1
|
Zhu X, Liu W, Wang B, Yang L. Molecular and physiological responses of two quinoa genotypes to drought stress. Front Genet 2024; 15:1439046. [PMID: 39184352 PMCID: PMC11341418 DOI: 10.3389/fgene.2024.1439046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Quinoa is an important economic food crop. However, quinoa seedlings are susceptible to drought stress, and the molecular mechanism of drought tolerance remains unclear. In this study, we compared transcriptomic and physiological analyses of drought-tolerant (L1) and susceptible (HZ1) genotypes exposed to 20% PEG for 3 and 9 days at seedling stage. Compared with HZ1, drought stress had less damage to photosynthetic system, and the contents of SOD, POD and CAT were higher and the contents of H2O2 and O2 -were lower in L1 leaves. Based on the RNA-seq method, we identified 2423, 11856, 1138 and 3903 (HZ1-C3-VS-T3, HZ1-C9-vs-T9, L1-C3-vs-T3 and L1-C9-vs-T9) annotated DEGs. Go enrichment was shown in terms of Biological Process: DEGs involved in biological processes such as metabolic process, cellular process, and single-organism process were most abundant in all four comparison treatments. In Molecular Function: the molecular functions of catalytic activity, binding and transporter activity have the most DEGs in all four processes. Cellular Component: membrane, membrane part, and cell have the most DEGs in each of the four processes. These DEGs include AP2/ERF, MYB, bHLH, b-ZIP, WRKY, HD-ZIP, NAC, C3h and MADS, which encode transcription factors. In addition, the MAPK pathway, starch and sucrose metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction were significantly induced under drought stress, among them, G-hydrolases-66, G-hydrolases-81, G-hydrolases-78, Su-synthase-02, Su-synthase-04, Su-synthase-06, BRI1-20 and bHLH17 were all downregulated at two drought stress points in two genotypes, PP2C01, PP2C03, PP2C05-PP2C07, PP2C10, F-box01 and F-box02 were upregulated at two drought stress points in two genotypes. These results agree with the physiological responses and RNA-seq results. Collectively, these findings may lead to a better understanding of drought tolerance, and some of the important DEGs detected in this study could be targeted for future research. And our results will provide a comprehensive basis for the molecular network that mediates drought tolerance in quinoa seedlings and promote the breeding of drought-resistant quinoa varieties.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ling Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
2
|
Qiao M, Hong C, Jiao Y, Hou S, Gao H. Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:1808. [PMID: 38999648 PMCID: PMC11243883 DOI: 10.3390/plants13131808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024]
Abstract
Drought stress is one of the most critical threats to crop productivity and global food security. This review addresses the multiple effects of drought on the process of photosynthesis in major food crops. Affecting both light-dependent and light-independent reactions, drought leads to severe damage to photosystems and blocks the electron transport chain. Plants face a CO2 shortage provoked by stomatal closure, which triggers photorespiration; not only does it reduce carbon fixation efficiency, but it also causes lower overall photosynthetic output. Drought-induced oxidative stress generates reactive oxygen species (ROS) that damage cellular structures, including chloroplasts, further impairing photosynthetic productivity. Plants have evolved a variety of adaptive strategies to alleviate these effects. Non-photochemical quenching (NPQ) mechanisms help dissipate excess light energy as heat, protecting the photosynthetic apparatus under drought conditions. Alternative electron pathways, such as cyclical electron transmission and chloroplast respiration, maintain energy balance and prevent over-reduction of the electron transport chain. Hormones, especially abscisic acid (ABA), ethylene, and cytokinin, modulate stomatal conductance, chlorophyll content, and osmotic adjustment, further increasing the tolerance to drought. Structural adjustments, such as leaf reordering and altered root architecture, also strengthen tolerance. Understanding these complex interactions and adaptive strategies is essential for developing drought-resistant crop varieties and ensuring agricultural sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- National Engineering Research Center for Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.Q.)
| |
Collapse
|
3
|
Kim D, Guadagno CR, Ewers BE, Mackay DS. Combining PSII photochemistry and hydraulics improves predictions of photosynthesis and water use from mild to lethal drought. PLANT, CELL & ENVIRONMENT 2024; 47:1255-1268. [PMID: 38178610 DOI: 10.1111/pce.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.
Collapse
Affiliation(s)
- Dohyoung Kim
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| | | | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - D Scott Mackay
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
4
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
5
|
He Y, Zhang R, Li P, Men L, Xu M, Wang J, Niu S, Tian D. Nitrogen enrichment delays the drought threshold responses of leaf photosynthesis in alpine grassland plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169560. [PMID: 38154633 DOI: 10.1016/j.scitotenv.2023.169560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Extreme drought is found to cause a threshold response in photosynthesis in ecosystem level. However, the mechanisms behind this phenomenon are not well understood, highlighting the importance of revealing the drought thresholds for multiple leaf-level photosynthetic processes. Thus, we conducted a long-term experiment involving precipitation reduction and nitrogen (N) addition. Moreover, an extreme drought event occurred within the experimental period. We found the presence of drought thresholds for multiple leaf-level photosynthetic processes, with the leaf light-saturated carbon assimilation rate (Asat) displaying the highest threshold (10.76 v/v%) and the maximum rate of carboxylation by Rubisco (Vcmax) showing the lowest threshold (5.38 v/v%). Beyond the drought thresholds, the sensitivities of leaf-level photosynthetic processes to soil water content could be greater. Moreover, N addition lowered the drought thresholds of Asat and stomatal conductance (gs), but had no effect on that of Vcmax. Among species, plants with higher leaf K concentration traits had a lower drought threshold of Asat. Overall, this study highlights that leaf photosynthesis may be suppressed abruptly as soil water content surpasses the drought threshold. However, N enrichment helps to improve the resistance via delaying drought threshold response. These new findings have important implications for understanding the nonlinearity of ecosystem productivity response and early warning management in the scenario of combined extreme drought events and continuous N deposition.
Collapse
Affiliation(s)
- Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Pengyu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lu Men
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Wang Q, Wu Y, Ozavize SF, Qiu CW, Holford P, Wu F. Genotypic Differences in Morphological, Physiological and Agronomic Traits in Wheat ( Triticum aestivum L.) in Response to Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:307. [PMID: 38276768 PMCID: PMC10820655 DOI: 10.3390/plants13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Drought is one of the main environmental factors affecting crop growth, and breeding drought-tolerant cultivars is one of the most economic and effective ways of increasing yields and ensuring sustainable agricultural production under drought stress. To facilitate the breeding of drought-tolerant wheat, this study was conducted to evaluate genotypic differences in the drought tolerance of 334 wheat genotypes collected from China and Australia with the aim of screening for drought-tolerant and -sensitive genotypes and to elucidate the corresponding physiological mechanisms. A hydroponic-air experiment (roots exposed to air for 7 h/d and continued for 6 d) showed significant genotypic differences in shoot and root dry weights among the genotypes. The relative shoot and root dry weights, expressed as the percentage of the control, showed a normal distribution, with variation ranges of 20.2-79.7% and 32.8-135.2%, respectively. The coefficients of variation were in the range of 18.2-22.7%, and the diversity index was between 5.71 and 5.73, indicating a rich genetic diversity among the wheat genotypes for drought tolerance. Using phenotypic differences in relative dry weights in responses to drought stress, 20 of each of the most drought-tolerant and drought-sensitive genotypes were selected; these were further evaluated in pot experiments (watering withheld until the soil moisture content reached four percent). The results showed that the trends in drought tolerance were consistent with the hydroponic-air experiment, with genotypes W147 and W235 being the most drought-tolerant and W201 and W282 the most sensitive. Significant genotypic differences in water use efficiency in response to drought were observed in the pot experiment, with the drought-tolerant genotypes being markedly higher and the two sensitive genotypes being no different from the control. A marked increase in bound water content in the drought stress plants was observed in the two drought-tolerant genotypes, while a decrease occurred in the free water. The reductions in photochemical efficiencies of PSII, transpiration rates, net photosynthesis rates, chlorophyll contents and stomatal conduction in the drought-sensitive genotypes W201 and W282 under drought stress were higher than the two tolerant genotypes. This study provides a theoretical guide and germplasm for the further genetic improvement of drought tolerance in wheat.
Collapse
Affiliation(s)
- Qingqing Wang
- Provincial Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (Q.W.); (Y.W.); (S.F.O.); (C.-W.Q.)
| | - Yi Wu
- Provincial Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (Q.W.); (Y.W.); (S.F.O.); (C.-W.Q.)
| | - Suleiman Fatimoh Ozavize
- Provincial Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (Q.W.); (Y.W.); (S.F.O.); (C.-W.Q.)
| | - Cheng-Wei Qiu
- Provincial Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (Q.W.); (Y.W.); (S.F.O.); (C.-W.Q.)
| | - Paul Holford
- School of Science, University of Western Sydney, Penrith, NSW 2751, Australia;
| | - Feibo Wu
- Provincial Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (Q.W.); (Y.W.); (S.F.O.); (C.-W.Q.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Lv A, Su L, Fan N, Wen W, Wang Z, Zhou P, An Y. Chloroplast-targeted late embryogenesis abundant 1 increases alfalfa tolerance to drought and aluminum. PLANT PHYSIOLOGY 2023; 193:2750-2767. [PMID: 37647543 DOI: 10.1093/plphys/kiad477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are important stress-response proteins that participate in protecting plants against abiotic stresses. Here, we investigated LEA group 3 protein MsLEA1, containing the typically disordered and α-helix structure, via overexpression and RNA interference (RNAi) approaches in alfalfa (Medicago sativa L.) under drought and aluminum (Al) stresses. MsLEA1 was highly expressed in leaves and localized in chloroplasts. Overexpressing MsLEA1 increased alfalfa tolerance to drought and Al stresses, but downregulating MsLEA1 decreased the tolerance. We observed a larger stomatal aperture and a lower water use efficiency in MsLEA1 RNAi lines compared with wild-type plants under drought stress. Photosynthetic rate, Rubisco activity, and superoxide dismutase (SOD) activity increased or decreased in MsLEA1-OE or MsLEA1-RNAi lines, respectively, under drought and Al stress. Copper/zinc SOD (Cu/Zn-SOD), iron SOD (Fe-SOD), and Rubisco large subunit proteins (Ms1770) were identified as binding partners of MsLEA1, which protected chloroplast structure and function under drought and Al stress. These results indicate that MsLEA1 recruits and protects its target proteins (SOD and Ms1770) and increases alfalfa tolerance against drought and Al stresses.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
8
|
Chen L, Keski-Saari S, Kontunen-Soppela S, Zhu X, Zhou X, Hänninen H, Pumpanen J, Mola-Yudego B, Wu D, Berninger F. Immediate and carry-over effects of late-spring frost and growing season drought on forest gross primary productivity capacity in the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2023; 29:3924-3940. [PMID: 37165918 DOI: 10.1111/gcb.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
- Department of Geographical and Historical Studies, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Xudan Zhu
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Blas Mola-Yudego
- School of Forest Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Di Wu
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
9
|
Conti V, Parrotta L, Romi M, Del Duca S, Cai G. Tomato Biodiversity and Drought Tolerance: A Multilevel Review. Int J Mol Sci 2023; 24:10044. [PMID: 37373193 DOI: 10.3390/ijms241210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
10
|
Zezulka Š, Kummerová M, Šmeringai J, Babula P, Tříska J. Ambiguous changes in photosynthetic parameters of Lemna minor L. after short-term exposure to naproxen and paracetamol: Can the risk be ignored? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106537. [PMID: 37060818 DOI: 10.1016/j.aquatox.2023.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are recently monitored in the aquatic environment. Naproxen (NPX), paracetamol (PCT) and their transformation products can influence the biochemical and physiological processes at the sub-cellular and cellular levels taking part in the growth and development of plants. This study aimed to compare the effects of NPX and PCT, drugs with different physico-chemical properties, on the growth and photosynthetic processes in Lemna minor during a short-term (7 days) exposure. Although duckweed took up more than five times higher amount of PCT as compared to NPX (275.88 µg/g dry weight to 43.22 µg/g when treated with 10 mg/L), only NPX limited the number of new plants by 9% and 26% under 1 and 10 mg/L, respectively, and increased their dry weight (by 18% under 10 mg/L) and leaf area per plant. A considerable (by 30%) drop in the content of photosynthetic pigments under 10 mg/L treatment by both drugs did not significantly affect the efficiency of the primary processes of photosynthesis. Values of induced chlorophyll fluorescence parameters (F0, FV/FM, ΦII, and NPQ) showed just a mild stimulation by PCT and a negative effect by NPX (by up to 10%), especially on the function of photosystem II and electron transport in both intact duckweed plants and isolated chloroplasts. Lowered efficiency of Hill reaction activity (by more than 10% under 0.1 - 10 mg/L treatments) in isolated chloroplasts suspension proved the only inhibition effect of PCT to primary photosynthetic processes. In intact plants, higher treatments (0.5 - 10 mg/L) by both NPX and PCT induced an increase in RuBisCO content. The results prove that the potential effect of various drugs on plants is hard to generalise.
Collapse
Affiliation(s)
- Štěpán Zezulka
- Institute of Experimental Biology - Department of Experimental Plant Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, Brno 611 37, Czech Republic.
| | - Marie Kummerová
- Institute of Experimental Biology - Department of Experimental Plant Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, Brno 611 37, Czech Republic
| | - Ján Šmeringai
- Plant Sciences Core Facility, Central European Institute of Technology (CEITEC) at Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Petr Babula
- Dep. of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Jan Tříska
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, Brno 603 00, Czech Republic
| |
Collapse
|
11
|
Jacques C, Girodet S, Leroy F, Pluchon S, Salon C, Prudent M. Memory or acclimation of water stress in pea rely on root system's plasticity and plant's ionome modulation. FRONTIERS IN PLANT SCIENCE 2023; 13:1089720. [PMID: 36762182 PMCID: PMC9905705 DOI: 10.3389/fpls.2022.1089720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Peas, as legume crops, could play a major role in the future of food security in the context of worldwide human nutrient deficiencies coupled with the growing need to reduce consumption of animal products. However, pea yields, in terms of quantity and quality (i.e. grain content), are both susceptible to climate change, and more specifically to water deficits, which nowadays occur more frequently during crop growth cycles and tend to last longer. The impact of soil water stress on plant development and plant growth is complex, as its impact varies depending on soil water availability (through the modulation of elements available in the soil), and by the plant's ability to acclimate to continuous stress or to memorize previous stress events. METHOD To identify the strategies underlying these plant responses to water stress events, pea plants were grown in controlled conditions under optimal water treatment and different types of water stress; transient (during vegetative or reproductive periods), recurrent, and continuous (throughout the plant growth cycle). Traits related to water, carbon, and ionome uptake and uses were measured and allowed the identification typical plant strategies to cope with water stress. CONCLUSION Our results highlighted (i) the common responses to the three types of water stress in shoots, involving manganese (Mn) in particular, (ii) the potential implications of boron (B) for root architecture modification under continuous stress, and (iii) the establishment of an "ecophysiological imprint" in the root system via an increase in nodule numbers during the recovery period.
Collapse
Affiliation(s)
- Cécile Jacques
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Fanny Leroy
- Plateforme PLATIN’, US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, TIMAC AGRO, Saint Malo, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
KALAYCIK SENGUL O, BEKEN B, OZTURK Z, OZPINAR S, OZKAN G, GUNGOR G. Gastrointestinal System Involvement in Pediatric Patients with Acute SARS-CoV-2 Infection. Medeni Med J 2022; 37:332-338. [PMID: 36578161 PMCID: PMC9808857 DOI: 10.4274/mmj.galenos.2022.79674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective The prevalence of gastrointestinal symptoms in coronavirus disease-2019 (COVID-19) has been reported widely. In this study, the prevalence of gastrointestinal system (GIS) involvement in pediatric COVID-19 and its effect on prognosis were investigated. Methods Children (aged 0-18 years) with acute COVID-19 were included in the study. The patients were grouped according to system involvement: isolated respiratory system (RS), isolated GIS, and combination of both (RS+GIS). These groups were compared in terms of demographic data, clinical characteristics, laboratory and imaging findings, and hospitalization. Results A total of 223 pediatric patients were included in the study. Of these patients, 19 were asymptomatic, 12 were diagnosed with a multisystem inflammatory syndrome in children, 21 had chronic disorders that may affect disease severity, and 27 had symptoms not related to RS or GIS. The remaining 144 patients were classified according to system involvement: 79 (35.4%), 14 (6.3%), and 51 (22.9%) had isolated RS, isolated GIS, and RS+GIS involvement, respectively. The GIS group was much younger than the RS group (median, 30 and 150 months, respectively, p=0.006). Three patients from the RS group were followed in the intensive care unit (ICU). Moreover, 17 (21.5%) and 4 (7.8%) patients from the RS group had severe-critical respiratory symptoms, in the RS+GIS group had severe-critical respiratory symptoms (p=0.039). Conclusions Our study showed that GIS involvement in children with COVID-19 is more prevalent than RS involvement in the younger age group. Respiratory symptom severity and ICU admission also decreased with accompanying GIS involvement. GIS involvement was still associated with a milder disease course after adjustment for age.
Collapse
Affiliation(s)
- Ozlem KALAYCIK SENGUL
- University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatric Gastroenterology, Hepatology and Nutrition, Istanbul, Turkey
| | - Burcin BEKEN
- University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatric Allergy and Immunology, Istanbul, Turkey,* Address for Correspondence: University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatric Allergy and Immunology, Istanbul, Turkey E-mail:
| | - Zehra OZTURK
- University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatrics, Istanbul, Turkey
| | - Seyma OZPINAR
- University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatrics, Istanbul, Turkey
| | - Gizem OZKAN
- University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatrics, Istanbul, Turkey
| | - Gizem GUNGOR
- University of Health Sciences Turkey, Kanuni Sultan Suleyman Training and Research Hospital, Clinic of Pediatrics, Istanbul, Turkey
| |
Collapse
|
13
|
Chammakhi C, Boscari A, Pacoud M, Aubert G, Mhadhbi H, Brouquisse R. Nitric Oxide Metabolic Pathway in Drought-Stressed Nodules of Faba Bean ( Vicia faba L.). Int J Mol Sci 2022; 23:13057. [PMID: 36361841 PMCID: PMC9654674 DOI: 10.3390/ijms232113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
Drought is an environmental stress that strongly impacts plants. It affects all stages of growth and induces profound disturbances that influence all cellular functions. Legumes can establish a symbiosis with Rhizobium-type bacteria, whose function is to fix atmospheric nitrogen in organs called nodules and to meet plant nitrogen needs. Symbiotic nitrogen fixation (SNF) is particularly sensitive to drought. We raised the hypothesis that, in drought-stressed nodules, SNF inhibition is partly correlated to hypoxia resulting from nodule structure compaction and an increased O2 diffusion barrier, and that the nodule energy regeneration involves phytoglobin-nitric oxide (Pgb-NO) respiration. To test this hypothesis, we subjected faba bean (Vicia faba L.) plants nodulated with a Rhizobium laguerreae strain to either drought or osmotic stress. We monitored the N2-fixation activity, the energy state (ATP/ADP ratio), the expression of hypoxia marker genes (alcohol dehydrogenase and alanine aminotransferase), and the functioning of the Pgb-NO respiration in the nodules. The collected data confirmed our hypothesis and showed that (1) drought-stressed nodules were subject to more intense hypoxia than control nodules and (2) NO production increased and contributed via Pgb-NO respiration to the maintenance of the energy state of drought-stressed nodules.
Collapse
Affiliation(s)
- Chaima Chammakhi
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj-Cedria, Hammam-Lif 2050, Tunisia
- National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Alexandre Boscari
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| | - Marie Pacoud
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| | - Grégoire Aubert
- Agroecology, INRAE, Agro Institute, Bourgogne Franche-Comté University, 21065 Dijon, France
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj-Cedria, Hammam-Lif 2050, Tunisia
| | - Renaud Brouquisse
- Sophia Agrobiotech Institute, INRAE 1355, CNRS 7254, Côte d’Azur University, 06903 Sophia Antipolis, France
| |
Collapse
|
14
|
Didion‐Gency M, Gessler A, Buchmann N, Gisler J, Schaub M, Grossiord C. Impact of warmer and drier conditions on tree photosynthetic properties and the role of species interactions. THE NEW PHYTOLOGIST 2022; 236:547-560. [PMID: 35842790 PMCID: PMC9804646 DOI: 10.1111/nph.18384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 06/01/2023]
Abstract
Increased temperature and prolonged soil moisture reduction have distinct impacts on tree photosynthetic properties. Yet, our knowledge of their combined effect is limited. Moreover, how species interactions alter photosynthetic responses to warming and drought remains unclear. Using mesocosms, we studied how photosynthetic properties of European beech and downy oak were impacted by multi-year warming and soil moisture reduction alone or combined, and how species interactions (intra- vs inter-specific interactions) modulated these effects. Warming of +5°C enhanced photosynthetic properties in oak but not beech, while moisture reduction decreased them in both species. Combined warming and moisture reduction reduced photosynthetic properties for both species, but no exacerbated effects were observed. Oak was less impacted by combined warming and limited moisture when interacting with beech than in intra-specific stands. For beech, species interactions had no impact on the photosynthetic responses to warming and moisture reduction, alone or combined. Warming had either no or beneficial effects on the photosynthetic properties, while moisture reduction and their combined effects strongly reduced photosynthetic responses. However, inter-specific interactions mitigated the adverse impacts of combined warming and drought in oak, thereby highlighting the need to deepen our understanding of the role of species interactions under climate change.
Collapse
Affiliation(s)
- Margaux Didion‐Gency
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
- Institute of Terrestrial Ecosystems, ETH ZurichCH‐8092ZurichSwitzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH ZurichCH‐8092ZurichSwitzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental EngineeringEPFLCH‐1015LausanneSwitzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐1015LausanneSwitzerland
| |
Collapse
|
15
|
Zou J, Hu W, Loka DA, Snider JL, Zhu H, Li Y, He J, Wang Y, Zhou Z. Carbon assimilation and distribution in cotton photosynthetic organs is a limiting factor affecting boll weight formation under drought. FRONTIERS IN PLANT SCIENCE 2022; 13:1001940. [PMID: 36212360 PMCID: PMC9532866 DOI: 10.3389/fpls.2022.1001940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Previous studies have documented cotton boll weight reductions under drought, but the relative importance of the subtending leaf, bracts and capsule wall in driving drought-induced reductions in boll mass has received limited attention. To investigate the role of carbon metabolism in driving organ-specific differences in contribution to boll weight formation, under drought conditions. Controlled experiments were carried out under soil relative water content (SRWC) (75 ± 5)% (well-watered conditions, control), (60 ± 5)% (moderate drought) and (45 ± 5)% (severe drought) in 2018 and 2019 with two cultivars Yuzaomian 9110 and Dexiamian 1. Under severe drought, the decreases of photosynthetic rate (Pn) and carbon isotope composition (δ13C) were observed in the subtending leaf, bract and capsule wall, suggesting that carbon assimilation of three organs was restricted and the limitation was most pronounced in the subtending leaf. Changes in the activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy), invertases as well as the reduction in expression of sucrose transporter (GhSUT1) led to variabilities in the sucrose content of three organs. Moreover, photosynthate distribution from subtending leaf to seeds plus fibers (the components of boll weight) was significantly restricted and the photosynthetic contribution rate of subtending leaf to boll weight was decreased, while contributions of bracts and capsule wall were increased by drought. This, in conjunction with the observed decreases in boll weight, indicated that the subtending leaf was the most sensitive photosynthetic organ to drought and was a dominant driver of boll weight loss under drought. Therefore, the subtending leaf governs boll weight loss under drought due to limitations in carbon assimilation, perturbations in sucrose metabolism and inhibition of sucrose transport.
Collapse
Affiliation(s)
- Jie Zou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Hu
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Dimitra A. Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, Larissa, Greece
| | - John L. Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Honghai Zhu
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yuxia Li
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi He
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Youhua Wang
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhiguo Zhou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Alhajhoj MR, Munir M, Sudhakar B, Ali-Dinar HM, Iqbal Z. Common and novel metabolic pathways related ESTs were upregulated in three date palm cultivars to ameliorate drought stress. Sci Rep 2022; 12:15027. [PMID: 36056140 PMCID: PMC9440037 DOI: 10.1038/s41598-022-19399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Date palm is an important staple crop in Saudi Arabia, and about 400 different date palm cultivars grown here, only 50-60 of them are used commercially. The most popular and commercially consumed cultivars of these are Khalas, Reziz, and Sheshi, which are also widely cultivated across the country. Date palm is high water-demanding crop in oasis agriculture, with an inherent ability to tolerate drought stress. However, the mechanisms by which it tolerates drought stress, especially at the transcriptomic level, are still elusive. This study appraised the physiological and molecular response of three commercial date palm cultivars Khalas, Reziz, and Sheshi at two different field capacities (FC; 100% and 25%) levels. At 25% FC (drought stress), leaf relative water content, chlorophyll, photosynthesis, stomatal conductance, and transpiration were significantly reduced. However, leaf intercellular CO2 concentration and water use efficiency increased under drought stress. In comparison to cvs. Khalas and Reziz, date palm cv. Sheshi showed less tolerance to drought stress. A total of 1118 drought-responsive expressed sequence tags (ESTs) were sequenced, 345 from Khalas, 391 from Reziz, and 382 from Sheshi and subjected to functional characterization, gene ontology classification, KEGG pathways elucidation, and enzyme codes dissemination. Three date palm cultivars deployed a multivariate approach to ameliorate drought stress by leveraging common and indigenous molecular, cellular, biological, structural, transcriptional and reproductive mechanisms. Approximately 50% of the annotated ESTs were related to photosynthesis regulation, photosynthetic structure, signal transduction, auxin biosynthesis, osmoregulation, stomatal conductance, protein synthesis/turnover, active transport of solutes, and cell structure modulation. Along with the annotated ESTs, ca. 45% of ESTs were novel. Conclusively, the study provides novel clues and opens the myriads of genetic resources to understand the fine-tuned drought amelioration mechanisms in date palm.
Collapse
Affiliation(s)
- Mohammed Refdan Alhajhoj
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Balakrishnan Sudhakar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Hassan Muzzamil Ali-Dinar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
17
|
Eisenring M, Best RJ, Zierden MR, Cooper HF, Norstrem MA, Whitham TG, Grady K, Allan GJ, Lindroth RL. Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. GLOBAL CHANGE BIOLOGY 2022; 28:4684-4700. [PMID: 35596651 DOI: 10.1111/gcb.16275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.
Collapse
Affiliation(s)
- Michael Eisenring
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Forest Entomology, Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL, Zurich, Switzerland
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark R Zierden
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hillary F Cooper
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Madelyn A Norstrem
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kevin Grady
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Gerard J Allan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Maenpuen P, Katabuchi M, Onoda Y, Zhou C, Zhang JL, Chen YJ. Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). AMERICAN JOURNAL OF BOTANY 2022; 109:1242-1250. [PMID: 35862826 DOI: 10.1002/ajb2.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Leaf mass per area (LMA), which is an important functional trait in leaf economic spectrum and plant growth analysis, is measured from leaf discs or whole leaves. Differences between the measurement methods may lead to large differences in the estimates of LMA values. METHODS We examined to what extent estimates of LMA based on whole leaves match those based on discs using 334 woody species from a wide range of biomes (tropics, subtropics, savanna, and temperate), whether the relationship varied by leaf morphology (tissue density, leaf area, leaf thickness), punch size (0.6- and 1.0-cm diameter), and whether the extent of intraspecifc variation for each species matches. RESULTS Disc-based estimates of species mean LMA matched the whole-leaf estimates well, and whole-leaf LMA tended to be 9.69% higher than leaf-disc LMA. The ratio of whole-leaf LMA to leaf-disc LMA was higher for species with higher leaf tissue density and larger leaves, and variance in the ratio was greater for species with lower leaf tissue density and thinner leaves. Estimates based on small leaf discs also inflated the ratio. The extent of the intraspecific variation only weakly matched between whole-leaf and disc-based estimates (R2 = 0.08). CONCLUSIONS Our results suggest that simple conversion between whole-leaf and leaf-disc LMA is difficult for species obtained with a small leaf punch, but it should be possible for species obtained with a large+ leaf punch. Accurately representing leaf traits will likely require careful selection between leaf-disc and whole-leaf traits depending on the objectives. Quantifying intraspecific variation using leaf discs should be also considered with caution.
Collapse
Affiliation(s)
- Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Cong Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
- Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 6663300, China
| |
Collapse
|
19
|
Yang B, Fu P, Lu J, Ma F, Sun X, Fang Y. Regulated deficit irrigation: an effective way to solve the shortage of agricultural water for horticulture. STRESS BIOLOGY 2022; 2:28. [PMID: 37676363 PMCID: PMC10441918 DOI: 10.1007/s44154-022-00050-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 09/08/2023]
Abstract
The deficient agricultural water caused by water shortage is a crucial limiting factor of horticultural production. Among many agricultural water-saving technologies, regulated deficit irrigation (RDI) has been proven to be one of the effective technologies to improve water use efficiency and reduce water waste on the premise of maintaining the quality of agricultural products. RDI was first reported more than 40 years ago, although it has been applied in some areas, little is known about understanding of the implementation method, scope of application and detailed mechanism of RDI, resulting in the failure to achieve the effect that RDI should have. This review refers to the research on RDI in different crops published in recent years, summarizes the definition, equipment condition, function, theory illumination, plant response and application in different crops of RDI, and looks forward to its prospect. We expect that this review will provide valuable guidance for researchers and producers concerned, and support the promotion of RDI in more horticultural crops.
Collapse
Affiliation(s)
- Bohan Yang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling, 712100, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling, 712100, China.
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
20
|
Conti V, Cantini C, Romi M, Cesare MM, Parrotta L, Del Duca S, Cai G. Distinct Tomato Cultivars Are Characterized by a Differential Pattern of Biochemical Responses to Drought Stress. Int J Mol Sci 2022; 23:5412. [PMID: 35628226 PMCID: PMC9141555 DOI: 10.3390/ijms23105412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy;
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Maria Michela Cesare
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (L.P.); (S.D.D.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.R.); (M.M.C.); (G.C.)
| |
Collapse
|
21
|
Schönbeck L, Grossiord C, Gessler A, Gisler J, Meusburger K, D'Odorico P, Rigling A, Salmon Y, Stocker BD, Zweifel R, Schaub M. Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2576-2588. [PMID: 35134157 DOI: 10.1093/jxb/erac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Station 2, 1015 Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Station 2, 1015 Lausanne, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, EPFL, Station 2, 1015 Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Station 2, 1015 Lausanne, Switzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Katrin Meusburger
- Biogeochemistry Unit, Swiss Federal Research Institute for Forest, Snow and Landscape research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Petra D'Odorico
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Andreas Rigling
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, 00014 University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, 00014 University of Helsinki, Finland
| | - Benjamin D Stocker
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Roman Zweifel
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
22
|
Abstract
In order to deeply understand the effect mechanism of rapid drought stress on the physiological and biochemical properties of crop leaves and determine drought thresholds, the potted spring wheat under two water treatments, adequate water supply and continuous drought stress, was researched. In the early stage of drought, the parameters of leaves decreased in the order of stomatal conductance (gs), intercellular CO2 concentration (Ci), maximum electron transfer rate (Jmax), mesophyll conductance (gm), photosynthetic rate (Pn,) leaf water content (LWC), triose phosphate utilization rate (TPU), transpiration rate (Tr), and maximum carboxylation rate (Vcmax). Photosynthesis was dominated by stomatal limitation and also limited by carboxylation and mesophyll limitation. The carboxylation limitation was mainly caused by the reduction of electron transport capacity. In the late stage of drought, stomatal limitation first decreased, and then mesophyll limitation decreased. During extreme drought, carboxylation limitation also decreased. With the decrease of relative soil moisture (RSM), except for Ci, which first decreased and then increased, other physicochemical parameters of leaves all showed an S-shaped, decreasing trend. Mild and severe drought thresholds were determined to be 56.6% and 43.6% of the RSM, respectively, according to the curve’s inflection point, corresponding to 16.6% and about 52.2% of the average initial decrease amplitude among all parameters. This will provide a reference for monitoring as well as an early warning of rapid drought in spring wheat.
Collapse
|
23
|
Zhang X, Liu N, Lu H, Zhu L. Molecular Mechanism of Organic Pollutant-Induced Reduction of Carbon Fixation and Biomass Yield in Oryza sativa L. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4162-4172. [PMID: 35324172 DOI: 10.1021/acs.est.1c07835] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photosynthetic carbon fixation is fundamental for plant growth and is a key process driving the global carbon cycle. This study explored the mechanism of disturbed carbon fixation in Oryza sativa L. by organic pollutants 2,3,4,5-tetrachlorobiphenyl (CB 61), 4'-hydroxy-2,3,4,5-tetrachlorobiphenyl (4'-OH-CB 61), 2,2',4,4'-tetrabromo diphenyl ether (BDE 47), tricyclazole (TRI), and pyrene. The biomass of rice exposed to 4'-OH-CB 61, TRI, and BDE 47 was on average 80.63% of that of the control (p < 0.05), and the inhibition of net photosynthetic rate was 59.15% by 4'-OH-CB 61. Proteomics confirmed that 4'-OH-CB 61 significantly downregulated the enzymes in the photosynthetic carbon fixation pathway, which was attributed to the decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the rate-limiting enzyme in the Calvin cycle. In detail, decreased Rubisco activity (6.96-33.44%) and downregulated OsRBCS2-5 encoding small Rubisco subunits (-6.80 < log2FC < -2.13) by 4'-OH-CB 61, TRI, and BDE 47 were in line with biomass yield reduction. Molecular docking and dynamic simulation suggested that the three pollutants potentially competed with CO2 for binding to the active sites in Rubisco, leading to reduced CO2 capture efficiency. These results revealed the molecular mechanism of organic pollution-induced rice yield reduction, contributing to improving the understanding of crop growth and carbon sequestration capacity of organics-contaminated soils globally.
Collapse
Affiliation(s)
- Xinru Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Wang Z, Li S, Jian S, Ye F, Wang T, Gong L, Li X. Low temperature tolerance is impaired by polystyrene nanoplastics accumulated in cells of barley (Hordeum vulgare L.) plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127826. [PMID: 34823951 DOI: 10.1016/j.jhazmat.2021.127826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
With increasing plastic consumption, the large amount of polystyrene nanoplastics (PS-NPs) in agricultural soil may not only directly affect the plant growth, but also indirectly affect the abiotic stress tolerance in crops. In this study, the barley (Hordeum vulgare L.) was irrigated with 2 g L-1 PS-NPs (65.776 ± 0.528 nm) solution for 7 days, then subjected to low temperature (2 ℃) for 24 h. The imaging of protoplasts indicated that polymethylmethacrylate nanoplastics could across the cell wall and accumulate in plant cells. The PS-NPs significantly decreased Rubisco activities and ATP production, hence limiting the photosynthetic carbon assimilation in barley under low temperature. The PS-NPs accumulated in cells also caused the significantly decreased activities of key enzymes involved in sucrolytic, glycolysis and starch metabolism pathways, including UDP-glucose pyrophorylase, ADP-Glucose pyrophosphorylase, phosphoglucomutase, glucose-6-phosphate dehydrogenase, phosphoglucoisomerase, fructokinase and phosphofructokinase. In addition, under low temperature, the PS-NPs presence significantly reduced the activities of superoxide dismutase, ascorbate peroxidase and catalase in chloroplasts, and significantly reduced the activities of ascorbate peroxidase and catalase in mitochondria. Thus, it is suggested that the PS-NPs accumulated in plant cells impaired the low temperature tolerance in barley mainly by the negative effects on photosynthetic carbon assimilation, carbohydrate metabolism and ROS homeostasis in sub-cellular level.
Collapse
Affiliation(s)
- Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulian Jian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Ye
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Abstract
Drought and waterlogging seriously affect the growth of plants and are considered severe constraints on agricultural and forestry productivity; their frequency and degree have increased over time due to global climate change. The morphology, photosynthetic activity, antioxidant enzyme system and hormone levels of plants could change in response to water stress. The mechanisms of these changes are introduced in this review, along with research on key transcription factors and genes. Both drought and waterlogging stress similarly impact leaf morphology (such as wilting and crimping) and inhibit photosynthesis. The former affects the absorption and transportation mechanisms of plants, and the lack of water and nutrients inhibits the formation of chlorophyll, which leads to reduced photosynthetic capacity. Constitutive overexpression of 9-cis-epoxydioxygenase (NCED) and acetaldehyde dehydrogenase (ALDH), key enzymes in abscisic acid (ABA) biosynthesis, increases drought resistance. The latter forces leaf stomata to close in response to chemical signals, which are produced by the roots and transferred aboveground, affecting the absorption capacity of CO2, and reducing photosynthetic substrates. The root system produces adventitious roots and forms aerenchymal to adapt the stresses. Ethylene (ETH) is the main response hormone of plants to waterlogging stress, and is a member of the ERFVII subfamily, which includes response factors involved in hypoxia-induced gene expression, and responds to energy expenditure through anaerobic respiration. There are two potential adaptation mechanisms of plants (“static” or “escape”) through ETH-mediated gibberellin (GA) dynamic equilibrium to waterlogging stress in the present studies. Plant signal transduction pathways, after receiving stress stimulus signals as well as the regulatory mechanism of the subsequent synthesis of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes to produce ethanol under a hypoxic environment caused by waterlogging, should be considered. This review provides a theoretical basis for plants to improve water stress tolerance and water-resistant breeding.
Collapse
|
26
|
Mavrič Čermelj A, Golob A, Vogel-Mikuš K, Germ M. Silicon Mitigates Negative Impacts of Drought and UV-B Radiation in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 11:91. [PMID: 35009094 PMCID: PMC8747213 DOI: 10.3390/plants11010091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 05/31/2023]
Abstract
Due to climate change, plants are being more adversely affected by heatwaves, floods, droughts, and increased temperatures and UV radiation. This review focuses on enhanced UV-B radiation and drought, and mitigation of their adverse effects through silicon addition. Studies on UV-B stress and addition of silicon or silicon nanoparticles have been reported for crop plants including rice, wheat, and soybean. These have shown that addition of silicon to plants under UV-B radiation stress increases the contents of chlorophyll, soluble sugars, anthocyanins, flavonoids, and UV-absorbing and antioxidant compounds. Silicon also affects photosynthesis rate, proline content, metal toxicity, and lipid peroxidation. Drought is a stress factor that affects normal plant growth and development. It has been frequently reported that silicon can reduce stress caused by different abiotic factors, including drought. For example, under drought stress, silicon increases ascorbate peroxidase activity, total soluble sugars content, relative water content, and photosynthetic rate. Silicon also decreases peroxidase, catalase, and superoxide dismutase activities, and malondialdehyde content. The effects of silicon on drought and concurrently UV-B stressed plants has not yet been studied in detail, but initial studies show some stress mitigation by silicon.
Collapse
Affiliation(s)
- Anja Mavrič Čermelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
- Jozef Stefan Institut, Jamova 39, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
| |
Collapse
|
27
|
Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Santos EF, Mateus NS, Rosário MO, Garcez TB, Mazzafera P, Lavres J. Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. PHYSIOLOGIA PLANTARUM 2021; 172:552-563. [PMID: 33022105 DOI: 10.1111/ppl.13228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Eucalyptus are widely planted in regions with low rainfall, occasioning frequent drought stresses. To alleviate the stress-induced effects on plants growing in these environments, soil fertilization with potassium (K) may affect drought-adaptive plant mechanisms, notably on tropical soils with low K availability. This work aimed to evaluate the K dynamic nutrition in eucalyptus in response to soil-K and -water availabilities, correlating the K-nutritional status with the physiological responses of contrasting eucalyptus clones to drought tolerance. A complete randomized design was used to investigate the effects of three water regimes (well-watered, moderate water deficit, and severe water deficit) and two K soil supplies (sufficient and low K) on growth and physiological responses of two elite eucalyptus clones: "VM01" (Eucalyptus urophylla × camaldulensis) and "AEC 0144" (E. urophylla). Results depicted that the K-well-nourished E. urophylla × camaldulensis clone under severe water deficit maintained shoot biomass accumulation by upregulating the K-content in leaves and stems, gas exchange, water-use efficiency (WUEI ), leaf water potential (Ψw), and chlorophyll a fluorescence parameters, compared to E. urophylla clone. Meanwhile, E. urophylla with a severe water deficit showed a decreased of K content in leaves and stem, as well as a reduction in the accumulation of dry mass. Therefore, the K-use efficiency and the apparent electron transport rate through photosystem II were positively correlated in plants grown in low K, indicating the importance of K in maintaining leaf photochemical processes. In conclusion, management strategy should seek to enhance K-nutrition to optimize water-use efficiencies and photosynthesis.
Collapse
Affiliation(s)
- Elcio Ferreira Santos
- Federal Institute of Mato Grosso do Sul, Laboratory of Plant Nutriton, Nova Andradina, Brazil
| | - Nikolas Souza Mateus
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| | | | - Tiago Barreto Garcez
- Federal University of Sergipe, Campus do Sertão, Nossa Senhora da Glória, Brazil
| | - Paulo Mazzafera
- University of São Paulo, Luiz de Queiroz College of Agriculture, Piracicaba, Brazil
- University of Campinas, Institute of Biology, Campinas, Brazil
| | - José Lavres
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| |
Collapse
|
29
|
Liang W, Yan F, Wang M, Li X, Zhang Z, Ma X, Hu J, Wang J, Wang L. Comprehensive Phosphoproteomic Analysis of Nostoc flagelliforme in Response to Dehydration Provides Insights into Plant ROS Signaling Transduction. ACS OMEGA 2021; 6:13554-13566. [PMID: 34095650 PMCID: PMC8173544 DOI: 10.1021/acsomega.0c06111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Terrestrial cyanobacteria, originated from aquatic cyanobacteria, exhibit a unique mechanism for drought adaptation during long-term evolution. To elucidate this diverse adaptive mechanism exhibited by terrestrial cyanobacteria from the post-translation modification aspect, we performed a global phosphoproteome analysis on the abundance of phosphoproteins in response to dehydration using Nostoc flagelliforme, a kind of terrestrial cyanobacteria having strong ecological adaptability to xeric environments. A total of 329 phosphopeptides from 271 phosphoproteins with 1168 phosphorylation sites were identified. Among these, 76 differentially expressed phosphorylated proteins (DEPPs) were identified for each dehydration treatment (30, 75, and 100% water loss), compared to control. The identified DEPPs were functionally categorized to be mainly involved in a two-component signaling pathway, photosynthesis, energy and carbohydrate metabolism, and an antioxidant system. We concluded that protein phosphorylation modifications related to the reactive oxygen species (ROS) signaling pathway might play an important role in coordinating enzyme activity involved in the antioxidant system in N. flagelliforme to adapt to dehydration stress. This study provides deep insights into the extensive modification of phosphorylation in terrestrial cyanobacteria using a phosphoproteomic approach, which may help to better understand the role of protein phosphorylation in key cellular mechanisms in terrestrial cyanobacteria in response to dehydration.
Collapse
Affiliation(s)
- Wenyu Liang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Fengkun Yan
- School
of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Meng Wang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxu Li
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Zheng Zhang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaorong Ma
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jinhong Hu
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jun Wang
- College
Education for Nationalities, Ningxia University, Yinchuan 750021, China
| | - Lingxia Wang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
30
|
Semedo JN, Rodrigues AP, Lidon FC, Pais IP, Marques I, Gouveia D, Armengaud J, Silva MJ, Martins S, Semedo MC, Dubberstein D, Partelli FL, Reboredo FH, Scotti-Campos P, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. TREE PHYSIOLOGY 2021; 41:708-727. [PMID: 33215189 DOI: 10.1093/treephys/tpaa158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
Growing water restrictions associated with climate changes constitute daunting challenges to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) water deficit, and their interaction with air [CO2], on the photosynthetic apparatus of Coffea canephora Pierre ex A. Froehner cv. Conilon Clone 153 (CL153) and Coffea arabica L. cv. Icatu. Seven year-old potted plants grown under 380 (aCO2) or 700 μl l -1 (eCO2) [CO2] gradually reached predawn water potentials between -1.6 and -2.1 MPa (MWD), and below -3.5 MPa (SWD). Under drought, stomata closure was chiefly related to abscisic acid (ABA) rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both genotypes, with non-stomatal limitations becoming gradually dominating, especially regarding the photochemical and biochemical components of CL153 SWD plants. In contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron carriers, photosystems (PSs) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) activities). Besides, drought-stressed Icatu plants displayed increased abundance of a large set of proteins associated with the photosynthetic apparatus (PSs, light-harvesting complexes, cyclic electron flow, RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and photosynthetic down-regulation in both genotypes. Instead, eCO2 increased photosynthetic performance, moderately reinforced photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, ribulose-5-phosphate kinase) components, whereas photoprotective mechanisms and protein abundance remained mostly unaffected. In both genotypes, under MWD, eCO2 superimposition delayed stress severity and promoted photosynthetic functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was decoupled from increases in ABA. In SWD plants, most impacts on the photosynthetic performance were reduced by eCO2, especially in the moderately drought affected CL153 genotype, although maintaining RuBisCO as the most sensitive component, deserving special breeder's attention to improve coffee sustainability under future climate scenarios.
Collapse
Affiliation(s)
- José N Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana P Rodrigues
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel P Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel Marques
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Duarte Gouveia
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Jean Armengaud
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Maria J Silva
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Danielly Dubberstein
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fábio L Partelli
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana I Ribeiro-Barros
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa, Viçosa, MG 36570-900, Brazil
| | - José C Ramalho
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| |
Collapse
|
31
|
Zunzunegui M, Morales Sánchez JÁ, Díaz Barradas MC, Gallego-Fernández JB. Different tolerance to salinity of two populations of Oenothera drummondii with contrasted biogeographical origin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:336-348. [PMID: 33725569 DOI: 10.1016/j.plaphy.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Oenothera drummondii is a native species from the coastal dunes of the Gulf of Mexico that has nowadays extended to coastal areas in temperate zones all over the world, its invasion becoming a significant problem locally. The species grows on back beach and incipient dunes, where it can suffer flooding by seawater, and sea spray. We were interested in knowing how salinity affects this species and if invasive populations present morphological or functional traits that would provide greater tolerance to salinity than native ones. To this end, we conducted a greenhouse experiment where plants from one native and from one invading population were irrigated with five salinity treatments. We measured functional traits on photosynthetic, photochemical efficiency, water content, flowering, Na+ content, pigment content, and biomass. Although O. drummondii showed high resistance to salinity, the highest levels recorded high mortality, especially in the invasive population. Plants exhibited differences not only in response to time under salinity conditions, but also according to their biogeographic origin, the native population being more resistant to long exposure and high salt concentration than the invasive one. Native and invasive populations showed different response to salt stress in photosynthesis and transpiration rates, stomatal conductance, water use efficiency, carboxylation efficiency, electron transport rate, electron transport efficiency, energy used in photochemistry, among others. The increasing salinity levels resulted in a progressive reduction of photosynthesis rate due to both stomatal and biochemical limitations, and also in a reduction of biomass and number and size of flowers, compromising the reproductive capacity.
Collapse
Affiliation(s)
- María Zunzunegui
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain.
| | - José Ángel Morales Sánchez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - Mari Cruz Díaz Barradas
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - Juan B Gallego-Fernández
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| |
Collapse
|
32
|
Inoue T, Sunaga M, Ito M, Yuchen Q, Matsushima Y, Sakoda K, Yamori W. Minimizing VPD Fluctuations Maintains Higher Stomatal Conductance and Photosynthesis, Resulting in Improvement of Plant Growth in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:646144. [PMID: 33868345 PMCID: PMC8049605 DOI: 10.3389/fpls.2021.646144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Vapor pressure deficit (VPD) is considered to be one of the major environmental factors influencing stomatal functions and photosynthesis, as well as plant growth in crop and horticultural plants. In the greenhouse cultivation, air temperature and relative air humidity are regulated by switching on/off the evaporative systems and opening/closing the roof windows, which causes VPD fluctuation. However, it remains unclear how VPD fluctuation affects photosynthetic and growth performance in plants. Here, we examined the effects of the VPD fluctuation on the photosynthetic and growth characteristics in lettuce (Lactuca sativa L.). The parameters for gas exchange and chlorophyll fluorescence and biomass production were evaluated under the conditions of drastic (1.63 kPa for 6 min and 0.63 for 3 min) or moderate (1.32 kPa for 7 min and 0.86 kPa for 3 min) VPD fluctuation. The drastic VPD fluctuation induced gradual decrease in stomatal conductance and thus CO2 assimilation rate during the measurements, while moderate VPD fluctuation caused no reduction of these parameters. Furthermore, data showed moderate VPD fluctuation maintained leaf expansion and the efficiency of CO2 diffusion across leaf surface, resulting in enhanced plant growth compared with drastic VPD fluctuation. Taken together, fine regulation of VPD can be crucial for better plant growth by maintaining the photosynthetic performance in lettuce. The present work demonstrates the importance of VPD control during plant cultivation in plant factories and greenhouses.
Collapse
Affiliation(s)
| | | | | | - Qu Yuchen
- Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Nishitokyo, Japan
| | - Yoriko Matsushima
- Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Nishitokyo, Japan
| | - Kazuma Sakoda
- Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Nishitokyo, Japan
| | - Wataru Yamori
- Institute for Sustainable Agro-Ecosystem Services, The University of Tokyo, Nishitokyo, Japan
| |
Collapse
|
33
|
Yahoueian SH, Bihamta MR, Babaei HR, Bazargani MM. Proteomic analysis of drought stress response mechanism in soybean ( Glycine max L.) leaves. Food Sci Nutr 2021; 9:2010-2020. [PMID: 33841819 PMCID: PMC8020938 DOI: 10.1002/fsn3.2168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
Knowledge of the physiological and molecular mechanisms of drought responses is fundamental for developing genetically drought tolerant and high yielding crops. To understand molecular mechanism of drought tolerance of soybean (Glycine max L.), we compared leaf proteome patterns of in two genotypes GN-3074 (drought tolerant) and GN-2032 (drought-sensitive) under drought stress during vegetative stage. Proteins were extracted from leaves of well-watered and drought-treated plants by using the trichloroacetic acid (TCA)-acetone precipitation method and analyzed by two-dimensional polyacrylamide gel electrophoresis. Out 488 reproducibly detected and analyzed on two-dimensional electrophoresis gels, 26 proteins showed significant changes in at least one genotype. The identification of 20 differentially expressed proteins using mass spectrometry revealed a coordinated expression of proteins involved in cellular metabolisms including photosynthesis, oxidative stress defense, respiration, metabolism process, signal transduction, phosphorus transduction, and methyl transduction which enable plant to cope with drought conditions. The most identified proteins involved in photosynthesis and oxidative stress defense system. The up-regulation of several photosynthetic proteins and also high abundance of oxidative stress defense proteins in GN-3074 genotypes as compare to GN-2032 genotypes might reflect the fact that drought tolerance of GN-3074 is due to effective photosynthetic machinery and more defense against oxidative stress. Our results suggest that soybean plant might response to drought stress by applying efficiently stay-green mechanism through coordinated gene expression during vegetative stage.
Collapse
Affiliation(s)
- Seyed Hamid Yahoueian
- Department of Plant Breeding and Biotechnology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Hamid Reza Babaei
- Horticulture Crops Research DepartmentKhorasan Razavi Agricultural and Natural Resources Research and Education CenterAREEOMashhadIran
| | | |
Collapse
|
34
|
Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021; 9:microorganisms9040687. [PMID: 33810405 PMCID: PMC8066330 DOI: 10.3390/microorganisms9040687] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
In the coming century, climate change and the increasing human population are likely leading agriculture to face multiple challenges. Agricultural production has to increase while preserving natural resources and protecting the environment. Drought is one of the major abiotic problems, which limits the growth and productivity of crops and impacts 1–3% of all land.To cope with unfavorable water-deficit conditions, plants use through sophisticated and complex mechanisms that help to perceive the stress signal and enable optimal crop yield are required. Among crop production, wheat is estimated to feed about one-fifth of humanity, but faces more and more drought stress periods, partially due to climate change. Plant growth promoting rhizobacteria are a promising and interesting way to develop productive and sustainable agriculture despite environmental stress. The current review focuses on drought stress effects on wheat and how plant growth-promoting rhizobacteria trigger drought stress tolerance of wheat by highlighting several mechanisms. These bacteria can lead to better growth and higher yield through the production of phytohormones, osmolytes, antioxidants, volatile compounds, exopolysaccharides and 1-aminocyclopropane-1-carboxylate deaminase. Based on the available literature, we provide a comprehensive review of mechanisms involved in drought resilience and how bacteria may alleviate this constraint
Collapse
|
35
|
Hill D, Nelson D, Hammond J, Bell L. Morphophysiology of Potato ( Solanum tuberosum) in Response to Drought Stress: Paving the Way Forward. FRONTIERS IN PLANT SCIENCE 2021; 11:597554. [PMID: 33519850 PMCID: PMC7844204 DOI: 10.3389/fpls.2020.597554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2020] [Indexed: 05/27/2023]
Abstract
The cultivated potato (Solanum tuberosum L.) is currently the third most important food crop in the world and is becoming increasingly important to the local economies of developing countries. Climate change threatens to drastically reduce potato yields in areas of the world where the growing season is predicted to become hotter and drier. Modern potato is well known as an extremely drought susceptible crop, which has primarily been attributed to its shallow root system. This review addresses this decades old consensus, and highlights other, less well understood, morphophysiological features of potato which likely contribute to drought susceptibility. This review explores the effects of drought on these traits and goes on to discuss phenotypes which may be associated with drought tolerance in potato. Small canopies which increase harvest index and decrease evapotranspiration, open stem-type canopies which increase light penetration, and shallow but densely rooted cultivars, which increase water uptake, have all been associated with drought tolerance in the past, but have largely been ignored. While individual studies on a limited number of cultivars may have examined these phenotypes, they are typically overlooked due to the consensus that root depth is the only significant cause of drought susceptibility in potato. We review this work, particularly with respect to potato morphology, in the context of a changing climate, and highlight the gaps in our understanding of drought tolerance in potato that such work implies.
Collapse
Affiliation(s)
- Dominic Hill
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - John Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Luke Bell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| |
Collapse
|
36
|
De Pedro LF, Mignolli F, Scartazza A, Melana Colavita JP, Bouzo CA, Vidoz ML. Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. PHYSIOLOGIA PLANTARUM 2020; 170:202-217. [PMID: 32458443 DOI: 10.1111/ppl.13141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Ethylene is considered one of the most important plant hormones orchestrating plant responses to flooding stress. However, ethylene may induce deleterious effects on plants, especially when produced at high rates in response to stress. In this paper, we explored the effect of attenuated ethylene sensitivity in the Never ripe (Nr) mutant on leaf photosynthetic capacity of flooded tomato plants. We found out that reduced ethylene perception in Nr plants was associated with a more efficient photochemical and non-photochemical radiative energy dissipation capability in response to flooding. The data correlated with the retention of chlorophyll and carotenoids content in flooded Nr leaves. Moreover, leaf area and specific leaf area were higher in Nr, indicating that ethylene would exert a negative role in leaf growth and expansion under flooded conditions. Although stomatal conductance was hampered in flooded Nr plants, carboxylation activity was not affected by flooding in the mutant, suggesting that ethylene is responsible for inducing non-stomatal limitations to photosynthetic CO2 uptake. Upregulation of several cysteine protease genes and high protease activity led to Rubisco protein loss in response to ethylene under flooding. Reduction of Rubisco content would, at least in part, account for the reduction of its carboxylation efficiency in response to ethylene in flooded plants. Therefore, besides its role as a trigger of many adaptive responses, perception of ethylene entails limitations in light and dark photosynthetic reactions by speeding up the senescence process that leads to a progressive disassembly of the photosynthetic machinery in leaves of flooded tomato plants.
Collapse
Affiliation(s)
| | - Francesco Mignolli
- Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems, National Research Council, Pisa, Italy
| | - Juan Pablo Melana Colavita
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA, NEA-CONICET), Corrientes, Argentina
| | - Carlos Alberto Bouzo
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), ICi Agro-Litoral (UNL-CONICET), Santa Fe, Argentina
| | - María Laura Vidoz
- Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
37
|
Mesquita RO, Coutinho FS, Vital CE, Nepomuceno AL, Rhys Williams TC, Josué de Oliveira Ramos H, Loureiro ME. Physiological approach to decipher the drought tolerance of a soybean genotype from Brazilian savana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:132-143. [PMID: 32220786 DOI: 10.1016/j.plaphy.2020.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Drought is one of the major constraints for soybean production in Brazil. In this study we investigated the physiological traits of two soybean parental genotypes under progressive soil drying and rewetting. The plants were evaluated under full irrigation (control) conditions and under water deficit imposed by suspending irrigation until the plants reached predawn leaf water potentials (Ψam) of -1.0 MPa (moderate) and -1.5 MPa (severe). Physiological analyses showed that these genotypes exhibit different responses to water deficit. The Embrapa 48 genotype reached moderate and severe water potential two days after the BR16 genotype and was able to maintain higher levels of A, ETR and ΦPSII even under deficit conditions. This result was not related to changes in gs, 13C isotopic composition and presence of a more efficient antioxidant system. In addition, Fv/Fm values did not decrease in Embrapa 48 genotype in relation to irrigated condition showing that stress was not causing photochemical inhibition of photosynthesis. The greater reduction in the relative growth of the shoots, with concomitant greater growth of the root system under drought, indicates that the tolerant genotype is able to preferentially allocated carbon to the roots, presenting less damage to photosynthesis. Therefore, the physiological responses revealed that the tolerant genotype postponed leaf dehydration by a mechanism involving a more efficient use and translocation of water from root to shoot to maintain cell homeostasis and photosynthetic metabolism under stress.
Collapse
Affiliation(s)
| | - Flaviane Silva Coutinho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camilo Elber Vital
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
38
|
Gonçalves AZ, Latansio S, Detmann KC, Marabesi MA, Neto AAC, Aidar MPM, DaMatta FM, Mercier H. What does the RuBisCO activity tell us about a C 3-CAM plant? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:172-180. [PMID: 31865163 DOI: 10.1016/j.plaphy.2019.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 05/14/2023]
Abstract
Plants that perform the Crassulacean acid metabolism (CAM), which obtain CO2 overnight and convert it mainly in malic acid, successfully grow in environments with water and nutrient shortages, that is partly associated with their higher water- and nitrogen-use efficiencies. Water and nutrient limitations can impair photosynthesis through the reduction of RuBisCO and increment of photorespiration, disturbing the plant carbon balance. In this context, we conducted a controlled experiment with the epiphytic C3-CAM bromeliad Guzmania monostachia to investigate how the combined water and nutritional deficits affect the activity of RuBisCO and its activation state (RAS), and to evaluate the efficiency of photosynthesis during the transition from C3 to CAM. Apart from an increase in CAM activity, bromeliads submitted to both water and nutritional deficits showed higher RAS values and unaltered RuBisCO activity compared to C3 bromeliads and, surprisingly, the maximum quantum efficiency of photosynthesis increased. Glucose, fructose and starch levels were maintained, while sucrose concentrations increased over time. These results, combined with the high RAS values, suggest an increased efficiency of RuBisCO functioning. Our results reinforce the ability of epiphytic bromeliads to deal with stressful habitats by a higher efficiency of RuBisCO during the transition to CAM, another feature that may allow their evolution in the epiphytic environment.
Collapse
Affiliation(s)
- Ana Z Gonçalves
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Sabrina Latansio
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kelly C Detmann
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Mauro A Marabesi
- Departamento de Biologia Vegetal, Universidade de Campinas, Campinas, SP, Brazil
| | - Antônio A C Neto
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcos P M Aidar
- Instituto de Botânica de São Paulo, Secretaria do Meio Ambiente, São Paulo, SP, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Helenice Mercier
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Menezes‐Silva PE, Loram‐Lourenço L, Alves RDFB, Sousa LF, Almeida SEDS, Farnese FS. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol Evol 2019; 9:11979-11999. [PMID: 31695903 PMCID: PMC6822037 DOI: 10.1002/ece3.5663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023] Open
Abstract
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho-anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.
Collapse
Affiliation(s)
| | - Lucas Loram‐Lourenço
- Laboratory of Plant EcophysiologyInstituto Federal Goiano – Campus Rio VerdeGoiásBrazil
| | | | | | | | | |
Collapse
|
40
|
Banerjee A, Roychoudhury A, Ghosh P. Differential fluoride uptake induces variable physiological damage in a non-aromatic and an aromatic indica rice cultivar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:143-150. [PMID: 31284138 DOI: 10.1016/j.plaphy.2019.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
The current study illustrates the systemic damages caused by increasing concentration of fluoride in non-aromatic rice variety, IR-64 and aromatic rice Gobindobhog (GB). Analysis of the physiological parameters like shoot length, root length and electrolyte leakage along with crucial damage indices like chlorophyll, malondialdehyde, H2O2 and protease activity indicated higher fluoride adaptation in GB compared to IR-64. IR-64 exhibited unregulated fluoride bioaccumulation when exposed to 25 mg L-1 NaF stress, whereas fluoride uptake in GB was much regulated. Gene expression studies proposed that CLC2 rather than CLC1 mediated the fluoride import. Fluoride also triggered higher P-H+/ATPase accumulation in GB compared to IR-64, thus highlighting efficient homeostasis in stressed GB. Unlike IR-64, GB could maintain photosynthesis (RuBisCo expression), sugar metabolism (α-amylase expression and activity), glycolysis and Krebs cycle even under high concentration of fluoride stress. Fluoride also inhibited nitrate reductase activity in both the cultivars. The present research illustrates differential phytotoxicity emerging out of fluoride accumulation in rice seedlings, highlighting that IR-64 is a highly susceptible variety, whereas GB exhibits physiological plasticity and is better adapted to higher concentrations of fluoride.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| | - Puja Ghosh
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| |
Collapse
|
41
|
Chang L, Wang L, Peng C, Tong Z, Wang D, Ding G, Xiao J, Guo A, Wang X. The chloroplast proteome response to drought stress in cassava leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:351-362. [PMID: 31422174 DOI: 10.1016/j.plaphy.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Cassava is an important tropical crop with strong resistance to drought stress. The chloroplast, the site of photosynthesis, is sensitive to stress, and the drought-response proteins in cassava chloroplasts are worthy of investigation. In this study, cassava leaves were collected for ultra-structure observation from plants subjected to different drought stress conditions. Our results showed that drought stress can promote starch accumulation in cassava chloroplasts. To evaluate changes in chloroplast proteins under different drought conditions, two-dimensional electrophoresis was performed using purified chloroplasts, which resulted in the identification of 26 unique chloroplast proteins responsive to drought stress. These drought-responsive proteins are predominantly related to photosynthesis, carbon and nitrogen metabolism, and amino acid metabolism. Among them, most photosynthesis-related proteins are downregulated, with decreases in photosynthetic parameters upon drought stress. Several proteins associated with carbon and nitrogen metabolism, including rubisco and carbonic anhydrase, were upregulated, which might promote drought tolerance in cassava by enhancing the carbohydrate conversion efficiency and protecting the plant from oxidative stress. Our proteomic data not only provide insight into the complement of proteins in cassava chloroplasts but also further our overall understanding of drought-responsive proteins in cassava chloroplasts.
Collapse
Affiliation(s)
- Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Limin Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guohua Ding
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Junhan Xiao
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
42
|
Kruse J, Adams M, Winkler B, Ghirardo A, Alfarraj S, Kreuzwieser J, Hedrich R, Schnitzler JP, Rennenberg H. Optimization of photosynthesis and stomatal conductance in the date palm Phoenix dactylifera during acclimation to heat and drought. THE NEW PHYTOLOGIST 2019; 223:1973-1988. [PMID: 31093986 DOI: 10.1111/nph.15923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/01/2019] [Indexed: 05/25/2023]
Abstract
We studied acclimation of leaf gas exchange to differing seasonal climate and soil water availability in slow-growing date palm (Phoenix dactylifera) seedlings. We used an extended Arrhenius equation to describe instantaneous temperature responses of leaf net photosynthesis (A) and stomatal conductance (G), and derived physiological parameters suitable for characterization of acclimation (Topt , Aopt and Tequ ). Optimum temperature of A (Topt ) ranged between 20-33°C in winter and 28-45°C in summer. Growth temperature (Tgrowth ) explained c. 50% of the variation in Topt , which additionally depended on leaf water status at the time of measurement. During water stress, light-saturated rates of A at Topt (i.e. Aopt ) were reduced to 30-80% of control levels, albeit not limited by CO2 supply per se. Equilibrium temperature (Tequ ), around which A/G and substomatal [CO2 ] are constant, remained tightly coupled with Topt . Our results suggest that acclimatory shifts in Topt and Aopt reflect a balance between maximization of photosynthesis and minimization of the risk of metabolic perturbations caused by imbalances in cellular [CO2 ]. This novel perspective on acclimation of leaf gas exchange is compatible with optimization theory, and might help to elucidate other acclimation and growth strategies in species adapted to differing climates.
Collapse
Affiliation(s)
- Jörg Kruse
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Adams
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
- Swinburne University of Technology, John St., Hawthorn, Vic., 3122, Australia
| | - Barbro Winkler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Saleh Alfarraj
- College of Sciences, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, 97082, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 53/54, Freiburg, 79110, Germany
- College of Sciences, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
43
|
Sarabi B, Fresneau C, Ghaderi N, Bolandnazar S, Streb P, Badeck FW, Citerne S, Tangama M, David A, Ghashghaie J. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:1-19. [PMID: 31125807 DOI: 10.1016/j.plaphy.2019.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 05/11/2023]
Abstract
Salinity is one of the most severe environmental stresses limiting agricultural crop production worldwide. Photosynthesis is one of the main biochemical processes getting affected by such stress conditions. Here we investigated the stomatal and non-stomatal factors during photosynthesis in two Iranian melon genotypes "Ghobadlu" and "Suski-e-Sabz", as well as the "Galia" F1 cultivar, with an insight into better understanding the physiological mechanisms involved in the response of melon plants to increasing salinity. After plants were established in the greenhouse, they were supplied with nutrient solutions containing three salinity levels (0, 50, or 100 mM NaCl) for 15 and 30 days. With increasing salinity, almost all of the measured traits (e.g. stomatal conductance, transpiration rate, internal to ambient CO2 concentration ratio (Ci/Ca), Rubisco and nitrate reductase activity, carbon isotope discrimination (Δ13C), chlorophyll content, relative water content (RWC), etc.) significantly decreased after 15 and 30 days of treatments. In contrast, the overall mean of water use efficiency (intrinsic and instantaneous WUE), leaf abscisic acid (ABA) and flavonol contents, as well as osmotic potential (ΨS), all increased remarkably with increasing stress, across all genotypes. In addition, notable correlations were found between Δ13C and leaf gas exchange parameters as well as most of the measured traits (e.g. leaf area, biomass, RWC, ΨS, etc.), encouraging the possibility of using Δ13C as an important proxy for indirect selection of melon genotypes with higher photosynthetic capacity and higher salinity tolerance. The overall results suggest that both stomatal and non-stomatal limitations play an important role in reduced photosynthesis rate in melon genotypes studied under NaCl stress. This conclusion is supported by the concurrently increased resistance to CO2 diffusion, and lower Rubisco activity under NaCl treatments at the two sampling dates, and this was revealed by the appearance of lower Ci/Ca ratios and lower Δ13C in the leaves of salt-treated plants.
Collapse
Affiliation(s)
- Behrooz Sarabi
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Chantal Fresneau
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Nasser Ghaderi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Sahebali Bolandnazar
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Peter Streb
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Franz-Werner Badeck
- CREA-GPG, Consiglio per La Ricerca in Agricoltura e L'analisi Dell'economia Agraria (CREA), Genomics Research Centre (GPG), Fiorenzuola D'Arda, Italy
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Maëva Tangama
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Andoniaina David
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Jaleh Ghashghaie
- Laboratoire D'Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS-UMR8079, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
44
|
Zhong S, Xu Y, Meng B, Loik ME, Ma JY, Sun W. Nitrogen Addition Increases the Sensitivity of Photosynthesis to Drought and Re-watering Differentially in C 3 Versus C 4 Grass Species. FRONTIERS IN PLANT SCIENCE 2019; 10:815. [PMID: 31333687 PMCID: PMC6616207 DOI: 10.3389/fpls.2019.00815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/06/2019] [Indexed: 05/03/2023]
Abstract
Global change factors, such as variation in precipitation regimes and nitrogen (N) deposition, are likely to occur simultaneously and may have profound impacts on the relative abundance of grasses differing in functional traits, such as C3 and C4 species. We conducted an extreme drought and re-watering experiment to understand differences in the resistance and recovery abilities of C3 and C4 grasses under different N deposition scenarios. A C3 perennial grass (Leymus chinensis) and two C4 grasses (annual species Chloris virgata and perennial species Hemarthria altissima) that co-occur in Northeast China were selected as experimental plants. For both C3 and C4 grasses, N addition caused a strong increase in biomass and resulted in more severe drought stress, leading to a change in the dominant photosynthetic limitation during the drought periods. Although N addition increased antioxidant enzyme activities and protective solute concentrations, the carbon fixing capacity did not fully recover to pre-drought levels by the end of the re-watering period. N addition resulted in lower resilience under the drought conditions and lower resistance at the end of the re-watering. However, N addition led to faster recovery of photosynthesis, especially in the C3 grass, which indicate that the effect of N addition on photosynthesis during drought was asymmetric, especially in the plants with different photosynthetic nitrogen use efficiency (PNUE). These findings demonstrated that nitrogen deposition may significant alter the susceptibility of C3 and C4 grass species to drought stress and re-watering, highlighting the asymmetry between resistance and resilience and to improve our understanding about plant responses to climate change.
Collapse
Affiliation(s)
- Shangzhi Zhong
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yueqiao Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Bo Meng
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jian-Ying Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
45
|
Pavia I, Roque J, Rocha L, Ferreira H, Castro C, Carvalho A, Silva E, Brito C, Gonçalves A, Lima-Brito J, Correia C. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:27-42. [PMID: 31078782 DOI: 10.1016/j.plaphy.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 05/24/2023]
Abstract
Drought is one of most important limiting factors in wheat productivity worldwide. The need to increase drought tolerance during anthesis is of the utmost importance for high yield potentials and yield stability. Photosynthesis is one of the major physiological processes affected by drought. Damages in the photosynthetic apparatus may also arise due to non-regulated dissipation of excessive energy. Zinc (Zn) is an indispensable micronutrient for plants and is required for a wide range of physiological and biochemical processes. In this work we evaluated the stress mitigation effects of Zn seed priming alone and coupled with Zn foliar application in wheat plants submitted to severe drought during anthesis, followed by a recovery period. Under such severe drought stress, photosynthesis was constrained by both stomatal and non-stomatal limitation. Severe drought also induced an increase in non-regulated energy dissipation and hindered a full recovery of the plant's photosynthetic processes after rewatering. We also report possible activation of transposable elements due to drought stress and Zn application. Yield was severely decreased by drought and Zn treatments were unable to counteract this effect. Although unable to oppose the reduction of net photosynthesis, Zn treatments positively enhance photoprotection. At the end of drought period, Zn priming alone and coupled with Zn foliar application increased, respectively, over 2- and 3- fold the regulated dissipation of excess energy. Zn treatments lessened the non-regulated energy dissipation caused by drought, protected the plants against irreversible damages to the photosynthetic apparatus and enabled a better recovery of wheat plants after stress relief.
Collapse
Affiliation(s)
- Ivo Pavia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João Roque
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Luís Rocha
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Castro
- BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Carvalho
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ermelinda Silva
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Alexandre Gonçalves
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; BioISI - UTAD, Biosystems & Integrative Sciences Institute - Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Carlos Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
46
|
Hájková M, Kummerová M, Zezulka Š, Babula P, Váczi P. Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts. CHEMOSPHERE 2019; 224:892-899. [PMID: 30986895 DOI: 10.1016/j.chemosphere.2019.02.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/03/2023]
Abstract
Mechanisms of pharmaceuticals action on biochemical and physiological processes in plants that determine plant growth and development are still mostly unknown. This study deals with the effects of non-steroidal anti-inflammatory drug diclofenac (DCF) on photosynthesis as an essential anabolic process. Changes in primary and secondary photosynthetic processes were assessed in chloroplasts isolated from Lemna minor exposed to 1, 10, 100, and 1000 μM DCF. Decreases in the potential and effective quantum yields of photosystem II (FV/FM by 21%, ΦII by 44% compared to control), changes in non-photochemical fluorescence quenching (NPQ), and a substantial drop in Hill reaction activity (by 73%), especially under 1000 μM DCF, were found. Limitation of electron transport through photosystem II was confirmed by increased fluorescence signals in steps J and I (by 50% and 23%, respectively, under 1000 μM DCF) in OJIP fluorescence transient. Photosystem I exhibited changes only in the redox state of P700 reaction centres (decrease in Pm by 10%, increase in reduced P700 by 5% under 1000 μM DCF). Similarly, RuBisCO activity was only lowered by 30% under 1000 μM DCF. In contrast, a significant increase in reactive oxygen and nitrogen species (by 116% and 157%, respectively) was observed under 10 μM DCF, and lipid peroxidation increased even at 1 μM DCF (by nearly seven times compared to the control). Results demonstrate the ability of environmentally relevant DCF concentrations to induce oxidative stress in isolated duckweed chloroplasts; however, photosynthetic processes were affected considerably only by the highest DCF treatments.
Collapse
Affiliation(s)
- Markéta Hájková
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Marie Kummerová
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Štěpán Zezulka
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Peter Váczi
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
47
|
Coutinho FS, dos Santos DS, Lima LL, Vital CE, Santos LA, Pimenta MR, da Silva JC, Ramos JRLS, Mehta A, Fontes EPB, de Oliveira Ramos HJ. Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:457-472. [PMID: 30956428 PMCID: PMC6419710 DOI: 10.1007/s12298-019-00643-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role against endoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untransformed line under drought conditions by 2DE-MS and GC/MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untransformed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their genetic modification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.
Collapse
Affiliation(s)
- Flaviane Silva Coutinho
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Danilo Silva dos Santos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Lucas Leal Lima
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Camilo Elber Vital
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Lázaro Aleixo Santos
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maiana Reis Pimenta
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - João Carlos da Silva
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Juliana Rocha Lopes Soares Ramos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| | - Elizabeth Pacheco Batista Fontes
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Humberto Josué de Oliveira Ramos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
48
|
Zhou SX, Prentice IC, Medlyn BE. Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. FRONTIERS IN PLANT SCIENCE 2019; 9:1965. [PMID: 30697222 PMCID: PMC6340983 DOI: 10.3389/fpls.2018.01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/18/2018] [Indexed: 05/15/2023]
Abstract
Global climate change is expected to increase drought duration and intensity in certain regions while increasing rainfall in others. The quantitative consequences of increased drought for ecosystems are not easy to predict. Process-based models must be informed by experiments to determine the resilience of plants and ecosystems from different climates. Here, we demonstrate what and how experimentally derived quantitative information can improve the representation of stomatal and non-stomatal photosynthetic responses to drought in large-scale vegetation models. In particular, we review literature on the answers to four key questions: (1) Which photosynthetic processes are affected under short-term drought? (2) How do the stomatal and non-stomatal responses to short-term drought vary among species originating from different hydro-climates? (3) Do plants acclimate to prolonged water stress, and do mesic and xeric species differ in their degree of acclimation? (4) Does inclusion of experimentally based plant functional type specific stomatal and non-stomatal response functions to drought help Land Surface Models to reproduce key features of ecosystem responses to drought? We highlighted the need for evaluating model representations of the fundamental eco-physiological processes under drought. Taking differential drought sensitivity of different vegetation into account is necessary for Land Surface Models to accurately model drought responses, or the drought impacts on vegetation in drier environments may be over-estimated.
Collapse
Affiliation(s)
- Shuang-Xi Zhou
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- The New Zealand Institute for Plant and Food Research Ltd., Hawke’s Bay, New Zealand
| | - I. Colin Prentice
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute – Climate Change and the Environment, Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Belinda E. Medlyn
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
49
|
Sezgin A, Altuntaş C, Demiralay M, Cinemre S, Terzi R. Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:65-73. [PMID: 30537614 DOI: 10.1016/j.jplph.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 05/26/2023]
Abstract
Protective compounds such as non-enzymatic antioxidants, osmolytes and signal molecules have been applied to plants exposed to various environmental stresses to increase their stress tolerance. However, there are not enough records about the response of plants to alpha lipoic acid (ALA) application with antioxidant properties. Therefore, this study was designed to evaluate the function of exogenous ALA on the photosynthetic performance of maize seedlings grown in hydroponic conditions under drought stress. Three weeks old seedlings were treated with or without ALA (12 μM) and they were subjected to drought stress induced by 10% polyethylene glycol (PEG6000) for 24 h. Chlorophyll content, gas exchange parameters, chlorophyll fluorescence and the expression levels of genes involved in CO2 fixation (ribulose-1,5-bisphosphate carboxylase (rubisco), phosphoenolpyruvate carboxylase (PEPc), Rubisco activase (RCA)) and chlorophyll metabolism (magnesium chelatase (Mg-CHLI) and chlorophyllase (Chlase)) were determined. The application of ALA increased chlorophyll content and the activity of photosystem II in comparison to the untreated seedlings under drought stress. The relative expression levels of Rubisco, PEPc, RCA and Mg-CHLI significantly increased while the Chlase gene expression decreased in seedlings to which ALA was applied in comparison those to which it was not applied under the stress. These results suggest that exogenous ALA can enhance the photosynthetic performance of maize seedlings exposed to drought by inducing photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes.
Collapse
Affiliation(s)
- Asiye Sezgin
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Cansu Altuntaş
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Mehmet Demiralay
- Department of Forestry Engineering, Faculty of Forestry, Artvin Coruh University, 08000, Artvin, Turkey.
| | - Salih Cinemre
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Rabiye Terzi
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
50
|
Deng X, Zhen S, Liu D, Liu Y, Li M, Liu N, Yan Y. Integrated proteome analyses of wheat glume and awn reveal central drought response proteins under water deficit conditions. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:270-283. [PMID: 30540969 DOI: 10.1016/j.jplph.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Integrated proteome analyses revealed differentially accumulated proteins in the non-leaf green organs in wheat glume and awn that play important roles in photosynthesis and drought resistance. Two non-leaf green organs in wheat, glume and awn, have photosynthetic potential, contribute to grain yield, and also play roles in resistance to adverse conditions. We performed the first integrated proteome analysis of wheat glume and awn in response to water deficit. Water deficit caused a significant decrease in important agronomic traits and grain yield. A total of 120 and 77 differentially accumulated protein (DAP) spots, representing 100 and 67 unique proteins responsive to water deficit, were identified by two-dimensional difference gel electrophoresis (2D-DIGE) in glumes and awns, respectively, of the elite Chinese bread wheat cultivar Zhongmai 175. The DAPs of both organs showed similar functional classification and proportion and were mainly involved in photosynthesis, detoxification/defense, carbon/energy metabolism, and proteometabolism. Comparative proteome analyses revealed many more drought-responsive DAP spots in glumes than in awns, which indicate that glumes underwent more proteome changes in response to water deficit. The main DAPs involved in photosynthesis and carbon metabolism were significantly downregulated, whereas those related to detoxification/defense and energy metabolism were markedly upregulated under water deficit. The potential functions of the identified DAPs revealed an intricate interaction network that responds synergistically to drought stress during grain development. Our results from the proteome perspective illustrate the potential roles of wheat non-leaf green organs glume and awn in photosynthetic and defensive responses under drought stress.
Collapse
Affiliation(s)
- Xiong Deng
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Shoumin Zhen
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Yue Liu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Mengfei Li
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Nannan Liu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|