Nutr Rev 2024:nuae158. [PMID: 39441711 DOI: 10.1093/nutrit/nuae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Nutritional psychology is a burgeoning field that examines the intricate relationship between nutrition and mental health. This concept, its historical development, and its current significance in understanding the complex interplay between diet and psychological well-being are explored in this article. The influence of various nutrients on mental health, the role of dietary patterns, and the impact of nutrition on specific mental disorders are examined. Highlighted are the potential mechanisms underlying the nutrition-mental health connection, and the implications for clinical practice and public health interventions are discussed. The discussion in this article underscores the importance of considering nutrition as essential in mental health promotion and treatment.
Collapse
Affiliation(s)
- Omer Horovitz
- The Physiology and Behavior Laboratory, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
- Psychology Department, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
| |
Collapse
|
21
|
Yao W, Cao Y, Tian Y, Liu Y, Hua X, Chen F. Were there any missing mediators between visual impairment and anxiety symptoms? Results from Chinese Longitudinal Healthy Longevity Survey. Front Public Health 2024; 12:1448638. [PMID: 39478755 PMCID: PMC11521831 DOI: 10.3389/fpubh.2024.1448638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Visual impairment, encompassing low visual acuity and visual field loss, significantly impacts the older adult population worldwide, leading to increased disability and mortality risks. Recent studies suggest a strong association between visual impairment and anxiety, particularly among older adults. This study aims to explore the relationship between visual impairment and anxiety symptoms in older adult individuals in China, and to investigate potential mediating factors. Methods Data for this study were derived from the 2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS), including 11,702 participants aged 65 and older. Visual impairment was assessed through self-reported visual function, while anxiety symptoms were measured using the 7-item Generalized Anxiety Disorder scale (GAD-7). Additional assessments included sleep quality and duration, exercise status, and dietary diversity. Logistic regression models and mediation analysis were employed to explore associations and mediating effects. Results The findings indicate that visual impairment is significantly associated with increased anxiety symptoms among the older adult (OR = 1.51, 95% CI: 1.32-1.72, p < 0.001). Mediation analysis revealed that sleep quality, dietary diversity score (DDS), and plant-based DDS significantly mediated the relationship between visual impairment and anxiety. In contrast, sleep duration, exercise, and animal-based DDS did not show significant mediating effects. Conclusion Visual impairment is a crucial predictor of anxiety symptoms in the older adult. Improving sleep quality and promoting a diverse plant-based diet may mitigate anxiety symptoms in this population. Interventions targeting these areas could enhance the mental health and quality of life of older adult individuals with visual impairment.
Collapse
Affiliation(s)
- Wen Yao
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yuan Cao
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yuan Tian
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yuanyuan Liu
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Xin Hua
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Fang Chen
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
22
|
Karaboycheva G, Conrad ML, Dörr P, Dittrich K, Murray E, Skonieczna-Żydecka K, Kaczmarczyk M, Łoniewski I, Klawitter H, Buss C, Entringer S, Binder E, Winter SM, Heim C. Altered Gut Microbiota Patterns in Young Children with Recent Maltreatment Exposure. Biomolecules 2024; 14:1313. [PMID: 39456245 PMCID: PMC11506340 DOI: 10.3390/biom14101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The brain and the intestinal microbiota are highly interconnected and especially vulnerable to disruptions in early life. Emerging evidence indicates that psychosocial adversity detrimentally impacts the intestinal microbiota, affecting both physical and mental health. This study aims to investigate the gut microbiome in young children in the immediate aftermath of maltreatment exposure. METHODS Maltreatment exposure was assessed in 88 children (ages 3-7) using the Maternal Interview for the Classification of Maltreatment [MICM]. Children were allocated to three groups according to the number of experienced maltreatment categories: no maltreatment, low maltreatment, and high maltreatment exposures. Stool samples were collected and analyzed by 16S rRNA sequencing. RESULTS Children subjected to high maltreatment exposure exhibited lower alpha diversity in comparison to those with both no and low maltreatment exposure (Simpson Index, Tukey post hoc, p = 0.059 and p = 0.007, respectively). No significant distinctions in beta diversity were identified. High maltreatment exposure was associated with the enrichment of several genera from the class Clostridia (Clostridium, Intestinibacter, Howardella and Butyrivibrio) and the depletion of the genus Phocaeicola (class Bacteriodia). CONCLUSIONS Severe maltreatment exposure is associated with alterations in the gut microbiota of young children. Longitudinal trajectories of intestinal microbiota composition in the context of maltreatment may reveal important insights related to psychiatric and somatic health outcomes.
Collapse
Affiliation(s)
- Gergana Karaboycheva
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Melanie L. Conrad
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peggy Dörr
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Katja Dittrich
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Elena Murray
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Mariusz Kaczmarczyk
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Igor Łoniewski
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Heiko Klawitter
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
| | - Claudia Buss
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sonja Entringer
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | | | - Sibylle M. Winter
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Christine Heim
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
23
|
Shafiee A, Aghajanian S, Heidari E, Abbasi M, Jafarabady K, Baradaran S, Bakhtiyari M. Contribution of obesity in the association between fast-food consumption and depression: A mediation analysis. J Affect Disord 2024; 362:623-629. [PMID: 39019234 DOI: 10.1016/j.jad.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Depression is a significant mental health concern, and the ubiquitous presence of fast-food in modern diets raises questions about its impact on mental well-being. Understanding the intricate relationship between fast-food consumption, obesity, and depression is essential for addressing the complex web of factors contributing to this public health issue. METHODS In this study, we analyzed data from the National Health and Nutritional Examination Surveys (NHANES) spanning from 2008 to 2018, involving 31,460 participants. RESULTS Among the 31,460 subjects in the survey, 2871 exhibited signs of depression, with an average age of 48.2 years. Each additional weekly fast-food meal was linked to 4 % higher odds of depression, with consuming over two such meals increasing the odds by 24 %. Adjusted models exploring the relationship between body mass index (BMI), fast-food consumption, and depression indicated an increased risk with greater fast-food intake, especially within subgroups based on obesity status. Mediation analysis revealed that fast-food consumption and depression were largely independent of obesity, with obesity accounting for only 6.5 % of the total effect. No significant mediation effect was found in the overweight subgroup, but the mediated effect was increased with higher BMI in more obese patients, notably in those with BMI ≥ 30 or ≥40. Sensitivity analysis confirmed these findings with more conservative estimates across all subgroups. CONCLUSION This study highlights a substantial connection between fast-food consumption and depression. While obesity plays a role, it does not fully mediate the relationship, suggesting the presence of other contributing factors.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Sepehr Aghajanian
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Heidari
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sania Baradaran
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
24
|
Neufeld PM, Nettersheim RA, Matschke V, Vorgerd M, Stahlke S, Theiss C. Unraveling the gut-brain axis: the impact of steroid hormones and nutrition on Parkinson's disease. Neural Regen Res 2024; 19:2219-2228. [PMID: 38488556 PMCID: PMC11034592 DOI: 10.4103/1673-5374.391304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
This comprehensive review explores the intricate relationship between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the context of the gut-brain axis. The gut-brain axis plays a pivotal role in neurodegenerative diseases like Parkinson's disease, encompassing diverse components such as the gut microbiota, immune system, metabolism, and neural pathways. The gut microbiome, profoundly influenced by dietary factors, emerges as a key player. Nutrition during the first 1000 days of life shapes the gut microbiota composition, influencing immune responses and impacting both child development and adult health. High-fat, high-sugar diets can disrupt this delicate balance, contributing to inflammation and immune dysfunction. Exploring nutritional strategies, the Mediterranean diet's anti-inflammatory and antioxidant properties show promise in reducing Parkinson's disease risk. Microbiome-targeted dietary approaches and the ketogenic diet hold the potential in improving brain disorders. Beyond nutrition, emerging research uncovers potential interactions between steroid hormones, nutrition, and Parkinson's disease. Progesterone, with its anti-inflammatory properties and presence in the nervous system, offers a novel option for Parkinson's disease therapy. Its ability to enhance neuroprotection within the enteric nervous system presents exciting prospects. The review addresses the hypothesis that α-synuclein aggregates originate from the gut and may enter the brain via the vagus nerve. Gastrointestinal symptoms preceding motor symptoms support this hypothesis. Dysfunctional gut-brain signaling during gut dysbiosis contributes to inflammation and neurotransmitter imbalances, emphasizing the potential of microbiota-based interventions. In summary, this review uncovers the complex web of interactions between nutrition, the gut microbiome, steroid hormones, and Parkinson's disease within the gut-brain axis framework. Understanding these connections not only offers novel therapeutic insights but also illuminates the origins of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Paula Maria Neufeld
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Ralf A. Nettersheim
- Department of Visceral Surgery, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Soldán M, Argalášová Ľ, Hadvinová L, Galileo B, Babjaková J. The Effect of Dietary Types on Gut Microbiota Composition and Development of Non-Communicable Diseases: A Narrative Review. Nutrients 2024; 16:3134. [PMID: 39339734 PMCID: PMC11434870 DOI: 10.3390/nu16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION The importance of diet in shaping the gut microbiota is well established and may help improve an individual's overall health. Many other factors, such as genetics, age, exercise, antibiotic therapy, or tobacco use, also play a role in influencing gut microbiota. AIM This narrative review summarizes how three distinct dietary types (plant-based, Mediterranean, and Western) affect the composition of gut microbiota and the development of non-communicable diseases (NCDs). METHODS A comprehensive literature search was conducted using the PubMed, Web of Science, and Scopus databases, focusing on the keywords "dietary pattern", "gut microbiota" and "dysbiosis". RESULTS Both plant-based and Mediterranean diets have been shown to promote the production of beneficial bacterial metabolites, such as short-chain fatty acids (SCFAs), while simultaneously lowering concentrations of trimethylamine-N-oxide (TMAO), a molecule associated with negative health outcomes. Additionally, they have a positive impact on microbial diversity and therefore are generally considered healthy dietary types. On the other hand, the Western diet is a typical example of an unhealthy nutritional approach leading to an overgrowth of pathogenic bacteria, where TMAO levels rise and SCFA production drops due to gut dysbiosis. CONCLUSION The current scientific literature consistently highlights the superiority of plant-based and Mediterranean dietary types over the Western diet in promoting gut health and preventing NCDs. Understanding the influence of diet on gut microbiota modulation may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Ľubica Argalášová
- Institute of Hygiene, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia; (M.S.); (L.H.); (B.G.); (J.B.)
| | | | | | | |
Collapse
|
26
|
Liu Y, Zhang L, Yang C, Zhi L, Steven Xu X, Yuan M. Oral microbiome diversity shapes the association between sleep duration and depression. Front Neurol 2024; 15:1442557. [PMID: 39346766 PMCID: PMC11427320 DOI: 10.3389/fneur.2024.1442557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background Emerging research suggests the relationship between the oral microbiome and sleep duration with depression, however, the precise mechanisms by which oral microbial diversity influences the sleep-depression nexus remain to be elucidated. Methods We analyzed data from 4,692 participants in the National Health and Nutrition Examination Survey (NHANES), incorporating key demographic variables, oral microbiome diversity metrics, sleep duration, and depression assessment variables. Classical multidimensional scaling facilitated dimensionality reduction, while unsupervised clustering divided participants into groups based on β-diversity dissimilarity matrices. We examined the moderating effects of oral microbiome diversity on the sleep-depression relationship by incorporating interaction terms sleep-oral microbiome diversity into multiple linear regression models. Results Our analysis revealed a U-shaped relationship between sleep duration and depression. Specifically, α-diversity was a significant moderator, with reduced diversity linked to an increased depression risk in participants with insufficient sleep. Regarding β-diversity, using both Bray-Curtis and UniFrac distance measures, Cluster 2 exhibited the strongest associations in sleep-deprived individuals (Bray-Curtis: β = 1.02, p < 0.001; Weighted UniFrac: β = 0.91, p < 0.001). In contrast, Cluster 1 displayed notable effects in individuals with excessive sleep (Bray-Curtis: β = 0.63, p = 0.008). Additionally, Cluster 3 was prominently associated with depression in sleep-deprived participants using unweighted UniFrac distance (β = 0.93, p < 0.001), and Cluster 2 was significant among those with excessive sleep across both unweighted (β = 0.80, p = 0.0004) and weighted UniFrac distances (β = 0.60, p = 0.001). Conclusion This study highlights the crucial role of oral microbiome diversity in moderating the U-shaped relationship between sleep duration and depression risk.
Collapse
Affiliation(s)
- Yan Liu
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Ling Zhang
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Can Yang
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Liping Zhi
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
| | - Xu Steven Xu
- Clinical Pharmacology and Quantitative Science, Genmab Inc., Princeton, NJ, United States
| | - Min Yuan
- Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
| |
Collapse
|
27
|
Kearns R. The Kynurenine Pathway in Gut Permeability and Inflammation. Inflammation 2024:10.1007/s10753-024-02135-x. [PMID: 39256304 DOI: 10.1007/s10753-024-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Newry, Northern Ireland, United Kingdom.
| |
Collapse
|
28
|
Cao M, Huang P, Xu LS, Zhang YH. Analysis of gut microbiota-derived metabolites regulating pituitary neuroendocrine tumors through network pharmacology. Front Pharmacol 2024; 15:1403864. [PMID: 39295931 PMCID: PMC11408289 DOI: 10.3389/fphar.2024.1403864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are a special class of tumors of the central nervous system that are closely related to metabolism, endocrine functions, and immunity. In this study, network pharmacology was used to explore the metabolites and pharmacological mechanisms of PitNET regulation by gut microbiota. The metabolites of the gut microbiota were obtained from the gutMGene database, and the targets related to the metabolites and PitNETs were determined using public databases. A total of 208 metabolites were mined from the gutMGene database; 1,192 metabolite targets were screened from the similarity ensemble approach database; and 2,303 PitNET-related targets were screened from the GeneCards database. From these, 392 overlapping targets were screened between the metabolite and PitNET-related targets, and the intersection between these overlapping and gutMGene database targets (223 targets) were obtained as the core targets (43 targets). Using the protein-protein interaction (PPI) network analysis, Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway and metabolic pathway analysis, CXCL8 was obtained as a hub target, tryptophan metabolism was found to be a key metabolic pathway, and IL-17 signaling was screened as the key KEGG signaling pathway. In addition, molecular docking analysis of the active metabolites and target were performed, and the results showed that baicalin, baicalein, and compound K had good binding activities with CXCL8. We also describe the potential mechanisms for treating PitNETs using the information on the microbiota (Bifidobacterium adolescentis), signaling pathway (IL-17), target (CXCL8), and metabolites (baicalin, baicalein, and compound K); we expect that these will provide a scientific basis for further study.
Collapse
Affiliation(s)
- Min Cao
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Huang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lun-Shan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi-Hua Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
29
|
Sugden SG, Merlo G, Manger S. Strengthening Neuroplasticity in Substance Use Recovery Through Lifestyle Intervention. Am J Lifestyle Med 2024; 18:648-656. [PMID: 39309323 PMCID: PMC11412380 DOI: 10.1177/15598276241242016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The incidence of substance use and behavioral addictions continues to increase throughout the world. The Global Burden of Disease Study shows a growing impact in disability-adjusted life years due to substance use. Substance use impacts families, communities, health care, and legal systems; yet, the vast majority of individuals with substance use disorders do not seek treatment. Within the United States, new legislation has attempted to increase the availability of buprenorphine, but the impact of substance use continues. Although medications and group support therapy have been the mainstay of treatment for substance use, lifestyle medicine offers a valuable adjunct therapy that may help strengthen substance use recovery through healthy neuroplastic changes.
Collapse
Affiliation(s)
- Steven G Sugden
- Huntsman Mental Health Institute, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, USA (SS)
| | - Gia Merlo
- Grossman School of Medicine, New York University, Garwood, NJ, USA (GM)
| | - Sam Manger
- Academic Lead, Lifestyle Medicine, James Cook University, Australia
| |
Collapse
|
30
|
Zhang P, Jin W, Lyu Z, Lyu X, Li L. Study on the mechanism of gut microbiota in the pathogenetic interaction between depression and Parkinson 's disease. Brain Res Bull 2024; 215:111001. [PMID: 38852651 DOI: 10.1016/j.brainresbull.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Depression and Parkinson's disease share pathogenetic characteristics, meaning that they can impact each other and exacerbate their respective progression. From a pathogenetic perspective, depression can develop into Parkinson's disease and is a precursor symptom of Parkinson's disease; Parkinson's disease is also often accompanied by depression. From a pharmacological perspective, the use of antidepressants increases the risk of developing Parkinson's disease, and therapeutic medications for Parkinson's disease can exacerbate symptoms of depression. Therefore, identifying how Parkinson's disease and depression impact each other in their development is key to formulating preventive measures and targeted treatment. One commonality in the pathogenesis of depression and Parkinson's disease are alterations in the gut microbiota, with mechanisms interacting in neural, immune inflammatory, and neuroendocrine pathways. This paper reviews the role of gut microbiota in the pathogenesis of depression and Parkinson's disease; conducts a study of the relationship between both conditions and medication; and suggests that dysregulated gut microbiota may be a key factor in explaining the relationship between Parkinson's disease and depression. Finally, on the basis of these findings, this article hopes to provide suggestions that new ideas for the prevention and treatment of depression and Parkinson's disease.
Collapse
Affiliation(s)
- Peiyun Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Jin
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhaoshun Lyu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxuan Lyu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lihong Li
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
| |
Collapse
|
31
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
32
|
Savuca A, Curpan AS, Hritcu LD, Buzenchi Proca TM, Balmus IM, Lungu PF, Jijie R, Nicoara MN, Ciobica AS, Solcan G, Solcan C. Do Microplastics Have Neurological Implications in Relation to Schizophrenia Zebrafish Models? A Brain Immunohistochemistry, Neurotoxicity Assessment, and Oxidative Stress Analysis. Int J Mol Sci 2024; 25:8331. [PMID: 39125900 PMCID: PMC11312823 DOI: 10.3390/ijms25158331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania;
| | - Teodora Maria Buzenchi Proca
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Petru Fabian Lungu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| |
Collapse
|
33
|
Dong Y, Zhu Q, Li Y, Wang R, Xu W, Tang X, Li X, Lv X, Kong X, Cai L, Niu Y. Longevity extension in rats via improved redox homeostasis with high carbohydrate diet intervention from weaning to adulthood: a comprehensive multi-omics study. Food Funct 2024; 15:7920-7935. [PMID: 38979640 DOI: 10.1039/d4fo01156b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Early dietary patterns potentially influence the health status and lifespan throughout adulthood and the entire lifespan. However, dietary behaviors are difficult for everyone to control during adolescence. It is even more important to study the effects of interventions of early dietary patterns on the lifespan under arbitrary feeding conditions. The research involves observing the survival status and lifespan of rats from weaning to adulthood with three different dietary patterns (a high-carbohydrate diet (HC), a high-protein diet (HP), and a high-fat diet (HF)) under ad libitum feeding conditions. The administration of high-carbohydrate diets leads to a significant extension of both median and maximum survival times (P < 0.05) in Wistar rats. Furthermore, it markedly enhanced the spatial memory capacity, mitigated the occurrence of liver and kidney pathological outcomes in elderly rats, and increased the abundance of gut microbiota improving amino acid metabolism. Additionally, feeding rats a high-carbohydrate diet improved glutathione (GSH) synthesis and recycling and activated the expression and upregulation of the lifespan-related proteins Foxo3a/Sirt3 and the key metabolic enzyme GPX-4. The high-carbohydrate diet from weaning to adulthood may potentially extend the lifespan by enhancing rat systemic glutathione synthesis, recycling, and improving the redox state pathway.
Collapse
Affiliation(s)
- Yuanjie Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Qiushuang Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Yuqiao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Ruohua Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xiangju Kong
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | - Liying Cai
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
34
|
Wadop YN, Vasquez EL, Mathews JJ, Muhammad JAS, Mavarez RP, Satizabal C, Gonzales MM, Tanner J, Maestre G, Fonteh AN, Seshadri S, Kautz TF, Fongang B. Differential Patterns of Gut and Oral Microbiomes in Hispanic Individuals with Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605455. [PMID: 39211240 PMCID: PMC11361189 DOI: 10.1101/2024.07.27.605455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease and related dementias (ADRD) have been associated with alterations in both oral and gut microbiomes. While extensive research has focused on the role of gut dysbiosis in ADRD, the contribution of the oral microbiome remains relatively understudied. Furthermore, the potential synergistic interactions between oral and gut microbiomes in ADRD pathology are largely unexplored. This study aims to evaluate distinct patterns and potential synergistic effects of oral and gut microbiomes in a cohort of predominantly Hispanic individuals with cognitive impairment (CI) and without cognitive impairment (NC). We conducted 16S rRNA gene sequencing on stool and saliva samples from 32 participants (17 CI, 15 NC; 62.5% female, mean age = 70.4 ± 6.2 years) recruited in San Antonio, Texas, USA. Correlation analysis through MaAslin2 assessed the relationship between participants' clinical measurements (e.g., fasting glucose and blood cholesterol) and their gut and saliva microbial contents. Differential abundance analysis evaluated taxa with significant differences between CI and NC groups, and alpha and beta diversity metrics assessed within-sample and group compositional differences. Our analyses revealed no significant differences between NC and CI groups in fasting glucose or blood cholesterol levels. However, a clear association was observed between gut microbiome composition and levels of fasting glucose and blood cholesterol. While alpha and beta diversity metrics showed no significant differences between CI and NC groups, differential abundance analysis revealed an increased presence of oral genera such as Dialister , Fretibacterium , and Mycoplasma in CI participants. Conversely, CI individuals exhibited a decreased abundance of gut genera, including Shuttleworthia , Holdemania , and Subdoligranulum , which are known for their anti-inflammatory properties. No evidence was found for synergistic contributions between oral and gut microbiomes in the context of ADRD. Our findings suggest that similar to the gut microbiome, the oral microbiome undergoes significant modifications as individuals transition from NC to CI. Notably, the identified oral microbes have been previously associated with periodontal diseases and gingivitis. These results underscore the necessity for further investigations with larger sample sizes to validate our findings and elucidate the complex interplay between oral and gut microbiomes in ADRD pathogenesis.
Collapse
|
35
|
Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, Chen G, Farag MA, Yan N, Liu L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem 2024; 446:138739. [PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao 266101, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
36
|
Sejbuk M, Siebieszuk A, Witkowska AM. The Role of Gut Microbiome in Sleep Quality and Health: Dietary Strategies for Microbiota Support. Nutrients 2024; 16:2259. [PMID: 39064702 PMCID: PMC11279861 DOI: 10.3390/nu16142259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary components, including dietary fiber, unsaturated fatty acids, and polyphenols, along with meal timing and spacing, significantly affect the microbiota's capacity to produce various metabolites essential for quality sleep and overall health. This review explores the role of gut microbiota in regulating sleep through various metabolites such as short-chain fatty acids, tryptophan, serotonin, melatonin, and gamma-aminobutyric acid. A balanced diet rich in plant-based foods enhances the production of these sleep-regulating metabolites, potentially benefiting overall health. This review aims to investigate how dietary habits affect gut microbiota composition, the metabolites it produces, and the subsequent impact on sleep quality and related health conditions.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
37
|
Bai H, Geng D, Xue F, Li X, Wang C, Wang C, Guo Q, Jiang Y, Wang Z, Bi Y, Chen G, Chang G. Gut-brain bidirectional determination in regulating the residual feed intake of small-sized meat ducks. Poult Sci 2024; 103:103778. [PMID: 38703760 PMCID: PMC11079523 DOI: 10.1016/j.psj.2024.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The gut-brain axis is essential in maintaining the homeostasis of neuronal system, endocrine system, and intestinal microbiota in both the afferent and efferent directions. This axis is considered to be a key mechanism that regulates feed efficiency (FE). This study aimed to investigate the regulatory mechanisms of gut-brain axis-related genes on the residual feed intake (RFI) in H-strain small-sized meat ducks. A total of 500 ducks with similar initial BW (635.2 ± 15.1 g) were selected and reared in the same experimental facility until slaughter at 42 d of age. RFI was calculated from the average daily gain (ADG), average daily feed intake (ADFI), and metabolic body weight (MBW0.75). Thirty high-RFI (H-RFI) and 30 low-RFI (L-RFI) birds were selected for further evaluation of growth performance, carcass characteristics, and blood biochemical parameter measurements. Six L-RFI and 6 H-RFI birds were then subjected to hypothalamic transcriptomic and cecal microbial sequencing analyses. Results indicated that L-RFI birds exhibited lower production performance (ADFI, FCR, and RFI) and blood biochemical indices (total cholesterol and ghrelin content) compared with H-RFI birds (P < 0.05). Gene expression differed significantly between the L-RFI and H-RFI birds, with 70 upregulated and 50 downregulated genes. The bacterial communities of L-RFI birds showed higher abundances of Bacteroides, Bifidobacterium, and Lactococcus, and lower abundances of Erysipelatoclostridium, Parasutterella, Fournierella, and Blautia compared with H-RFI birds (P < 0.05). Interactive analysis revealed bacterial communities associated with FE were significantly correlated with hypothalamic genes (P < 0.05), for example, Bacteroides was positively correlated with DGKH and LIPT2, while negatively correlated with CAPN9, GABRD, and PDE1A. Bifidobacterium showed significant correlations with ATP2A3, CALHM6, and TMEM121B. Overall, RFI was a crucial indicator of FE, regulated by interactions between brain gene expression and gut microbiota through cAMP signaling, neuroactive ligand-receptor interaction, and calcium signaling pathways. Notably, increased expression of hypothalamic genes and abundance of carbohydrate-utilization microbiota in L-RFI meat ducks improved FE by enhancing energy metabolism and volatile fatty acids absorption.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Dandan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Fuguang Xue
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaofan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Chenxiao Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Chenyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
38
|
Caamaño-Navarrete F, Del-Cuerpo I, Arriagada-Hernández C, Alvarez C, Gaya AR, Reuter CP, Delgado-Floody P. Association between Active Commuting and Lifestyle Parameters with Mental Health Problems in Chilean Children and Adolescent. Behav Sci (Basel) 2024; 14:554. [PMID: 39062377 PMCID: PMC11273756 DOI: 10.3390/bs14070554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Little is known about the association between active commuting (i.e., walking or cycling to school) with lifestyle parameters and mental health in youths. The objective of the present study was to investigate the association between mental health problems and symptoms of depression, anxiety, and stress with lifestyle (i.e., food habits, screen time, physical activity, and sleep quality), active commuting, and gender. METHODS A total of 511 children and adolescents (boys, n = 249; girls, n = 262) aged 10 to 17 years participated in the study. Lifestyle parameters and mental health were evaluated using the Depression Anxiety and Stress Scale (DASS-21). RESULTS Girls reported higher levels of anxiety (p = 0.001), depression (p = 0.001), and stress (p = 0.001). Mental health problems showed a positive association with gender (girls, β = 3.06, p < 0.001) and a negative association with food habits (β = -0.65, p = 0.019). Anxiety was positively associated with gender (β = 7.88, p < 0.001) and negatively associated with food habits (β = -0.23, p = 0.019). Gender (girls) and food habits were also associated with symptoms of depression (β = 2.29, p < 0.001 and β = -0.27, p = 0.005, respectively). Finally, active commuting was inversely associated with stress (β = -1.24, p = 0.008), and stress was positively linked to gender (β = 2.53, p < 0.001). CONCLUSIONS Active commuting, lifestyle parameters, and gender were associated with mental health in children and adolescents. Moreover, girls reported higher levels of anxiety, symptoms of depression, and stress.
Collapse
Affiliation(s)
- Felipe Caamaño-Navarrete
- Physical Education Career, Universidad Autónoma de Chile, Temuco 4780000, Chile; (F.C.-N.); (C.A.-H.)
| | - Indya Del-Cuerpo
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18010 Granada, Spain;
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18010 Granada, Spain
| | - Carlos Arriagada-Hernández
- Physical Education Career, Universidad Autónoma de Chile, Temuco 4780000, Chile; (F.C.-N.); (C.A.-H.)
- Grupo de Investigación Colaborativa para el Desarrollo Escolar (GICDE), Temuco 4780000, Chile
| | - Cristian Alvarez
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
| | - Anelise Reis Gaya
- Graduate Program in Human Movement Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90690-200, Brazil;
| | - Cézane Priscila Reuter
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Independência Av.2293-Universitário, Santa Cruz do Sul 96815-900, Brazil;
| | - Pedro Delgado-Floody
- Department of Physical Education, Sport and Recreation, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
39
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. The Diagnosis of Intestinal Fibrosis in Crohn's Disease-Present and Future. Int J Mol Sci 2024; 25:6935. [PMID: 39000043 PMCID: PMC11241173 DOI: 10.3390/ijms25136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
40
|
Zhang H, Zhou Y, Pan Z, Wang B, Yang L, Zhang N, Chen B, Wang X, Jian Z, Wang L, Ling H, Qin X, Zhang Z, Liu T, Zheng A, Tan Y, Bi Y, Yang R. Toxicity assessment of Cucurbita pepo cv Dayangua and its effects on gut microbiota in mice. BMC Complement Med Ther 2024; 24:243. [PMID: 38909225 PMCID: PMC11193904 DOI: 10.1186/s12906-024-04551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Cucurbita pepo cv Dayangua (CPD) is an edible plant with diverse pharmacological properties. The current research on CPD has primarily focused on initial investigations of its chemical composition and pharmacological effects, and no comprehensive toxicity assessment has been conducted to date. METHODS In the present study, the toxicity of CPD was evaluated through both acute and sub-chronic oral toxicity tests in mice. 16S rDNA sequencing was used to analyze the composition of the gut microbiota of mice at different time points to observe the effect of CPD on these microbial communities. RESULTS In the acute toxicity test, CPD exhibited low toxicity, with a median lethal dose (LD50) > 2000 mg/kg. The sub-chronic toxicity test indicated that CPD administration at doses of 200, 400, and 600 mg/kg did not cause mortality or significant organ damage in mice. Furthermore, analysis of the gut microbiota after gavage administration of CPD at 400 and 600 mg/kg revealed an improved abundance of some beneficial gut bacteria. CONCLUSIONS In summary, no acute or sub-chronic toxic effects were observed in mice following the oral administration of CPD. CPD did not affect the structure and diversity of the gut microbiota and may contribute to an increase in the number of beneficial gut bacteria.
Collapse
Affiliation(s)
- Huan Zhang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Bikun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lei Yang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Nan Zhang
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Baiyi Chen
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Xiaona Wang
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Zhiguang Jian
- Heilongjiang Biodi Bio-Pharma Technology Company Lmt., No. 178, Yuexiujie, Harbin, Heilongjiang Province, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaoming Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhelin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Teng Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Ruifu Yang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
41
|
Springfield-Trice S, Joyce C, Wu YH, Hsing AW, Cunanan K, Gardner C. Diet Quality and Resilience through Adulthood: A Cross-Sectional Analysis of the WELL for Life Study. Nutrients 2024; 16:1724. [PMID: 38892657 PMCID: PMC11174593 DOI: 10.3390/nu16111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Despite evidence suggesting the importance of psychological resilience for successful aging, little is known about the relationship between diet quality and resilience at different ages. Our study aims to examine the association between diet quality and resilience across the stages of adulthood. Using Stanfords' WELL for Life (WELL) survey data, we conducted a cross-sectional study of diet quality, resilience, sociodemographic, perceived stress, lifestyle, and mental health factors among 6171 Bay Area adults. Diet quality was measured by the WELL Diet Score, which ranges from 0-120. A higher score indicates a better diet quality. Linear regression analysis was used to evaluate the association between the WELL Diet Score and overall resilience and within the following age groups: early young (18-24), late young (25-34), middle (35-49), and late adulthood (≥50). To test whether these associations varied by age groups, an age group by resilience interaction term was also examined. In the fully adjusted model, the WELL Diet Score was positively and significantly associated with overall resilience (all ages (β = 1.2 ± sd: 0.2, p < 0.001)) and within each age group (early young (β = 1.1 ± sd: 0.3, p < 0.001); late young (β = 1.2 ± sd: 0.3, p < 0.001); middle (β = 0.9 ± sd: 0.3, p < 0.001); and late adulthood (β = 1.0 ± sd: 0.3, p < 0.001)). Young adults demonstrated the strongest associations between diet quality and resilience. However, there were no significant age-by-resilience interactions. Diet quality may be positively associated with resilience at all stages of adulthood. Further research is needed to determine whether assessing and addressing resilience could inform the development of more effective dietary interventions, particularly in young adults.
Collapse
Affiliation(s)
- Sparkle Springfield-Trice
- Department of Public Health Sciences, Parkinson School of Public Health Sciences and Public Health, Loyola University Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA
| | - Cara Joyce
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA;
| | - Yi-Hsuan Wu
- Stanford Prevention Research Center School of Medicine, Stanford University, 3180 Porter Drive, Palo Alto, CA 94304, USA; (Y.-H.W.); (A.W.H.); (C.G.)
| | - Ann W. Hsing
- Stanford Prevention Research Center School of Medicine, Stanford University, 3180 Porter Drive, Palo Alto, CA 94304, USA; (Y.-H.W.); (A.W.H.); (C.G.)
| | - Kristen Cunanan
- Quantitative Sciences Unit, School of Medicine, Stanford University, 3180 Porter Drive, Palo Alto, CA 94304, USA;
| | - Christopher Gardner
- Stanford Prevention Research Center School of Medicine, Stanford University, 3180 Porter Drive, Palo Alto, CA 94304, USA; (Y.-H.W.); (A.W.H.); (C.G.)
| |
Collapse
|
42
|
Shang Z, Pai L, Patil S. Unveiling the dynamics of gut microbial interactions: a review of dietary impact and precision nutrition in gastrointestinal health. Front Nutr 2024; 11:1395664. [PMID: 38873568 PMCID: PMC11169903 DOI: 10.3389/fnut.2024.1395664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
The human microbiome, a dynamic ecosystem within the gastrointestinal tract, plays a pivotal role in shaping overall health. This review delves into six interconnected sections, unraveling the intricate relationship between diet, gut microbiota, and their profound impact on human health. The dance of nutrients in the gut orchestrates a complex symphony, influencing digestive processes and susceptibility to gastrointestinal disorders. Emphasizing the bidirectional communication between the gut and the brain, the Brain-Gut Axis section highlights the crucial role of dietary choices in physical, mental, and emotional well-being. Autoimmune diseases, particularly those manifesting in the gastrointestinal tract, reveal the delicate balance disrupted by gut microbiome imbalances. Strategies for reconciling gut microbes through diets, precision nutrition, and clinical indications showcase promising avenues for managing gastrointestinal distress and revolutionizing healthcare. From the Low-FODMAP diet to neuro-gut interventions, these strategies provide a holistic understanding of the gut's dynamic world. Precision nutrition, as a groundbreaking discipline, holds transformative potential by tailoring dietary recommendations to individual gut microbiota compositions, reshaping the landscape of gastrointestinal health. Recent advancements in clinical indications, including exact probiotics, fecal microbiota transplantation, and neuro-gut interventions, signify a new era where the gut microbiome actively participates in therapeutic strategies. As the microbiome takes center stage in healthcare, a paradigm shift toward personalized and effective treatments for gastrointestinal disorders emerges, reflecting the symbiotic relationship between the human body and its microbial companions.
Collapse
Affiliation(s)
- Zifang Shang
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Liu Pai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
43
|
Basso M, Zorzan I, Johnstone N, Barberis M, Cohen Kadosh K. Diet quality and anxiety: a critical overview with focus on the gut microbiome. Front Nutr 2024; 11:1346483. [PMID: 38812941 PMCID: PMC11133642 DOI: 10.3389/fnut.2024.1346483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024] Open
Abstract
Anxiety disorders disproportionally affect females and are frequently comorbid with eating disorders. With the emerging field of nutritional psychiatry, focus has been put on the impact of diet quality in anxiety pathophysiology and gut microbiome underlying mechanisms. While the relationship between diet and anxiety is bidirectional, improving dietary habits could better facilitate the actions of pharmacological and psychological therapies, or prevent their use. A better understanding of how gut bacteria mediate and moderate such relationship could further contribute to develop personalized programs and inform probiotics and prebiotics manufacturing. To date, studies that look simultaneously at diet, the gut microbiome, and anxiety are missing as only pairwise relationships among them have been investigated. Therefore, this study aims at summarizing and integrating the existing knowledge on the dietary effects on anxiety with focus on gut microbiome. Findings on the effects of diet on anxiety are critically summarized and reinterpreted in relation to findings on (i) the effects of diet on the gut microbiome composition, and (ii) the associations between the abundance of certain gut bacteria and anxiety. This novel interpretation suggests a theoretical model where the relationship between diet and anxiety is mediated and/or modulated by the gut microbiome through multiple mechanisms. In parallel, this study critically evaluates methodologies employed in the nutritional field to investigate the effects of diet on anxiety highlighting a lack of systematic operationalization and assessment strategies. Therefore, it ultimately proposes a novel evidence-based approach that can enhance studies validity, reliability, systematicity, and translation to clinical and community settings.
Collapse
Affiliation(s)
- Melissa Basso
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Irene Zorzan
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| | - Nicola Johnstone
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
44
|
Ishaq HM, Yasin R, Mohammad IS, Fan Y, Li H, Shahzad M, Xu J. The gut-brain-axis: A positive relationship between gut microbial dysbiosis and glioblastoma brain tumour. Heliyon 2024; 10:e30494. [PMID: 38756585 PMCID: PMC11096965 DOI: 10.1016/j.heliyon.2024.e30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The glioblastoma brain tumour (GBM) stands out as the most aggressive and resistant-to-treatment malignancy. Nevertheless, the gut-brain connection plays a pivotal role in influencing the growth and activation of the central nervous system. In this particular investigation, we aimed to assess and characterize the gut microbial ecosystem in GBM patients, both quantitatively and qualitatively. We collected faecal samples from 15 healthy volunteers and 25 GBM patients. To delve into the microbial content, we employed PCR-DGGE, targeting the V3 region of the 16S rRNA gene, and conducted qPCR to measure the levels of crucial intestinal bacteria. For a more in-depth analysis, high-throughput sequencing was performed on a selection of 20 random faecal samples (10 from healthy individuals and 10 from GBM patients), targeting the V3+V4 region of the 16S rRNA gene. Our findings from examining the richness and diversity of the gut microbiota unveiled that GBM patients exhibited significantly higher microbial diversity compared to healthy individuals. At the phylum level, Proteobacteria saw a significant increase, while Firmicutes experienced a noteworthy decrease in the GBM group. Moving down to the family level, we observed significantly elevated levels of Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae in GBM patients, while levels of Veillonellaceae, Rikenellaceae, and Prevotellaceae were notably lower. Delving into genera statistics, we noted a substantial increase in the abundance of Parasutterella, Escherichia-Shigella, and Bacteroides, alongside significantly lower levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9 in the GBM group compared to the control group. Furthermore, when examining specific species, we found a significant increase in Bacteroides vulgatus and Escherichia coli in the GBM group. These observations collectively indicate a marked dysbiosis in the gut microbial composition of GBM patients. Additionally, the GBM group exhibited notably higher levels of alpha diversity when compared to the control group. This increase in diversity suggests a significant bacterial overgrowth in the gut of GBM patients in contrast to the controls. As a result, this research opens up potential avenues to gain a better understanding of the underlying mechanisms, pathways, and potential treatments for GBM, stemming from the significant implications of gut microbial dysbiosis in these patients.
Collapse
Affiliation(s)
- Hafiz Muhammad Ishaq
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Pathobiology and Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - Riffat Yasin
- Department of Zoology University of Education Lahore, D.G. Khan Campus, Pakistan
| | - Imran Shair Mohammad
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Yang Fan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Huan Li
- Xi'an Mental Health Centre, Xi'an, China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Khyaban-e-Jamia Punjab, Lahore, Pakistan
| | - Jiru Xu
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Wang X, Yuan W, Yang C, Wang Z, Zhang J, Xu D, Sun X, Sun W. Emerging role of gut microbiota in autoimmune diseases. Front Immunol 2024; 15:1365554. [PMID: 38765017 PMCID: PMC11099291 DOI: 10.3389/fimmu.2024.1365554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Zhangxue Wang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Rheumatology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xicai Sun
- Department of Hospital Office, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Wenchang Sun
- Department of Central Laboratory, The First Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
47
|
Solberg BS, Kvalvik LG, Instanes JT, Hartman CA, Klungsøyr K, Li L, Larsson H, Magnus P, Njølstad PR, Johansson S, Andreassen OA, Bakken NR, Bekkhus M, Austerberry C, Smajlagic D, Havdahl A, Corfield EC, Haavik J, Gjestad R, Zayats T. Maternal Fiber Intake During Pregnancy and Development of Attention-Deficit/Hyperactivity Disorder Symptoms Across Childhood: The Norwegian Mother, Father, and Child Cohort Study. Biol Psychiatry 2024; 95:839-848. [PMID: 38142720 DOI: 10.1016/j.biopsych.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Epidemiological studies suggest that maternal diet quality during pregnancy may influence the risk of neurodevelopmental disorders in offspring. Here, we investigated associations between maternal intake of dietary fiber and attention-deficit/hyperactivity disorder (ADHD) symptoms in early childhood. METHODS We used longitudinal data of up to 21,852 mother-father-child trios (49.2% female offspring) from MoBa (the Norwegian Mother, Father, and Child Cohort Study). The relationships between maternal fiber intake during pregnancy and offspring ADHD symptoms at ages 3, 5, and 8 years were examined using 1) multivariate regression (overall levels of ADHD symptoms), 2) latent class analysis (subclasses of ADHD symptoms by sex at each age), and 3) latent growth curves (longitudinal change in offspring ADHD symptoms). Covariates were ADHD polygenic scores in child and parents, total energy intake and energy-adjusted sugar intake, parental ages at birth of the child, and sociodemographic factors. RESULTS Higher maternal prenatal fiber intake was associated with lower offspring ADHD symptom scores at all ages (Bage3 = -0.14 [95% CI, -0.18 to -0.10]; Bage5 = -0.14 [95% CI, -0.19 to -0.09]; Bage8 = -0.14 [95% CI, -0.20 to -0.09]). Of the derived low/middle/high subclasses of ADHD symptoms, fiber was associated with lower risk of belonging to the middle subclass for boys and girls and to the high subclass for girls only (middle: odds ratioboys 0.91 [95% CI, 0.86 to 0.97]/odds ratiogirls 0.86 [95% CI, 0.81 to 0.91]; high: odds ratiogirls 0.82 [95% CI, 0.72 to 0.94]). Maternal fiber intake and rate of change in child ADHD symptoms across ages were not associated. CONCLUSIONS Low prenatal maternal fiber intake may increase symptom levels of ADHD in offspring during childhood, independently of genetic predisposition to ADHD, unhealthy dietary exposures, and sociodemographic factors.
Collapse
Affiliation(s)
- Berit Skretting Solberg
- Department of Biomedicine, University of Bergen, Norway; Child and Adolescent Psychiatric Outpatient Unit, Hospital Betanien, Bergen, Norway.
| | | | | | - Catharina A Hartman
- Interdisciplinary Center Psychiatry and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Lin Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Rasmus Njølstad
- Department of Clinical Science, Mohn Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiciton, Oslo University Hospital, Oslo, Norway
| | - Nora Refsum Bakken
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona Bekkhus
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Chloe Austerberry
- Centre for Family Research, University of Cambridge, Cambridge, United Kingdom; Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Dinka Smajlagic
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Promenta Research Centre, Department of Psychology, University of Oslo, Oslo, Norway; Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Elizabeth C Corfield
- Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Psychiatry, Research Department, Haukeland University Hospital, Bergen, Norway
| | - Rolf Gjestad
- Department of Psychiatry, Research Department, Haukeland University Hospital, Bergen, Norway; Center for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway; Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
48
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
49
|
Chae YR, Lee YR, Kim YS, Park HY. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024; 34:747-756. [PMID: 38321650 DOI: 10.4014/jmb.2312.12031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
Collapse
Affiliation(s)
- Yu-Rim Chae
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
50
|
El-Heis S, Barton SJ, Chang HF, Nield H, Cox V, Galani S, Cutfield W, Chan SY, Godfrey KM. Maternal mood, anxiety and mental health functioning after combined myo-inositol, probiotics, micronutrient supplementation from preconception: Findings from the NiPPeR RCT. Psychiatry Res 2024; 334:115813. [PMID: 38402742 PMCID: PMC11137872 DOI: 10.1016/j.psychres.2024.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Observational studies have reported associations between nutrition during pregnancy and mental wellbeing. As secondary outcomes, the NiPPeR double-blind randomized trial in women planning conception investigated whether a myo-inositol, probiotics and enriched micronutrients formulation (intervention) taken preconception and throughout pregnancy could improve mental wellbeing during pregnancy and post-delivery, compared with a standard micronutrient supplement (control). Mood and anxiety symptoms were ascertained (Edinburgh Postnatal Depression Scale (EPDS), State-Trait Anxiety Inventory (STAI-state)) at preconception (baseline), 7, 28 and 34 weeks gestation, 3-weeks and 6-months post-delivery. EPDS>=13 was categorised as low mood; STAI-state>=45 as high anxiety. Change in mental health functioning was assessed as difference between preconception baseline and 6-month post-delivery 12-item Short-Form Health Survey (SF-12v2) mental component scores. Adjusting for site, ethnicity and baseline scores, there were no robust differences in EPDS and STAI-state scores between intervention and control groups across pregnancy (n = 630) and post-delivery (n = 532). Compared to controls, intervention group women averaged a 1.21 (95 %CI 0.04,2.39) higher change in SF-12v2 mental component score from preconception to 6-months post-delivery. Taking a myo-inositol, micronutrient and probiotic supplement during preconception/pregnancy had no effect on mood and anxiety, but there was evidence of a modest improvement in mental health functioning from preconception to 6-months post-delivery.
Collapse
Affiliation(s)
- Sarah El-Heis
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, Southampton and University Hospital Southampton NHS Foundation Trust, SO16 6YD, United Kingdom.
| | - Sheila J Barton
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, Southampton and University Hospital Southampton NHS Foundation Trust, SO16 6YD, United Kingdom
| | - Hsin Fang Chang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228
| | - Heidi Nield
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Vanessa Cox
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Sevasti Galani
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Wayne Cutfield
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228; Agency for Science, Technology and Research, Singapore Institute for Clinical Sciences, 117609, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, Southampton and University Hospital Southampton NHS Foundation Trust, SO16 6YD, United Kingdom
| |
Collapse
|