1
|
Ferrier K, Graff M, Konigsberg IR, Stanislawski M, Highland HM, Raffield LM, Carson AP, Boerwinkle E, Norris JM, Gignoux CR, Hendricks AE, Raghavan S, North KE, Allison MA, Budoff MJ, Kasela S, Aguet F, Joseph JJ, Kooperberg C, Rich SS, Rotter JI, Lange EM, Lange LA. Epigenome-wide association study meta-analysis of BMI in African American Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.15.25320607. [PMID: 39867370 PMCID: PMC11759601 DOI: 10.1101/2025.01.15.25320607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Despite considerable advances in identifying risk factors for obesity development, there remains substantial gaps in our knowledge about its etiology. Variation in obesity (defined by BMI) is thought to be due in part to heritable factors; however, obesity-associated genetic variants only account for a small portion of heritability. Epigenetic regulation defined by genetic and/or environmental factors with changes in gene expression, may account for some of this "missing heritability". Epigenetic studies of obesity have largely been conducted in populations of European ancestry, despite the disproportionate burden of obesity in African Americans (AAs). To address race/ethnic (RE)-differences in obesity, we conducted a BMI epigenome-wide association study (EWAS) meta-analysis using AA participants from the Jackson Heart Study (JHS, n=1604) and the Multi-Ethnic Study of Atherosclerosis (MESA, n=179). Analyses using a linear regression model with methylation as the outcome and continuous BMI as the predictor were stratified by study and sex, then meta-analyzed. There were 208 methylation sites (CpGs) that reached epigenome-wide significance (p< 8.72x10 -8 ); 151 of these were novel. Of the novel CpGs, 29 CpGs were available for replication testing in a separate sample of AA and 20 replicated. Differentially methylated region (DMR) analysis resulted in 54 DMRs significantly associated with BMI. Several regions are proximal to, or include, genes previously associated with obesity traits (e.g., SOCS3 , ABCG1 , and TGFB1 ) in GWAS. Gene and trait enrichment and pathway analysis showed enrichment for genes in immune system and inflammation related pathways (e.g., the IL-6/JAK/STAT pathway). In conclusion, EWAS of BMI in AAs replicated previously known associations identified in European and multi-ethnic EWAS and identified novel obesity-associated CpGs.
Collapse
|
2
|
Singh M, Dolan CV, Lapato DM, Hottenga JJ, Pool R, Verhulst B, Boomsma DI, Breeze CE, de Geus EJC, Hemani G, Min JL, Peterson RE, Maes HHM, van Dongen J, Neale MC. Unidirectional and bidirectional causation between smoking and blood DNA methylation: evidence from twin-based Mendelian randomisation. Eur J Epidemiol 2025; 40:55-69. [PMID: 39786687 PMCID: PMC11799127 DOI: 10.1007/s10654-024-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects. Here, we apply an integrated approach combining MR with twin causal models to examine causality between smoking and blood DNAm in the Netherlands Twin Register (N = 2577). Analyses revealed potential causal effects of current smoking on DNAm at > 500 sites in/near genes enriched for functional pathways relevant to known biological effects of smoking (e.g., hemopoiesis, cell- and neuro-development, and immune regulation). Notably, we also found evidence of reverse and bidirectional causation at several DNAm sites, suggesting that variation in DNAm at these sites may influence smoking liability. Seventeen of the loci with putative effects of DNAm on smoking showed highly specific enrichment for gene-regulatory functional elements in the brain, while the top three sites annotated to genes involved in G protein-coupled receptor signalling and innate immune response. These novel findings are partly attributable to the analyses of current smoking in twin models, rather than lifetime smoking typically examined in MR studies, as well as the increased statistical power achieved using multiallelic/polygenic scores as instrumental variables while controlling for potential horizontal pleiotropy. This study highlights the value of twin studies with genotypic and DNAm data for investigating causal relationships of DNAm with health and disease.
Collapse
Affiliation(s)
- Madhurbain Singh
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dana M Lapato
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Brad Verhulst
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
- UCL Cancer Institute, University College London, London, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hermine H M Maes
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Du J, Luo H, Ye S, Zhang H, Zheng Z, Liu K. Unraveling IFI44L's biofunction in human disease. Front Oncol 2024; 14:1436576. [PMID: 39737399 PMCID: PMC11682996 DOI: 10.3389/fonc.2024.1436576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Interferon-induced protein 44-like (IFI44L) is regarded as an immune-related gene and is a member of interferon-stimulated genes (ISGs). They participate in network transduction, and its own epigenetic modifications, apoptosis, cell-matrix formation, and many other pathways in tumors, autoimmune diseases, and viral infections. The current review provides a comprehensive overview of the onset and biological mechanisms of IFI44L and its potential clinical applications in malignant tumors and non-neoplastic diseases.
Collapse
|
4
|
Ren J, Zhou L, Li S, Zhang Q, Xiao X. The roles of the gut microbiota, metabolites, and epigenetics in the effects of maternal exercise on offspring metabolism. Am J Physiol Endocrinol Metab 2024; 327:E760-E772. [PMID: 39535269 DOI: 10.1152/ajpendo.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Metabolic diseases, including obesity, dyslipidemia, and type 2 diabetes, have become severe challenges worldwide. The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that an adverse intrauterine environment can increase the risk of metabolic disorders in offspring. Studies have demonstrated that maternal exercise is an effective intervention for improving the offspring metabolic health. However, the pathways through which exercise works are unclear. It has been reported that the gut microbiota mediates the effect of maternal exercise on offspring metabolism, and epigenetic modifications have also been proposed to be important molecular mechanisms. Microbial metabolites can influence epigenetics by providing substrates for DNA or histone modifications, binding to G-protein-coupled receptors to affect downstream pathways, or regulating the activity of epigenetic modifying enzymes. This review aims to summarize the intergenerational effect of maternal exercise and proposes that gut microbiota-metabolites-epigenetic regulation is an important mechanism by which maternal exercise improves offspring metabolism, which may yield novel targets for the early prevention and intervention of metabolic diseases.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Singh M, Dolan CV, Lapato DM, Hottenga JJ, Pool R, Verhulst B, Boomsma DI, Breeze CE, de Geus EJC, Hemani G, Min JL, Peterson RE, Maes HHM, van Dongen J, Neale MC. Unidirectional and Bidirectional Causation between Smoking and Blood DNA Methylation: Evidence from Twin-based Mendelian Randomisation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309184. [PMID: 38946972 PMCID: PMC11213072 DOI: 10.1101/2024.06.19.24309184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects. Here, we apply an integrated approach combining MR with twin causal models to examine causality between smoking and blood DNAm in the Netherlands Twin Register (N=2577). Analyses revealed potential causal effects of current smoking on DNAm at >500 sites in/near genes enriched for functional pathways relevant to known biological effects of smoking (e.g., hemopoiesis, cell- and neuro-development, and immune regulation). Notably, we also found evidence of reverse and bidirectional causation at several DNAm sites, suggesting that variation in DNAm at these sites may influence smoking liability. Seventeen of the loci with putative effects of DNAm on smoking showed highly specific enrichment for gene-regulatory functional elements in the brain, while the top three sites annotated to genes involved in G protein-coupled receptor signalling and innate immune response. These novel findings are partly attributable to the analyses of current smoking in twin models, rather than lifetime smoking typically examined in MR studies, as well as the increased statistical power achieved using multiallelic/polygenic scores as instrumental variables while controlling for potential horizontal pleiotropy. This study highlights the value of twin studies with genotypic and DNAm data for investigating causal relationships of DNAm with health and disease.
Collapse
Affiliation(s)
- Madhurbain Singh
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Conor V. Dolan
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- These authors jointly supervised this work
| | - Dana M. Lapato
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Brad Verhulst
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Current address: Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Charles E. Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
- UCL Cancer Institute, University College London, London, UK
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Roseann E. Peterson
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hermine H. M. Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- These authors jointly supervised this work
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biological Psychology, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
- These authors jointly supervised this work
| |
Collapse
|
6
|
Güçlü-Geyik F, Erginel T, Güleç Ç, Köseoğlu-Büyükkaya P, Erginel-Ünaltuna N. Methylation of the ESR1 promoters in visceral adipose tissue and its relationship with obesity. Mol Biol Rep 2024; 51:1144. [PMID: 39531130 DOI: 10.1007/s11033-024-10091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Obesity is associated with decreased ESR1 expression level in visceral adipose tissue. However, it is unclear exactly what mechanisms are responsible for this decline. The aim of this study was to investigate the impact of aberrant methylation of the ESR1 alternative promoters on decreased ESR1 expression and its connection to obesity. METHODS Visceral adipose tissues and peripheral blood cells were obtained from 21 patients (non-obese and obese) undergoing inguinal hernia or gallbladder removal. Alternative promoter regions, C, E2 and F of the ESR1 gene, were analyzed by Methylation-Specific PCR (MSP) and mRNA levels were measured by quantitative real-time PCR (qPCR) in both visceral adipose tissue and peripheral blood cells. All statistical analyses were performed by SPSS (23.0). RESULTS The methylation percentage in the three promoter regions of ESR1 was not different in obese individuals compared to non-obese individuals. We observed that promoter C had the highest methylation frequency in obese patients, although it was not statistically significant. Additionally, we observed that the hypermethylation of ESR1's promoter C was significantly associated with lower mRNA expression level in obesity (p = 0.020). CONCLUSION This study suggests that methylation of ESR1 promoter C may be a factor in the development of obesity or a consequence of obesity. Further studies with advanced methods and larger study groups are needed to clarify this issue.
Collapse
Affiliation(s)
- Filiz Güçlü-Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad, 34080, Sehremini, Istanbul, Turkey.
| | - Turgay Erginel
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Köseoğlu-Büyükkaya
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nihan Erginel-Ünaltuna
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Banerjee S, Lv J, He C, Qi B, Ding W, Long K, Chen J, Wen J, Chen P. Visceral fat distribution: Interracial studies. Adv Clin Chem 2024; 124:57-85. [PMID: 39818438 DOI: 10.1016/bs.acc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Visceral adipose tissue, a type of abdominal adipose tissue, is highly involved in lipolysis. Because increased visceral adiposity is strongly associated with the metabolic complications related with obesity, such as type 2 diabetes and cardiovascular disease, there is a need for precise, targeted, personalized and site-specific measures clinically. Existing studies showed that ectopic fat accumulation may be characterized differently among different populations due to complex genetic architecture and non-genetic or epigenetic components, ie, Asians have more and Africans have less visceral fat vs Europeans. In this review, we summarize the effects of multiple non-genetic and genetic factors on visceral fat distribution across races. Non-genetic factors include diet, socioeconomic status, sex hormones and psychological factors, etc. We examine genetic factors of racial differences in visceral fat content as well as possible regulatory pathways associated with interracial visceral fat distribution. A comprehensive understanding of both genetic and non-genetic factors that influence the distribution of visceral fat among races, leads us to predict risk of abdominal obesity and metabolic diseases in ethnic groups that enables targeted interventions through accurate diagnosis and treatment as well as reduced risk of obesity-associated complications.
Collapse
Affiliation(s)
- Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiayin Lv
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Chang He
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weijie Ding
- Teaching Department, First Affiliated Hospital of Jilin University, Changchun, China
| | - Kongrong Long
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Junrong Chen
- Teaching Department, First Affiliated Hospital of Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Cantarero-Cuenca A, Gonzalez-Jimenez A, Martínez-Núñez GM, Garrido-Sánchez L, Ranea JAG, Tinahones FJ. Epigenetic profiles in blood and adipose tissue: identifying strong correlations in morbidly obese and non-obese patients. J Mol Med (Berl) 2024; 102:1315-1325. [PMID: 39225820 DOI: 10.1007/s00109-024-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Epigenetic alterations play a pivotal role in conditions influenced by environmental factors such as overweight and obesity. Many of these changes are tissue-specific, which entails a problem in its study since obtaining human tissue is a complex and invasive practice. While blood is widely used as a surrogate biomarker, it cannot directly extrapolate the evidence found in blood to tissue. Moreover, the intricacies of metabolic diseases add a new layer of complexity, as obesity leads to significant alterations in adipose tissue, potentially causing associated pathologies that can disrupt existing correlations seen in healthy individuals. Here, our objective was to determine which epigenetic markers exhibit correlations between blood and adipose tissue, regardless of the metabolic status. We collected paired blood and adipose tissue samples from 64 patients with morbidity obesity and non-obese and employed the MethylationEPIC 850 K array for analysis. We found that only a small fraction, specifically 4.3% (corresponding to 34,825 CpG sites), of the sites showed statistically significant correlations (R ≥ 0.6) between blood and adipose tissue. Within this subset, 5327 CpG sites exhibited a strong correlation (R ≥ 0.8) between blood and adipose tissue. Our findings suggest that the majority of epigenetic markers in peripheral blood do not reliably reflect changes occurring in visceral adipose tissues. However, it is important to note that there exists a distinct set of epigenetic markers that can indeed mirror changes in adipose tissue within blood samples. KEY MESSAGES: More than 8% of methylation sites exhibit similarity between blood and adipose tissues, regardless of BMI The correlation percentage between blood and adipose tissue is strongly influenced by gender The principal genes implicated in this correlation are related to metabolism or the immunological system.
Collapse
Affiliation(s)
- Antonio Cantarero-Cuenca
- Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29590, Málaga, Spain
| | - Andres Gonzalez-Jimenez
- Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29590, Málaga, Spain.
| | - Gracia M Martínez-Núñez
- Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), Málaga, Spain
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad y La Nutrición (CIBERObn), ISCIII, Madrid, Spain
| | - Lourdes Garrido-Sánchez
- Department of Endocrinology and Nutrition, Virgen de La Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29010, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), Málaga, Spain.
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad y La Nutrición (CIBERObn), ISCIII, Madrid, Spain.
| | - Juan A G Ranea
- Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29590, Málaga, Spain
- Department of Biochemistry and Molecular Biology, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), 08034, Barcelona, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de La Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad y La Nutrición (CIBERObn), ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Zeng Q, Song J, Sun X, Wang D, Liao X, Ding Y, Hu W, Jiao Y, Mai W, Aini W, Wang F, Zhou H, Xie L, Mei Y, Tang Y, Xie Z, Wu H, Liu W, Deng T. A negative feedback loop between TET2 and leptin in adipocyte regulates body weight. Nat Commun 2024; 15:2825. [PMID: 38561362 PMCID: PMC10985112 DOI: 10.1038/s41467-024-46783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.
Collapse
Affiliation(s)
- Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfeng Song
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiyan Liao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yayi Jiao
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wuqian Mai
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wufuer Aini
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fanqi Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hui Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying Mei
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Wu Y, Wang X, Wu W, Yang J. Mendelian randomization analysis reveals an independent causal relationship between four gut microbes and acne vulgaris. Front Microbiol 2024; 15:1326339. [PMID: 38371936 PMCID: PMC10869500 DOI: 10.3389/fmicb.2024.1326339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Numerous studies have suggested a correlation between gut microbiota and acne vulgaris; however, no specific causal link has been explored. Materials and methods To investigate the possible causal relationship between gut microbiota and acne vulgaris, this study employed a large-scale genome-wide association study (GWAS) summary statistic. Initially, a two-sample Mendelian randomization (MR) analysis was utilized to identify the specific gut microflora responsible for acne vulgaris. We used the Inverse Variance Weighted (IVW) method as the main MR analysis method. Additionally, we assessed heterogeneity and horizontal pleiotropy, while also examining the potential influence of individual single-nucleotide polymorphisms (SNPs) on the analysis results. In order to eliminate gut microbiota with reverse causal associations, we conducted reverse MR analysis. Multivariate Mendelian randomization analysis (MVMR) was then employed to verify the independence of the causal associations. Finally, we performed SNP annotation on the instrumental variables of independent gut microbiota and acne vulgaris to determine the genes where these genetic variations are located. We also explored the biological functions of these genes through enrichment analysis. Result The IVW method of forward MR identified nine gut microbes with a causal relationship with acne vulgaris (p < 0.05). The findings from the sensitivity analysis demonstrate the absence of heterogeneity or horizontal pleiotropy, and leave-one-out analysis indicates that the results are not driven by a single SNP. Additionally, the Reverse MR analysis excluded two reverse-correlated pathogenic gut microbes. And then, MVMR was used to analyze seven gut microbes, and it was found that Cyanobacterium and Family XIII were risk factors for acne vulgaris, while Ruminococcus1 and Ruminiclostridium5 were protective factors for acne vulgaris. After conducting biological annotation, we identified six genes (PLA2G4A, FADS2, TIMP17, ADAMTS9, ZC3H3, and CPSF4L) that may be associated with the pathogenic gut microbiota of acne vulgaris patients. The enrichment analysis results indicate that PLA2G4A/FADS2 is associated with fatty acid metabolism pathways. Conclusion Our study found independent causal relationships between four gut microbes and acne vulgaris, and revealed a genetic association between acne vulgaris patients and gut microbiota. Consider preventing and treating acne vulgaris by interfering with the relative content of these four gut microbes.
Collapse
Affiliation(s)
- Yujia Wu
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Xiaoyun Wang
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
11
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
12
|
Foster C, Mamaeva O, Shrestha S, Hidalgo B. Epigenetic age in African American adolescents with type 2 diabetes: A cross-sectional case-control study protocol. Health Sci Rep 2023; 6:e1747. [PMID: 38078300 PMCID: PMC10702396 DOI: 10.1002/hsr2.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Background and Aims Type 2 diabetes (T2D) is a disease caused by a relative insulin deficiency compared to the significant insulin requirement needed by the body to achieve glycemic control. T2D in adolescence appears to be increasing in prevalence over the past several decades, necessitating studies to understand for the onset of the disease to occur early in the lifespan. Given the high burden of disease, specifically in young African American adolescents, our study chose to focus initially on feasibility of recruitment of this population. Methods Data was collected at a single study center at Children's of Alabama. The protocol was completed as part of routine care or at a study visit. The study team was able to leverage the Electronic Medical Record to prescreen eligible patients to discuss the study. A variety of times of day were utilized to improve likely of success with reaching potential participants. Inclusion criteria for patients with T2D was focused on the adolescent population (ages 12-18 years), with no history of an obesity syndrome. DNA methylation age will be calculated using the EPIC 850K array. Statistical analysis will be done using linear regression analysis, adjusting for covariates. Conclusions This study's aim was to screen and enroll young African American adolescents for a study investigating epigenetic aging and T2D. Our study found that more direct contact (face-to-face- or phone call) improve success of recruitment. Leveraging the electronic medical record also helped improve success with pre-screening participants. Challenges included recruiting participants who might come from long distances to a tertiary care center. Consolidating appointments helped improve the success of reaching these participants. Other challenges included frequent address changes and changed phone numbers. Close attention to the barriers as well as the successes will aid in understanding effective strategies for this important population.
Collapse
Affiliation(s)
- Christy Foster
- Division of Pediatric EndocrinologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Olga Mamaeva
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sadeep Shrestha
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bertha Hidalgo
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
13
|
Keller M, Svensson SIA, Rohde-Zimmermann K, Kovacs P, Böttcher Y. Genetics and Epigenetics in Obesity: What Do We Know so Far? Curr Obes Rep 2023; 12:482-501. [PMID: 37819541 DOI: 10.1007/s13679-023-00526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Enormous progress has been made in understanding the genetic architecture of obesity and the correlation of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics and epigenetics of obesity. RECENT FINDINGS Recent progress in genetics of polygenic traits, particularly represented by genome-wide association studies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging. Future research will likely discover more loci being involved in obesity, which will contribute to better understanding of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight loss-specific life-style interventions.
Collapse
Affiliation(s)
- Maria Keller
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Stina Ingrid Alice Svensson
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Kerstin Rohde-Zimmermann
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
| | - Yvonne Böttcher
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.
- EpiGen, Medical Division, Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
14
|
Hatton AA, Hillary RF, Bernabeu E, McCartney DL, Marioni RE, McRae AF. Blood-based genome-wide DNA methylation correlations across body-fat- and adiposity-related biochemical traits. Am J Hum Genet 2023; 110:1564-1573. [PMID: 37652023 PMCID: PMC10502853 DOI: 10.1016/j.ajhg.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The recent increase in obesity levels across many countries is likely to be driven by nongenetic factors. The epigenetic modification DNA methylation (DNAm) may help to explore this, as it is sensitive to both genetic and environmental exposures. While the relationship between DNAm and body-fat traits has been extensively studied, there is limited literature on the shared associations of DNAm variation across such traits. Akin to genetic correlation estimates, here, we introduce an approach to evaluate the similarities in DNAm associations between traits: DNAm correlations. As DNAm can be both a cause and consequence of complex traits, DNAm correlations have the potential to provide insights into trait relationships above that currently obtained from genetic and phenotypic correlations. Utilizing 7,519 unrelated individuals from Generation Scotland with DNAm from the EPIC array, we calculated DNAm correlations between body-fat- and adiposity-related traits by using the bivariate OREML framework in the OSCA software. For each trait, we also estimated the shared contribution of DNAm between sexes. We identified strong, positive DNAm correlations between each of the body-fat traits (BMI, body-fat percentage, and waist-to-hip ratio, ranging from 0.96 to 1.00), finding larger associations than those identified by genetic and phenotypic correlations. We identified a significant deviation from 1 in the DNAm correlations for BMI between males and females, with sex-specific DNAm changes associated with BMI identified at eight DNAm probes. Employing genome-wide DNAm correlations to evaluate the similarities in the associations of DNAm with complex traits has provided insight into obesity-related traits beyond that provided by genetic correlations.
Collapse
Affiliation(s)
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, Brisbane, Australia.
| |
Collapse
|
15
|
Duarte GCK, Pellenz F, Crispim D, Assmann TS. Integrated bioinformatics approach reveals methylation-regulated differentially expressed genes in obesity. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000604. [PMID: 37252693 PMCID: PMC10665070 DOI: 10.20945/2359-3997000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/08/2022] [Indexed: 05/31/2023]
Abstract
Objective To identify DNA methylation and gene expression profiles involved in obesity by implementing an integrated bioinformatics approach. Materials and methods Gene expression (GSE94752, GSE55200, and GSE48964) and DNA methylation (GSE67024 and GSE111632) datasets were obtained from the GEO database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) in subcutaneous adipose tissue of patients with obesity were identified using GEO2R. Methylation-regulated DEGs (MeDEGs) were identified by overlapping DEGs and DMGs. The protein-protein interaction (PPI) network was constructed with the STRING database and analyzed using Cytoscape. Functional modules and hub-bottleneck genes were identified by using MCODE and CytoHubba plugins. Functional enrichment analyses were performed based on Gene Ontology terms and KEGG pathways. To prioritize and identify candidate genes for obesity, MeDEGs were compared with obesity-related genes available at the DisGeNET database. Results A total of 54 MeDEGs were identified after overlapping the lists of significant 274 DEGs and 11,556 DMGs. Of these, 25 were hypermethylated-low expression genes and 29 were hypomethylated-high expression genes. The PPI network showed three hub-bottleneck genes (PTGS2, TNFAIP3, and FBXL20) and one functional module. The 54 MeDEGs were mainly involved in the regulation of fibroblast growth factor production, the molecular function of arachidonic acid, and ubiquitin-protein transferase activity. Data collected from DisGeNET showed that 11 of the 54 MeDEGs were involved in obesity. Conclusion This study identifies new MeDEGs involved in obesity and assessed their related pathways and functions. These results data may provide a deeper understanding of methylation-mediated regulatory mechanisms of obesity.
Collapse
Affiliation(s)
- Guilherme Coutinho Kullmann Duarte
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Felipe Pellenz
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daisy Crispim
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil,
| | - Tais Silveira Assmann
- Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós-graduação em Ciências Médicas: Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
16
|
Zhao Q, Han B, Xu Q, Wang T, Fang C, Li R, Zhang L, Pei Y. Proteome and genome integration analysis of obesity. Chin Med J (Engl) 2023; 136:910-921. [PMID: 37000968 PMCID: PMC10278747 DOI: 10.1097/cm9.0000000000002644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/03/2023] Open
Abstract
ABSTRACT The prevalence of obesity has increased worldwide in recent decades. Genetic factors are now known to play a substantial role in the predisposition to obesity and may contribute up to 70% of the risk for obesity. Technological advancements during the last decades have allowed the identification of many hundreds of genetic markers associated with obesity. However, the transformation of current genetic variant-obesity associations into biological knowledge has been proven challenging. Genomics and proteomics are complementary fields, as proteomics extends functional analyses. Integrating genomic and proteomic data can help to bridge a gap in knowledge regarding genetic variant-obesity associations and to identify new drug targets for the treatment of obesity. We provide an overview of the published papers on the integrated analysis of proteomic and genomic data in obesity and summarize four mainstream strategies: overlap, colocalization, Mendelian randomization, and proteome-wide association studies. The integrated analyses identified many obesity-associated proteins, such as leptin, follistatin, and adenylate cyclase 3. Despite great progress, integrative studies focusing on obesity are still limited. There is an increased demand for large prospective cohort studies to identify and validate findings, and further apply these findings to the prevention, intervention, and treatment of obesity. In addition, we also discuss several other potential integration methods.
Collapse
Affiliation(s)
- Qigang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215213, China
| | - Baixue Han
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215213, China
| | - Qian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215213, China
| | - Tao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215006, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215213, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yufang Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215213, China
| |
Collapse
|
17
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
18
|
Wang K, Wang S, Ji X, Chen D, Shen Q, Yu Y, Wu P, Li X, Tang G. Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes. Front Genet 2023; 13:1028711. [PMID: 36685918 PMCID: PMC9845630 DOI: 10.3389/fgene.2022.1028711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, we aimed to identified CpG sites at which DNA methylation levels are associated with meat quality traits in 140 Yorkshire pigs, including pH at 45 min (pH45min), pH at 24 h (pH24h), drip loss (DL), meat redness value (a*), yellowness (b*) and lightness (L*). Genome-wide methylation levels were measured in muscular tissue using reduced representation bisulfite sequencing (RRBS). Associations between DNA methylation levels and meat quality traits were examined using linear mixed-effect models that were adjusted for gender, year, month and body weight. A Bonferroni-corrected p-value lower than 7.79 × 10 - 8 was considered statistically significant threshold. Eight CpG sites were associated with DL, including CpG sites annotated to RBM4 gene (cpg301054, cpg301055, cpg301058, cpg301059, cpg301066, cpg301072 and cpg301073) and NCAM1 gene (cpg1802985). Two CpG sites were associated with b*, including RNFT1 and MED13 (cpg2272837) and TRIM37 gene (cpg2270611). Five CpG sites were associated with L*, including GSDMA and LRRC3C gene (cpg2252750) and ENSSSCG00000043539 and IRX1 gene (cpg2820178, cpg2820179, cpg2820181 and cpg2820182). No significant associations were observed with pH45min, pH24h or a*. We reported associations of meat quality traits with DNA methylation and identified some candidate genes associated with these traits, such as NCAM1, MED13 and TRIM37 gene. These results provide new insight into the epigenetic molecular mechanisms of meat quality traits in pigs.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qi Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Chongqing Academy of Animal Science, Chongqing, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Guoqing Tang,
| |
Collapse
|
19
|
Taylor JY, Huang Y, Zhao W, Wright ML, Wang Z, Hui Q, Potts‐Thompson S, Barcelona V, Prescott L, Yao Y, Crusto C, Kardia SLR, Smith JA, Sun YV. Epigenome-wide association study of BMI in Black populations from InterGEN and GENOA. Obesity (Silver Spring) 2023; 31:243-255. [PMID: 36479596 PMCID: PMC10107734 DOI: 10.1002/oby.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity is a significant public health concern across the globe. Research investigating epigenetic mechanisms related to obesity and obesity-associated conditions has identified differences that may contribute to cellular dysregulation that accelerates the development of disease. However, few studies include Black women, who experience the highest incidence of obesity and early onset of cardiometabolic disorders. METHODS The association of BMI with epigenome-wide DNA methylation (DNAm) was examined using the 850K Illumina EPIC BeadChip in two Black populations (Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure [InterGEN], n = 239; and The Genetic Epidemiology Network of Arteriopathy [GENOA] study, n = 961) using linear mixed-effects regression models adjusted for batch effects, cell type heterogeneity, population stratification, and confounding factors. RESULTS Cross-sectional analysis of the InterGEN discovery cohort identified 28 DNAm sites significantly associated with BMI, 24 of which had not been previously reported. Of these, 17 were replicated using the GENOA study. In addition, a meta-analysis, including both the InterGEN and GENOA cohorts, identified 658 DNAm sites associated with BMI with false discovery rate < 0.05. In a meta-analysis of Black women, we identified 628 DNAm sites significantly associated with BMI. Using a more stringent significance threshold of Bonferroni-corrected p value 0.05, 65 and 61 DNAm sites associated with BMI were identified from the combined sex and female-only meta-analyses, respectively. CONCLUSIONS This study suggests that BMI is associated with differences in DNAm among women that can be identified with DNA extracted from salivary (discovery) and peripheral blood (replication) samples among Black populations across two cohorts.
Collapse
Affiliation(s)
- Jacquelyn Y. Taylor
- Center for Research on People of ColorColumbia University School of NursingNew YorkNew YorkUSA
| | - Yunfeng Huang
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Wei Zhao
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | | | - Zeyuan Wang
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Qin Hui
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | | | - Veronica Barcelona
- Center for Research on People of ColorColumbia University School of NursingNew YorkNew YorkUSA
| | - Laura Prescott
- Center for Research on People of ColorColumbia University School of NursingNew YorkNew YorkUSA
| | - Yutong Yao
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Cindy Crusto
- Department of PsychiatryYale School of MedicineNew HavenConnecticutUSA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social Research, University of MichiganAnn ArborMichiganUSA
| | - Yan V. Sun
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
- Atlanta VA Healthcare SystemDecaturGeorgiaUSA
| |
Collapse
|
20
|
Chu DT, Bui NL, Vu Thi H, Nguyen Thi YV. Role of DNA methylation in diabetes and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:153-170. [PMID: 37019591 DOI: 10.1016/bs.pmbts.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Due to the fact that the upward trend of several metabolic disorders such as diabetes and obesity, in individuals especially monozygotic twins, who are under the same effects from the environment, are not similar, the role of epigenetic elements like DNA methylation needs taking into account. In this chapter, emerging scientific evidence supporting the strong relationship between changes in DNA methylation and those diseases' development was summarized. Changing in the expression level of diabetes/obesity-related genes through being silenced by methylation can be the underlying mechanism of this phenomenon. Genes with abnormal methylation status are potential biomarkers for early prediction and diagnosis. Moreover, methylation-based molecular targets should be investigated as a new treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
21
|
Fryett JJ, Morris AP, Cordell HJ. Investigating the prediction of CpG methylation levels from SNP genotype data to help elucidate relationships between methylation, gene expression and complex traits. Genet Epidemiol 2022; 46:629-643. [PMID: 35930604 PMCID: PMC9804820 DOI: 10.1002/gepi.22496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
As popularised by PrediXcan (and related methods), transcriptome-wide association studies (TWAS), in which gene expression is imputed from single-nucleotide polymorphism (SNP) genotypes and tested for association with a phenotype, are a popular approach for investigating the role of gene expression in complex traits. Like gene expression, DNA methylation is an important biological process and, being under genetic regulation, may be imputable from SNP genotypes. Here, we investigate prediction of CpG methylation levels from SNP genotype data to help elucidate relationships between methylation, gene expression and complex traits. We start by examining how well CpG methylation can be predicted from SNP genotypes, comparing three penalised regression approaches and examining whether changing the window size improves prediction accuracy. Although methylation at most CpG sites cannot be accurately predicted from SNP genotypes, for a subset it can be predicted well. We next apply our methylation prediction models (trained using the optimal method and window size) to carry out a methylome-wide association study (MWAS) of primary biliary cholangitis. We intersect the regions identified via MWAS with those identified via TWAS, providing insight into the interplay between CpG methylation, gene expression and disease status. We conclude that MWAS has the potential to improve understanding of biological mechanisms in complex traits.
Collapse
Affiliation(s)
- James J. Fryett
- Population Health Sciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal ResearchUniversity of ManchesterManchesterUK
| | - Heather J. Cordell
- Population Health Sciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
22
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
23
|
Wu Z, Chen L, Hong X, Si J, Cao W, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Cong L, Wang H, Wu X, Liu Y, Guo Y, Chen Z, Lv J, Gao W, Li L. Temporal associations between leukocytes DNA methylation and blood lipids: a longitudinal study. Clin Epigenetics 2022; 14:132. [PMID: 36274151 PMCID: PMC9588246 DOI: 10.1186/s13148-022-01356-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The associations between blood lipids and DNA methylation have been investigated in epigenome-wide association studies mainly among European ancestry populations. Several studies have explored the direction of the association using cross-sectional data, while evidence of longitudinal data is still lacking. RESULTS We tested the associations between peripheral blood leukocytes DNA methylation and four lipid measures from Illumina 450 K or EPIC arrays in 1084 participants from the Chinese National Twin Registry and replicated the result in 988 participants from the China Kadoorie Biobank. A total of 23 associations of 19 CpG sites were identified, with 4 CpG sites located in or adjacent to 3 genes (TMEM49, SNX5/SNORD17 and CCDC7) being novel. Among the validated associations, we conducted a cross-lagged analysis to explore the temporal sequence and found temporal associations of methylation levels of 2 CpG sites with triglyceride and 2 CpG sites with high-density lipoprotein-cholesterol (HDL-C) in all twins. In addition, methylation levels of cg11024682 located in SREBF1 at baseline were temporally associated with triglyceride at follow-up in only monozygotic twins. We then performed a mediation analysis with the longitudinal data and the result showed that the association between body mass index and HDL-C was partially mediated by the methylation level of cg06500161 (ABCG1), with a mediation proportion of 10.1%. CONCLUSIONS Our study indicated that the DNA methylation levels of ABCG1, AKAP1 and SREBF1 may be involved in lipid metabolism and provided evidence for elucidating the regulatory mechanism of lipid homeostasis.
Collapse
Affiliation(s)
- Zhiyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Lu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xuanming Hong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahui Si
- National Institute of Health Data Science at Peking University, Peking University, Beijing, 100191, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, 100191, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Liming Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, 210008, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, 150090, China
| | - Yu Guo
- Fuwai hospital Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, 100191, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, 100191, China.
| |
Collapse
|
24
|
Abstract
DNA methylation is an epigenetic modification that has consistently been shown to be linked with a variety of human traits and diseases. Because DNA methylation is dynamic and potentially reversible in nature and can reflect environmental exposures and predict the onset of diseases, it has piqued interest as a potential disease biomarker. DNA methylation patterns are more stable than transcriptomic or proteomic patterns, and they are relatively easy to measure to track exposure to different environments and risk factors. Importantly, technologies for DNA methylation quantification have become increasingly cost effective-accelerating new research in the field-and have enabled the development of novel DNA methylation biomarkers. Quite a few DNA methylation-based predictors for a number of traits and diseases already exist. Such predictors show potential for being more accurate than self-reported or measured phenotypes (such as smoking behavior and body mass index) and may even hold potential for applications in clinics. In this review, we will first discuss the advantages and challenges of DNA methylation biomarkers in general. We will then review the current state and future potential of DNA methylation biomarkers in two human traits that show rather consistent alterations in methylome-obesity and smoking. Lastly, we will briefly speculate about the future prospects of DNA methylation biomarkers, and possible ways to achieve them.
Collapse
Affiliation(s)
- Aino Heikkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Huang R, Melton P, Burton M, Beilin L, Clarke-Harris R, Cook E, Godfrey K, Burdge G, Mori T, Anderson D, Rauschert S, Craig JM, Kobor M, MacIsaac J, Morin A, Oddy W, Pennell C, Holbrook J, Lillycrop K. Adiposity associated DNA methylation signatures in adolescents are related to leptin and perinatal factors. Epigenetics 2022; 17:819-836. [PMID: 33550919 PMCID: PMC9423832 DOI: 10.1080/15592294.2021.1876297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022] Open
Abstract
Epigenetics links perinatal influences with later obesity. We identifed differentially methylated CpG (dmCpG) loci measured at 17 years associated with concurrent adiposity measures and examined whether these were associated with hsCRP, adipokines, and early life environmental factors. Genome-wide DNA methylation from 1192 Raine Study participants at 17 years, identified 29 dmCpGs (Bonferroni corrected p < 1.06E-07) associated with body mass index (BMI), 10 with waist circumference (WC) and 9 with subcutaneous fat thickness. DmCpGs within Ras Association (RalGDS/AF-6), Pleckstrin Homology Domains 1 (RAPH1), Musashi RNA-Binding Protein 2 (MSI2), and solute carrier family 25 member 10 (SLC25A10) are associated with both BMI and WC. Validation by pyrosequencing confirmed these associations and showed that MSI2 , SLC25A10 , and RAPH1 methylation was positively associated with serum leptin. These were also associated with the early environment; MSI2 methylation (β = 0.81, p = 0.0004) was associated with pregnancy maternal smoking, SLC25A10 (CpG2 β = 0.12, p = 0.002) with pre- and early pregnancy BMI, and RAPH1 (β = -1.49, p = 0.036) with gestational weight gain. Adjusting for perinatal factors, methylation of the dmCpGs within MSI2, RAPH1, and SLC25A10 independently predicted BMI, accounting for 24% of variance. MSI2 methylation was additionally associated with BMI over time (17 years old β = 0.026, p = 0.0025; 20 years old β = 0.027, p = 0.0029) and between generations (mother β = 0.044, p = 7.5e-04). Overall findings suggest that DNA methylation in MSI2, RAPH1, and SLC25A10 in blood may be robust markers, mediating through early life factors.
Collapse
Affiliation(s)
- R.C. Huang
- Telethon Kids Institute, University of Western Australia, Australia
| | - P.E. Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - M.A. Burton
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - L.J. Beilin
- Medical School, The University of Western Australia, Australia
| | - R Clarke-Harris
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - E Cook
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K.M. Godfrey
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - G.C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - T.A. Mori
- Medical School, The University of Western Australia, Australia
| | - D Anderson
- Telethon Kids Institute, University of Western Australia, Australia
| | - S. Rauschert
- Telethon Kids Institute, University of Western Australia, Australia
| | - J. M. Craig
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - M.S. Kobor
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - J.L. MacIsaac
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - A.M. Morin
- Department of Medical Genetics, University of British Columbia, VancouverCanada
| | - W.H. Oddy
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - C.E. Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Australia
| | - J.D. Holbrook
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - K.A. Lillycrop
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
26
|
Zheng Y, Joyce B, Hwang SJ, Ma J, Liu L, Allen N, Krefman A, Wang J, Gao T, Nannini D, Zhang H, Jacobs DR, Gross M, Fornage M, Lewis CE, Schreiner PJ, Sidney S, Chen D, Greenland P, Levy D, Hou L, Lloyd-Jones D. Association of Cardiovascular Health Through Young Adulthood With Genome-Wide DNA Methylation Patterns in Midlife: The CARDIA Study. Circulation 2022; 146:94-109. [PMID: 35652342 PMCID: PMC9348746 DOI: 10.1161/circulationaha.121.055484] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiovascular health (CVH) from young adulthood is strongly associated with an individual's future risk of cardiovascular disease (CVD) and total mortality. Defining epigenomic biomarkers of lifelong CVH exposure and understanding their roles in CVD development may help develop preventive and therapeutic strategies for CVD. METHODS In 1085 CARDIA study (Coronary Artery Risk Development in Young Adults) participants, we defined a clinical cumulative CVH score that combines body mass index, blood pressure, total cholesterol, and fasting glucose measured longitudinally from young adulthood through middle age over 20 years (mean age, 25-45). Blood DNA methylation at >840 000 methylation markers was measured twice over 5 years (mean age, 40 and 45). Epigenome-wide association analyses on the cumulative CVH score were performed in CARDIA and compared in the FHS (Framingham Heart Study). We used penalized regression to build a methylation-based risk score to evaluate the risk of incident coronary artery calcification and clinical CVD events. RESULTS We identified 45 methylation markers associated with cumulative CVH at false discovery rate <0.01 (P=4.7E-7-5.8E-17) in CARDIA and replicated in FHS. These associations were more pronounced with methylation measured at an older age. CPT1A, ABCG1, and SREBF1 appeared as the most prominent genes. The 45 methylation markers were mostly located in transcriptionally active chromatin and involved lipid metabolism, insulin secretion, and cytokine production pathways. Three methylation markers located in genes SARS1, SOCS3, and LINC-PINT statistically mediated 20.4% of the total effect between CVH and risk of incident coronary artery calcification. The methylation risk score added information and significantly (P=0.004) improved the discrimination capacity of coronary artery calcification status versus CVH score alone and showed association with risk of incident coronary artery calcification 5 to 10 years later independent of cumulative CVH score (odds ratio, 1.87; P=9.66E-09). The methylation risk score was also associated with incident clinical CVD in FHS (hazard ratio, 1.28; P=1.22E-05). CONCLUSIONS Cumulative CVH from young adulthood contributes to midlife epigenetic programming over time. Our findings demonstrate the role of epigenetic markers in response to CVH changes and highlight the potential of epigenomic markers for precision CVD prevention, and earlier detection of subclinical CVD, as well.
Collapse
Affiliation(s)
- Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiantao Ma
- Tufts University Friedman School of Nutrition Science and Policy, Boston, Massachusetts, USA
| | - Lei Liu
- Division of Biostatistics, Washington University, St. Louis, Missouri, USA
| | - Norrina Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy Krefman
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jun Wang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Drew Nannini
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haixiang Zhang
- Center for Applied Mathematics, Tianjin University, Tianjin, China
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cora E. Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Dongquan Chen
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Zhang D, Yao X, Teng Y, Zhao T, Lin L, Li Y, Shang H, Jin Y, Jin Q. Adipocytes-derived exosomal microRNA-1224 inhibits M2 macrophage polarization in obesity-induced adipose tissue inflammation via MSI2-mediated Wnt/β-catenin axis. Mol Nutr Food Res 2022; 66:e2100889. [PMID: 35616318 DOI: 10.1002/mnfr.202100889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/27/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Phenotypic switch of macrophage polarization in adipose tissue has been associated with obesity-induced adipose tissue inflammation (OATI). Therefore, we aimed to explore the possible mechanism of adipocytes-derived exosomes (ADEs) carrying microRNA-1224 (miR-1224) in M2 macrophage polarization of OATI. METHODS AND RESULTS We developed miR-1224-knockout (miR-1224-KO) mice for this study, and isolated primary adipocytes from high-fat diet (HFD) or normal diet (SD)-fed mice. ADEs were extracted and cocultured with bone marrow-derived macrophages (BMDMs). The macrophagic crown-like structures (CLS) and M1 and M2 phenotype macrophages in epididymal white adipose tissue (epiWAT) were observed by immunohistochemistry and flow cytometry. The obtained data indicated that miR-1224 was highly expressed in adipose tissues and adipocytes of obese mice. miR-1224 knockout decreased CLS number and increased M2 macrophages polarization in epiWAT. In addition, miR-1224 could be transferred to BMDMs via ADEs, which targeted musashi RNA binding protein 2 (MSI2) expression and inactivated Wnt/β-catenin pathway, inhibiting macrophage M2 polarization and promoting inflammatory factor release. CONCLUSION Exosomal miR-1224 derived by adipocytes targets MSI2 and blocks the Wnt/β-catenin pathway, which inhibits macrophage M2 polarization and promotes inflammatory factor release, ultimately promoting OATI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xiaoyan Yao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yaqin Teng
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Tiantian Zhao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Liangyan Lin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yuanyuan Li
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Hongxia Shang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yongjun Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qingsong Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| |
Collapse
|
28
|
Bai X, Mai M, Yao K, Zhang M, Huang Y, Zhang W, Guo X, Xu Y, Zhang Y, Qurban A, Duan L, Bu J, Zhang J, Wu J, Zhao Y, Yuan X, Zu H. The role of DHCR24 in the pathogenesis of AD: re-cognition of the relationship between cholesterol and AD pathogenesis. Acta Neuropathol Commun 2022; 10:35. [PMID: 35296367 PMCID: PMC8925223 DOI: 10.1186/s40478-022-01338-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that 3β-hydroxysterol-Δ24 reductase (DHCR24) has a remarked decline in the brain of AD patients. In brain cholesterol synthetic metabolism, DHCR24 is known as the heavily key synthetase in cholesterol synthesis. Moreover, mutations of DHCR24 gene result in inhibition of the enzymatic activity of DHCR24, causing brain cholesterol deficiency and desmosterol accumulation. Furthermore, in vitro studies also demonstrated that DHCR24 knockdown lead to the inhibition of cholesterol synthesis, and the decrease of plasma membrane cholesterol and intracellular cholesterol level. Obviously, DHCR24 could play a crucial role in maintaining cholesterol homeostasis via the control of cholesterol synthesis. Over the past two decades, accumulating data suggests that DHCR24 activity is downregulated by major risk factors for AD, suggesting a potential link between DHCR24 downregulation and AD pathogenesis. Thus, the brain cholesterol loss seems to be induced by the major risk factors for AD, suggesting a possible causative link between brain cholesterol loss and AD. According to previous data and our study, we further found that the reduced cholesterol level in plasma membrane and intracellular compartments by the deficiency of DHCR24 activity obviously was involved in β-amyloid generation, tau hyperphosphorylation, apoptosis. Importantly, increasing evidences reveal that the brain cholesterol loss and lipid raft disorganization are obviously linked to neuropathological impairments which are associated with AD pathogenesis. Therefore, based on previous data and research on DHCR24, we suppose that the brain cholesterol deficiency/loss might be involved in the pathogenesis of AD.
Collapse
|
29
|
Engel DF, Velloso LA. The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 2022; 208:108983. [PMID: 35143850 DOI: 10.1016/j.neuropharm.2022.108983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
In experimental models, hypothalamic dysfunction is a key component of the pathophysiology of diet-induced obesity. Early after the introduction of a high-fat diet, neurons, microglia, astrocytes and tanycytes of the mediobasal hypothalamus undergo structural and functional changes that impact caloric intake, energy expenditure and systemic glucose tolerance. Inflammation has emerged as a central component of this response, and as in other inflammatory conditions, there is a time course of events that determine the fate of distinct cells involved in the central regulation of whole-body energy homeostasis. Here, we review the work that identified key mechanisms, cellular players and temporal features of diet-induced hypothalamic abnormalities.
Collapse
Affiliation(s)
- Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil.
| |
Collapse
|
30
|
Lee YC, Christensen JJ, Parnell LD, Smith CE, Shao J, McKeown NM, Ordovás JM, Lai CQ. Using Machine Learning to Predict Obesity Based on Genome-Wide and Epigenome-Wide Gene-Gene and Gene-Diet Interactions. Front Genet 2022; 12:783845. [PMID: 35047011 PMCID: PMC8763388 DOI: 10.3389/fgene.2021.783845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with many chronic diseases that impair healthy aging and is governed by genetic, epigenetic, and environmental factors and their complex interactions. This study aimed to develop a model that predicts an individual's risk of obesity by better characterizing these complex relations and interactions focusing on dietary factors. For this purpose, we conducted a combined genome-wide and epigenome-wide scan for body mass index (BMI) and up to three-way interactions among 402,793 single nucleotide polymorphisms (SNPs), 415,202 DNA methylation sites (DMSs), and 397 dietary and lifestyle factors using the generalized multifactor dimensionality reduction (GMDR) method. The training set consisted of 1,573 participants in exam 8 of the Framingham Offspring Study (FOS) cohort. After identifying genetic, epigenetic, and dietary factors that passed statistical significance, we applied machine learning (ML) algorithms to predict participants' obesity status in the test set, taken as a subset of independent samples (n = 394) from the same cohort. The quality and accuracy of prediction models were evaluated using the area under the receiver operating characteristic curve (ROC-AUC). GMDR identified 213 SNPs, 530 DMSs, and 49 dietary and lifestyle factors as significant predictors of obesity. Comparing several ML algorithms, we found that the stochastic gradient boosting model provided the best prediction accuracy for obesity with an overall accuracy of 70%, with ROC-AUC of 0.72 in test set samples. Top predictors of the best-fit model were 21 SNPs, 230 DMSs in genes such as CPT1A, ABCG1, SLC7A11, RNF145, and SREBF1, and 26 dietary factors, including processed meat, diet soda, French fries, high-fat dairy, artificial sweeteners, alcohol intake, and specific nutrients and food components, such as calcium and flavonols. In conclusion, we developed an integrated approach with ML to predict obesity using omics and dietary data. This extends our knowledge of the drivers of obesity, which can inform precision nutrition strategies for the prevention and treatment of obesity. Clinical Trial Registration: [www.ClinicalTrials.gov], the Framingham Heart Study (FHS), [NCT00005121].
Collapse
Affiliation(s)
- Yu-Chi Lee
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Jacob J. Christensen
- Department of Nutrition, Norwegian National Advisory Unit on FH, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Laurence D. Parnell
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E. Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Jonathan Shao
- Statistical and Bioinformatics Group, Northeast Area, USDA ARS, Beltsville, MD, United States
| | - Nicola M. McKeown
- Nutritional Epidemiology Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
- CEI UAM + CSIC, IMDEA Food Institute, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
31
|
Do WL, Nguyen S, Yao J, Guo X, Whitsel EA, Demerath E, Rotter JI, Rich SS, Lange L, Ding J, Van Den Berg D, Liu Y, Justice AE, Guan W, Horvath S, Assimes TL, Bhatti P, Jordahl K, Shadyab A, Valencia CI, Stein AD, Smith A, Staimez LR, Conneely K, Narayan KMV. Associations between DNA methylation and BMI vary by metabolic health status: a potential link to disparate cardiovascular outcomes. Clin Epigenetics 2021; 13:230. [PMID: 34937574 PMCID: PMC8697469 DOI: 10.1186/s13148-021-01194-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Body mass index (BMI), a well-known risk factor for poor cardiovascular outcomes, is associated with differential DNA methylation (DNAm). Similarly, metabolic health has also been associated with changes in DNAm. It is unclear how overall metabolic health outside of BMI may modify the relationship between BMI and methylation profiles, and what consequences this may have on downstream cardiovascular disease. The purpose of this study was to identify cytosine-phosphate-guanine (CpG) sites at which the association between BMI and DNAm could be modified by overall metabolic health. Results The discovery study population was derived from three Women’s Health Initiative (WHI) ancillary studies (n = 3977) and two Atherosclerosis Risk in Communities (ARIC) ancillary studies (n = 3520). Findings were validated in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (n = 1200). Generalized linear models regressed methylation β values on the interaction between BMI and metabolic health Z score (BMI × MHZ) adjusted for BMI, MHZ, cell composition, chip number and location, study characteristics, top three ancestry principal components, smoking, age, ethnicity (WHI), and sex (ARIC). Among the 429,566 sites examined, differential associations between BMI × MHZ and DNAm were identified at 22 CpG sites (FDR q < 0.05), with one site replicated in MESA (cg18989722, in the TRAPPC9 gene). Three of the 22 sites were associated with incident coronary heart disease (CHD) in WHI. For each 0.01 unit increase in DNAm β value, the risk of incident CHD increased by 9% in one site and decreased by 6–10% in two sites over 25 years. Conclusions Differential associations between DNAm and BMI by MHZ were identified at 22 sites, one of which was validated (cg18989722) and three of which were predictive of incident CHD. These sites are located in several genes related to NF-kappa-B signaling, suggesting a potential role for inflammation between DNA methylation and BMI-associated metabolic health. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01194-3.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Steve Nguyen
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric A Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Leslie Lange
- Division of Biomedical Informatics & Personalized Medicine, School of Medicine, Colorado University Anschutz Medical Campus, Aurora, CO, USA
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, School of Medicine, Wake Forest, Winston-Salem, NC, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Anne E Justice
- Center for Biomedical and Translational Informatics, Geisinger, Wilkes-Barre, PA, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Kristina Jordahl
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Aladdin Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Celina I Valencia
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Aryeh D Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa R Staimez
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Do WL, Gohar J, McCullough LE, Galaviz KI, Conneely KN, Narayan KMV. Examining the association between adiposity and DNA methylation: A systematic review and meta-analysis. Obes Rev 2021; 22:e13319. [PMID: 34278703 DOI: 10.1111/obr.13319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Obesity is associated with widespread differential DNA methylation (DNAm) patterns, though there have been limited overlap in the obesity-associated cytosine-guanine nucleotide pair (CpG) sites that have been identified in the literature. We systematically searched four databases for studies published until January 2020. Eligible studies included cross-sectional, longitudinal, or intervention studies examining adiposity and genome-wide DNAm in non-pregnant adults aged 18-75 in all tissue types. Study design and results were extracted in the descriptive review. Blood-based DNAm results in body mass index (BMI) and waist circumference (WC) were meta-analyzed using weighted sum of Z-score meta-analysis. Of the 10,548 studies identified, 46 studies were included in the systematic review with 18 and nine studies included in the meta-analysis of BMI and WC, respectively. In the blood, 77 and four CpG sites were significant in three or more studies of BMI and WC, respectively. Using a genome-wide threshold for significance, 52 blood-based CpG sites were significantly associated with BMI. These sites have previously been associated with many obesity-related diseases including type 2 diabetes, cardiovascular disease, Crohn's disease, and depression. Our study shows that DNAm at 52 CpG sites represent potential mediators of obesity-associated chronic diseases and may be novel intervention or therapeutic targets to protect against obesity-associated chronic diseases.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jazib Gohar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karla I Galaviz
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Vinneau JM, Huibregtse BM, Laidley TM, Goode JA, Boardman JD. Mortality and Obesity Among U.S. Older Adults: The Role of Polygenic Risk. J Gerontol B Psychol Sci Soc Sci 2021; 76:343-347. [PMID: 31805181 DOI: 10.1093/geronb/gbz156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To examine the relationship between obesity and mortality as a function of polygenic risk for obesity among older U.S. adults. METHOD Using data from the 1994-2014 Health and Retirement Study in conjunction with genome-wide data, we evaluated the risk of mortality as a function of obesity classification, an individual's polygenic risk score (PGS) for obesity, and their interaction, stratified by sex. We conducted our analyses using cox proportional hazard models. RESULTS Among those with an average PGS for obesity (8,143 [68.8%]), obese I (hazard ratio [HR] = 0.79, p = .336) adults show no difference in their risk for mortality and obese II/III (HR = 3.17, p = .000) adults present higher risk of mortality relative to non-obese adults. The interaction of obesity classification and PGS suggests that obese II/III respondents with low PGS in the total sample (HR = 2.71, p = .006) and among women (HR = 3.02, p = .023) are at significantly higher risk of death when compared to obese II/III respondents with average or high PGS. DISCUSSION We posit that these findings suggest that the pathway to obesity, in this case, more socio-behavioral rather than genetic, may influence subsequent risk of death in older adults. We suggest that practitioners and population researchers be mindful of these pathways as to better identify and understand mortality risk.
Collapse
Affiliation(s)
- Justin M Vinneau
- Institute of Behavioral Science.,Institute for Behavioral Genetics.,Department of Sociology, University of Colorado Boulder
| | | | - Thomas M Laidley
- Institute of Behavioral Science.,Institute for Behavioral Genetics
| | - Joshua A Goode
- Institute of Behavioral Science.,Institute for Behavioral Genetics.,Department of Sociology, University of Colorado Boulder
| | - Jason D Boardman
- Institute of Behavioral Science.,Institute for Behavioral Genetics.,Department of Sociology, University of Colorado Boulder
| |
Collapse
|
34
|
Pescador-Tapia A, Silva-Martínez GA, Fragoso-Bargas N, Rodríguez-Ríos D, Esteller M, Moran S, Zaina S, Lund G. Distinct Associations of BMI and Fatty Acids With DNA Methylation in Fasting and Postprandial States in Men. Front Genet 2021; 12:665769. [PMID: 34025721 PMCID: PMC8138173 DOI: 10.3389/fgene.2021.665769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that blood global DNA methylation (DNAm) differs between postprandial state (PS) and fasting state (FS) and is associated with BMI and polyunsaturated fatty acid (PUFA) (negatively and positively, respectively) in 12 metabolically healthy adult Mexican men (AMM cohort) equally distributed among conventional BMI classes. Here, we detailed those associations at CpG dinucleotide level by exploiting the Infinium methylation EPIC array (Illumina). We sought differentially methylated CpG (dmCpG) that were (1) associated with BMI (BMI-dmCpG) and/or fatty acids (FA) (FA-dmCpG) in FS or PS and (2) different across FS and PS within a BMI class. BMI-dmCpG and FA-dmCpG were more numerous in FS compared to PS and largely prandial state-specific. For saturated and monounsaturated FA, dmCpG overlap was higher across than within the respective saturation group. Several BMI- and FA-dmCpG mapped to genes involved in metabolic disease and in some cases matched published experimental data sets. Notably, SETDB1 and MTHFS promoter dmCpG could explain the previously observed associations between global DNAm, PUFA content, and BMI in FS. Surprisingly, overlap between BMI-dmCpG and FA-dmCpG was limited and the respective dmCpG were differentially distributed across functional genomic elements. BMI-dmCpG showed the highest overlap with dmCpG of the saturated FA palmitate, monounsaturated C20:1 and PUFA C20:2. Of these, selected promoter BMI-dmCpG showed opposite associations with palmitate compared to C20:1 and C20:2. As for the comparison between FS and PS within BMI classes, dmCpG were strikingly more abundant and variably methylated in overweight relative to normoweight or obese subjects (∼70–139-fold, respectively). Overweight-associated dmCpG-hosting genes were significantly enriched in targets for E47, SREBP1, and RREB1 transcription factors, which are known players in obesity and lipid homeostasis, but none overlapped with BMI-dmCpG. We show for the first time that the association of BMI and FA with methylation of disease-related genes is distinct in FS and PS and that limited overlap exists between BMI- and FA-dmCpG within and across prandial states. Our study also identifies a transcriptional regulation circuitry in overweight that might contribute to adaptation to that condition or to transition to obesity. Further work is necessary to define the pathophysiological implications of these findings.
Collapse
Affiliation(s)
| | - Guillermo A Silva-Martínez
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico.,Celaya Technological Institute, Celaya, Mexico
| | | | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | | | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| |
Collapse
|
35
|
Cao VT, Lea RA, Sutherland HG, Benton MC, Pishva RS, Haupt LM, Griffiths LR. A genome-wide methylation study of body fat traits in the Norfolk Island isolate. Nutr Metab Cardiovasc Dis 2021; 31:1556-1563. [PMID: 33810959 DOI: 10.1016/j.numecd.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Natural variation in body fat is explained by both genetic and environmental effects. Epigenetic mechanisms such as DNA methylation can mediate these effects causing changes in gene expression leading to onset of obesity. Studies of genetic isolates have the potential to provide new epigenetic insights with advantages such as reduced genetic diversity and environmental exposures. METHODS AND RESULTS This was an exploratory study of genome-wide DNA methylation in relation to body fat traits in 47 healthy adults from the genetic isolate of Norfolk Island. Quantitative body fat traits (body fat percentage, body mass index, hip circumference, waist circumference, waist-hip-ratio and weight) were carefully measured. DNA methylation data was obtained from peripheral blood using Illumina 450K arrays. Multi-trait analysis was performed using Principal Component Analysis (PCA). CpG by trait association testing was performed using stepwise linear regressions. Two components were identified that explained approximately 89% of the phenotypic variance. In total, 5 differential methylated positions (DMPs) were identified at genome-wide significance (P≤ 2.4 × 10-7), which mapped to GOT2-CDH8, LYSMD3, HIBADH, ADGRD1 and EBF4 genes. Gene set enrichment analysis of 848 genes containing suggestive DMPs (P≤ 1.0 × 10-4) implicated the Cadherin (28 genes, Padj = 6.76 × 10-7) and Wnt signaling pathways (38 genes, Padj = 7.78 × 10-6). CONCLUSION This study provides new insights into the epigenetically influenced genes and pathways underlying body fat variation in a healthy cohort and provides targets for consideration in future studies of obesity risk.
Collapse
Affiliation(s)
- Van T Cao
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Rodney A Lea
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Heidi G Sutherland
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Miles C Benton
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Human Genomics, Institute of Environmental Science and Research, Kenepuru, Wellington, New Zealand.
| | - Reza S Pishva
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
36
|
Bai X, Wu J, Zhang M, Xu Y, Duan L, Yao K, Zhang J, Bo J, Zhao Y, Xu G, Zu H. DHCR24 Knock-Down Induced Tau Hyperphosphorylation at Thr181, Ser199, Thr231, Ser262, Ser396 Epitopes and Inhibition of Autophagy by Overactivation of GSK3β/mTOR Signaling. Front Aging Neurosci 2021; 13:513605. [PMID: 33967735 PMCID: PMC8098657 DOI: 10.3389/fnagi.2021.513605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidences supported that knock-down of DHCR24 is linked to the pathological risk factors of AD, suggesting a potential role of DHCR24 in AD pathogenesis. However, the molecular mechanism link between DHCR24 and tauopathy remains unknown. Here, in order to elucidate the relationship between DHCR24 and tauopathy, we will focus on the effect of DHCR24 on the tau hyperphosphorylation at some toxic sites. In present study, we found that DHCR24 knock-down significantly lead to the hyperphosphorylation of tau sites at Thr181, Ser199, Thr231, Ser262, Ser396. Moreover, DHCR24 knock-down also increase the accumulation of p62 protein, simultaneously decreased the ratio of LC3-II/LC3-I and the number of autophagosome compared to the control groups, suggesting the inhibition of autophagy activity. In contrast, DHCR24 knock-in obviously abolished the effect of DHCR24 knock-down on tau hyperphosphrylation and autophagy. In addition, to elucidate the association between DHCR24 and tauopathy, we further showed that the level of plasma membrane cholesterol, lipid raft-anchored protein caveolin-1, and concomitantly total I class PI3-K (p110α), phospho-Akt (Thr308 and Ser473) were significantly decreased, resulting in the disruption of lipid raft/caveola and inhibition of PI3-K/Akt signaling in silencing DHCR24 SH-SY5Y cells compared to control groups. At the same time, DHCR24 knock-down simultaneously decreased the level of phosphorylated GSK3β at Ser9 (inactive form) and increased the level of phosphorylated mTOR at Ser2448 (active form), leading to overactivation of GSK3β and mTOR signaling. On the contrary, DHCR24 knock-in largely increased the level of membrane cholesterol and caveolin-1, suggesting the enhancement of lipid raft/caveola. And synchronously DHCR24 knock-in also abolished the effect of DHCR24 knock-down on the inhibition of PI3-K/Akt signaling as well as the overactivation of GSK3β and mTOR signaling. Collectively, our data strongly supported DHCR24 knock-down lead to tau hyperphosphorylation and the inhibition of autophagy by a lipid raft-dependent PI3-K/Akt-mediated GSK3β and mTOR signaling. Taking together, our results firstly demonstrated that the decrease of plasma membrane cholesterol mediated by DHCR24 deficiency might contribute to the tauopathy in AD and other tauopathies.
Collapse
Affiliation(s)
- Xiaojing Bai
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yixuan Xu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lijie Duan
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jimei Bo
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yongfei Zhao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- The Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Morris BJ, Chen R, Donlon TA, Masaki KH, Willcox DC, Allsopp RC, Willcox BJ. Lifespan extension conferred by mitogen-activated protein kinase kinase kinase 5 ( MAP3K5) longevity-associated gene variation is confined to at-risk men with a cardiometabolic disease. Aging (Albany NY) 2021; 13:7953-7974. [PMID: 33739303 PMCID: PMC8034933 DOI: 10.18632/aging.202844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Genetic variants of the kinase signaling gene MAP3K5 are associated with longevity. Here we explore whether the longevity-association involves protection against mortality in all individuals, or only in individuals with aging-related diseases. We tested the strongest longevity associated single nucleotide polymorphism (SNP), rs2076260, for association with mortality in 3,516 elderly American men of Japanese ancestry. At baseline (1991-1993), 2,461 had either diabetes (n=990), coronary heart disease (CHD; n=724), or hypertension (n=1,877), and 1,055 lacked any of these cardiometabolic diseases (CMDs). The men were followed from baseline until Dec 31, 2019. Longevity-associated genotype CC in a major allele homozygote model, and CC+TT in a heterozygote disadvantage model were associated with longer lifespan in individuals having a CMD (covariate-adjusted hazard ratio [HR] 1.23 [95% CI: 1.12-1.35, p=2.5x10-5] in major allele homozygote model, and 1.22 [95% CI: 1.11-1.33, p=1.10x10-5] in heterozygote disadvantage model). For diabetes, hypertension and CHD, HR p-values were 0.019, 0.00048, 0.093, and 0.0024, 0.00040, 0.0014, in each respective genetic model. As expected, men without a CMD outlived men with a CMD (p=1.9x10-6). There was, however, no difference in lifespan by genotype in men without a CMD (p=0.21 and 0.86, respectively, in each genetic model). In conclusion, we propose that in individuals with a cardiometabolic disease, longevity-associated genetic variation in MAP3K5 enhances resilience mechanisms in cells and tissues to help protect against cardiometabolic stress caused by CMDs. As a result, men with CMD having longevity genotype live as long as all men without a CMD.
Collapse
Affiliation(s)
- Brian J. Morris
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, New South Wales, Australia
| | - Randi Chen
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - D. Craig Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Human Welfare, Okinawa International University, Okinawa, Japan
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Bradley J. Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
38
|
Lent S, Cardenas A, Rifas-Shiman SL, Perron P, Bouchard L, Liu CT, Hivert MF, Dupuis J. Detecting differentially methylated regions with multiple distinct associations. Epigenomics 2021; 13:451-464. [PMID: 33641349 DOI: 10.2217/epi-2020-0344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: We evaluated five methods for detecting differentially methylated regions (DMRs): DMRcate, comb-p, seqlm, GlobalP and dmrff. Materials & methods: We used a simulation study and real data analysis to evaluate performance. Additionally, we evaluated the use of an ancestry-matched reference cohort to estimate correlations between CpG sites in cord blood. Results: Several methods had inflated Type I error, which increased at more stringent significant levels. In power simulations with 1-2 causal CpG sites with the same direction of effect, dmrff was consistently among the most powerful methods. Conclusion: This study illustrates the need for more thorough simulation studies when evaluating novel methods. More work must be done to develop methods with well-controlled Type I error that do not require individual-level data.
Collapse
Affiliation(s)
- Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, 94704, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School & Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Luigi Bouchard
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean, Hôpital de Chicoutimi, Saguenay, QC, G7H 5H6, Canada
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School & Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| |
Collapse
|
39
|
Hypothalamic Microglial Heterogeneity and Signature under High Fat Diet-Induced Inflammation. Int J Mol Sci 2021; 22:ijms22052256. [PMID: 33668314 PMCID: PMC7956484 DOI: 10.3390/ijms22052256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signaling activation. Recent data from transcriptomic analysis of microglia from rodents and humans has allowed the identification of several microglial subpopulations throughout the brain. Numerous studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data unveiling microglial heterogeneity have triggered the development of novel experimental models for studying the roles and characteristics of each microglial subtype. In this review, we explore microglial heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet-induced inflammation. We present novel currently available ex vivo and in vivo experimental models that can be useful when designing a new research project in this field of study. Last, we examine the transcriptomic data already published to identify how the hypothalamic microglial signature changes upon short-term and prolonged high-fat feeding.
Collapse
|
40
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
41
|
Chen Y, Das S, Zhuo G, Cai H. Elevated serum levels of galectin-3 binding protein are associated with insulin resistance in non-diabetic women after menopause. Taiwan J Obstet Gynecol 2020; 59:877-881. [PMID: 33218405 DOI: 10.1016/j.tjog.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Galectin-3 binding protein (Gal-3BP) is one of the major fucosylated glycoprotein family members and has recently been implicated in non-alcoholic fatty liver disease, hyperlipaemia and coronary artery disease. Here, we analysed the serum concentrations of Gal-3BP in menopausal women to evaluate the association of circulating Gal-3BP and insulin resistance in females after menopause. MATERIALS AND METHODS We evaluated serum levels of Gal-3BP in sixty-two non-diabetic women with menopausal status for at least one year. The clinical features, biochemical profiles and homeostasis model assessment of insulin resistance (HOMA-IR) indices were obtained routinely. RESULTS Gal-3BP levels increased in women with higher HOMA-IR indices and were positively correlated with HOMA-IR indices. The Gal-3BP level was also an independent risk factor for a high HOMA-IR index and showed the most influence on the HOMA-IR index compared to fasting plasma glucose, triglyceride, age and body mass index. The cut-off value of the serum Gal-3BP level was 2234.32 ng/ml, with areas under the ROC curve (AUCs) of 0.68 (HOMA-IR index 1.5), 0.81 (HOMA-IR index 2.0) and 0.93 (HOMA-IR index 2.5). CONCLUSION Serum levels of Gal-3BP are associated with impaired insulin sensitivity in non-diabetic menopausal women.
Collapse
Affiliation(s)
- Yun Chen
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sayantana Das
- Department of Gynaecology, North Middlesex University Hospital NHS TRUST, London, UK
| | - Guangchao Zhuo
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Cai
- Department of Gynaecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Shen J, Song R, Ye Y, Wu X, Chow WH, Zhao H. HIF3A DNA methylation, obesity and weight gain, and breast cancer risk among Mexican American women. Obes Res Clin Pract 2020; 14:548-553. [PMID: 33121895 DOI: 10.1016/j.orcp.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE In previous epigenome-wide association studies, Hypoxia inducible Factor 3 Alpha Subunit (HIF3A) DNA methylation has been reported to be associated with body mass index (BMI) and weight change. However, none of these studies have included Mexican Americans. METHODS In the current study, we assessed levels of HIF3A methylation in 927 Mexican American women identified from Mano-A-Mano, the Mexican American Cohort study. RESULTS Significantly higher methylation levels at three CpG sites (position 46801557, 46801642, and 46801699) were observed in obese women compared to non-obese women (P < 0.05). Furthermore, we found that elevated methylation levels at those three CpG sites were associated with significant weight gain (P < 0.05), defined as an increase in BMI by at least one category between the baseline and the follow-up, with a median follow-up time of 39 months. Then, using pre-diagnostic blood DNA samples, we found increased DNA methylation at CpG 46801642 to be associated with a 1.35-fold increased risk of breast cancer (Hazard Ratio (HR) = 1.35, 95% Confidence Interval (CI): 1.02, 3.01), with a median follow-up time of 127 months. Using the Cancer Genome Atlas (TCGA) data, we further found that levels of HIF3A were significantly higher-methylated and down-regulated in breast tumor than in normal tissues (P < 1 × 1012 for both). CONCLUSION Thus, our results provide evidence to support the role of HIF3A in obesity, weight gain, and the development of breast cancer.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, VA, USA
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wong-Ho Chow
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, VA, USA.
| |
Collapse
|
43
|
Smoking-related changes in DNA methylation and gene expression are associated with cardio-metabolic traits. Clin Epigenetics 2020; 12:157. [PMID: 33092652 PMCID: PMC7579899 DOI: 10.1186/s13148-020-00951-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tobacco smoking is a well-known modifiable risk factor for many chronic diseases, including cardiovascular disease (CVD). One of the proposed underlying mechanism linking smoking to disease is via epigenetic modifications, which could affect the expression of disease-associated genes. Here, we conducted a three-way association study to identify the relationship between smoking-related changes in DNA methylation and gene expression and their associations with cardio-metabolic traits. RESULTS We selected 2549 CpG sites and 443 gene expression probes associated with current versus never smokers, from the largest epigenome-wide association study and transcriptome-wide association study to date. We examined three-way associations, including CpG versus gene expression, cardio-metabolic trait versus CpG, and cardio-metabolic trait versus gene expression, in the Rotterdam study. Subsequently, we replicated our findings in The Cooperative Health Research in the Region of Augsburg (KORA) study. After correction for multiple testing, we identified both cis- and trans-expression quantitative trait methylation (eQTM) associations in blood. Specifically, we found 1224 smoking-related CpGs associated with at least one of the 443 gene expression probes, and 200 smoking-related gene expression probes to be associated with at least one of the 2549 CpGs. Out of these, 109 CpGs and 27 genes were associated with at least one cardio-metabolic trait in the Rotterdam Study. We were able to replicate the associations with cardio-metabolic traits of 26 CpGs and 19 genes in the KORA study. Furthermore, we identified a three-way association of triglycerides with two CpGs and two genes (GZMA; CLDND1), and BMI with six CpGs and two genes (PID1; LRRN3). Finally, our results revealed the mediation effect of cg03636183 (F2RL3), cg06096336 (PSMD1), cg13708645 (KDM2B), and cg17287155 (AHRR) within the association between smoking and LRRN3 expression. CONCLUSIONS Our study indicates that smoking-related changes in DNA methylation and gene expression are associated with cardio-metabolic risk factors. These findings may provide additional insights into the molecular mechanisms linking smoking to the development of CVD.
Collapse
|
44
|
Choi YJ, Lee YA, Hong YC, Cho J, Lee KS, Shin CH, Kim BN, Kim JI, Park SJ, Bisgaard H, Bønnelykke K, Lim YH. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. ENVIRONMENT INTERNATIONAL 2020; 143:105929. [PMID: 32645488 DOI: 10.1016/j.envint.2020.105929] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Epigenetic mechanisms have been suggested to play a role in the link between in utero exposure to bisphenol A (BPA) and pediatric obesity; however, there is little evidence regarding this mechanism in humans. We obtained data on obesity-associated CpG sites from a previous epigenome-wide association study, and then examined whether methylation at those CpG sites was influenced by prenatal BPA exposure. We then evaluated the relationship between CpG methylation status and body mass index (BMI) in a prospective children's cohort at ages 2, 4, 6, and 8 years. METHODS Methylation profiles of 59 children were longitudinally analyzed at ages 2 and 6 years using the Infinium Human Methylation BeadChip. A total of 594 CpG sites known to be BMI or obesity-associated sites were tested for an association with prenatal BPA levels, categorized into low and high exposure groups based on the 80th percentile of maternal BPA levels (2.68 μg/g creatinine), followed by an analysis of the association between DNA methylation and BMI from ages 2-8. RESULTS There was a significant increase in the methylation levels of cg19196862 (IGF2R) in the high BPA group at age 2 years (p = 0.00030, false discovery rate corrected p < 0.10) but not at age 6. With one standard deviation increase of methylation at cg19196862 (IGF2R) at age 2 years, the linear mixed model analysis revealed that BMI during ages 2-8 years significantly increased by 0.49 (95% confidence interval; 0.08, 0.90) in girls, but not in boys. The indirect effect of prenatal BPA exposure on early childhood BMI through methylation at cg19196862 (IGF2R) at age 2 years was marginally significant. CONCLUSIONS Prenatal exposure to BPA may influence differential methylation of IGF2R at age 2. This result indicates that a possible sensitive period of DNA methylation occurs earlier during development, which may affect BMI until later childhood in a sex-specific manner.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Jinwoo Cho
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul 04763, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo 15865, Republic of Korea
| | - Hans Bisgaard
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, 2820, Gentofte, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, 2820, Gentofte, Copenhagen, Denmark
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea; Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen 1014, Denmark.
| |
Collapse
|
45
|
Justice AE, Chittoor G, Gondalia R, Melton PE, Lim E, Grove ML, Whitsel EA, Liu CT, Cupples LA, Fernandez-Rhodes L, Guan W, Bressler J, Fornage M, Boerwinkle E, Li Y, Demerath E, Heard-Costa N, Levy D, Stewart JD, Baccarelli A, Hou L, Conneely K, Mori TA, Beilin LJ, Huang RC, Gordon-Larsen P, Howard AG, North KE. Methylome-wide association study of central adiposity implicates genes involved in immune and endocrine systems. Epigenomics 2020; 12:1483-1499. [PMID: 32901515 PMCID: PMC7923253 DOI: 10.2217/epi-2019-0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aim: We conducted a methylome-wide association study to examine associations between DNA methylation in whole blood and central adiposity and body fat distribution, measured as waist circumference, waist-to-hip ratio and waist-to-height ratio adjusted for body mass index, in 2684 African-American adults in the Atherosclerosis Risk in Communities study. Materials & methods: We validated significantly associated cytosine-phosphate-guanine methylation sites (CpGs) among adults using the Women's Health Initiative and Framingham Heart Study participants (combined n = 5743) and generalized associations in adolescents from The Raine Study (n = 820). Results & conclusion: We identified 11 CpGs that were robustly associated with one or more central adiposity trait in adults and two in adolescents, including CpG site associations near TXNIP, ADCY7, SREBF1 and RAP1GAP2 that had not previously been associated with obesity-related traits.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillip E Melton
- School of Biomedical Science, Faculty of Health & Medical Sciences, The University of Western Australia, Perth, WA 6000, Australia
- School of Pharmacy & Biomedical Sciences, Faculty of Health Sciences, Curtin University, MRF Building, Perth, WA 6000, Australia
- Menzies Institute for Medical Research, College of Health & Medicine, University of Tasmania, Hobart, TA, 7000 Australia
| | - Elise Lim
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Framingham Heart Study, Framingham, MA, 01701, USA
| | - Lindsay Fernandez-Rhodes
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Myriam Fornage
- Center for Human Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ellen Demerath
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, 01701, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Dan Levy
- Population sciences branch, NHLBI Framingham Heart Study, Framingham, MA 01702, USA
- Department of Medicine, Boston University, Boston, MA 02118, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrea Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences & Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | | | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, NC 27516, USA
| |
Collapse
|
46
|
Petrick HL, Foley KP, Zlitni S, Brunetta HS, Paglialunga S, Miotto PM, Politis-Barber V, O’Dwyer C, Philbrick DJ, Fullerton MD, Schertzer JD, Holloway GP. Adipose Tissue Inflammation Is Directly Linked to Obesity-Induced Insulin Resistance, while Gut Dysbiosis and Mitochondrial Dysfunction Are Not Required. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa013. [PMID: 34278304 PMCID: PMC8276887 DOI: 10.1093/function/zqaa013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023]
Abstract
Obesity is associated with adipose tissue hypertrophy, systemic inflammation, mitochondrial dysfunction, and intestinal dysbiosis. Rodent models of high-fat diet (HFD)-feeding or genetic deletion of multifunctional proteins involved in immunity and metabolism are often used to probe the etiology of obesity; however, these models make it difficult to divorce the effects of obesity, diet composition, or immunity on endocrine regulation of blood glucose. We, therefore, investigated the importance of adipose inflammation, mitochondrial dysfunction, and gut dysbiosis for obesity-induced insulin resistance using a spontaneously obese mouse model. We examined metabolic changes in skeletal muscle, adipose tissue, liver, the intestinal microbiome, and whole-body glucose control in spontaneously hyperphagic C57Bl/6J mice compared to lean littermates. A separate subset of lean and obese mice was subject to 8 weeks of obesogenic HFD feeding, or to pair feeding of a standard rodent diet. Hyperphagia, obesity, adipose inflammation, and insulin resistance were present in obese mice despite consuming a standard rodent diet, and these effects were blunted with caloric restriction. However, hyperphagic obese mice had normal mitochondrial respiratory function in all tissues tested and no discernable intestinal dysbiosis relative to lean littermates. In contrast, feeding mice an obesogenic HFD altered the composition of the gut microbiome, impaired skeletal muscle mitochondrial bioenergetics, and promoted poor glucose control. These data show that adipose inflammation and redox stress occurred in all models of obesity, but gut dysbiosis and mitochondrial respiratory dysfunction are not always required for obesity-induced insulin resistance. Rather, changes in the intestinal microbiome and mitochondrial bioenergetics may reflect physiological consequences of HFD feeding.
Collapse
Affiliation(s)
- Heather L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kevin P Foley
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Soumaya Zlitni
- Departments of Genetics and Medicine, Stanford University, Stanford, 94305, CA, USA
| | - Henver S Brunetta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada,Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Sabina Paglialunga
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Valerie Politis-Barber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Centre for Inflammation, Infection and Immunity, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Diana J Philbrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Centre for Inflammation, Infection and Immunity, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada,Address correspondence to G.P.H. (e-mail: )
| |
Collapse
|
47
|
Kim KW, Park SC, Cho HJ, Jang H, Park J, Shim HS, Kim EG, Kim MN, Hong JY, Kim YH, Lee S, Weiss ST, Kim CH, Won S, Sohn MH. Integrated genetic and epigenetic analyses uncover MSI2 association with allergic inflammation. J Allergy Clin Immunol 2020; 147:1453-1463. [PMID: 32795589 DOI: 10.1016/j.jaci.2020.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The relationship between allergic and eosinophilic inflammation, either systemic or local, in allergic diseases remains unclear. OBJECTIVE We performed combined genome-wide association study (GWAS) and epigenome-wide (EWAS) for atopy and tissue eosinophilia to identify both genetic and epigenetic signatures between systemic and local allergic inflammation, and to capture global patterns of gene regulation. METHODS We included 126 subjects for atopy analysis and 147 for tissue eosinophilia analysis, as well as 18 normal nasal tissue samples. We identified differentially methylated positions (DMPs) and genes associated with atopy and tissue eosinophilia. Furthermore, we performed mendelian randomization analysis and penalized regression along with replication in an independent cohort. RESULTS EWAS identified genes, including Musashi RNA binding protein 2 (MSI2), associated with atopy, which contained enriched DMPs that genetically affect atopy. A direct association was observed between MSI2 single-nucleotide polymorphisms and atopy, as was a causal effect of changes in MSI2 expression and methylation on atopy, which was replicated in a Costa Rican population. Regarding tissue eosinophilia, EWAS identified genes with enriched DMPs directly contributing to tissue eosinophilia at the gene level, including CAMK1D. The gene ontology terms of the identified genes for both phenotypes encompassed immune-related terms. CONCLUSION EWAS combined with GWAS identified novel candidate genes, especially the methylation of MSI2, contributing to systemic allergic inflammation. Certain genes displayed a greater association with either systemic or local allergic inflammation; however, it is expected that a harmonized effect of these genes influences immune responses.
Collapse
Affiliation(s)
- Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Sang-Cheol Park
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, The Airway Mucus Institute, Korea Mouse Phenotyping Center (KMPC), Taste Research Center, Seoul, Korea
| | - Haerin Jang
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Jaehyun Park
- Interdisciplinary Program for Bioinformatics, College of Natural Science, Seoul National University, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Gangnam Severance Hospital, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School, Dankook Univeristy, Yongin, Korea
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, The Airway Mucus Institute, Korea Mouse Phenotyping Center (KMPC), Taste Research Center, Seoul, Korea.
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Korea; Interdisciplinary Program for Bioinformatics, College of Natural Science, Seoul National University, Seoul, Korea; Department of Public Health Sciences, College of Natural Science, Seoul National University, Seoul, Korea.
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea.
| |
Collapse
|
48
|
Koh IU, Choi NH, Lee K, Yu HY, Yun JH, Kong JH, Kim HJ, Lee S, Kim SC, Kim BJ, Moon S. Obesity susceptible novel DNA methylation marker on regulatory region of inflammation gene: results from the Korea Epigenome Study (KES). BMJ Open Diabetes Res Care 2020; 8:8/1/e001338. [PMID: 32788176 PMCID: PMC7422660 DOI: 10.1136/bmjdrc-2020-001338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Obesity is growing global health concern and highly associated with increased risk of metabolic diseases including type 2 diabetes. We aimed to discover new differential DNA methylation patterns predisposing obesity and prioritize surrogate epigenetic markers in Koreans. RESEARCH DESIGN AND METHODS We performed multistage epigenome-wide analyses to identify differentially expressed CpGs in obesity using the Illumina HumanMethylationEPIC array (EPIC). Forty-eight CpGs showed significant differences across three phases: 902 whole blood DNAs from two cohorts (phase 1: n=450, phase 2: n=377) and a hospital-based sample (phase 3: n=75). Samples from phase III participants were used to examine whether the 48 CpGs are significant in the fat tissue and influenced gene expression. Furthermore, we investigated the epigenetic effect of CpG loci in childhood obesity (n=94). RESULTS Seven of the 48 CpGs exhibited similar changes in the fat tissue along with gene expression changes. In particular, hypomethylated CpG (cg13424229) on the GATA1 transcription factor cluster of CPA3 promoter was related to its increased gene expression and showed consistent effect in childhood obesity. Interestingly, subsequent analysis using RNA sequencing data from 21 preadipocytes and 26 adipocytes suggested CPA3 as a potential obesity-related gene. Moreover, expression patterns from RNA sequencing and public Gene Expression Omnibus showed the correlation between CPA3 and type 2 diabetes (T2D) and asthma. CONCLUSIONS Our finding prioritizes influential genes in obesity and provides new evidence for the role of CPA3 linking obesity, T2D, and asthma.
Collapse
Affiliation(s)
- In-Uk Koh
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Nak-Hyeon Choi
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Kibaick Lee
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Ho-Yeong Yu
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jun Ho Yun
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jin-Hwa Kong
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Hyo Jin Kim
- Division of Endocrine and Metabolic Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Song Lee
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Songpa-gu, Seoul, South Korea
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea
| |
Collapse
|
49
|
Ouidir M, Mendola P, Buck Louis GM, Kannan K, Zhang C, Tekola-Ayele F. Concentrations of persistent organic pollutants in maternal plasma and epigenome-wide placental DNA methylation. Clin Epigenetics 2020; 12:103. [PMID: 32653021 PMCID: PMC7371466 DOI: 10.1186/s13148-020-00894-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Prenatal maternal plasma persistent organic pollutant (POP) concentrations have been associated with neonatal outcomes. However, the underlying mechanisms remain unknown. Placental epigenetic mechanisms may be involved, but no prior epigenome-wide studies have investigated the impact of maternal POPs on placental DNA methylation. We studied the association between maternal plasma POP concentration in early pregnancy and epigenome-wide placental DNA methylation among 260 pregnant women from the NICHD Fetal Growth Studies. Results Our analysis focused on POPs with more than 80% plasma concentrations above the limit of quantification, including 3 organochlorine pesticides (hexachlorobenzene, trans-nonachlor, p,p’-dichlorodiphenyldichloroethylene), 1 polybrominated diphenyl ether (PBDE 47), 3 polychlorinated biphenyls (138/158, 153, 180), and 6 poly- and perfluorinated alkyl substances (PFASs) (perfluorodecanoic acid, perfluorohexanesulfonic acid, perfluorononanoic acid, perfluorooctanesulfonic acid, perfluoroundecanoic acid (PFUnDA)). Using 5% false discovery rate, POPs were associated with a total of 214 differentially methylated CpG sites (nominal p values ranging from 2.61 × 10−21 to 2.11 × 10−7). Out of the 214 CpG sites, 24 (11%) were significantly correlated with placental expression of 21 genes. Notably, higher PFUnDA was associated with increased methylation at 3 CpG sites (cg13996963, cg12089439, cg18145877) annotated to TUSC3, and increased methylation at those 3 CpG sites was correlated with decreased expression of TUSC3 in the placenta. Increased methylation at cg18145877 (TUSC3) and decreased expression of TUSC3 were correlated with shorter birth length. Out of the 214 CpG sites, methylation at 44 CpG sites was correlated (p value < 0.10) with at least one neonatal anthropometry measure (i.e., birth weight, birth length, and head circumference). Seven CpG sites mediated (p value < 0.05) the association between PBDE 47 and neonatal anthropometry measures. Genes annotating the top differentially methylated CpG sites were enriched in pathways related to differentiation of embryonic cells (PBDE 47) and in pathways related to brain size and brain morphology (PFASs). Conclusions DNA methylation changes in the placenta were significantly associated with maternal plasma POPs concentration. The findings suggest that placental DNA methylation and gene expression mechanism may be involved in the prenatal toxicity of POPs and their association with neonatal anthropometry measures.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA
| | - Germaine M Buck Louis
- Office of the Dean, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York, NY, USA.,Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA.
| |
Collapse
|
50
|
Yassumoto TI, Nakatsukasa M, Nagano AJ, Yasugi M, Yoshimura T, Shinomiya A. Genetic analysis of body weight in wild populations of medaka fish from different latitudes. PLoS One 2020; 15:e0234803. [PMID: 32544202 PMCID: PMC7297337 DOI: 10.1371/journal.pone.0234803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
The genetic bases of growth and body weight are of economic and scientific interest, and teleost fish models have proven useful in such investigations. The Oryzias latipes species complex (medaka) is an abundant freshwater fish in Japan and suitable for genetic studies. We compared two wild medaka stocks originating from different latitudes. The Maizuru population from higher latitudes weighed more than the Ginoza population. We investigated the genetic basis of body weight, using quantitative trait locus (QTL) analysis of the F2 offspring of these populations. We detected one statistically significant QTL for body weight on medaka chromosome 4 and identified 12 candidate genes that might be associated with body weight or growth. Nine of these 12 genes had at least one single nucleotide polymorphism that caused amino acid substitutions in protein-coding regions, and we estimated the effects of these substitutions. The present findings might contribute to the marker-assisted selection of economically important aquaculture species.
Collapse
Affiliation(s)
- Tamiris I. Yassumoto
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mana Nakatsukasa
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|