1
|
Alalfi MO, Cau R, Argiolas GM, Scicolone R, Mantini C, Nardi V, Benson JC, Suri JS, Keser Z, Lerman A, Lanzino G, Siotto P, Saba L. Assessment of Attenuation in Pericarotid Fat among Patients with Carotid Plaque and Spontaneous Carotid Dissection. AJNR Am J Neuroradiol 2025; 46:259-264. [PMID: 39848778 DOI: 10.3174/ajnr.a8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND PURPOSE Changes in perivascular fat density (PFD) and its association with inflammation have been topics of interest in both atherosclerotic and nonatherosclerotic vasculopathies. The objective of this study was to assess the PFD in patients with spontaneous internal carotid artery dissection (SICAD) or carotid atherosclerotic plaque, with and without intraplaque hemorrhage (IPH). MATERIALS AND METHODS A cross-sectional retrospective bicentric analysis of 130 patients (30 with SICAD and 100 with carotid atherosclerotic plaque) who underwent CT angiography was performed. Among the subjects with atherosclerotic plaque, 36 showed the presence of IPH. PFD analysis was performed by 2 radiologists who placed 2 ROIs to identify the perivascular fat tissue attenuation. The Mann-Whitney U test was conducted to evaluate the difference between patient cohorts. RESULTS Carotid arteries with SICAD and IPH demonstrated an average PFD of -68.97 HU (95% CI, -72.11 to -65.82 HU) and -69.97 HU (95% CI, -73.00 to -66.95 HU), respectively, in comparison with patients without IPH, who showed an average PFD -77.11 HU (95% CI,-78.78 to -75.44 HU) (P < .001 for both). Conversely, no significant differences were found between patients with SICAD and those with carotid plaque with IPH (P = .324). CONCLUSIONS The average PFDs in patients with SICAD and carotid atherosclerosis plaque with IPH were similar and higher than those in patients with carotid plaque without IPH. This finding suggests a shared pathologic inflammatory mechanism in these 2 conditions. Studies comparing pathologic specimens directly with radiologic images may be needed to confirm this indirect hypothesis.
Collapse
Affiliation(s)
- Mohammed O Alalfi
- From the School of Medicine and Surger (M.O.A.), University of Bologna, Bologna, Italy
| | - Riccardo Cau
- Department of Radiology (R.C., R.S., L.S.), University of Cagliari, Cagliari, Italy
| | | | - Roberta Scicolone
- Department of Radiology (R.C., R.S., L.S.), University of Cagliari, Cagliari, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences (C.M.), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Valentina Nardi
- Department of Cardiovascular Medicine (V.N., A.L.), Mayo Clinic, Rochester, Minnesota
| | - John C Benson
- Department of Radiology (J.C.B.), Mayo Clinic, Rochester, Minnesota
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division (J.S.S.), AtheroPoint LLC, Roseville, California
- Department of ECE (J.S.S.), Idaho State University, Pocatello, Idaho
- Graphics Era University (J.S.S.), Dehradun, India
- University Center for Research and Development (J.S.S.), Chandigarh University, Mohali, India
- Symbiosis Institute of Technology (J.S.S.), Nagpur Campus, Symbiosis International, Pune, India
| | - Zafer Keser
- Department of Neurology (Z.K.), Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine (V.N., A.L.), Mayo Clinic, Rochester, Minnesota
| | - Giuseppe Lanzino
- Department of Neurologic Surgery (G.L.), Mayo Clinic, Rochester, Minnesota
| | - Paolo Siotto
- Department of Radiology (G.M.A., P.S.), Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Luca Saba
- Department of Radiology (R.C., R.S., L.S.), University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Halu A, Chelvanambi S, Decano JL, Matamalas JT, Whelan M, Asano T, Kalicharran N, Singh SA, Loscalzo J, Aikawa M. Integrating pharmacogenomics and cheminformatics with diverse disease phenotypes for cell type-guided drug discovery. Genome Med 2025; 17:7. [PMID: 39833831 PMCID: PMC11744892 DOI: 10.1186/s13073-025-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Large-scale pharmacogenomic resources, such as the Connectivity Map (CMap), have greatly assisted computational drug discovery. However, despite their widespread use, CMap-based methods have thus far been agnostic to the biological activity of drugs as well as to the genomic effects of drugs in multiple disease contexts. Here, we present a network-based statistical approach, Pathopticon, that uses CMap to build cell type-specific gene-drug perturbation networks and integrates these networks with cheminformatic data and diverse disease phenotypes to prioritize drugs in a cell type-dependent manner. METHODS We build cell type-specific gene-drug perturbation networks from CMap data using a statistical procedure we call Quantile-based Instance Z-score Consensus (QUIZ-C). Using these networks and a large-scale disease-gene network consisting of 569 disease signatures from the Enrichr database, we calculate Pathophenotypic Congruity Scores (PACOS) between input gene signatures and drug perturbation signatures and combine these scores with cheminformatic data from ChEMBL to prioritize drugs. We benchmark our approach by calculating area under the receiver operating characteristic curves (AUROC) for 73 gene sets from the Molecular Signatures Database (MSigDB) using target gene expression profiles from the Comparative Toxicogenomics Database (CTD). We validate the drugs predicted in our proofs-of-concept using real-time polymerase chain reaction (qPCR) experiments. RESULTS Cell type-specific gene-drug perturbation networks built using QUIZ-C are topologically distinct, reflecting the biological uniqueness of the cell lines in CMap, and are enriched in known drug targets. Pathopticon demonstrates a better prediction performance than solely cheminformatic measures as well as state-of-the-art network and deep learning-based methods. Top predictions made by Pathopticon have high chemical structural diversity, suggesting their potential for building compound libraries. In proof-of-concept applications on vascular diseases, we demonstrate that Pathopticon helps guide in vitro experiments by identifying pathways that are potentially regulated by the predicted therapeutic candidates. CONCLUSIONS Our network-based analytical framework integrating pharmacogenomics and cheminformatics (available at https://github.com/r-duh/Pathopticon ) provides a feasible blueprint for a cell type-specific drug discovery and repositioning platform with broad implications for the efficiency and success of drug development.
Collapse
Affiliation(s)
- Arda Halu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - Sarvesh Chelvanambi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Julius L Decano
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Joan T Matamalas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Mary Whelan
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Takaharu Asano
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Namitra Kalicharran
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Center for Life Sciences Boston Bldg., 17th Floor, 3 Blackfan Street, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Najafi MS, Jalali A, Karimi Z, Dashtkoohi M, Moradi K, Ghavami M, Davoodi S, Ahmadi Tafti SH, Aliannejad R. Prognostic impact of chronic obstructive pulmonary disease on short-term and long-term outcomes following coronary artery bypass grafting. Sci Rep 2025; 15:1865. [PMID: 39805902 PMCID: PMC11731008 DOI: 10.1038/s41598-024-83860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common condition that complicates major surgeries like coronary artery bypass grafting (CABG). This study aims to evaluate the impact of COPD on the outcome of CABG. A registry-based retrospective cohort study included individuals who received CABG between 2009 and 2016. Data were collected on patient demographics, intraoperative factors, and postoperative outcomes. Cox proportional hazard with inverse probability weighting (IPW) and propensity score matching (PSM) were conducted to assess the adjusted effect of COPD on 30-day and long-term mortality and major adverse cardiac and cerebrovascular events (MACCE). Moreover, the impact of COPD in smokers and non-smokers on short/long-term outcomes was assessed. Sensitivity analysis was conducted using multiple imputations. In the present investigation, 17,315 patients including 629 with COPD (mean age 69 ± 9.74), were followed up for a median duration of 8.25 years. Although COPD did not increase 30-day mortality and MACCE risk, the models showed that patients with COPD are at a significantly higher risk of long-term mortality and MACCE after CABG (IPW: HR for mortality: 1.53, 95% CI: 1.31-1.79; HR for MACCE: 1.29, 95% CI: 1.12-1.47). After multiple imputations, the mortality and MACCE hazard ratio in IPW analysis remained statistically significant. COPD significantly increases long-term mortality and MACCE following CABG, independent of smoking status.
Collapse
Affiliation(s)
- Mohammad Sadeq Najafi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Jalali
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadese Dashtkoohi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Moradi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Ghavami
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Davoodi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Aliannejad
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Division of Pulmonary and Critical Care, Thoracic Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Nazeen S, Wang X, Morrow A, Strom R, Ethier E, Ritter D, Henderson A, Afroz J, Stitziel NO, Gupta RM, Luk K, Studer L, Khurana V, Sunyaev SR. NERINE reveals rare variant associations in gene networks across multiple phenotypes and implicates an SNCA-PRL-LRRK2 subnetwork in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631688. [PMID: 39829934 PMCID: PMC11741352 DOI: 10.1101/2025.01.07.631688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation. While single-gene analyses often lack power due to rare variant sparsity, expanding the unit of association to networks offers a powerful alternative, provided it integrates network connections. Here, we introduce NERINE, a hierarchical model-based association test that integrates gene interactions that integrates gene interactions while remaining robust to network inaccuracies. Applied to biobanks, NERINE uncovers compelling network associations for breast cancer, cardiovascular diseases, and type II diabetes, undetected by single-gene tests. For Parkinson's disease (PD), NERINE newly substantiates several GWAS candidate loci with rare variant signal and synergizes human genetics with experimental screens targeting cardinal PD pathologies: dopaminergic neuron survival and alpha-synuclein pathobiology. CRISPRi-screening in human neurons and NERINE converge on PRL, revealing an intraneuronal α-synuclein/prolactin stress response that may impact resilience to PD pathologies.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Autumn Morrow
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathan O Stitziel
- Cardiovascular Division, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajat M Gupta
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Vikram Khurana
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Dousdampanis P, Aggeletopoulou I, Mouzaki A. The role of M1/M2 macrophage polarization in the pathogenesis of obesity-related kidney disease and related pathologies. Front Immunol 2025; 15:1534823. [PMID: 39867890 PMCID: PMC11758166 DOI: 10.3389/fimmu.2024.1534823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function. Among the immune cells of the innate and adaptive immune response involved in the pathogenesis of obesity-related diseases, macrophages play a crucial role in the inflammation associated with CKD. In obese individuals, macrophages enter a pro-inflammatory state known as M1 polarization, which contributes to chronic inflammation. This polarization promotes tissue damage, inflammation and fibrosis, leading to progressive loss of kidney function. In addition, macrophage-induced oxidative stress is a key feature of CKD as it also promotes cell damage and inflammation. Macrophages also contribute to insulin resistance in type 2 diabetes by releasing inflammatory molecules that impair glucose metabolism, complicating the management of diabetes in obese patients. Hypertension and atherosclerosis, which are often associated with obesity, also contribute to the progression of CKD via immune and inflammatory pathways. Macrophages influence blood pressure regulation and contribute to vascular inflammation, particularly via the renin-angiotensin system. In atherosclerosis, macrophages accumulate in arterial plaques, leading to chronic inflammation and plaque instability, which may increase the risk of CVD in CKD patients. This review focuses on the involvement of macrophages in CKD and highlights their role as a critical link between CKD and other pathologies. Targeting macrophage polarization and the ensuing macrophage-induced inflammation could be an effective therapeutic strategy for CKD and related diseases and improve outcomes for patients with obesity-related kidney disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Antonczyk A, Kluzek K, Herbich N, Boroujeni ME, Krist B, Wronka D, Karlik A, Przybyl L, Plewinski A, Wesoly J, Bluyssen HAR. Identification of ALEKSIN as a novel multi-IRF inhibitor of IRF- and STAT-mediated transcription in vascular inflammation and atherosclerosis. Front Pharmacol 2025; 15:1471182. [PMID: 39840103 PMCID: PMC11747033 DOI: 10.3389/fphar.2024.1471182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s. Based on their promoting role in atherosclerosis, we hypothesized that the inhibition of pro-inflammatory target gene expression through multi-IRF inhibitors may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple IRF-DNA-binding domain (DBD) models on a multi-million natural compound library, we identified the novel multi-IRF inhibitor, ALEKSIN. This compound targets the DBD of IRF1, IRF2, and IRF8 with the same affinity and simultaneously inhibits the expression of multiple IRF target genes in human microvascular endothelial cells (HMECs) in response to IIFNα and IFNγ. Under the same conditions, ALEKSIN also inhibited the phosphorylation of STATs, potentially through low-affinity STAT-SH2 binding but with lower potency than the known multi-STAT inhibitor STATTIC. This was in line with the common inhibition of ALEKSIN and STATTIC observed on the genome-wide expression of pro-inflammatory IRF/STAT/NF-κB target genes, as well as on the migration of HMECs. Finally, we identified a novel signature of 46 ALEKSIN and STATTIC commonly inhibited pro-atherogenic target genes, which was upregulated in atherosclerotic plaques in the aortas of high-fat diet-fed ApoEKO mice and associated with inflammation, proliferation, adhesion, chemotaxis, and response to lipids. Interestingly, the majority of these genes could be linked to macrophage subtypes present in aortic plaques in HFD-fed LDLR-KO mice. Together, this suggests that ALEKSIN represents a novel class of multi-IRF inhibitors, which inhibits IRF-, STAT-, and NF-κB-mediated transcription and could offer great promise for the treatment of CVDs. Furthermore, the ALEKSIN and STATTIC commonly inhibited pro-inflammatory gene signature could help monitor plaque progression during experimental atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Natalia Herbich
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bart Krist
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Karlik
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Adam Plewinski
- Animal Facility, Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
7
|
Euler G, Parahuleva M. Monocytic microRNAs-Novel targets in atherosclerosis therapy. Br J Pharmacol 2025; 182:206-219. [PMID: 38575391 DOI: 10.1111/bph.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Atherosclerosis is a chronic proinflammatory disease of the vascular wall resulting in narrowing of arteries due to plaque formation, thereby causing reduced blood supply that is the leading cause for diverse end-organ damage with high mortality rates. Monocytes/macrophages, activated by elevated circulating lipoproteins, are significantly involved in the formation and development of atherosclerotic plaques. The imbalance between proinflammatory and anti-inflammatory macrophages, arising from dysregulated macrophage polarization, appears to be a driving force in this process. Proatherosclerotic processes acting on monocytes/macrophages include accumulation of cholesterol in macrophages leading to foam cell formation, as well as dysfunctional efferocytosis, all of which contribute to the formation of unstable plaques. In recent years, microRNAs (miRs) were identified as factors that could modulate monocyte/macrophage function and may therefore interfere with the atherosclerotic process. In this review, we present effects of monocyte/macrophage-derived miRs on atherosclerotic processes in order to reveal new treatment options using miRmimics or antagomiRs. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Marburg, Germany
| |
Collapse
|
8
|
Morikawa T, Hiro T, Mineki T, Kojima K, Kogo T, Iida K, Akutsu N, Murata N, Sudo M, Kitano D, Fukamachi D, Okumura Y. Fractal geometry of culprit coronary plaque images within optical coherence tomography in patients with acute coronary syndrome vs stable angina pectoris. Heart Vessels 2025; 40:16-25. [PMID: 39172189 DOI: 10.1007/s00380-024-02439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
The main cause of acute coronary syndrome (ACS) is plaque rupture and thrombus formation. However, it has not been fairly successful to identify vulnerable plaque to rupture using conventional parameters of intravascular imaging modalities. Fractal analysis is one of the mathematical models to examine geometrical features of picture image using a specific parameter called as fractal dimension (FD) which suggests geometric complexity of the image. This study examined FD of the optical coherence tomography (OCT)-derived images of the culprit plaque in patients with ACS vs stable angina pectoris (SAP) to evaluate the feasibility of FD for identifying vulnerable coronary plaques prone to provoke ACS distinguished from stable plaques only provoking SAP. We examined 65 cases (34 ACS patients, 31 SAP patients) in which the culprit lesion was imaged by OCT before percutaneous coronary intervention in patients with ACS and SAP. The culprit plaque lesion in the ACS group had a significantly larger mean lipid arc (203.8 ± 39.4° vs 152.3 ± 34.5°, p < 0.001) and a larger lipid plaque length (12.6 ± 5.1 mm vs 7.7 ± 2.7 mm, p < 0.001) and a thinner fibrous cap thickness (75.3 ± 22.3 μm vs 134.8 ± 53.2 μm, p < 0.001) than those in the SAP group. The prevalence of OCT-derived macrophage infiltration (Mph) in the entire culprit coronary vessel as well as that of the OCT-derived thin-cap fibroatheroma (TCFA) at the culprit lesion were significantly greater in the ACS group than those in the SAP group, respectively (Mph: 61.8% vs 35.5%, p = 0.048; TCFA: 44.1% vs 6.4%, p < 0.001). The FD of culprit plaque in the ACS group was significantly greater than in the SAP group (2.401 ± 0.073 vs 2.341 ± 0.051, p < 0.001). In multivariate regression analysis, the presence of Mph was a significant determinant of FD (regression coefficient estimate 0.049, CI 0.018-0.079, p = 0.002). The FD of OCT-derived image of culprit coronary plaque in the ACS group was significantly greater than that in the SAP group, indicating that the culprit plaque in ACS were structurally more complex. Therefore, fractal analysis of coronary OCT images might be clinically useful for identifying coronary plaques prone to provoke ACS.
Collapse
Affiliation(s)
- Tomoyuki Morikawa
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Takashi Mineki
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Keisuke Kojima
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Takaaki Kogo
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Korehito Iida
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Naotaka Akutsu
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Nobuhiro Murata
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Mitsumasa Sudo
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Daisuke Kitano
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Daisuke Fukamachi
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
9
|
Nong Q, Wu Y, Liu S, Tang Y, Wu J, Huang H, Hong J, Qin Y, Xu R, Zhao W, Chen B, Huang Z, Hu L, Zhao N, Huang Y. Lead-induced actin polymerization aggravates neutrophil extracellular trap formation and contributes to vascular inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117598. [PMID: 39721424 DOI: 10.1016/j.ecoenv.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Lead (Pb) exposure is widely acknowledged as a risk factor for cardiovascular diseases. Previous studies have established neutrophil involvement in Pb-induced cardiovascular injuries; however, the underlying mechanisms remain unclear. To address this knowledge gap, the binding targets of Pb in neutrophils and their roles in regulating neutrophil extracellular trap (NET) formation were investigated. Furthermore, their impact on Pb-induced vascular inflammation and other cardiovascular injuries was studied in mice. Our findings indicate, for the first time, that Pb binds to β-actin in neutrophils, influencing NET formation. Inhibition of actin polymerization reduces the release of extracellular myeloperoxidase, neutrophil elastase, and citrullinated histone H3, indicating an impediment in NET formation. Furthermore, Pb exposure exacerbates blood pressure and vascular inflammation in vascular tissues, leading to abnormal aortic blood flow in mice. These injuries are potentially associated with NET formation, which is supported by the positive correlation between NETs and vascular inflammation. Importantly, the inhibition of actin polymerization mitigates Pb-induced vascular inflammation and regulates systolic blood pressure by reducing NET formation. Collectively, our findings provide novel insights into the mechanism underlying Pb-induced cardiovascular injury, contributing to the management of the escalating risk associated with Pb-induced cardiovascular damage.
Collapse
Affiliation(s)
- Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Yanjun Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Guangming District Center for Disease Control and Prevention, Shenzhen 518016, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Suhui Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiayun Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hongmei Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaying Hong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yiru Qin
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Ruimei Xu
- Material Microanalysis Division, Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenxia Zhao
- Material Microanalysis Division, Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenlie Huang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
| |
Collapse
|
10
|
Hu Y, Yao Y, Xie Y, Liu Q, He H, Li Z, Chen M, Zhu L. Correlation between systemic immune-inflammatory index and graded diagnosis of periodontitis: a combined cross-sectional and retrospective study. BMC Oral Health 2024; 24:1545. [PMID: 39716200 DOI: 10.1186/s12903-024-05335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND To investigate the association between periodontitis and inflammatory biomarkers, including systemic immune-inflammatory index (SII), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. METHODS Our study comprised a cross-sectional analysis (an indirect evidence group and a periodontal health control group from January to October 2023) and a retrospective study (a direct evidence group and a non-maintenance group from January 2014 to March 2022). We analyzed demographic data, imaging measurements, and peripheral blood counts. RESULTS The study included 131 participants in the indirect evidence group, 132 in the healthy control group, 123 in the direct evidence group, and 76 in the non-maintenance group. The indirect evidence group exhibited significantly altered inflammatory biomarker levels compared to the healthy controls. Receiver operating characteristic curve analysis indicated that SII was the most effective biomarker for diagnosing periodontitis, with an area under the curve 0.758 and a Youden index 0.409. The optimal cut-off value was 437.07 × 10⁹/L, achieving a sensitivity 46.2% and a specificity 94.7%. Correlation analyses revealed significant associations between the biomarker levels and periodontitis grades, with SII showing the highest correlation coefficient (0.942). In the direct evidence group, supportive periodontal therapy significantly mitigated changes in these biomarkers. CONCLUSION An SII level exceeding 437.07 × 109/L could facilitate the periodontitis diagnosis and disease grade determination. SII can be utilized to assess and monitor periodontitis severity and treatment response.
Collapse
Affiliation(s)
- Yuxiang Hu
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China
| | - Yao Yao
- Changsha Saide Dental Clinic Co., Ltd. Changsha Furong Saide Dental Clinic, Changsha, 410001, Hunan Province, China
| | - Yumeng Xie
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China
| | - Qiao Liu
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China
| | - Hao He
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China
| | - Zhezheng Li
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China
| | - Mengjie Chen
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China.
| | - Lilei Zhu
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, No. 389 Youyi Road, Changsha, 410004, China.
| |
Collapse
|
11
|
Zhang W, Gan D, Huo S, Chen P. Unraveling the discrepancies between REDUCE-IT and STRENGTH trials with omega-3 fatty acids: new analytical approaches. Front Nutr 2024; 11:1490953. [PMID: 39758310 PMCID: PMC11697285 DOI: 10.3389/fnut.2024.1490953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Two large-scale, randomized, double-blind, placebo-controlled trials-REDUCE-IT and STRENGTH-have garnered significant attention in cardiovascular medicine. Both trials aimed to evaluate the effects of prolonged administration of nutritional lipids, specifically omega-3 fatty acids, on major adverse cardiovascular events (MACEs) in high-risk patients undergoing statin therapy. REDUCE-IT used eicosapentaenoic acid (EPA) ethyl ester with mineral oil as a control, while STRENGTH utilized a carboxylic acid formulation of both EPA and docosahexaenoic acid (DHA) with corn oil as a control. Notably, REDUCE-IT demonstrated a reduction in MACE risk with EPA, whereas STRENGTH showed no such benefit with the combination of EPA and DHA. Despite extensive and insightful discussions following the publication of these trials, the underlying reasons for this discrepancy remain elusive. We posit that further investigation into resting heart rate (RHR), heart rate variability (HRV), and ethnic subgroup data-collected but not fully explored-is critical to unraveling the divergent outcomes of the REDUCE-IT and STRENGTH trials. These additional analyses could provide pivotal insights into the mechanisms driving the differential effects of omega-3 fatty acids in high-risk cardiovascular patients. Given that previous discussions have not fully addressed these potential variables, exploring them may illuminate unexplored pathways and offer a deeper understanding of the mechanistic and clinical roles of omega-3 s in cardiovascular health. We hypothesize that by delving into these under-analyzed factors, we can not only clarify the discrepancies between the trials but also advance our broader understanding of cardiovascular nutrition and medicine.
Collapse
Affiliation(s)
- Weiguo Zhang
- Las Colinas Institutes, Irving, TX, United States
| | - Dan Gan
- R&D, Sirio Life Technology Co., Ltd, Shanghai, China
| | - Shaofeng Huo
- R&D, Sirio Life Technology Co., Ltd, Shanghai, China
| | - Peng Chen
- R&D, Sirio Pharma Co., Ltd, Shantou, Guangdong, China
| |
Collapse
|
12
|
Gorey S, McCabe JJ, Collins S, McAuley K, Inzitari R, Harbison J, Marnane M, Williams DJ, Kelly PJ. Intra-Individual Reproducibility of Early and Late C-Reactive Protein and Interleukin-6 in Patients with Non-Severe Ischaemic Stroke and Carotid Atherosclerosis. Cerebrovasc Dis Extra 2024; 15:19-29. [PMID: 39662074 PMCID: PMC11790271 DOI: 10.1159/000540773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/04/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Acute and late inflammatory markers including high-sensitivity C-reactive protein (hsCRP) and interleukin-6 (IL-6) are associated with future vascular events after stroke. However, few longitudinal studies exist examining the intra-individual reproducibility of inflammatory biomarker measures at different timepoints after atherosclerotic stroke. We sought to examine the reproducibility of hsCRP and IL-6 in a cohort of patients with minor stroke or transient ischaemic attack (TIA) caused by ipsilateral carotid atherosclerosis. METHODS Two observational cohort studies (DUCASS and BIOVASC) were pooled. Included patients had non-severe ischaemic stroke and ipsilateral internal carotid artery stenosis (≥50%). Patients had bloods drawn within 2 weeks of their index stroke/TIA event which was stored for later analysis. All patients included were followed up at 5 years, and repeat phlebotomy was performed. Bloods were analysed for hsCRP and IL-6 using high-throughput immunochemiluminescence. Difference between baseline and follow-up blood levels and intraclass correlation (ICC) was calculated. RESULTS Ninety-five participants were included, median age 69 (IQR: 63-77), and 51 (53.7%) had TIA as their presenting event. When biomarkers were dichotomised (for hsCRP <2 mg/L or ≥2 mg/L, and for IL-6 <7.5 pg/mL [median] or ≥7.5 pg/mL), 68.4% (IL-6) and 65.2% (hsCRP) of participants remained in the same risk category (high or low) over time. However, when analysed as a continuous variable, ICC coefficients were low: ICC for IL-6 0.14 (95% CI: -0.06 to 0.33), ICC for hsCRP 0.05 (95% CI: -0.14 to 0.25). ICC increased after removing outliers. Clinical characteristics and treatment were not associated with observed variability. CONCLUSION Our results suggest that concordance between early- and late-phase inflammatory marker risk categories is modest, and absolute levels are not highly correlated at early and late timepoints, despite associations at both times with future vascular risk. Investigators should standardise timing of phlebotomy and analysis protocols in future studies of inflammatory biomarkers.
Collapse
Affiliation(s)
- Sarah Gorey
- Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - John J. McCabe
- Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sean Collins
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Karl McAuley
- UCD Clinical Research Centre Laboratory, St Vincent’s Hospital, Dublin, Ireland
| | - Rosanna Inzitari
- UCD Clinical Research Centre Laboratory, St Vincent’s Hospital, Dublin, Ireland
| | - Joe Harbison
- Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- St James’ Hospital, Dublin, Ireland
- Trinity College Dublin, School of Medicine, Dublin, Ireland
| | - Michael Marnane
- Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - David J. Williams
- Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons Ireland, School of Medicine, Dublin, Ireland
| | - Peter J. Kelly
- Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
van der Stouwe JG, Godly K, Kraler S, Godly J, Matter CM, Wenzl FA, von Eckardstein A, Räber L, Mach F, Obeid S, Templin C, Lüscher TF, Niederseer D. Body temperature, systemic inflammation and risk of adverse events in patients with acute coronary syndromes. Eur J Clin Invest 2024; 54:e14314. [PMID: 39350322 DOI: 10.1111/eci.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/18/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Inflammatory processes can trigger acute coronary syndromes (ACS) which may increase core body temperature (BT), a widely available low-cost marker of systemic inflammation. Herein, we aimed to delineate baseline characteristics of ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation ACS (NSTE-ACS) patients stratified by initial BT and to assess its predictive utility towards major adverse cardiovascular events (MACE) after the index ACS. METHODS From 2012 until 2017, a total of 1044 ACS patients, 517 with STEMI and 527 with NSTE-ACS, were prospectively recruited at the University Hospital Zurich. BT was measured by digital tympanic thermometer along with high-sensitivity C-reactive protein (hs-CRP) and cardiac troponin-T (hs-cTnT) levels prior to coronary angiography. Patients were stratified according to initial BT and uni- and multivariable regression models were fit to assess associations of BT with future MACE risk. RESULTS Among patients with STEMI, BT was not predictive of 1-year MACE, but a U-shaped relationship between BT and MACE risk was noted in those with NSTE-ACS (p = .029), translating into a 2.4-fold (HR, 2.44, 95% CI, 1.16-5.16) increased 1-year MACE risk in those with BT >36.8°C (reference: 36.6-36.8°C). Results remained robust in multivariable-adjusted analyses accounting for sex, age, diabetes, renal function and hs-cTnT. However, when introducing hs-CRP, the BT-MACE association did not prevail. CONCLUSIONS In prospectively recruited patients with ACS, initial BT shows a U-shaped relationship with 1-year MACE risk among those with NSTE-ACS, but not in those with STEMI. BT is a broadly available low-cost marker to identify ACS patients with high inflammatory burden, at high risk for recurrent ischaemic events, and thus potentially suitable for an anti-inflammatory intervention. REGISTRATION ClinicalTrials.gov Identifier: NCT01000701.
Collapse
Affiliation(s)
- Jan Gerrit van der Stouwe
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Konstantin Godly
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology and Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - Julia Godly
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- National Disease Registration and Analysis Service, NHS, London, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Bern, Switzerland
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | - Slayman Obeid
- Department of Cardiology, Kantonsspital Liestal, Liestal, Switzerland
| | - Christian Templin
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
- Cardiovascular Academic Group, Kings College London, London, UK
| | - David Niederseer
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Hochgebirgsklinik, Medicine Campus Davos, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Medicine Campus Davos, Davos, Switzerland
| |
Collapse
|
14
|
Lin A, Miano JM, Fisher EA, Misra A. Chronic inflammation and vascular cell plasticity in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1408-1423. [PMID: 39653823 DOI: 10.1038/s44161-024-00569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Vascular smooth muscle cells, endothelial cells and macrophages undergo phenotypic conversions throughout atherosclerosis progression, both as a consequence of chronic inflammation and as subsequent drivers of it. The inflammatory hypothesis of atherosclerosis has been catapulted to the forefront of cardiovascular research as clinical trials have shown that anti-inflammatory therapy reduces adverse cardiovascular events. However, no current therapies have been specifically designed to target the phenotype of plaque cells. Fate mapping has revealed that plaque cells convert to detrimental and beneficial cell phenotypes during atherosclerosis, with cumulative evidence highlighting that vascular cell plasticity is intimately linked with plaque inflammation, ultimately impacting lesion stability. Here we review vascular cell plasticity during atherosclerosis in the context of the chronic inflammatory plaque microenvironment. We highlight the need to better understand how plaque cells behave during therapeutic intervention. We then propose modulating plaque cell phenotype as an unexplored therapeutic paradigm in the clinical setting.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ashish Misra
- Atherosclerosis and Vascular Remodelling Group, Heart Research Institute, Sydney, New South Wales, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Wang J, Xiao Q, Cai Y, Wang M, Chen C, Wang L, Ma R, Cao Y, Wang Y, Ding H, Wang DW. ABCA1-Super Enhancer RNA Promotes Cholesterol Efflux, Reduces Macrophage-Mediated Inflammation and Atherosclerosis. JACC Basic Transl Sci 2024; 9:1388-1405. [PMID: 39822602 PMCID: PMC11733767 DOI: 10.1016/j.jacbts.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 01/19/2025]
Abstract
We describe a previously uncharacterized ATP-binding cassette A1 super enhancer RNA (ABCA1-seRNA)-mediated cholesterol efflux. In addition, it promoted macrophage inflammatory cytokine release, and was causally correlated with coronary artery disease severity. Mechanistically, ABCA1-seRNA upregulated cholesterol efflux by interacting with mediator complex subunit 23 and recruiting retinoid X receptor-alpha and liver X receptor-alpha to promote ABCA1 transcription in a cis manner. Meanwhile, ABCA1-seRNA induced P65 ubiquitination degradation, and thereby repressed the macrophage inflammatory response. Consistently, overexpression of ABCA1-seRNA in ApoE-/- mice decreased plasma lipids, cytokines, and atherosclerotic plaques. These findings indicate ABCA1-seRNA is a critical epigenetic regulator that maintains cholesterol homeostasis and modulates inflammation, thus promising a therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Wang
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yuwei Cai
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ruiying Ma
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yanyan Cao
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
16
|
Elías-López D, Wadström BN, Vedel-Krogh S, Kobylecki CJ, Nordestgaard BG. Impact of Remnant Cholesterol on Cardiovascular Risk in Diabetes. Curr Diab Rep 2024; 24:290-300. [PMID: 39356419 DOI: 10.1007/s11892-024-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW Individuals with diabetes face increased risk of atherosclerotic cardiovascular disease (ASCVD), in part due to hyperlipidemia. Even after LDL cholesterol-lowering, residual ASCVD risk persists, part of which may be attributed to elevated remnant cholesterol. We describe the impact of elevated remnant cholesterol on ASCVD risk in diabetes. RECENT FINDINGS Preclinical, observational, and Mendelian randomization studies robustly suggest that elevated remnant cholesterol causally increases risk of ASCVD, suggesting remnant cholesterol could be a treatment target. However, the results of recent clinical trials of omega-3 fatty acids and fibrates, which lower levels of remnant cholesterol in individuals with diabetes, are conflicting in terms of ASCVD prevention. This is likely partly due to neutral effects of these drugs on the total level of apolipoprotein B(apoB)-containing lipoproteins. Elevated remnant cholesterol remains a likely cause of ASCVD in diabetes. Remnant cholesterol-lowering therapies should also lower apoB levels to reduce risk of ASCVD.
Collapse
Affiliation(s)
- Daniel Elías-López
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Endocrinology and Metabolism and Research Center of Metabolic Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, México City, México
| | - Benjamin Nilsson Wadström
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Camilla Jannie Kobylecki
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
17
|
Zhang F, Han Y, Mao Y, Li W. The systemic immune-inflammation index and systemic inflammation response index are useful for predicting mortality in patients with diabetic nephropathy. Diabetol Metab Syndr 2024; 16:282. [PMID: 39582034 PMCID: PMC11587540 DOI: 10.1186/s13098-024-01536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND This study investigated the correlation between the systemic immune-inflammation index (SII) and the systemic inflammation response index (SIRI) and all-cause, cardiovascular, and kidney disease mortality in patients with diabetic nephropathy (DN). It aimed to provide a new predictive assessment tool for the clinic and a scientific basis for managing inflammation in DN. METHODS The data utilized in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) database, spanning 1999 to 2018. A total of 2641 patients diagnosed with DN were included in the analysis. The association between SII and SIRI levels and mortality in patients with DN was investigated using multivariate Cox proportional risk regression models. These relationships were further validated by Kaplan-Meier survival curves and restricted cubic spline (RCS) modeling, and subgroup analyses were performed to explore the heterogeneity among different characteristic subgroups. RESULTS The multivariate Cox regression analysis indicated that SII and SIRI levels were independently associated with all-cause mortality and cardiovascular mortality in patients with DN. SIRI levels were found to be an independently associated factor with kidney disease mortality in patients with DN. Patients in the highest quartile of SII and SIRI exhibited a 1.49-fold and 1.62-fold increased risk of all-cause mortality, respectively, compared to patients in the lowest quartile. The risk of cardiovascular mortality was 1.31 and 1.73 times higher than that in patients in the lowest quartile, respectively. The risk of kidney disease mortality in patients in the highest quartile of SIRI was 2.74 times higher than that in patients in the lowest quartile. Kaplan-Meier survival curve and RCS analyses further confirmed the positive association between SII and SIRI and mortality and a significant nonlinear relationship between SII and all-cause mortality. The SII and SIRI indices offer incremental value in model predictive power for mortality in patients with DN. Subgroup analyses demonstrated that the correlation between SII and SIRI and mortality risk was stable but heterogeneous across different subgroups. CONCLUSION SII and SIRI can be utilized as biomarkers for forecasting the likelihood of all-cause and cardiovascular mortality in patients with DN.
Collapse
Affiliation(s)
- Fan Zhang
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Yan Han
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Yonghua Mao
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Wenjian Li
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China.
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
| |
Collapse
|
18
|
Lin S, Yu Y, Söderström LÅ, Gisterå A. Erosion of the Atheroma: Wicked T Cells at the Culprit Site. Curr Atheroscler Rep 2024; 27:4. [PMID: 39549205 PMCID: PMC11569023 DOI: 10.1007/s11883-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW There is a growing recognition of plaque erosion as a cause of acute coronary syndrome. This review aims to examine the potential involvement of T cells in this process. RECENT FINDINGS Immune-vascular interactions have been identified in the development of plaque erosions. Up to one-third of eroded plaques show evidence of active immune infiltration, with the presence of T cells. We propose that microerosions may frequently occur in association with the infiltration of T cells and macrophages in early atherosclerotic lesions. Healing of erosions could trigger the deposition of excessive extracellular matrix. The pro-inflammatory and cytotoxic actions of T cells, along with reduced endothelial integrity and other mechanisms, may subsequently give rise to clinical symptoms. To gain a better understanding of the role of T cells in plaque erosion, it is crucial to develop improved models for conducting controlled experiments and to study atherosclerosis in younger individuals.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yinda Yu
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Leif Å Söderström
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anton Gisterå
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Visionsgatan 4, Solna, Stockholm, SE-17164, Sweden.
| |
Collapse
|
19
|
Zhao H, Jin Z, Li J, Fang J, Wu W, Fang JF. Novel insights of disulfidptosis-mediated immune microenvironment regulation in atherosclerosis based on bioinformatics analyses. Sci Rep 2024; 14:27336. [PMID: 39521794 PMCID: PMC11550432 DOI: 10.1038/s41598-024-78392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Atherosclerosis (AS) is the leading cause of coronary heart disease, which is the primary cause of death worldwide. Recent studies have identified disulfidptosis as a new type of cell death that may be involved in onset and development of many diseases. However, the role of disulfidptosis in AS is not clear. In this study, bioinformatics analysis and experiments in vivo and in vitro were performed to evaluate the potential relationship between disulfidptosis and AS. AS-related sequencing data were obtained from the Gene Expression Omnibus (GEO). Bioinformatics techniques were used to evaluate differentially expressed genes (DEGs) associated with disulfidptosis-related AS. Hub genes were screened using least absolute shrinkage and selection operator (LASSO) and random forests (RF) methods. In addition, we established a foam cell model in vitro and an AS mouse model in vivo to verify the expressions of hub genes. In addition, we constructed a diagnostic nomogram with hub genes to predict progression of AS. Finally, the consensus clustering method was used to establish two different subtypes, and associations between subtypes and immunity were explored. As the results, 9 disulfidptosis-related AS DEGs were identified from GSE28829 and GSE43292 datasets. Evaluation of DEGs using LASSO and RF methods resulted in identification of 4 hub genes (CAPZB, DSTN, MYL6, PDLIM1), which were analyzed for diagnostic value using ROC curve analysis and verified in vitro and in vivo. Furthermore, a nomogram including hub genes was established that accurately predicted the occurrence of AS. The consensus clustering algorithm was used to separate patients with early atherosclerotic plaques and patients with advanced atherosclerotic plaques into two disulfidptosis subtypes. Cluster B displayed higher levels of infiltrating immune cells, which indicated that patients in cluster B may have a positive immune response for progression of AS. In summary, disulfidptosis-related genes including CAPZB, DSTN, MYL6, and PDLIM1 may be diagnostic markers and therapeutic targets for AS. In addition, these genes are closely related to immune cells, which may inform immunotherapy for AS.
Collapse
Affiliation(s)
- Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zheng Jin
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Junlong Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Junfeng Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wei Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| | - J F Fang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
20
|
Ouyang X, Liu Z. Regulatory T cells and macrophages in atherosclerosis: from mechanisms to clinical significance. Front Immunol 2024; 15:1435021. [PMID: 39582868 PMCID: PMC11581946 DOI: 10.3389/fimmu.2024.1435021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Atherosclerosis is a complex pathological process, which causes diseases that threaten the health of an increasing number of people. Studies have found that the original view of lipid accumulation is not comprehensive because the use of lipid-lowering drugs alone cannot effectively treat atherosclerosis. As the study of the pathogenesis of atherosclerosis develops in-depth, the impact of immune-inflammatory response on atherosclerosis has garnered a great deal of attention. Some new advances have been made in the role of regulatory T cells (Tregs) and macrophages with unique immunomodulatory functions in atherosclerosis. Herein, the role of Tregs, macrophages, the mechanisms of Tregs-regulated macrophages, and the effects of potential factors on Tregs and macrophages in atherosclerosis are overviewed. Targeting Tregs and macrophages may provide new research strategies for the treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Xin Ouyang
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhongyong Liu
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
21
|
Chen T, Zheng J, Bao C, Wang Y, Wang S, Liang L, Zhang L, Zhang H, Ji C, Wang J, Zhang X, Zhu G, Zhu H. Guanxinning for Residual Inflammation of Stable Coronary Artery Disease: A Pilot Randomized Controlled Trial. J Inflamm Res 2024; 17:8047-8060. [PMID: 39507264 PMCID: PMC11539777 DOI: 10.2147/jir.s490896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Background Despite statins and other medications central to atherosclerotic cardiovascular disease (ASCVD) secondary prevention, stable coronary artery disease (SCAD) patients remain at significant cardiovascular risk, partly due to residual inflammation risk (RIR). This study aims to assess if adding Guanxinning to standard ASCVD therapy further mitigates RIR in SCAD patients. Methods In a prospective, randomized, single-blind endpoint design, 50 patients with SCAD who received ASCVD standardized treatment strategy were randomly assigned to either take Guanxinning tablets (4 tablets, thrice daily) or no Guanxinning tablets and were followed up for an average of 12 weeks. The primary outcomes were changes in inflammation-related indicators, including interleukin-2 (IL-2), IL-4, IL-6, tumor necrosis factor-α (TNF-α), and high sensitivity C-reactive protein (hs-CRP). Results Compared with the control group, the intervention group showed significantly greater decreases in the levels of IL-2, IL-6, TNF-α, and hs-CRP (all P < 0.05). However, there was no significant difference in the IL-4 level between the two groups (P > 0.05). Compared with the control group, there were also significant improvements in endothelial function-related indicators (vascular endothelial growth factor (VEGF), nitric oxide (NO), and peroxisome proliferator-activated receptor-γ (PPAR-γ)), blood lipid profile (total cholesterol (Tch), low-density lipoprotein cholesterol (LDL-C)), and chest pain related scores (angina and Traditional Chinese medicine syndrome scores) in the intervention group (all P<0.05). There was no significant difference in the triglyceride (TG) and carotid intima-media thickness between the two groups (P<0.05). Compared to the control group, there was no significant difference in the white blood cell line, liver and kidney function, anemia, and bleeding in the intervention group (all P<0.05). Conclusion The addition of Guanxinning tablets (4 tablets, thrice daily) to the standard treatment strategy for ASCVD was associated with a reduction in the RIR in patients with SCAD and demonstrated good safety.
Collapse
Affiliation(s)
- Tielong Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianwu Zheng
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Cheng Bao
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yu Wang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shiwang Wang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Lu Liang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hui Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chaoxia Ji
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jian Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xudong Zhang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Guangli Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Houyong Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
22
|
Ahmed ME, Leistner DM, Hakim D, Abdelwahed Y, Coskun AU, Maynard C, Seppelt C, Nelles G, Meteva D, Cefalo NV, Libby P, Landmesser U, Stone PH. Endothelial Shear Stress Metrics Associate With Proinflammatory Pathways at the Culprit Site of Coronary Erosion. JACC Basic Transl Sci 2024; 9:1269-1283. [PMID: 39619137 PMCID: PMC11604495 DOI: 10.1016/j.jacbts.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025]
Abstract
Low endothelial shear stress (ESS) and associated adverse biomechanical features stimulate inflammation, contribute to atherogenesis, and predispose to coronary plaque disruption. The mechanistic links between adverse flow-related hemodynamics and inflammatory mediators implicated in plaque erosion, however, remain little explored. We investigated the relationship of high-risk ESS metrics to culprit lesion proinflammatory/proatherogenic cells and cytokines/chemokines implicated in coronary plaque erosion in patients with acute coronary syndromes. In eroded plaques, low ESS, high ESS gradient, and steepness of plaque topographical slope associated with increased numbers of local T cells and subsets (CD4+, CD8+, natural killer T cells) as well as inflammatory mediators (interleukin [IL]-6, macrophage inflammatory protein-1β, IL-1β, IL-2).
Collapse
Affiliation(s)
- Mona E. Ahmed
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden
| | - David M. Leistner
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Rhine Main, Frankfurt, Germany
- Berlin Institute of Health, Berlin, Germany
- Department of Cardiology and Angiology, Goethe University, Frankfurt am Main, Germany
| | - Diaa Hakim
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Youssef Abdelwahed
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin, Germany
| | | | | | - Claudio Seppelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Rhine Main, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University, Frankfurt am Main, Germany
| | - Gregor Nelles
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Rhine Main, Frankfurt, Germany
| | - Denitsa Meteva
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin, Germany
| | - Nicholas V. Cefalo
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ulf Landmesser
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner Site Rhine Main, Frankfurt, Germany
| | - Peter H. Stone
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Cesaro A, Acerbo V, Indolfi C, Filardi PP, Calabrò P. The clinical relevance of the reversal of coronary atherosclerotic plaque. Eur J Intern Med 2024; 129:16-24. [PMID: 39164156 DOI: 10.1016/j.ejim.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death globally despite advances in preventive therapies. Understanding of the initiation and progression of atherosclerosis, the interplay between lipoproteins, endothelial dysfunction, inflammation, and immune responses is critical to treating this disease. The development of vulnerable coronary plaques prone to thrombosis, can lead to acute coronary syndromes, for these reasons, the potential plaque stabilization and regression through pharmacological interventions, particularly lipid-lowering agents like statins and PCSK9 inhibitors is crucial. The imaging techniques such as intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and optical coherence tomography (OCT) play a key role in assessing plaque composition and guiding interventional therapeutic strategies. Clinical evidence supports the efficacy of intensive lipid-lowering therapy in inducing plaque regression, with studies demonstrating reductions in plaque volume and improvements in plaque morphology assessed by IVUS, OCT and NIRS. While pharmacological interventions show promise in promoting plaque regression and stabilization, their impact on long-term cardiovascular events requires further investigation. Multimodality imaging and comprehensive outcome trials are proposed as essential tools for elucidating the relationship between plaque modification and clinical benefit in coronary atherosclerosis. The stabilization or regression of atherosclerotic plaque might serve as the phenomenon linking the reduction in LDL-C levels to the decrease in cardiovascular events. Overall, this review emphasizes the ongoing efforts to advance our understanding of ASCVD pathophysiology and optimize therapeutic approaches for improving patient outcomes.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Vincenzo Acerbo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy.
| |
Collapse
|
24
|
Libby P, Smith R, Rubin EJ, Glassberg MK, Farkouh ME, Rosenson RS. Inflammation unites diverse acute and chronic diseases. Eur J Clin Invest 2024; 54:e14280. [PMID: 39046830 DOI: 10.1111/eci.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation and immunity contribute pivotally to diverse acute and chronic diseases. Inflammatory pathways have become increasingly targets for therapy. Yet, despite substantial similarity in mechanisms and pathways, the scientific, medical, pharma and biotechnology sectors have generally focused programs finely on a single disease entity or organ system. This insularity may impede progress in innovation and the harnessing of powerful new insights into inflammation biology ripe for clinical translation. METHODS A multidisciplinary thinktank reviewed highlights how inflammation contributes to diverse diseases, disturbed homeostasis, ageing and impaired healthspan. We explored how common inflammatory and immune mechanisms that operate in key conditions in their respective domains. This consensus review highlights the high degree of commonality of inflammatory mechanisms in a diverse array of conditions that together contribute a major part of the global burden of morbidity and mortality and present an enormous challenge to public health and drain on resources. RESULTS We demonstrate how that shared inflammatory mechanisms unite many seemingly disparate diseases, both acute and chronic. The examples of infection, cardiovascular conditions, pulmonary diseases, rheumatological disorders, dementia, cancer and ageing illustrate the overlapping pathogenesis. We outline opportunities to synergize, reduce duplication and consolidate efforts of the clinical, research and pharmaceutical communities. Enhanced recognition of these commonalties should promote cross-fertilization and hasten progress in this rapidly moving domain. CONCLUSIONS Greater appreciation of the shared mechanisms should simplify understanding seemingly disparate diseases for clinicians and help them to recognize inflammation as a therapeutic target which the development of novel therapies is rendering actionable.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Michael E Farkouh
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
- Peter Munk Centre of Excellence in Multinational Clinical Trials, University Health Network, Toronto, Ontario, Canada
| | - Robert S Rosenson
- Cardiometabolics Unit, Mount Sinai Icahn School of Medicine, Mount Sinai Hospital, New York, New York, USA
| |
Collapse
|
25
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
26
|
Wang L, Wang J, Ji J, Xiang F, Zhang L, Jiang X, Fang Y, Ding X, Jiang W. Associations between inflammatory markers and carotid plaques in CKD: mediating effects of eGFR-a cross-sectional study. BMC Nephrol 2024; 25:374. [PMID: 39438843 PMCID: PMC11515654 DOI: 10.1186/s12882-024-03826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant public health concern associated with a high prevalence of carotid plaques, which are indicators of atherosclerosis and predictors of adverse cardiovascular outcomes. Inflammation is a hallmark of CKD, contributing to both renal dysfunction and cardiovascular complications. This study aims to investigate the association between inflammatory markers-systemic inflammatory response index (SIRI), systemic immune-inflammation index (SII), aggregate inflammatory status index (AISI), monocyte to high-density lipoprotein cholesterol ratio (MHR), neutrophil to high-density lipoprotein cholesterol ratio (NHR), neutrophil to lymphocyte ratio (NLR), and monocyte to lymphocyte ratio (MLR)-and carotid plaques in CKD patients, and to explore the potential mediating role of estimated glomerular filtration rate (eGFR) in this relationship. METHODS A cross-sectional analysis was conducted on patients admitted to the Division of Nephrology between January 2023 and June 2023. The primary endpoint was the presence of carotid plaques assessed using ultrasound imaging. Multivariable logistic regression models were used to examine the associations between inflammatory markers and carotid plaques, and trend tests were performed to evaluate the trending association of carotid plaques risk and inflammatory markers in tertiles. Restricted cubic spline (RCS) analysis was used to assess potential non-linear relationships, and subgroup analyses were conducted to examine consistency across different strata. Mediation analysis was performed to explore the role of eGFR. RESULTS Of the 609 participants, 387 were included in the final analysis after applying exclusion criteria. Elevated levels of LnSIRI (OR = 1.87, 95% CI = 1.25-2.80), LnSII (OR = 1.67, 95% CI = 1.09-2.56), LnAISI (OR = 1.70, 95% CI = 1.22-2.37), LnMHR (OR = 1.94, 95% CI = 1.15-3.26), LnNHR (OR = 1.82, 95% CI = 1.10-3.02), and LnMLR (OR = 2.26, 95% CI = 1.18-4.34) were significantly associated with the presence of carotid plaques. There were significant trends for increasing tertiles of SIRI, AISI, MHR and NHR. RCS analysis showed no significant non-linear associations. Subgroup analyses indicated similar associations across most strata. eGFR partially mediated these relationships, with proportions mediated ranging from 14.7 to 17.5%. CONCLUSIONS Inflammatory markers are significantly associated with carotid plaques in CKD patients, with eGFR playing a partial mediating role. These findings highlighted the importance of managing inflammation and maintaining renal function to mitigate the risk of atherosclerosis in CKD patients. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Jialin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaotian Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China.
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China.
- Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| | - Wuhua Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No 180 Fenglin Rd., Shanghai, China.
- Shanghai Clinical Research Center for Kidney Disease, Shanghai, China.
- Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
27
|
Xu W, Wang Z, Yao H, Zeng Z, Lan X. Distribution of Arteriosclerotic Vessels in Patients with Arteriosclerosis and the Differences of Serum Lipid Levels Classified by Different Sites. Int J Gen Med 2024; 17:4733-4744. [PMID: 39429964 PMCID: PMC11491091 DOI: 10.2147/ijgm.s483324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Objective To investigate the distribution of arteriosclerotic vessels of arteriosclerosis, differential serum lipid profiles, and differences in the proportion of dyslipidaemia between patients with single-site arteriosclerosis and multi-site arteriosclerosis (significant hardening of ≥2 arteries). Methods The data of 6581 single-site arteriosclerosis patients and 5940 multi-site arteriosclerosis patients were extracted from the hospital medical record system. Serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) A1, ApoB concentrations and C-reactive protein (CRP) between patients with single-site arteriosclerosis and multi-site arteriosclerosis were collected and analyzed. Results The most diseased arteries were coronary arteries (n=7099, 33.7%), limb arteries (n=6546, 31.1%), and carotid arteries (n=5279, 25.1%). TC, LDL-C, TC/HDL-C, and LDL-C/HDL-C levels were higher and CRP level was lower in multi-site arteriosclerosis patients than those in single-site arteriosclerosis patients. The TC, LDL-C levels in non-elderly (<65 years old) female patients were higher and TG/HDL-C, TC/HDL-C, LDL-C/HDL-C levels were lower than those in non-elderly male patients, while the TG, TC, LDL-C, and TG/HDL-C levels in elderly (≥65 years old) female patients were higher and LDL-C/HDL-C level was lower than those in elderly male patients. The proportion of dyslipidemia in descending order was as follows: low HDL-C (31.9%), elevated TG (16.9%), elevated TC (9.0%), and elevated LDL-C (4.2%). The levels of TC, LDL-C, TC/HDL-C, and LDL-C/HDL-C in patients with peripheral arteriosclerosis were higher than those in patients with cardio-cerebrovascular arteriosclerosis. Conclusion There were differences in serum lipid levels in patients with arteriosclerosis with different age, gender and distribution of arteriosclerotic vessels.
Collapse
Affiliation(s)
- Weiyong Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhenchang Wang
- Department of Emergency Medicine, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Huaqing Yao
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zifeng Zeng
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xinping Lan
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
28
|
Zuo YB, Wen ZJ, Cheng MD, Jia DD, Zhang YF, Yang HY, Xu HM, Xin H, Zhang YF. The pro-atherogenic effects and the underlying mechanisms of chronic bisphenol S (BPS) exposure in apolipoprotein E-deficient mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117133. [PMID: 39342757 DOI: 10.1016/j.ecoenv.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Atherosclerosis (AS) and its related cardiovascular diseases (CVDs) remain the most frequent cause of morbidity and mortality worldwide. Researches showed that bisphenol A (BPA) exposure might exacerbate AS progression. However, as an analogue of BPA, little is known about the cardiovascular toxicity of bisphenol S (BPS), especially whether BPS exposure has the pro-atherogenic effects in mammals is still unknown. Here, we firstly constructed an apolipoprotein E knockout (ApoE-/-) mouse model and cultured cells to investigate the risk of BPS on AS and explore the underlying mechanisms. Results showed that prolonged exposure to 50 μg/kg body weight (bw)/day BPS indeed aggravated AS lesions both in the en face aortas and aortic sinuses of ApoE-/- mice. Moreover, BPS were found to be implicated in the AS pathological process: 1) stimulates adhesion molecule expression to promote monocyte-endothelial cells (ECs) adhesion with 3.6 times more than the control group in vivo; 2) increases the distribution of vascular smooth muscle cells (VSMCs) with 9.3 times more than the control group in vivo, possibly through the migration of VSMCs; and 3) induces an inflammatory response by increasing the number of macrophages (MACs), with 3.7 times more than the control group in vivo, and the release of inflammatory mediators. Furthermore, we have identified eight significant AS-related genes induced by BPS, including angiopoietin-like protein 7 (Angptl17) and lipocalin-2 (Lcn2) in ECs; matrix metalloproteinase 9 (Mmp13), secreted phosphoprotein 1 (Spp1), and collagen type II alpha 1 (Col2a1) in VSMCs; and kininogen 1 (Kng1), integrin alpha X (Itgax), and MAC-expressed gene 1 (Mpeg1) in MACs. Overall, this study firstly found BPS exposure could exacerbate mammalian AS and might also provide a theoretical basis for elucidating BPS and its analogues induced AS and related CVDs.
Collapse
Affiliation(s)
- Ying-Bing Zuo
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meng-Die Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
29
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
30
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
31
|
Bonaventura A, Moroni F, Golino M, Del Buono MG, Vecchié A, Potere N, Abbate A. IL-1 blockade in cardiovascular disease: an appraisal of the evidence across different inflammatory paradigms. Minerva Cardiol Angiol 2024; 72:477-488. [PMID: 37705370 DOI: 10.23736/s2724-5683.23.06390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Pre-clinical and clinical studies suggest a role for inflammation in the pathophysiology of cardiovascular (CV) diseases. The NLRP3 (NACHT, leucine-rich repeat, and pyrin domain-containing protein 3) inflammasome is activated during tissue injury and releases interleukin-1β (IL-1β). We describe three paradigms in which the NLRP3 inflammasome and IL-1β contribute to CV diseases. During acute myocardial infarction (AMI), necrotic cell debris, including IL-1α, induce NLRP3 inflammasome activation and further damage the myocardium contributing to heart failure (HF) (acute injury paradigm). In chronic HF, IL-1β is induced by persistent myocardial overload and injury, neurohumoral activation and systemic comorbidities favoring infiltration and activation of immune cells into the myocardium, microvascular inflammation, and a pro-fibrotic response (chronic inflammation paradigm). In recurrent pericarditis, an autoinflammatory response triggered by cell injury and maintained by the NLRP3 inflammasome/IL-1β axis is present (autoinflammatory disease paradigm). Anakinra, recombinant IL-1 receptor antagonist, inhibits the acute inflammatory response in patients with ST elevation myocardial infarction (STEMI) and acute HF. Canakinumab, IL-1β antibody, blunts systemic inflammation and prevents complications of atherosclerosis in stable patients with prior AMI. In chronic HF, anakinra reduces systemic inflammation and improves cardiorespiratory fitness. In recurrent pericarditis, anakinra and rilonacept, a soluble IL-1 receptor chimeric fusion protein blocking IL-1α and IL-1β, treat and prevent acute flares. In conclusion, the NLRP3 inflammasome and IL-1 contribute to the pathophysiology of CV diseases, and IL-1 blockade is beneficial with different roles in the acute injury, chronic inflammation and autoinflammatory disease paradigms. Further research is needed to guide the optimal use of IL-1 blockers in clinical practice.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Division of Internal Medicine, Medical Center, Ospedale di Circolo & Fondazione Macchi, ASST Sette Laghi, Varese, Italy -
| | - Francesco Moroni
- Heart and Vascular Center, Division of Cardiology, Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michele Golino
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- VCU Health Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Marco G Del Buono
- Department of Cardiovascular and Thoracic Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Alessandra Vecchié
- Division of Internal Medicine, Medical Center, Ospedale di Circolo & Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Nicola Potere
- Department of Medicine and Ageing Sciences, "G. D'Annunzio" University, Chieti, Italy
| | - Antonio Abbate
- Heart and Vascular Center, Division of Cardiology, Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
32
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
33
|
Taylor KD, Wood AC, Rotter JI, Guo X, Herrington DM, Johnson WC, Post WS, Tracy RP, Rich SS, Malik S. Metagenomic Study of the MESA: Detection of Gemella Morbillorum and Association With Coronary Heart Disease. J Am Heart Assoc 2024; 13:e035693. [PMID: 39344648 PMCID: PMC11681464 DOI: 10.1161/jaha.124.035693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Inflammation is a feature of coronary heart disease (CHD), but the role of proinflammatory microbial infection in CHD remains understudied. METHODS AND RESULTS CHD was defined in the MESA (Multi-Ethnic Study of Atherosclerosis) as myocardial infarction (251 participants), resuscitated arrest (2 participants), and CHD death (80 participants). We analyzed sequencing reads from 4421 MESA participants in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program using the PathSeq workflow of the Genome Analysis Tool Kit and a 65-gigabase microbial reference. Paired reads aligning to 840 microbes were detected in >1% of participants. The association of the presence of microbe reads with incident CHD (follow-up, ~18 years) was examined. First, important variables were ascertained using a single regularized Cox proportional hazard model, examining change of risk as a function of presence of microbe with age, sex, education level, Life's Simple 7, and inflammation. For variables of importance, the hazard ratio (HR) was estimated in separate (unregularized) Cox proportional hazard models including the same covariates (significance threshold Bonferroni corrected P<6×10-5, 0.05/840). Reads from 2 microbes were significantly associated with CHD: Gemella morbillorum (HR, 3.14 [95% CI, 1.92-5.12]; P=4.86×10-6) and Pseudomonas species NFACC19-2 (HR, 3.22 [95% CI, 2.03-5.41]; P=1.58×10-6). CONCLUSIONS Metagenomics of whole-genome sequence reads opens a possible frontier for detection of pathogens for chronic diseases. The association of G morbillorum and Pseudomonas species reads with CHD raises the possibilities that microbes may drive atherosclerotic inflammation and that treatments for specific pathogens may provide clinical utility for CHD reduction.
Collapse
Affiliation(s)
- Kent D. Taylor
- Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical InnovationTorranceCA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCA
| | - Alexis C. Wood
- United States Department of Agriculture/Agricultural Research Service (USDA/ARS) Children’s Nutrition Research CenterBaylor College of MedicineHoustonTX
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical InnovationTorranceCA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population SciencesThe Lundquist Institute for Biomedical InnovationTorranceCA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCA
| | | | - W. Craig Johnson
- Department of Biostatistics, School of Public HealthUniversity of WashingtonSeattleWA
| | - Wendy S. Post
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMD
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine and BiochemistryLarner College of Medicine at the University of VermontColchesterVT
| | - Stephen S. Rich
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVA
| | - Shaista Malik
- Division of Cardiology, Department of MedicineUniversity of California IrvineIrvineCA
- Susan Samueli Integrative Health InstituteIrvineCA
| |
Collapse
|
34
|
Yu M, Yang Y, Dong SL, Zhao C, Yang F, Yuan YF, Liao YH, He SL, Liu K, Wei F, Jia HB, Yu B, Cheng X. Effect of Colchicine on Coronary Plaque Stability in Acute Coronary Syndrome as Assessed by Optical Coherence Tomography: The COLOCT Randomized Clinical Trial. Circulation 2024; 150:981-993. [PMID: 39166327 DOI: 10.1161/circulationaha.124.069808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Colchicine has been approved to reduce cardiovascular risk in patients with coronary heart disease on the basis of its potential benefits demonstrated in the COLCOT (Colchicine Cardiovascular Outcomes Trial) and LoDoCo2 (Low-Dose Colchicine 2) studies. Nevertheless, there are limited data available about the specific impact of colchicine on coronary plaques. METHODS This was a prospective, single-center, randomized, double-blind clinical trial. From May 3, 2021, until August 31, 2022, a total of 128 patients with acute coronary syndrome aged 18 to 80 years with lipid-rich plaque (lipid pool arc >90°) detected by optical coherence tomography were included. The subjects were randomly assigned in a 1:1 ratio to receive either colchicine (0.5 mg once daily) or placebo for 12 months. The primary end point was the change in the minimal fibrous cap thickness from baseline to the 12-month follow-up. RESULTS Among 128 patients, 52 in the colchicine group and 52 in the placebo group completed the study. The mean age of the 128 patients was 58.0±9.8 years, and 25.0% were female. Compared with placebo, colchicine therapy significantly increased the minimal fibrous cap thickness (51.9 [95% CI, 32.8 to 71.0] μm versus 87.2 [95% CI, 69.9 to 104.5] μm; difference, 34.2 [95% CI, 9.7 to 58.6] μm; P=0.006), and reduced average lipid arc (-25.2° [95% CI, -30.6° to -19.9°] versus -35.7° [95% CI, -40.5° to -30.8°]; difference, -10.5° [95% CI, -17.7° to -3.4°]; P=0.004), mean angular extension of macrophages (-8.9° [95% CI, -13.3° to -4.6°] versus -14.0° [95% CI, -18.0° to -10.0°]; difference, -6.0° [95% CI, -11.8° to -0.2°]; P=0.044), high-sensitivity C-reactive protein level (geometric mean ratio, 0.6 [95% CI, 0.4 to 1.0] versus 0.3 [95% CI, 0.2 to 0.5]; difference, 0.5 [95% CI, 0.3 to 1.0]; P=0.046), interleukin-6 level (geometric mean ratio, 0.8 [95% CI, 0.6 to 1.1] versus 0.5 [95% CI, 0.4 to 0.7]; difference, 0.6 [95% CI, 0.4 to 0.9]; P=0.025), and myeloperoxidase level (geometric mean ratio, 1.0 [95% CI, 0.8 to 1.2] versus 0.8 [95% CI, 0.7 to 0.9]; difference, 0.8 [95% CI, 0.6 to 1.0]; P=0.047). CONCLUSIONS Our findings suggested that colchicine resulted in favorable effects on coronary plaque stabilization at optical coherence tomography in patients with acute coronary syndrome. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04848857.
Collapse
Affiliation(s)
- Miao Yu
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Lai Dong
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., H.-B.J., B.Y.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., H.-B.J., B.Y.)
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin (C.Z., H.-B.J., B.Y.)
| | - Fen Yang
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Fan Yuan
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Lin He
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Liu
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Wei
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Bo Jia
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., H.-B.J., B.Y.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., H.-B.J., B.Y.)
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin (C.Z., H.-B.J., B.Y.)
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, China (C.Z., H.-B.J., B.Y.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, China (C.Z., H.-B.J., B.Y.)
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin (C.Z., H.-B.J., B.Y.)
| | - Xiang Cheng
- Department of Cardiology (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases (M.Y., Y.Y., S.-L.D., F.Y., Y.-F.Y., Y.-H.L., S.-L.H., K.L., F.W., X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Zhu Z. Serum LOXL2 is Elevated and an Independent Biomarker in Patients with Coronary Artery Disease. Int J Gen Med 2024; 17:4071-4080. [PMID: 39295855 PMCID: PMC11409929 DOI: 10.2147/ijgm.s478044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Background Arterial stiffness is associated with accelerated progression of atherosclerosis and plaque rupture. Lysyl oxidase-like 2 (LOXL2) plays a vital role in inflammatory responses, matrix deposition and arterial stiffness. This study assessed the correlation between the serum LOXL2 concentration and disease severity, inflammation, and endothelial dysfunction of coronary artery disease (CAD). Methods The study included 143 CAD patients and 150 non-CAD patients who underwent coronary angiography. Medical records, demographic and clinical baseline parameters were collected. Serum LOXL2 levels were measured using an ELISA kit. Results CAD patients had higher serum LOXL2 levels than non-CAD patients, and LOXL2 levels were associated with severity of coronary lesions. Serum LOXL2 level was positively correlated with low-density lipoprotein cholesterol (LDL-C) (r=0.161, P=0.054), systolic blood pressure (SBP) (r=0.175, P=0.036), high-sensitivity C-reactive protein (hs-CRP) (r=0.177, P=0.035), intima-media thickness (IMT) (r=0.190, P=0.023), and brachial-ankle pulse wave velocity (baPWV) (r=0.203, P=0.015), while negatively associated with high-density lipoprotein cholesterol (HDL-C) (r=-0.191, P=0.023) and flow-mediated dilation (FMD) (r=-0.183, P=0.028) in CAD patients. Multivariate logistic regression showed that LOXL2 is independently correlated with LDL-C (OR=3.380; 95% CI=1.258-9.082; P=0.016), hs-CRP (OR=10.988; 95% CI=1.962-61.532; P=0.006), TC (OR=2.229; 95% CI=1.005-4.944; P=0.049), IMT (OR=72.719; 95% CI=2.313-2286.008; P=0.015), and baPWV (OR=1.002; 95% CI=1.001-1.004; P=0.005) in CAD patients. The receiver operating characteristic (ROC) curve showed that the best cut-off for CAD as serum LOXL2 is 275.35 pg/mL, with sensitivity and specificity of 77.6% and 84%, respectively. Conclusion Our data demonstrated that LOXL2 could be a potential biomarker and independent risk factor for CAD patients.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Guangming Traditional Chinese Medicine Hospital of Pudong New Area, Shanghai, 201321, People's Republic of China
- Department of Cardiology, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai, 201300, People's Republic of China
| |
Collapse
|
36
|
Fewkes JJ, Dordevic AL, Murray M, Williamson G, Kellow NJ. Association between endothelial function and skin advanced glycation end-products (AGEs) accumulation in a sample of predominantly young and healthy adults. Cardiovasc Diabetol 2024; 23:332. [PMID: 39251982 PMCID: PMC11386354 DOI: 10.1186/s12933-024-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND In populations with chronic disease, skin autofluorescence (SAF), a measure of long-term fluorescent advanced glycation end-products (AGEs) accumulation in body tissues, has been associated with vascular endothelial function, measured using flow-mediated dilation (FMD). The primary aim of this study was to quantify the relationship between endothelial function and tissue accumulation of AGEs in adults from the general population to determine whether SAF could be used as a marker to predict early impairment of the endothelium. METHODS A cross-sectional study was conducted with 125 participants (median age: 28.5 y, IQR: 24.4-36.0; 54% women). Endothelial function was measured by fasting FMD. Skin AGEs were measured as SAF using an AGE Reader. Participant anthropometry, blood pressure, and blood biomarkers were also measured. Associations were evaluated using multivariable regression analysis and were adjusted for significant covariates. RESULTS FMD was inversely correlated with SAF (ρ = -0.50, P < 0.001) and chronological age (ρ = -0.51, P < 0.001). In the multivariable analysis, SAF, chronological age, and male sex were independently associated with reduced FMD (B [95% CI]; -2.60 [-4.40, -0.80]; -0.10 [-0.16, -0.03]; 1.40 [0.14, 2.67], respectively), with the multivariable model adjusted R2 = 0.31, P < 0.001. CONCLUSIONS Higher skin AGE levels, as measured by SAF, were associated with lower FMD values, in a predominantly young, healthy population. Additionally, older age and male participants exhibited significantly lower FMD values, corresponding with compromised endothelial function. These results suggest that SAF, a simple and inexpensive marker, could be used to predict endothelial impairment before the emergence of any structural artery pathophysiology or classic cardiovascular disease risk markers. TRIAL REGISTRATION The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12621000821897) and concurrently entered into the WHO International Clinical Trials Registry Platform under the same ID number.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
37
|
Qiu S, Cao L, Xiang D, Wang S, Wang D, Qian Y, Li X, Zhou X. Enhanced osteogenic differentiation in 3D hydrogel scaffold via macrophage mitochondrial transfer. J Nanobiotechnology 2024; 22:540. [PMID: 39237942 PMCID: PMC11375923 DOI: 10.1186/s12951-024-02757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
To assess the efficacy of a novel 3D biomimetic hydrogel scaffold with immunomodulatory properties in promoting fracture healing. Immunomodulatory scaffolds were used in cell experiments, osteotomy mice treatment, and single-cell transcriptomic sequencing. In vitro, fluorescence tracing examined macrophage mitochondrial transfer and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Scaffold efficacy was assessed through alkaline phosphatase (ALP), Alizarin Red S (ARS) staining, and in vivo experiments. The scaffold demonstrated excellent biocompatibility and antioxidant-immune regulation. Single-cell sequencing revealed a shift in macrophage distribution towards the M2 phenotype. In vitro experiments showed that macrophage mitochondria promoted BMSCs' osteogenic differentiation. In vivo experiments confirmed accelerated fracture healing. The GAD/Ag-pIO scaffold enhances osteogenic differentiation and fracture healing through immunomodulation and promotion of macrophage mitochondrial transfer.
Collapse
Affiliation(s)
- Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, China
| | - Dingding Xiang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Shu Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Di Wang
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Yiyi Qian
- School of Mechanical Engineering and Automation, Foshan Graduate School of Innovation, Northeastern University, Shenyang, 110819, China
| | - Xiaohua Li
- Department of Orthopedics, Zhongmeng Hospital, Arong Banner, Hulunbuir City, Inner, Mongolia
| | - Xiaoshu Zhou
- Department of Orthopedics, First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
38
|
Ransegnola BP, Pattarabanjird T, McNamara CA. Tipping the Scale: Atheroprotective IgM-Producing B Cells in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1906-1915. [PMID: 39022832 PMCID: PMC11338718 DOI: 10.1161/atvbaha.124.319847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease whose progression is fueled by proinflammatory moieties and limited by anti-inflammatory mediators. Whereas oxidative damage and the generation of oxidation-specific epitopes that act as damage-associated molecular patterns are highly inflammatory, IgM antibodies produced by B-1 and marginal zone B cells counteract unrestricted inflammation by neutralizing and encouraging clearance of these proinflammatory signals. In this review, we focus on describing the identities of IgM-producing B cells in both mice and humans, elaborating the mechanisms underlying IgM production, and discussing the potential strategies to augment the production of atheroprotective IgM. In addition, we will discuss promising therapeutic interventions in humans to help tip the scale toward augmentation of IgM production and to provide atheroprotection.
Collapse
Affiliation(s)
- Brett Patrick Ransegnola
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tanyaporn Pattarabanjird
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
39
|
Kraaijenhof JM, Mol BM, Nurmohamed NS, Dzobo KE, Kroon J, Hovingh GK, Mokry M, de Borst GJ, Stroes ESG, de Kleijn DPV. Plasma C-reactive protein is associated with a pro-inflammatory and adverse plaque phenotype. Atherosclerosis 2024; 396:118532. [PMID: 39153264 DOI: 10.1016/j.atherosclerosis.2024.118532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND AIMS Systemic low-grade inflammation, measured by plasma high-sensitivity C-reactive protein (hsCRP) levels, is an important risk factor for atherosclerotic cardiovascular disease (ASCVD). To date, however, it is unknown whether plasma hsCRP is associated with adverse histological plaque features. METHODS Plaques were derived during carotid endarterectomy. Patients with hsCRP levels ≥2 mg/L were evaluated for pro-inflammatory and adverse plaque characteristics, as well as future ASCVD events, and compared with patients with low hsCRP levels. Logistic and linear regression analyses in addition to subdistribution hazard ratios were conducted, adjusted for cardiovascular risk factors. RESULTS A total of 1096 patients were included, of which 494 (46.2 %) had hsCRP levels ≥2 mg/L. Elevated hsCRP levels 2 mg/L were independently associated with levels of plaque interleukin 6, beta coefficient of 109.8 (95 % confidence interval (CI): 33.4, 186.5; p = 0.005) pg/L, interleukin 8 levels, 194.8 (110.4, 378.2; p = 0.03) pg/L and adiponectin plaque levels, -16.8 (-30.1, -3.6; p = 0.01) μg/L, compared with plaques from patients with low hsCRP levels. Histological analysis revealed increased vessel density in high hsCRP patients, odds ratio (OR) of 1.57 (1.20, 2.09; p = 0.001), larger lipid core, 1.35 (1.02, 1.73; p = 0.04), and increased macrophage content, 1.32 (1.02, 1.73; p = 0.04). Over a 3-year follow-up period, hsCRP levels ≥2 mg/L were associated with a hazard ratio of 1.81 (1.03, 3.16; p = 0.04) for coronary artery disease event risk. CONCLUSIONS The distinct inflammatory and histological features observed in carotid plaques among individuals with hsCRP levels ≥2 mg/L underscore the utility of plasma hsCRP as a potent identifier for patients harboring high-risk plaques.
Collapse
Affiliation(s)
- Jordan M Kraaijenhof
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Barend M Mol
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Kim E Dzobo
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Laboratory of Experimental Cardiology, Utrecht, the Netherlands; Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| |
Collapse
|
40
|
Xiao Z, Riletu A, Yan X, Meng Q, Zhang W, Zhang N, Ma C, Guo X, Han J, Nie H, Deng H, Liu J, Chen J, Dong Y, Liu T. Association of serum cystatin C level and major adverse cardiovascular events in patients with percutaneous coronary intervention. Cardiovasc Diagn Ther 2024; 14:621-629. [PMID: 39263480 PMCID: PMC11384458 DOI: 10.21037/cdt-23-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/07/2024] [Indexed: 09/13/2024]
Abstract
Background Recurrent acute myocardial infarction requiring unplanned percutaneous coronary intervention (PCI) is one of the major adverse cardiovascular events (MACEs) in patients with acute coronary syndrome (ACS) after PCI. There is a continuing controversy about the association between serum cystatin C, a biomarker for the evaluation of renal function, and the prognosis of ACS patients following PCI. The retrospective study evaluated the association between serum cystatin C level and MACE in ACS patients after PCI. Methods Data were retrieved for 330 patients with ACS for primary PCI in a single center. Serum cystatin C levels were measured before PCI. All patients underwent regular follow-ups after PCI, and the studied endpoint was MACE, defined as the need for a repeat revascularization in the heart. The predictive value of serum cystatin C for MACE was analyzed using univariate and multivariate analysis. Restricted cubic spline (RCS) analysis was applied to evaluate the dose-response relationship between serum cystatin C level and MACE in ACS patients following PCI. Results After a median follow-up of 63 months (range, 1-148 months), 121 of the 330 patients experienced MACE. Compared to patients who did not have MACE, patients who had MACE showed a significant decrease in serum cystatin C levels (0.99±0.32 vs. 1.15±0.78 mg/L, P=0.03). In multivariate regression analysis, serum cystatin C level was an independent risk factor for MACE. According to the serum cystatin C level, patients were divided into 4 categories, Cox regression analysis illustrated that the second quartile of serum cystatin C level indicated an increased risk of MACE in patients with PCI for primary ACS compared to the highest quartile [Q2: adjusted hazard ratio (HR) =2.109; 95% confidence interval (CI): 1.193-3.727; P=0.01]. RCS analysis showed a significant U-shaped dose-response relationship between cystatin C level and MACE in patients with PCI for ACS (P for non-linearity =0.004). Conclusions These results indicated an association between serum cystatin C level and post-PCI MACE in ACS patients.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Aoge Riletu
- Department of Pharmacy, Inner Mongolian International Mongolian Hospital, Hohhot, China
| | - Xiaoyu Yan
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Qi Meng
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Weiru Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Na Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Chi Ma
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jiatong Han
- Department of Clinical Pharmacy, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Huijuan Nie
- Department of Cardiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hui Deng
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianping Chen
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yu Dong
- Department of Natural Medicinal Chemistry, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Engineering Technology Research Center of Pharmacodynamic Substance and Quality Control of Mongolian Medicine in Inner Mongolia, Inner Mongolia Medical University, Hohhot, China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Clinical and Basic Research on Cardiovascular Diseases, Basic Research Team of Cardiovascular Diseases, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
41
|
Jia B, Xue R, Li J, Guo J, Liu J. Novel insights into vancomycin-loaded calcium sulfate and negative pressure wound therapy in preventing infections in open fractures. J Orthop Surg Res 2024; 19:517. [PMID: 39198853 PMCID: PMC11360527 DOI: 10.1186/s13018-024-04931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Open fractures are challenging due to susceptibility to Staphylococcus aureus infections. This study examines the impact of Vancomycin-Loaded Calcium Sulfate (VLCS) and negative pressure wound therapy (NPWT) on macrophage behavior in enhancing healing and infection resistance. Both VLCS and NPWT were evaluated individually and in combination to determine their effects on macrophage polarization and infection resistance in open fractures. METHODS Through single-cell RNA sequencing, genomic expressions in macrophages from open fracture patients treated with VLCS and NPWT were compared to a control group. The analysis focused on MBD2 gene changes related to macrophage polarization. RESULTS Remarkable modifications in MBD2 expression in the treatment group indicate a shift towards M2 macrophage polarization. Additionally, the combined treatment group exhibited greater improvements in infection resistance and healing compared to the individual treatments. This shift suggests a healing-promoting atmosphere with improved infection resilience. CONCLUSIONS VLCS and NPWT demonstrate the ability to alter macrophage behavior toward M2 polarization, which is crucial for infection prevention in open fractures. The synergistic effect of their combined use shows even greater promise in enhancing outcomes in orthopedic trauma care.
Collapse
Affiliation(s)
- Bei Jia
- Nosocomial Infection Management Department, Hebei Medical University First Hospital, No. 89 Donggang Road, Yuhua District, Shijiazhuang City, China
| | - Rui Xue
- Department of Orthopaedic Suigery, Hebei Medical University Third Hospital, No. 139 ZiQiang Road, QiaoXi District, Shijiazhuang City, Hebei Province, China
| | - Jia Li
- Department of Orthopaedic Suigery, Hebei Medical University Third Hospital, No. 139 ZiQiang Road, QiaoXi District, Shijiazhuang City, Hebei Province, China
| | - Jichao Guo
- Department of Orthopaedic Suigery, Hebei Medical University Third Hospital, No. 139 ZiQiang Road, QiaoXi District, Shijiazhuang City, Hebei Province, China
| | - Jianning Liu
- Department of Orthopaedic Suigery, Hebei Medical University Third Hospital, No. 139 ZiQiang Road, QiaoXi District, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
42
|
Delwarde C, Aikawa M. Novel Mouse Model of Late-Stage Coronary Atherosclerosis With Features of Plaque Rupture and Stroke. Circulation 2024; 150:706-709. [PMID: 39186532 PMCID: PMC11540410 DOI: 10.1161/circulationaha.124.070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Affiliation(s)
- Constance Delwarde
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
43
|
Huh Y, Park KY, Han K, Jung JH, Cho YJ, Park HS, Nam GE, Lim S. Association between glycemic status and all-cause mortality among individuals with dementia: a nationwide cohort study. Alzheimers Res Ther 2024; 16:191. [PMID: 39175087 PMCID: PMC11340194 DOI: 10.1186/s13195-024-01557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND To examine the association between glycemic status and all-cause mortality risk among individuals with dementia. METHODS We enrolled 146,832 individuals aged 40 and older with dementia as identified through the Korean National Health Insurance Service health screening test between 2008 and 2016. Mortality status was evaluated at the end of 2019. Participants were classified into normoglycemia, prediabetes, or diabetes mellitus (DM) categories. The duration of diabetes was noted in those with DM. This study focused on the association between glycemic status and all-cause mortality. RESULTS The cohort, which was predominantly elderly (average age 75.1 years; 35.5% male), had a 35.2% mortality rate over an average 3.7-year follow-up. DM was linked with increased all-cause mortality risk (hazard ratio [HR] 1.34; 95% confidence interval [CI]: 1.32-1.37) compared to non-DM counterparts. The highest mortality risk was observed in long-term DM patients (≥ 5 years) (HR 1.43; 95% CI: 1.40-1.47), followed by newly diagnosed DM (HR 1.35; 95% CI: 1.30-1.40), shorter-term DM (< 5 years) (HR 1.17; 95% CI: 1.13-1.21), and prediabetes (HR 1.03; 95% CI: 1.01-1.05). These patterns persisted across Alzheimer's disease and vascular dementia, with more pronounced effects observed in younger patients. CONCLUSIONS Glucose dysregulation in dementia significantly increased mortality risk, particularly in newly diagnosed or long-standing DM. These findings suggest the potential benefits of maintaining normal glycemic levels in improving the survival of patients with dementia.
Collapse
Affiliation(s)
- Youn Huh
- Department of Family Medicine, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi- do, South Korea
| | - Kye-Yeung Park
- Department of Family Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yoon Jeong Cho
- Department of Family Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Hye Soon Park
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 13620, South Korea.
| |
Collapse
|
44
|
Liu T, Chen Y, Hou L, Yu Y, Ma D, Jiang T, Zhao G. Immune cell-mediated features of atherosclerosis. Front Cardiovasc Med 2024; 11:1450737. [PMID: 39234608 PMCID: PMC11371689 DOI: 10.3389/fcvm.2024.1450737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by innate and adaptive immune responses, which seriously threatens human life and health. It is a primary cause of coronary heart disease, myocardial infarction, and peripheral vascular disease. Research has demonstrated that immune cells are fundamental to the development of atherosclerosis and chronic inflammation. Therefore, it is anticipated that immunotherapy targeting immune cells will be a novel technique in the management of atherosclerosis. This article reviews the growth of research on the regulatory role of immune cells in atherosclerosis and targeted therapy approaches. The purpose is to offer new therapeutic approaches for the control and treatment of cardiovascular illnesses caused by atherosclerosis.
Collapse
Affiliation(s)
- Tingting Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yanjun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yulu Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
45
|
Zhang TY, Chen HL, Shi Y, Jin Y, Zhang Y, Chen Y. The relationship between system inflammation response index and coronary heart disease: a cross-sectional study (NHANES 2007-2016). Front Cardiovasc Med 2024; 11:1439913. [PMID: 39188319 PMCID: PMC11345626 DOI: 10.3389/fcvm.2024.1439913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background Coronary heart disease (CHD) is one of the common chronic diseases in clinical practice, often accompanied by inflammatory reactions. In recent years, the system inflammation response index (SIRI) has aroused researchers' interest as a novel inflammatory biomarker. This study aims to explore the relationship between the SIRI and CHD through the National Health and Nutrition Examination Survey (NHANES) database. Methods We conducted a cross-sectional study and analyzed participants aged 40 and above with complete data from the NHANES survey years 2007-2016. Logistic regression analysis was used in this study to explore the relationship between the risk of CHD and SIRI. Stratified subgroup analysis was conducted based on age, gender, race, education level, body mass index (BMI), smoking status, drinking, hypertension, diabetes and angina pectoris to evaluate the relationship between SIRI and CHD in different populations. Additionally, restricted cubic spline (RCS) analysis was employed to investigate whether there is a nonlinear association between SIRI and CHD. Results A total of 6374 eligible participants were included, among whom 387 were diagnosed with CHD. The SIRI levels in the CHD group were significantly higher than those in the non-CHD group. After adjusting for potential confounders, an elevated SIRI level was associated with an increased risk of CHD, with an odds ratio of 1.12, 95% CI: (1.03, 1.22), P = 0.008. Subgroup analysis results indicated a significant interaction between SIRI and CHD among genders (P for interaction <0.05), especially in females. In contrast, no significant interaction was observed among age, race, education level, BMI, smoking status, drinking, hypertension, diabetes and angina pectoris (P for interaction >0.05). The RCS analysis showed a significant linear relationship between SIRI and CHD (P for non-linearity >0.05), with an inflection point at 2.86. Conclusion Our study indicates that an elevated system inflammation response index is associated with a higher risk of CHD. Particularly among women.
Collapse
Affiliation(s)
- Tian Yang Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hai long Chen
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyu Shi
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Jin
- Department of Chronic Disease Clinic, Changchun NanGuan District Hospital, Changchun, China
| | - Yuan Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- Department of Cardiology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
46
|
Yang L, Guo J, Chen M, Wang Y, Li J, Zhang J. Pan-Immune-Inflammatory Value is Superior to Other Inflammatory Indicators in Predicting Inpatient Major Adverse Cardiovascular Events and Severe Coronary Artery Stenosis after Percutaneous Coronary Intervention in STEMI Patients. Rev Cardiovasc Med 2024; 25:294. [PMID: 39228482 PMCID: PMC11366985 DOI: 10.31083/j.rcm2508294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/05/2024] Open
Abstract
Background The inflammatory response to atherosclerosis is a process that leads to coronary artery disease. Pan-immune-inflammation value (PIV) has emerged as a new and simple biomarker of inflammation. However, studies on the predictive power of PIV for major adverse cardiovascular events (MACE) or the degree of coronary artery stenosis are scarce. We aimed to explore the predictive ability of PIV for MACE and the degree of coronary artery stenosis in patients with ST-segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI) during hospitalization. Methods This study included 542 patients who were diagnosed with STEMI and who underwent PCI between 2016 and 2023 and whose PIV and other inflammatory markers were measured. Using univariate and multivariate logistic regression analysis, risk variables for MACE following PCI and severe coronary stenosis during hospitalization were assessed to create receiver operating characteristic (ROC) curves and determine the best thresholds for inflammatory markers. Spearman correlation analysis was used to evaluate the correlation of PIV and other inflammatory markers with the Gensini score (GS). Results Compared with the systemic inflammatory index (SII), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR), the PIV may have greater predictive value in terms of the occurrence of MACE and the degree of coronary stenosis after PCI in hospitalized STEMI patients. The correlation between the PIV and GS was strong. Conclusions PIV was superior to the SII, PLR, and NLR in predicting inpatient prognosis and severe coronary stenosis after PCI for STEMI patients.
Collapse
Affiliation(s)
- Li Yang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
- The Fifth Clinical School of Medicine, Anhui Medical University, 230000 Hefei, Anhui, China
| | - Jiongchao Guo
- The Fifth Clinical School of Medicine, Anhui Medical University, 230000 Hefei, Anhui, China
- Department of Cardiology, Anhui Medical University Third Affiliated Hospital, 230011 Hefei, Anhui, China
| | - Min Chen
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| | - Yuqi Wang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
- Department of Cardiology, Hefei Second People's Hospital Affiliated to Bengbu Medical College, 230011 Hefei, Anhui, China
| | - Jun Li
- Department of Cardiology, Lu'an Municipal People's Hospital, 230011 Hefei, Anhui, China
| | - Jing Zhang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 230011 Hefei, Anhui, China
| |
Collapse
|
47
|
Zhao Z, Lin S, Liu T, Hu X, Qin S, Zhan F, Ma J, Huang C, Huang Z, Wang Y, Zheng K, Zhang W, Ren Z. Artemvulactone E isolated from Artemisia vulgaris L. ameliorates lipopolysaccharide-induced inflammation in both RAW264.7 and zebrafish model. Front Pharmacol 2024; 15:1415352. [PMID: 39092222 PMCID: PMC11291208 DOI: 10.3389/fphar.2024.1415352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Natural plants are valuable resources for exploring new bioactive compounds. Artemisia vulgaris L. is a traditional Chinese medicinal herb that has been historically used for treating multiple diseases. Active compounds isolated and extracted from A. vulgaris L. typically possess immunomodulatory and anti-inflammatory properties. Artemvulactone E (AE) is a new sesquiterpene lactone isolated and extracted from A. vulgaris L. with unclear biological activities. Methods The immunoregulatory effects of AE on macrophages were assessed by ELISA, RT-qPCR, immunofluorescence, and western blot assay. The effect of AE on lipopolysaccharide (LPS) -relates signaling pathways was examined by western blot assay. In zebrafish models, the larvae were yolk-microinjected with LPS to establish inflammation model and the effect of AE was evaluated by determining the survival rate, heart rate, yolk sac edema size, neutrophils and macrophages infiltration of zebrafish. The interaction between AE and Toll-like receptor 4 (TLR4) was examined by molecular docking and dynamic stimulation. Results AE reduced the expression and secretion of pro-inflammatory cytokines (TNF-α and IL-6), inflammatory mediators iNOS and COX-2, as well as decreases the production of intracellular NO and ROS in LPS-stimulated macrophages. In addition, AE exerted its anti-inflammatory effect synergistically by inhibiting MAPK/JAK/STAT3-NF-κB signaling pathways. Furthermore, AE enhanced the survival rate and attenuated inflammatory response in zebrafish embryos treated with LPS. Finally, the molecular dynamics results indicate that AE forms stable complexes with LPS receptor TLR4 through the Ser127 residue, thus completely impairing the subsequent activation of MAPK-NF-κB signaling. Conclusion AE exhibits notable anti-inflammatory activity and represents as a potential agent for treating inflammation-associated diseases.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shimin Lin
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tao Liu
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Xiao Hu
- Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Jinan University, Guangzhou, China
| | - Shurong Qin
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Fengyun Zhan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiaqi Ma
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Chen Huang
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yifei Wang
- National Engineering Technology Research Center for Modernization of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Ma Y, Lai J, Wan Q, Sun L, Wang Y, Li X, Zhang Q, Wu J. Exploring the common mechanisms and biomarker ST8SIA4 of atherosclerosis and ankylosing spondylitis through bioinformatics analysis and machine learning. Front Cardiovasc Med 2024; 11:1421071. [PMID: 39131703 PMCID: PMC11310936 DOI: 10.3389/fcvm.2024.1421071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background Atherosclerosis (AS) is a major contributor to cerebrovascular and cardiovascular events. There is growing evidence that ankylosing spondylitis is closely linked to AS, often co-occurring with it; however, the shared pathogenic mechanisms between the two conditions are not well understood. This study employs bioinformatics approaches to identify common biomarkers and pathways between AS and ankylosing spondylitis. Methods Gene expression datasets for AS (GSE100927, GSE28829, GSE155512) and ankylosing spondylitis (GSE73754, GSE25101) were obtained from the Gene Expression Omnibus (GEO). Differential expression genes (DEGs) and module genes for AS and ankylosing spondylitis were identified using the Limma R package and weighted gene co-expression network analysis (WGCNA) techniques, respectively. The machine learning algorithm SVM-RFE was applied to pinpoint promising biomarkers, which were then validated in terms of their expression levels and diagnostic efficacy in AS and ankylosing spondylitis, using two separate GEO datasets. Furthermore, the interaction of the key biomarker with the immune microenvironment was investigated via the CIBERSORT algorithm, single-cell analysis was used to identify the locations of common diagnostic markers. Results The dataset GSE100927 contains 524 DEGs associated with AS, whereas dataset GSE73754 includes 1,384 genes categorized into modules specific to ankylosing spondylitis. Analysis of these datasets revealed an overlap of 71 genes between the DEGs of AS and the modular genes of ankylosing spondylitis. Utilizing the SVM-RFE algorithm, 15 and 24 central diagnostic genes were identified in datasets GSE100927 and GSE73754, respectively. Further validation of six key genes using external datasets confirmed ST8SIA4 as a common diagnostic marker for both conditions. Notably, ST8SIA4 is upregulated in samples from both diseases. Additionally, ROC analysis confirmed the robust diagnostic utility of ST8SIA4. Moreover, analysis through CIBERSORT suggested an association of the ST8SIA4 gene with the immune microenvironment in both disease contexts. Single-cell analysis revealed that ST8SIA4 is primarily expressed in Macrophages, Monocytes, T cells, and CMPs. Conclusion This study investigates the role of ST8SIA4 as a common diagnostic gene and the involvement of the lysosomal pathway in both AS and ankylosing spondylitis. The findings may yield potential diagnostic biomarkers and offer new insights into the shared pathogenic mechanisms underlying these conditions.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Liqiang Sun
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yang Wang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xingliang Li
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qinhe Zhang
- Department of Acupuncture and Tuina, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
49
|
Liu X, Wang W, Li Q, Niu H, Zhang W. Therapeutic potentials of peptide-derived nanoformulations in atherosclerosis: present status and future directions. INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS 2024; 15:610-651. [DOI: 10.1080/19475411.2024.2395270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Liu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, China
| | - Qiang Li
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Hongtao Niu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weili Zhang
- Department of Geriatric Medicine, Yantaishan Hospital, Yantai, China
| |
Collapse
|
50
|
Chai Q, Guo C, Li L, Cao J, Liu H, Lu Z. Association of angiogenesis-associated genes with atherosclerotic plaque progression, intraplaque hemorrhage, and immune infiltration. Heliyon 2024; 10:e32692. [PMID: 39183847 PMCID: PMC11341292 DOI: 10.1016/j.heliyon.2024.e32692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
Mounting evidence suggests that intraplaque angiogenesis is associated with the progression of atherosclerotic plaques and the development of intraplaque hemorrhage. The specificity of intraplaque immune cell infiltration may be associated with abnormalities in the structure and function of the nascent capillaries. Here, we analyzed expression levels of angiogenesis-associated genes in early and advanced carotid atheromatous plaque tissues as well as in stable and intraplaque hemorrhage plaques. Expression profiles of advanced arterial plaques based on angiogenesis-associated genes were classified into subtypes by performing a consensus clustering analysis. The correlation between the immune microenvironment of plaques and expression of angiogenesis-associated genes was also explored using the single sample gene set enrichment analysis method and the CIBERSORT algorithm. We identified hub angiogenesis-associated genes showing similar expression patterns throughout plaque adverse progression, and constructed a prediction model using the random forest algorithm. Receiver operating curves were constructed to evaluate efficacy in identification of intraplaque hemorrhage in a plaque. Our results suggest that heterogeneity of angiogenesis-related genes may promote the malignant development of plaques and cause plaque rupture. In conclusion, we propose a model based on expression of angiogenesis-related genes to predict the risk of plaque rupture.
Collapse
Affiliation(s)
- Quanyou Chai
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, And the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chunling Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Long Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, And the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Huimin Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311100, China
| | - Zhaoyang Lu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, And the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|