1
|
Fang JY, Yang Z, Hu W, Hoang BX, Han B. Viscoelastic Hydrogel Modulates Phenotype of Macrophage-Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. J Biomed Mater Res A 2025; 113:e37814. [PMID: 39429027 DOI: 10.1002/jbm.a.37814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Biomaterial-induced macrophage-derived multinucleated cells (MNCs) are often observed at or near material implantation sites, yet their subtypes and roles in tissue repair and wound healing remain unclear. This study compares material-induced MNCs to cytokine-induced MNCs using both in vitro and in vivo models. 3D-embedded Raw264.7 cells and rat bone marrow-derived monocytes (BMDMs), with or without cytokines such as IL-4 and RANKL, were characterized for their MNC morphologies and subtypes via in situ immunocytochemistry and flow cytometry. Macrophage polarization and osteoclastic differentiation were assessed through NO production, arginase activity, and tartrate-resistant acid phosphatase levels. 3D matrix-induced MNCs expressed the same phenotypic heterogeneity as the IL-4 and RANK-treated ones. 3D matrix-induced MNCs displayed the same phenotypic heterogeneity as those treated with IL-4 and RANKL. A high viscoelastic matrix (1006.48 ± 92.29 Pa) induced larger populations of proinflammatory and osteoclast-like MNCs, whereas a low viscoelastic matrix (38.61 ± 7.56 Pa) supported active differentiation and gene expression across pro-, anti-inflammatory, and osteoclast-like macrophages. Matrix viscoelasticity also influenced the effects of IL-4 and RANKL on macrophage-derived MNC polarization. In an in vivo subcutaneous implantation model, medium to high viscoelastic matrices exhibited higher populations of CD86+ and RANK+ MNCs, while low viscoelastic matrices showed higher populations of CD206+ MNCs. These findings suggest that matrix viscoelasticity modulates macrophage differentiation and MNC phenotype, with low viscoelastic matrices potentially favoring anti-inflammatory MNCs and macrophage differentiation suitable for subcutaneous implantation.
Collapse
Affiliation(s)
- Josephine Y Fang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Zhi Yang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Wei Hu
- M.C. Gill Composites Center, University of Southern California, Los Angeles, USA
| | - Ba Xuan Hoang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Biomedical Enginnering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| |
Collapse
|
2
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
3
|
Kleynhans L, Kunsevi-Kilola C, Tshivhula H, Webber T, Keyser A, Prins N, Snyders CI, Shabangu A, Rozot V, Kidd M, Zhang H, Cai H, Wang Y, Ewing AD, Malherbe ST, Azad AK, Arnett E, Restrepo BI, Schlesinger LS, Ronacher K. HUMAN ALVEOLAR MACROPHAGE FUNCTION IS IMPAIRED IN TUBERCULOSIS CONTACTS WITH DIABETES. RESEARCH SQUARE 2024:rs.3.rs-5489046. [PMID: 39649174 PMCID: PMC11623777 DOI: 10.21203/rs.3.rs-5489046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Type 2 diabetes (T2D) increases susceptibility to tuberculosis (TB) with the underlying mechanisms remaining unknown. To determine whether immune dysfunction in the lung contributes to TB susceptibility, we obtained paired human alveolar macrophages (HAMs) and monocyte-derived macrophages (MDMs) from TB-exposed individuals with/without T2D. Upon infection with Mycobacterium tuberculosis (M.tb), T2D-HAMs had more M.tb growth and produced more TNF. There were fewer neutrophils in the bronchoalveolar lavage of T2D patients which was inversely correlated with M.tb growth. Both T2D-HAMs and MDMs expressed less CD32, with T2D patients having fewer M1-like MDMs. T2D-MDMs produced less IL-1RA and CSF2. Overall M.tb-induced gene expression was delayed in T2D-HAMs, but genes involved in negative regulation of neutrophil migration were upregulated. T2D-HAM DNA was hypermethylated compared to control HAMs, however genes linked to TNF signalling were hypomethylated. We show here the first in-depth analysis of T2D-HAMs providing an explanation for more severe TB in T2D patients.
Collapse
Affiliation(s)
- Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Carine Kunsevi-Kilola
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alana Keyser
- Vaccines for Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicole Prins
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice I Snyders
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayanda Shabangu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, Stellenbosch, South Africa
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Adam D Ewing
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Stephanus T Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Blanca I Restrepo
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Epidemiology, School of Public Health-Brownsville Campus, University of Texas Health Science Center at Houston, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Guo S, Ouyang J, Hu Z, Cao T, Huang C, Mou J, Gu X, Liu J. Intranasal vaccination with engineered BCG expressing CCL2 induces a stronger immune barrier against Mycobacterium tuberculosis than BCG. Mol Ther 2024; 32:3990-4005. [PMID: 39295146 PMCID: PMC11573603 DOI: 10.1016/j.ymthe.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Intradermal Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination is currently the only licensed strategy for preventing tuberculosis (TB). It provides limited protection against pulmonary TB. To enhance the efficacy of BCG, we developed a recombinant BCG expressing exogenous monocyte chemoattractant CC chemokine ligand 2 (CCL2) called rBCG-CCL2. Co-culturing macrophages with rBCG-CCL2 enhances their abilities in migration, phagocytosis, and effector molecule expression. In the mouse model, intranasal vaccination with rBCG-CCL2 induced greater immune cell infiltration and a more extensive innate immune response in lung compared to vaccination with parental BCG, as determined by multiparameter flow cytometry, transcriptomic analysis, and pathological assessments. Moreover, rBCG-CCL2 induced a high frequency of activated macrophages and antigen-specific T helper 1 (Th1) and Th17 T cells in lungs. The enhanced immune microenvironment responded more effectively to intravenous challenge with Mycobacterium tuberculosis (Mtb) H37Ra, leading to significant reductions in H37Ra burden and pathological damage to the lungs and spleen. Intranasal rBCG-CCL2-vaccinated mice rapidly initiated pro-inflammatory Th1 cytokine release and reduced pathological damage to the lungs and spleen during the early stage of H37Ra challenge. The finding that co-expression of CCL2 synergistically enhances the immune barrier induced by BCG provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against TB.
Collapse
Affiliation(s)
- Shaohua Guo
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jiangshan Ouyang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiming Hu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ting Cao
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Chunxu Huang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jun Mou
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xinxia Gu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Liu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
| |
Collapse
|
5
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
6
|
Zhan X, Yuan W, Ma R, Zhou Y, Xu G, Ge Z. Mmu-let-7a-5p inhibits macrophage apoptosis by targeting CASP3 to increase bacterial load and facilities mycobacterium survival. PLoS One 2024; 19:e0308095. [PMID: 39226319 PMCID: PMC11371246 DOI: 10.1371/journal.pone.0308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/17/2024] [Indexed: 09/05/2024] Open
Abstract
We have been trying to find a miRNA that can specifically regulate the function of mycobacterial host cells to achieve the purpose of eliminating Mycobacterium tuberculosis. The purpose of this study is to investigate the regulation of mmu-let-7a-5p on macrophages apoptosis and its effect on intracellular BCG clearance. After a series of in vitro experiments, we found that mmu-let-7a-5p could negatively regulate the apoptosis of macrophages by targeting Caspase-3. The extrinsic apoptosis signal axis TNFR1/FADD/Caspase-8/Caspase-3 was inhibited after BCG infection. Up-regulated the expression level of mmu-let-7a-5p increase the cell proliferation viability and inhibit apoptosis rate of macrophages, but down-regulated its level could apparently reduce the bacterial load of intracellular Mycobacteria and accelerate the clearance of residual Mycobacteria effectively. Mmu-let-7a-5p has great potential to be utilized as an optimal candidate exosomal loaded miRNA for anti-tuberculosis immunotherapy in our subsequent research.
Collapse
Affiliation(s)
- Xuehua Zhan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenqi Yuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yueyong Zhou
- Clinical Medicine School, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Wei J, Ning H, Ramos‐Espinosa O, Eickhoff CS, Hou R, Wang Q, Fu M, Liu EY, Fan D, Hoft DF, Liu J. Tristetraprolin mediates immune evasion of mycobacterial infection in macrophages. FASEB Bioadv 2024; 6:249-262. [PMID: 39114448 PMCID: PMC11301268 DOI: 10.1096/fba.2024-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Immune evasion of Mycobacterium tuberculosis (Mtb) facilitates intracellular bacterial growth. The mechanisms of immune evasion, however, are still not fully understood. In this study, we reveal that tristetraprolin (TTP), one of the best characterized RNA-binding proteins controlling the stability of targeted mRNAs, mediates innate immune evasion of mycobacteria. We found that TTP knockout mice displayed reduced bacterial burden in the early stage after Mtb aerosol challenge. Macrophages deficient in TTP also showed an inhibition in intracellular mycobacterial growth. Live mycobacteria induced TTP protein expression in macrophages, which was blocked by the mTOR inhibitor rapamycin. Rapamycin and AZD8055 specifically blocked 4EBP1 phosphorylation in infected macrophages and suppressed intracellular BCG growth. Rapamycin promoted TTP protein degradation through the ubiquitination pathway, whereas the proteasome inhibitor MG-132 blocked rapamycin function and thus stabilized TTP protein. TTP induction suppressed the expression of iNOS/TNF-α/IL-12/IL-23, and weakened protective immune responses in macrophages, whereas rapamycin enhanced the bactericidal effects through TTP inhibition. Moreover, blocking TTP binding increased the expression of TNF-α and iNOS and suppressed intracellular mycobacterial growth. Overall, our study reveals a novel role for RNA-binding protein TTP in Mtb immune evasion mechanisms and provides a potential target for host-directed therapy against tuberculosis (TB).
Collapse
Affiliation(s)
- Jiawei Wei
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Octavio Ramos‐Espinosa
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Basic Medical Science, School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Ethan Y. Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Daping Fan
- Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| |
Collapse
|
8
|
Weber K, Bruer G, Krueger N, Schuster TB, Creutzenberg O, Schaudien D. Regenerative and progressing lesions in lungs and lung-associated lymph nodes from fourteen 90-day inhalation studies with chemically different particulate materials. Toxicol Lett 2024; 399 Suppl 1:49-72. [PMID: 38159619 DOI: 10.1016/j.toxlet.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Rat lungs and lung-associated lymph nodes from 14 inhalation studies with chemically different particulate materials were histopathologically re-evaluated, and the bronchoalveolar lavage fluid (BALF) data and lung burden analyses were compared. All investigated substances caused similar lesions. For most substances, 1 mg/m3 of respirable particulate matter was established as the borderline for adverse morphological changes after the 90-day exposure period, confirmed by the increase in polymorphonuclear neutrophils in BALF. Possible reversibility was demonstrated when recovery groups are included in the study especially allowing the differentiation between regeneration or progressing of inflammatory changes during the recovery period. It was concluded, that the major driver of toxicity is not an intrinsic chemical property of the particle but a particle effect. Concerning classification for specific target organ toxicant (STOT) repeated exposure (RE), this paper highlights that merely comparing the lowest concentration, at which adverse effects were observed, with the Classification Labelling and Packaging (CLP) regulation (EC) no. 1272/2008 guidance values is inappropriate and might lead to a STOT classification under CLP for a large part of the substances discussed in this paper, on the basis of typically mild to moderate findings in rat lung and lung-associated lymph nodes on day 1 after exposure. An in-depth evaluation of the pathologic findings is required and an expert judgement has to be included in the decision on classification and labeling, evaluating the type and severity of effects and comparing these with the classification criteria.
Collapse
Affiliation(s)
| | - Gustav Bruer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany
| | - Nils Krueger
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| | | | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Germany.
| |
Collapse
|
9
|
Chan JCK, Boland JM. Granulomatous Lung Diseases: A Practical Approach and Review of Common Entities. Surg Pathol Clin 2024; 17:173-192. [PMID: 38692803 DOI: 10.1016/j.path.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Granulomas are frequently encountered by pathologists in all types of lung specimens and arise from diverse etiologies. They should always be reported as necrotizing or non-necrotizing, with microorganism stains performed to evaluate for infection. With attention to distribution, quality (poorly vs well-formed), associated features, and correlation with clinical, radiologic, and laboratory data, the differential diagnosis for granulomatous lung disease can usually be narrowed to a clinically helpful "short list." This review describes a practical approach to pulmonary granulomas and reviews the clinicopathological aspects of common entities, including infectious (mycobacteria, fungi) and noninfectious (hypersensitivity pneumonitis, sarcoid, and vasculitis) causes.
Collapse
Affiliation(s)
- Jackie Cheuk Ki Chan
- Department of Laboratory Medicine and Pathology, Royal Alexandra and University of Alberta Hospitals, 10240 Kingsway NW, Edmonton, Alberta, Canada, T5H 3V9
| | - Jennifer M Boland
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Division of Anatomic Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Chen Z, Kong X, Ma Q, Chen J, Zeng Y, Liu H, Wang X, Lu S. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol 2024; 15:1402024. [PMID: 38873598 PMCID: PMC11169584 DOI: 10.3389/fimmu.2024.1402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Sun X, Li W, Zhao L, Fan K, Qin F, Shi L, Gao F, Zheng C. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol 2024; 15:1401867. [PMID: 38846947 PMCID: PMC11153741 DOI: 10.3389/fimmu.2024.1401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.
Collapse
Affiliation(s)
- Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zhang Z, Wang Y, Zhang Y, Geng S, Wu H, Shao Y, Kang G. Construction of Immune-Related Diagnostic Model for Latent Tuberculosis Infection and Active Tuberculosis. J Inflamm Res 2024; 17:2499-2511. [PMID: 38699596 PMCID: PMC11063471 DOI: 10.2147/jir.s451338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tuberculosis (TB) is one of the most infectious diseases caused by Mycobacterium tuberculosis (M. tb), and the diagnosis of active tuberculosis (TB) and latent TB infection (LTBI) remains challenging. Methods Gene expression files were downloaded from the GEO database to identify the differentially expressed genes (DEGs). The ssGSEA algorithm was applied to assess the immunological characteristics of patients with LTBI and TB. Weighted gene co-expression network analysis, protein-protein interaction network, and the cytoHubba plug-in of Cytoscape were used to identify the real hub genes. Finally, a diagnostic model was constructed using real hub genes and validated using a validation set. Results Macrophages and natural killer cells were identified as important immune cells strongly associated with TB. In total, 726 mRNAs were identified as DEGs. MX1, STAT1, IFIH1, DDX58, and IRF7 were identified as real hub immune-related genes. The diagnostic model generated by the five real hub genes could distinguish active TB from healthy controls or patients with LTBI. Conclusion Our study may provide implications for the diagnosis and drug development of M. tb infections.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Science & Education, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yuhong Wang
- Department of Tuberculosis, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yankun Zhang
- Department of Ophthalmology, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Shujun Geng
- Department of Tuberculosis, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Haifeng Wu
- Clinical Laboratory, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Yanxin Shao
- Office of Clinical Pharmacological Center, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Shijiazhuang, People’s Republic of China
| | - Guannan Kang
- Department of Tuberculosis, Hebei Chest Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
13
|
Yang X, Chen Y, Pu B, Yuan X, Wang J, Chen C. YY1 Contributes to the Inflammatory Responses of Mycobacterium tuberculosis-Infected Macrophages Through Transcription Activation-Mediated Upregulation TLR4. Mol Biotechnol 2024:10.1007/s12033-024-01093-x. [PMID: 38492118 DOI: 10.1007/s12033-024-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 03/18/2024]
Abstract
Tuberculosis (TB) is a chronic respiratory infectious disease and is induced by Mycobacterium tuberculosis (M.tb) infection. Macrophages serve as the cellular home in immunoreaction against M.tb infection, which is tightly regulated through Toll-like receptor 4 (TLR4) expression. Therefore, this study is designed to explore the role and mechanism of TLR4 in mycobacterial injury in human macrophages (THP-1 cells) after M.tb infection. Cell proliferation and apoptosis were assessed using MTT, EdU, and flow cytometry assays. ELISA kits were utilized to assess the levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). The binding between Yin-Yang-1 (YY1) and TLR4 promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. M.tb infection might repress THP-1 cell proliferation, and induce cell apoptosis and inflammatory response in a multiplicity of infection (MOI)-dependent manner. Moreover, M.tb infection increased the expression of TLR4 in HTP-1 cells in an MOI-dependent way, and its downregulation might overturn M.tb infection-mediated HTP-1 cell damage and inflammatory response. At the molecular level, YY1 was a transcription factor of TLR4 and promoted TLR4 transcription via binding to its promoter region. Besides, YY1 might activate the NF-kB signaling pathway via regulating TLR4. Meanwhile, TLR4 inhibitor BAY11-7082 might overturn the repression effect of TLR4 on M.tb-infected HTP-1 cell damage. YY1-activated TLR4 might aggravate mycobacterial injury in human macrophages after M.tb infection by the NF-kB pathway, providing a promising therapeutic target for TB treatment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China.
| | - Yu Chen
- Department of Health Management Division, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Bingshuang Pu
- Department of Infectious Diseases, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Xuan Yuan
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Jiaojiao Wang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Chun Chen
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Rasi V, Phelps KR, Paulson KR, Eickhoff CS, Chinnaraj M, Pozzi N, Di Gioia M, Zanoni I, Shakya S, Carlson HL, Ford DA, Kolar GR, Hoft DF. Homodimeric Granzyme A Opsonizes Mycobacterium tuberculosis and Inhibits Its Intracellular Growth in Human Monocytes via Toll-Like Receptor 4 and CD14. J Infect Dis 2024; 229:876-887. [PMID: 37671668 PMCID: PMC10938207 DOI: 10.1093/infdis/jiad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb)-specific γ9δ2 T cells secrete granzyme A (GzmA) protective against intracellular Mtb growth. However, GzmA-enzymatic activity is unnecessary for pathogen inhibition, and the mechanisms of GzmA-mediated protection remain unknown. We show that GzmA homodimerization is essential for opsonization of mycobacteria, altered uptake into human monocytes, and subsequent pathogen clearance within the phagolysosome. Although monomeric and homodimeric GzmA bind mycobacteria, only homodimers also bind cluster of differentiation 14 (CD14) and Toll-like receptor 4 (TLR4). Without access to surface-expressed CD14 and TLR4, GzmA fails to inhibit intracellular Mtb. Upregulation of Rab11FIP1 was associated with inhibitory activity. Furthermore, GzmA colocalized with and was regulated by protein disulfide isomerase AI (PDIA1), which cleaves GzmA homodimers into monomers and prevents Mtb inhibitory activity. These studies identify a previously unrecognized role for homodimeric GzmA structure in opsonization, phagocytosis, and elimination of Mtb in human monocytes, and they highlight PDIA1 as a potential host-directed therapy for prevention and treatment of tuberculosis, a major human disease.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Kathleen R Phelps
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Keegan R Paulson
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Christopher S Eickhoff
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Marco Di Gioia
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shubha Shakya
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Daniel F Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Criado M, Reyes LE, Marín JFG, Gutiérrez-Expósito D, Zapico D, Espinosa J, Pérez V. Adjuvants influence the immune cell populations present at the injection site granuloma induced by whole-cell inactivated paratuberculosis vaccines in sheep. Front Vet Sci 2024; 11:1284902. [PMID: 38352038 PMCID: PMC10861745 DOI: 10.3389/fvets.2024.1284902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Vaccination is the most effective tool for paratuberculosis control. Currently, available vaccines prevent the progression of clinical disease in most animals but do not fully protect them against infection and induce the formation of an injection site granuloma. The precise mechanisms that operate in response to vaccination and granuloma development, as well as the effect that adjuvants could trigger, have not been fully investigated. Therefore, this study aimed to investigate the injection site granulomas induced by two inactivated paratuberculosis vaccines, which differ in the adjuvant employed. Two groups of 45-day-old lambs were immunized with two commercially available vaccines-one (n = 4) with Gudair® and the other (n = 4) with Silirum®. A third group (n = 4) was not vaccinated and served as control. The peripheral humoral response was assessed throughout the study by a commercial anti-Mycobacterium avium subspecies paratuberculosis (Map) antibody indirect ELISA, and the cellular immune response was assessed similarly by the IFN-γ release and comparative intradermal tests. The injection site granulomas were measured during the experiment and sampled at 75 days post-vaccination (dpv) when the animals were euthanized. The tissue damage, antigen and adjuvant distribution, and the presence and amount of immune cells were then determined and assessed by immunohistochemical methods. Antibodies against Map antigens; a general macrophage marker (Iba1), M1 (iNOS), and M2 (CD204) macrophages; T (CD3), B (CD20), and γδ T lymphocytes, proteins MHC-II and NRAMP1, and cytokines IL-4, IL-10, TNF, and IFN-γ were employed. Silirum® elicited a stronger peripheral cellular immune response than Gudair®, while the latter induced larger granulomas and more tissue damage at the site of injection. Additionally, adjuvant and Map antigen distribution throughout the granulomatous inflammatory infiltrate, as well as the NRAMP1 cell expression, which is linked to antigen phagocytosis, were highly irregular. In Silirum® induced granulomas, a higher number of MHC-II and TNF-expressing cells and a lower number of M2 macrophages suggested an improved antigen presentation, which could be due to the better antigen distribution and reduced tissue damage induced by this vaccine.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Luis E. Reyes
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan F. García Marín
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - David Zapico
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| |
Collapse
|
16
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
17
|
Zheng K, Yang W, Wang S, Sun M, Jin Z, Zhang W, Ren H, Li C. Identification of immune infiltration-related biomarkers in carotid atherosclerotic plaques. Sci Rep 2023; 13:14153. [PMID: 37644056 PMCID: PMC10465496 DOI: 10.1038/s41598-023-40530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory response of the innate and adaptive immune systems, and it is responsible for several cardiovascular ischemic events. The present study aimed to determine immune infiltration-related biomarkers in carotid atherosclerotic plaques (CAPs). Gene expression profiles of CAPs were extracted from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the CAPs and control groups were screened by the "limma" package in R software. Immune cell infiltration between the CAPs and control groups was evaluated by the single sample gene set enrichment analysis. Key infiltrating immune cells in the CAPs group were screened by the Wilcoxon test and least absolute shrinkage and selection operator regression. The weighted gene co-expression network analysis was used to identify immune cell-related genes. Hub genes were identified by the protein-protein interaction (PPI) network. Receiver operating characteristic curve analysis was performed to assess the gene's ability to differentiate between the CAPs and control groups. Finally, we constructed a miRNA-gene-transcription factor network of hub genes by using the ENCODE database. Eleven different types of immune infiltration-related cells were identified between the CAPs and control groups. A total of 1,586 differentially expressed immunity-related genes were obtained through intersection between DEGs and immune-related genes. Twenty hub genes were screened through the PPI network. Eventually, 7 genes (BTK, LYN, PTPN11, CD163, CD4, ITGAL, and ITGB7) were identified as the hub genes of CAPs, and these genes may serve as the estimable drug targets for patients with CAPs.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wentao Yang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shengxing Wang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingsheng Sun
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhenyi Jin
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wangde Zhang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hualiang Ren
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Chunmin Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Yang Q, Qi F, Ye T, Li J, Xu G, He X, Deng G, Zhang P, Liao M, Qiao K, Zhang Z. The interaction of macrophages and CD8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect 2023:2239940. [PMID: 37470432 PMCID: PMC10399483 DOI: 10.1080/22221751.2023.2239940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection, including active tuberculosis (TB) and latent Mtb infection (LTBI), leads to diverse outcomes owing to different host immune responses. However, the immune mechanisms that govern the progression from LTBI to TB remain poorly defined in humans. Here, we profiled the lung immune cell populations within the bronchoalveolar lavage fluid (BALF) from patients with LTBI or TB using single-cell RNA sequencing (scRNA-seq). We found that Mtb infection substantially changed the immune cell compartments in the BALF, especially for the three subsets of macrophages, monocyte macrophage (MM)-CCL23, MM-FCN1, and MM-SPP1, which were found to be associated with the disease status of TB infection. Notably, MM-CCL23 cells derived from monocytes after stimulation with Mtb were characterized by high levels of chemokine (CCL23 and CXCL5) production and might serve as a marker for Mtb infection. The MM-CCL23 population mainly recruited CD8-CCR6 T cells through CCL20/CCR6, which was a prominent feature associated with protection immunity in LTBI. This study improves our understanding of the lung immune landscape during Mtb infection, which may inform future vaccine design for protective immunity.
Collapse
Affiliation(s)
- Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Taosheng Ye
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Respiratory endoscopy, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jinpei Li
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Respiratory endoscopy, Shenzhen Third People's Hospital, Shenzhen, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaomeng He
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guofang Deng
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Pulmonary Medicine & Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Peize Zhang
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Pulmonary Medicine & Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Mingfeng Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Kun Qiao
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| |
Collapse
|
19
|
Ding Y, Bei C, Xue Q, Niu L, Tong J, Chen Y, Takiff HE, Gao Q, Yan B. Transcriptomic Analysis of Mycobacterial Infected Macrophages Reveals a High MOI Specific Type I IFN Signaling. Infect Immun 2023; 91:e0015523. [PMID: 37338365 PMCID: PMC10353393 DOI: 10.1128/iai.00155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Macrophage (MΦ) infection models are important tools for studying host-mycobacterial interactions. Although the multiplicity of infection (MOI) is an important experimental variable, the selection of MOI in mycobacterial infection experiments is largely empirical, without reference to solid experimental data. To provide relevant data, we used RNA-seq to analyze the gene expression profiles of MΦs 4 or 24 h after infection with Mycobacterium marinum (M. m) at MOIs ranging from 0.1 to 50. Analysis of differentially expressed genes (DEGs) showed that different MOIs are linked to distinct transcriptomic changes and only 10% of DEGs were shared by MΦ infected at all MOIs. KEGG pathway enrichment analysis revealed that type I interferon (IFN)-related pathways were inoculant dose-dependent and enriched only at high MOIs, whereas TNF pathways were inoculant dose-independent and enriched at all MOIs. Protein-protein interaction (PPI) network alignment showed that different MOIs had distinct key node genes. By fluorescence-activated cell sorting and follow-up RT-PCR analysis, we could separate infected MΦs from uninfected MΦs and found phagocytosis of mycobacteria to be the determinant factor for type I IFN production. The distinct transcriptional regulation of RAW264.7 MΦ genes at different MOIs was also seen with Mycobacterium tuberculosis (M.tb) infections and primary MΦ infection models. In summary, transcriptional profiling of mycobacterial infected MΦs revealed that different MOIs activate distinct immune pathways and the type I IFN pathway is activated only at high MOIs. This study should provide guidance for selecting the MOI most appropriate for different research questions.
Collapse
Affiliation(s)
- Yue Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Qinghua Xue
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jingfeng Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Yiwang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Howard E. Takiff
- Laboratorio de Genética Molecular, CMBC, IVIC, Caracas, Venezuela
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Yu L, Zhang Y, Liu C, Wu X, Wang S, Sui W, Zhang Y, Zhang C, Zhang M. Heterogeneity of macrophages in atherosclerosis revealed by single-cell RNA sequencing. FASEB J 2023; 37:e22810. [PMID: 36786718 DOI: 10.1096/fj.202201932rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Technology at the single-cell level has advanced dramatically in characterizing molecular heterogeneity. These technologies have enabled cell subtype diversity to be seen in all tissues, including atherosclerotic plaques. Critical in atherosclerosis pathogenesis and progression are macrophages. Previous studies have only determined macrophage phenotypes within the plaque, mainly by bulk analysis. However, recent progress in single-cell technologies now enables the comprehensive mapping of macrophage subsets and phenotypes present in plaques. In this review, we have updated and discussed the definition and classification of macrophage subsets in mice and humans using single-cell RNA sequencing. We summarized the different classification methods and perspectives: traditional classification with an updated scoring system, inflammatory macrophages, foamy macrophages, and atherosclerotic-resident macrophages. In addition, some special types of macrophages were identified by specific markers, including IFN-inducible and cavity macrophages. Furthermore, we discussed macrophage subset-specific markers and their functions. In the future, these novel insights into the characteristics and phenotypes of these macrophage subsets within atherosclerotic plaques can provide additional therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changhao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shasha Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Pham TH, Xue Y, Brewer SM, Bernstein KE, Quake SR, Monack DM. Single-cell profiling identifies ACE + granuloma macrophages as a nonpermissive niche for intracellular bacteria during persistent Salmonella infection. SCIENCE ADVANCES 2023; 9:eadd4333. [PMID: 36608122 PMCID: PMC9821941 DOI: 10.1126/sciadv.add4333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Macrophages mediate key antimicrobial responses against intracellular bacterial pathogens, such as Salmonella enterica. Yet, they can also act as a permissive niche for these pathogens to persist in infected tissues within granulomas, which are immunological structures composed of macrophages and other immune cells. We apply single-cell transcriptomics to investigate macrophage functional diversity during persistent S. enterica serovar Typhimurium (STm) infection in mice. We identify determinants of macrophage heterogeneity in infected spleens and describe populations of distinct phenotypes, functional programming, and spatial localization. Using an STm mutant with impaired ability to polarize macrophage phenotypes, we find that angiotensin-converting enzyme (ACE) defines a granuloma macrophage population that is nonpermissive for intracellular bacteria, and their abundance anticorrelates with tissue bacterial burden. Disruption of pathogen control by neutralizing TNF is linked to preferential depletion of ACE+ macrophages in infected tissues. Thus, ACE+ macrophages have limited capacity to serve as cellular niche for intracellular bacteria to establish persistent infection.
Collapse
Affiliation(s)
- Trung H. M. Pham
- Department of Microbiology and Immunology, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kenneth E. Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Bergantini L, d’Alessandro M, Del Zotto G, Marcenaro E, Bargagli E. Characterization of natural killer and T cells in bronchoalveolar lavage and peripheral blood of sarcoidosis patients. Front Immunol 2023; 13:1080556. [PMID: 36685602 PMCID: PMC9846229 DOI: 10.3389/fimmu.2022.1080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023] Open
Abstract
The characterization of frequency and phenotypes of natural killer (NK) cells and T cells in BAL and peripheral blood of patients with sarcoidosis was evaluated, to discriminate the differential status of these cells in these two compartments. The analysis revealed that CD56brightCD16neg resulted higher in BAL than PB of sarcoidosis and healthy subjects, while CD56dimCD16+ showed a different proportion between BAL and PB of both Sarcoidosis patients and HC. Moreover, in comparison with autologous PB, BAL was characterized by a higher expression of activated NK cell markers NKp44, CD69 and CD25. Significantly increased levels of PD-1+ NK cells in the BAL of patients were detected. Regarding the maturation of CD4 and CD8, an increase of Effector Memory T cells (TEM) was reported in BAL compared to PB. A better characterization of NK and T cells may lead to an improvement of the pathogenetic mechanisms in sarcoidosis.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Diseases Unit, Department of Medical Science, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Miriana d’Alessandro
- Respiratory Diseases Unit, Department of Medical Science, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical Science, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Wang GY, Lu B, Cui X, Li G, Zhang K, Zhang QS, Cui X, Qi GF, Liang QL, Luo XB, Xu HG, Xiao L, Wang L, Li L. An intelligent peptide recognizes and traps Mycobacterium tuberculosis to inhibit macrophage phagocytosis. J Mater Chem B 2022; 11:180-187. [PMID: 36484315 DOI: 10.1039/d2tb01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis is a major public health concern worldwide, and it is a serious threat to human health for a long period. Macrophage phagocytosis of Mycobacterium tuberculosis (M. tuberculosis) is a crucial process for granuloma formation, which shelters the bacteria and gives them an opportunity for re-activation and spread. Herein, we report an intelligent anti-microbial peptide that can recognize and trap the M. tuberculosis, inhibiting the macrophage phagocytosis process. The peptide (Bis-Pyrene-KLVFF-WHSGTPH, in abbreviation as BFH) first self-assembles into nanoparticles, and then forms nanofibers upon recognizing and binding M. tuberculosis. Subsequently, BFH traps M. tuberculosis by the in situ formed nanofibrous networks and the trapped M. tuberculosis are unable to invade host cells (macrophages). The intelligent anti-microbial peptide can significantly inhibit the phagocytosis of M. tuberculosis by macrophages, thereby providing a favorable theoretical basis for inhibiting the formation of tuberculosis granulomas.
Collapse
Affiliation(s)
- Gui-Yuan Wang
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Bin Lu
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Guang Li
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Qing-Shi Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xin Cui
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Gao-Feng Qi
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Qi-Lin Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiao-Bo Luo
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Huan-Ge Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Li Xiao
- Institute of Respiratory and Critical Medicine, the Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Litao Li
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| |
Collapse
|
24
|
Campos PC, Cunha DT, Souza-Costa LP, Shiloh MU, Franco LH. Bag it, tag it: ubiquitin ligases and host resistance to Mycobacterium tuberculosis. Trends Microbiol 2022; 30:973-985. [PMID: 35491351 PMCID: PMC9474620 DOI: 10.1016/j.tim.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), remains a significant global epidemic. Host resistance to Mtb depends on both adaptive and innate immunity mechanisms, including development of antigen-specific CD4 and CD8 T cells, production of inflammatory cytokines, bacterial phagocytosis and destruction within phagolysosomes, host cell apoptosis, and autophagy. A key regulatory mechanism in innate immunity is the attachment of the small protein ubiquitin to protein and lipid targets by the enzymatic activity of ubiquitin ligases. Here, we summarize the latest advances on the role of ubiquitination and ubiquitin ligases in host immunity against Mtb, with a focus on innate immunity signaling, inflammation, and antimicrobial autophagy. Understanding how ubiquitin ligases mediate immunity to Mtb, and the specific substrates of distinct ubiquitin ligases in the context of Mtb infection, could facilitate development of new host-directed antimicrobials.
Collapse
Affiliation(s)
- Priscila C Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA
| | - Danielle T Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz P Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | - Luis H Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
25
|
Panda S, Seelan DM, Faisal S, Arora A, Luthra K, Palanichamy JK, Mohan A, Vikram NK, Gupta NK, Ramakrishnan L, Singh A. Chronic hyperglycemia drives alterations in macrophage effector function in pulmonary tuberculosis. Eur J Immunol 2022; 52:1595-1609. [PMID: 36066992 DOI: 10.1002/eji.202249839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) alters immune responses and given the rising prevalence of DM in tuberculosis (TB) endemic countries; hyperglycemia can be a potential risk factor for active TB development. However, the impact of hyperglycemia on TB-specific innate immune response in terms of macrophage functions remains poorly addressed. We assessed macrophage effector functions in uncontrolled DM patients with or without TB infection (PTB+DM and DM), non-diabetic TB patients (PTB), and non-diabetic-uninfected controls. Phagocytic capacity against BCG and surface expression of different pattern recognition receptors (PRRs) (CD11b, CD14, CD206, MARCO, and TLR-2) were measured via flow cytometry. Effector molecules (ROS and NO) required for bacterial killing were assessed via DCFDA and Griess reaction respectively. A systematic dysregulation in phagocytic capacity with concurrent alterations in the expression pattern of key PRRs (CD11b, MARCO, and CD206) was observed in PTB+DM. These altered PRR expressions were associated with decreased phagocytic capacity of macrophages. Similarly, ROS was aberrantly higher while NO was lower in PTB+DM. These altered macrophage functions were positively correlated with increasing disease severity. Our results highlight several key patterns of immune dysregulation against TB infection under hyperglycemic conditions and highlight a negative impact of hyperglycemia with etiology and progression of TB.
Collapse
Affiliation(s)
- Sudhasini Panda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Diravya M Seelan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shah Faisal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Anant Mohan
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Naval K Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neeraj Kumar Gupta
- Department of Pulmonary Medicine, VMMC and Safdarjung Hospital, New Delhi, 110029, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
26
|
Immunometabolism of Immune Cells in Mucosal Environment Drives Effector Responses against Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23158531. [PMID: 35955665 PMCID: PMC9369211 DOI: 10.3390/ijms23158531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberculosis remains a major threat to global public health, with more than 1.5 million deaths recorded in 2020. Improved interventions against tuberculosis are urgently needed, but there are still gaps in our knowledge of the host-pathogen interaction that need to be filled, especially at the site of infection. With a long history of infection in humans, Mycobacterium tuberculosis (Mtb) has evolved to be able to exploit the microenvironment of the infection site to survive and grow. The immune cells are not only reliant on immune signalling to mount an effective response to Mtb invasion but can also be orchestrated by their metabolic state. Cellular metabolism was often overlooked in the past but growing evidence of its importance in the functions of immune cells suggests that it can no longer be ignored. This review aims to gain a better understanding of mucosal immunometabolism of resident effector cells, such as alveolar macrophages and mucosal-associated invariant T cells (MAIT cells), in response to Mtb infection and how Mtb manipulates them for its survival and growth, which could address our knowledge gaps while opening up new questions, and potentially be applied for future vaccination and therapeutic strategies.
Collapse
|
27
|
Antmen E, Muller CB, Calligaro C, Dupret-Bories A, Barthes J, Lavalle P, Vrana NE. In vitro two-step granuloma formation model for testing innate immune response to implants and coatings. BIOMATERIALS ADVANCES 2022; 138:212872. [PMID: 35913252 DOI: 10.1016/j.bioadv.2022.212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The extensive innate immune response to implanted biomaterials contributes significantly to their sub-par performance and failure. Granuloma formation is one of such reactions which results in multi-cell type clusters in line with the immune reaction to implanted materials. However, currently no in vitro model of granuloma formation exists that takes into account the arrival of multiple cell types (immune cells and connective tissue cells) to the implant insertion site. In this study, we developed a two-step model based on stimulated macrophage seeding followed by fibroblast introduction after a physiologically relevant time period for mimicking initial steps of immune reaction to biomaterials and inducing granuloma like behavior. Both LPS and TNF-α induction resulted in granuloma like formations which persisted longer than the control conditions. Introduction of human fibroblasts resulted in the colonization of the surfaces where the cell numbers and the collagen secretion were dependent on the microenvironment. In order to demonstrate the capacity of our model system to monitor the reaction to a given coating, a validated antimicrobial coating (Polyarginine (PAR)/Hyaluronic acid (HA)) was used as a testing bed. The coating prevented the adhesion of macrophages while allowing the adhesion of the fibroblast at the time of their arrival. Similar to its antimicrobial activity, macrophage metabolic activity and M2 differentiation in the presence of PAR was dependent to its chain length. The incorporation of fibroblasts resulted in decreased TNF-α and increased IL-1RA secretion especially in stimulation conditions. The pro- and anti-inflammatory cytokine secretions were low for PAR/HA coatings in line with the decreased number of macrophage presence. In the presence of complex PBMC population, the coating resulted in slightly less cellular attachment, without any significant cytokine secretion; the absence of inflammatory reaction was also demonstrated in vivo in a mouse model. The described in vitro granuloma testing system can control the macrophage reaction as a function of stimulation. It can also be used for testing new biomaterials for the potential innate immune responses and also for validation of implant coatings beyond their primary function from the immune response point of view.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Celine B Muller
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Cynthia Calligaro
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Agnes Dupret-Bories
- Surgery Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, Toulouse 31052, France
| | - Julien Barthes
- INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Philippe Lavalle
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France.
| |
Collapse
|
28
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
29
|
Wright K, Mizzi R, Plain KM, Purdie AC, de Silva K. Mycobacterium avium subsp. paratuberculosis exploits miRNA expression to modulate lipid metabolism and macrophage polarisation pathways during infection. Sci Rep 2022; 12:9681. [PMID: 35690602 PMCID: PMC9188571 DOI: 10.1038/s41598-022-13503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pathogenic mycobacteria including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, manipulate host macrophages to persist and cause disease. In mycobacterial infection, highly plastic macrophages, shift between inflammatory M1 and permissive M2 phenotypes which alter the disease outcome and allow bacteria to survive intracellularly. Here we examine the impact of MAP infection on polarised macrophages and how increased lipid availability alters macrophage phenotype and bacterial persistence. Further, we assess if host microRNA (miRNA) are sensitive to macrophage polarisation state and how MAP can drive their expression to overcome innate responses. Using in vitro MAP infection, we find that increasing lipid availability through supplementing culture media with exogenous lipid increases cellular nitric oxide production. Lipid-associated miRs -19a, -129, -24, and -24-3p are differentially expressed following macrophage polarisation and lipid supplementation and are further regulated during MAP infection. Collectively, our results highlight the importance of host lipid metabolism in MAP infection and demonstrate control of miRNA expression by MAP to favour intracellular persistence.
Collapse
Affiliation(s)
- Kathryn Wright
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Rachel Mizzi
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Karren M Plain
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Kumudika de Silva
- Sydney School of Veterinary Science, The University of Sydney, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Wang W, Ning Y, Wang Y, Deng G, Pace S, Barth SA, Menge C, Zhang K, Dai Y, Cai Y, Chen X, Werz O. Mycobacterium tuberculosis-Induced Upregulation of the COX-2/mPGES-1 Pathway in Human Macrophages Is Abrogated by Sulfasalazine. Front Immunol 2022; 13:849583. [PMID: 35663935 PMCID: PMC9160237 DOI: 10.3389/fimmu.2022.849583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages are the primary human host cells of intracellular Mycobacterium tuberculosis (M.tb) infection, where the magnitude of inflammatory reactions is crucial for determining the outcome of infection. Previously, we showed that the anti-inflammatory drug sulfasalazine (SASP) significantly reduced the M.tb bactericidal burden and histopathological inflammation in mice. Here, we asked which genes in human inflammatory macrophages are affected upon infection with M.tb and how would potential changes impact the functional state of macrophages. We used a flow cytometry sorting system which can distinguish the dead and alive states of M.tb harbored in human monocyte-derived macrophages (MDM). We found that the expression of cyclooxygenase-2 and microsomal prostaglandin E2 synthase (mPGES)-1 increased significantly in tagRFP+ MDM which were infected with alive M.tb. After exposure of polarized M1-MDM to M.tb (H37Rv strain)-conditioned medium (MTB-CM) or to the M.tb-derived 19-kD antigen, the production of PGE2 and pro-inflammatory cytokines increased 3- to 4-fold. Upon treatment of M1-MDM with SASP, the MTB-CM-induced expression of COX-2 and the release of COX products and cytokines decreased. Elevation of PGE2 in M1-MDM upon MTB-CM stimulation and modulation by SASP correlated with the activation of the NF-κB pathway. Together, infection of human macrophages by M.tb strongly induces COX-2 and mPGES-1 expression along with massive PGE2 formation which is abrogated by the anti-inflammatory drug SASP.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yejun Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Kehong Zhang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Youchao Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
31
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
32
|
Pharmacoengineered Lipid Core–Shell Nanoarchitectonics to Influence Human Alveolar Macrophages Uptake for Drug Targeting Against Tuberculosis. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Nguyen TK, Niaz Z, Kruzel ML, Actor JK. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice. Arch Immunol Ther Exp (Warsz) 2022; 70:9. [PMID: 35226195 PMCID: PMC8922470 DOI: 10.1007/s00005-022-00648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.
Collapse
Affiliation(s)
- Thao K.T. Nguyen
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA,The University of Texas MD Anderson Cancer Center – UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zainab Niaz
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Marian L. Kruzel
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K. Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
34
|
Ndzeidze R, Leestemaker-Palmer A, Danelishvili L, Bermudez LE. Virulent Mycobacterium avium subspecies hominissuis subverts macrophages during early stages of infection. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35133955 DOI: 10.1099/mic.0.001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virulent non-tuberculous Mycobacteria (NTMs) successfully reside and multiply within the phagosomes of phagocytic cells such as monocytes and macrophages. Macrophages play a very important role in the innate clearance of intracellular pathogens including NTMs. Attenuated Mycobacterium avium subsp. hominissuis 100 enters macrophages but is incapable of escaping these cells via canonical mycobacteria escape mechanisms. Alternatively, virulent Mycobacterium avium subsp. hominissuis 104 and Mycobacterium abscessus subsp. abscessus are able to modify macrophages to suit their growth, survival and ultimately escape from macrophages, while non-virulent Mycobacterium smegmatis is readily killed by macrophages. In this study we focused on early infection of macrophages with NTMs to determine the phenotypic response of macrophages, M1 or M2 differentiation, and phosphorylation alterations that can affect cellular response to invading bacteria. Our findings indicate that infection of the macrophage with MAH 100 and M. smegmatis favours the development of M1 macrophage, a pro-inflammatory phenotype associated with the killing of intracellular pathogens, while infection of the macrophage with MAH 104 and M. abscessus favoured the development of M2 macrophage, an anti-inflammatory phenotype associated with the healing process. Interference with the host post-translational mechanisms, such as protein phosphorylation, is a key strategy used by many intracellular bacterial pathogens to modulate macrophage phenotype and subvert macrophage function. By comparing protein phosphorylation patterns of infected macrophages, we observed that uptake of both MAH 100 and M. smegmatis resulted in MARCKS-related protein phosphorylation, which has been associated with macrophage activation. In contrast, in macrophages infected with MAH 104 and M. abscessus, methionine adenosyltransferase IIβ, an enzyme that catalyses the biosynthesis of S-adenosylmethionine, a methyl donor for DNA methylation. Inhibition of DNA methylation with 5-aza-2 deoxycytidine, significantly impaired the survival of MAH 104 in macrophages. Our findings suggest that the virulent MAH 104 and M. abscessus enhance its survival in the macrophage possibly through interference with the epigenome responses.
Collapse
Affiliation(s)
- Robert Ndzeidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA.,Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
35
|
Palmer MV, Kanipe C, Boggiatto PM. The Bovine Tuberculoid Granuloma. Pathogens 2022; 11:61. [PMID: 35056009 PMCID: PMC8780557 DOI: 10.3390/pathogens11010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The bovine tuberculoid granuloma is the hallmark lesion of bovine tuberculosis (bTB) due to Mycobacterium bovis infection. The pathogenesis of bTB, and thereby the process of bovine tuberculoid granuloma development, involves the recruitment, activation, and maintenance of cells under the influence of antigen, cytokines and chemokines in affected lungs and regional lymph nodes. The granuloma is key to successful control of bTB by preventing pathogen dissemination through containment by cellular and fibrotic layers. Paradoxically, however, it may also provide a niche for bacterial replication. The morphologic and cellular characteristics of granulomas have been used to gauge disease severity in bTB pathogenesis and vaccine efficacy studies. As such, it is critical to understand the complex mechanisms behind granuloma initiation, development, and maintenance.
Collapse
Affiliation(s)
- Mitchell V. Palmer
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA; (C.K.); (P.M.B.)
| | | | | |
Collapse
|
36
|
Tian L, Lei A, Tan T, Zhu M, Zhang L, Mou H, Zhang J. Macrophage-Based Combination Therapies as a New Strategy for Cancer Immunotherapy. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:26-43. [PMID: 35224005 DOI: 10.1159/000518664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cells of the immune system can inhibit tumor growth and progression; however, immune cells can also promote tumor cell growth, survival, and angiogenesis as a result of the immunosuppressive microenvironments. In the last decade, a growing number of new therapeutic strategies focused on reversing the immunosuppressive status of tumor microenvironments (TMEs), to reprogram the TME to be normal, and to further activate the antitumor functions of immune cells. Most of the "hot tumors" are encompassed with M2 macrophages promoting tumor growth, and the accumulation of M2 macrophages into tumor islets leads to poor prognosis in a wide variety of tumors. SUMMARY Therefore, how to uncover more immunosuppressive signals and to reverse the M2 tumor-associated macrophages (TAMs) to M1-type macrophages is essential for reversing the immunosuppressive state. Except for reeducation of TAMs in the cancer immunotherapy, macrophages as central effectors and regulators of the innate immune system have the capacity of phagocytosis and immune modulation in macrophage-based cell therapies. KEY MESSAGES We review the current macrophage-based cell therapies that use genetic engineering to augment macrophage functionalities with antitumor activity for the application of novel genetically engineered immune cell therapeutics. A combination of TAM reeducation and macrophage-based cell strategy may bring us closer to achieving the original goals of curing cancer. In this review, we describe the characteristics, immune status, and tumor immunotherapy strategies of macrophages to provide clues and evidences for future macrophage-based immune cell therapies.
Collapse
Affiliation(s)
- Lin Tian
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Anhua Lei
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Tianyu Tan
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mengmeng Zhu
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Li Zhang
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Haibo Mou
- Department of Medical Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Jin Zhang
- Department of Basic Medical Sciences, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
37
|
Ramon-Luing LA, Carranza C, Téllez-Navarrete NA, Medina-Quero K, Gonzalez Y, Torres M, Chavez-Galan L. Mycobacterium tuberculosis H37Rv Strain Increases the Frequency of CD3 +TCR + Macrophages and Affects Their Phenotype, but Not Their Migration Ability. Int J Mol Sci 2021; 23:ijms23010329. [PMID: 35008755 PMCID: PMC8745617 DOI: 10.3390/ijms23010329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
In mycobacterial infections, the number of cells from two newly discovered subpopulations of CD3+ myeloid cells are increased at the infection site; one type expresses the T cell receptor (CD3+TCRαβ+) and the other does not (CD3+TCRαβ−). The role of Mycobacterium tuberculosis (Mtb) virulence in generating these subpopulations and the ability of these cells to migrate remains unclear. In this study, monocyte-derived macrophages (MDMs) infected in vitro with either a virulent (H37Rv) or an avirulent (H37Ra) Mtb strain were phenotypically characterized based on three MDM phenotypes (CD3−, CD3+TCRαβ+, and CD3+TCRαβ−); then, their migration ability upon Mtb infection was evaluated. We found no differences in the frequency of CD3+ MDMs at 24 h of infection with either Mtb strain. However, H37Rv infection increased the frequency of CD3+TCRαβ+ MDMs at a multiplicity of infection of 1 and altered the expression of CD1b, CD1c, and TNF on the surface of cells from both the CD3+ MDM subpopulations; it also modified the expression of CCR2, CXCR1, and CCR7, thus affecting CCL2 and IL-8 levels. Moreover, H37Rv infection decreased the migration ability of the CD3− MDMs, but not CD3+ MDMs. These results confirm that the CD3+ macrophage subpopulations express chemokine receptors that respond to chemoattractants, facilitating cell migration. Together, these data suggest that CD3+ MDMs are a functional subpopulation involved in the immune response against Mtb.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (N.A.T.-N.)
| | - Claudia Carranza
- Laboratory of Tuberculosis Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (C.C.); (M.T.)
| | - Norma A. Téllez-Navarrete
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (N.A.T.-N.)
| | - Karen Medina-Quero
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico;
| | - Yolanda Gonzalez
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Martha Torres
- Laboratory of Tuberculosis Immunobiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (C.C.); (M.T.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (N.A.T.-N.)
- Correspondence: ; Tel.: +52-(55)-54871700 (ext. 5270)
| |
Collapse
|
38
|
Ahmad F, Umar MS, Khan N, Jamal F, Gupta P, Zubair S, Gupta UD, Owais M. Immunotherapy With 5, 15-DPP Mediates Macrophage M1 Polarization and Modulates Subsequent Mycobacterium tuberculosis Infectivity in rBCG30 Immunized Mice. Front Immunol 2021; 12:706727. [PMID: 34777338 PMCID: PMC8586420 DOI: 10.3389/fimmu.2021.706727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a significant and continuing problem worldwide, with a death toll of around 1.5 million human lives annually. BCG, the only vaccine against TB, offers a varied degree of protection among human subjects in different regions and races of the world. The majority of the population living near the tropics carries a varying degree of tolerance against BCG due to the widespread prevalence of non-tuberculous mycobacteria (NTM). Interestingly, ≈90% of the Mycobacterium tuberculosis (Mtb) infected population restrain the bacilli on its own, which strengthens the notion of empowering the host immune system to advance the protective efficacy of existing mycobacterial vaccines. In general, Mtb modulates IL-10/STAT3 signaling to skew host mononuclear phagocytes toward an alternatively activated, anti-inflammatory state that helps it thrive against hostile immune advances. We hypothesized that modulating the IL-10/STAT3 driven anti-inflammatory effects in mononuclear cells may improve the prophylactic ability of TB vaccines. This study investigated the immunotherapeutic ability of a porphyrin based small molecule inhibitor of IL-10/STAT3 axis, 5, 15-diphenyl porphyrin (DPP), in improving anti-TB immunity offered by second generation recombinant BCG30 (rBCG30-ARMF-II®) vaccine in mice. The DPP therapy potentiated vaccine induced anti-TB immunity by down-modulating anti-inflammatory responses, while simultaneously up-regulating pro-inflammatory immune effector responses in the immunized host. The employed DPP based immunotherapy led to the predominant activation/proliferation of pro-inflammatory monocytes/macrophages/DCs, the concerted expansion of CD4+/CD8+ effector and central memory T cells, alongside balanced Th17 and Treg cell amplification, and conferred augmented resistance to aerosol Mtb challenge in rBCG30 immunized BALB/c mice.
Collapse
Affiliation(s)
- Faraz Ahmad
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nazoora Khan
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Fauzia Jamal
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Pushpa Gupta
- Bio-Safety Level (BSL)-3 Animal Experimentation Facility, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Umesh Datta Gupta
- Bio-Safety Level (BSL)-3 Animal Experimentation Facility, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Mohammad Owais
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
39
|
Mukundan S, Bhatt R, Lucas J, Tereyek M, Chang TL, Subbian S, Parekkadan B. 3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomol Concepts 2021; 12:117-128. [PMID: 34473918 DOI: 10.1515/bmc-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Tuberculosis (TB) is a global health threat that affects 10 million people worldwide. Human Immunodeficiency Virus (HIV) remains one of the major contributors to the reactivation of asymptomatic latent tuberculosis (LTBI). Over the recent years, there has been a significant focus in developing in-vitro 3D models mimicking early events of Mycobacterium tuberculosis (Mtb) pathogenesis, especially formation of the granuloma. However, these models are low throughput and require extracellular matrix. In this article, we report the generation of a matrix-free 3D model, using THP-1 human monocyte/macrophage cells and mCherry-expressing Mycobacterium bovis BCG (Bacilli Camille Guérin), henceforth referred as 3D spheroids, to study the host cell-bacterial interactions. Using mCherry-intensity-based tracking, we monitored the kinetics of BCG growth in the 3D spheroids. We also demonstrate the application of the 3D spheroids for testing anti-TB compounds such as isoniazid (INH), rifampicin (RIF), as well as a host-directed drug, everolimus (EVR) as single and combinational treatments. We further established a dual infection 3D spheroid model by coinfecting THP-1 macrophages with BCG mCherry and pseudotype HIV. In this HIV-TB co-infection model, we found an increase in BCG mCherry growth within the 3D spheroids infected with HIV pseudotype. The degree of disruption of the granuloma was proportional to the virus titers used for co-infection. In summary, this 3D spheroid assay is an useful tool to screen anti-TB response of potential candidate drugs and can be adopted to model HIV-TB interactions.
Collapse
Affiliation(s)
- Shilpaa Mukundan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - John Lucas
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - Matthew Tereyek
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854
| | - Theresa L Chang
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ 07103
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, NJ 07103
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, NJ 08854; Department of Medicine, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, NJ 08854
| |
Collapse
|
40
|
Kotze LA, Beltran CGG, Lang D, Loxton AG, Cooper S, Meiring M, Koegelenberg CFN, Allwood BW, Malherbe ST, Hiemstra AM, Glanzmann B, Kinnear C, Walzl G, du Plessis N. Establishment of a Patient-Derived, Magnetic Levitation-Based, Three-Dimensional Spheroid Granuloma Model for Human Tuberculosis. mSphere 2021; 6:e0055221. [PMID: 34287004 PMCID: PMC8386456 DOI: 10.1128/msphere.00552-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Tuberculous granulomas that develop in response to Mycobacterium tuberculosis (M. tuberculosis) infection are highly dynamic entities shaped by the host immune response and disease kinetics. Within this microenvironment, immune cell recruitment, polarization, and activation are driven not only by coexisting cell types and multicellular interactions but also by M. tuberculosis-mediated changes involving metabolic heterogeneity, epigenetic reprogramming, and rewiring of the transcriptional landscape of host cells. There is an increased appreciation of the in vivo complexity, versatility, and heterogeneity of the cellular compartment that constitutes the tuberculosis (TB) granuloma and the difficulty in translating findings from animal models to human disease. Here, we describe a novel biomimetic in vitro three-dimensional (3D) human lung spheroid granuloma model, resembling early "innate" and "adaptive" stages of the TB granuloma spectrum, and present results of histological architecture, host transcriptional characterization, mycobacteriological features, cytokine profiles, and spatial distribution of key immune cells. A range of manipulations of immune cell populations in these spheroid granulomas will allow the study of host/pathogen pathways involved in the outcome of infection, as well as pharmacological interventions. IMPORTANCE TB is a highly infectious disease, with granulomas as its hallmark. Granulomas play an important role in the control of M. tuberculosis infection and as such are crucial indicators for our understanding of host resistance to TB. Correlates of risk and protection to M. tuberculosis are still elusive, and the granuloma provides the perfect environment in which to study the immune response to infection and broaden our understanding thereof; however, human granulomas are difficult to obtain, and animal models are costly and do not always faithfully mimic human immunity. In fact, most TB research is conducted in vitro on immortalized or primary immune cells and cultured in two dimensions on flat, rigid plastic, which does not reflect in vivo characteristics. We have therefore conceived a 3D, human in vitro spheroid granuloma model which allows researchers to study features of granuloma-forming diseases in a 3D structural environment resembling in vivo granuloma architecture and cellular orientation.
Collapse
Affiliation(s)
- Leigh A. Kotze
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caroline G. G. Beltran
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dirk Lang
- Confocal and Light Microscopy Imaging Facility, University of Cape Town, Cape Town, South Africa
| | - Andre G. Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Susan Cooper
- Confocal and Light Microscopy Imaging Facility, University of Cape Town, Cape Town, South Africa
| | - Maynard Meiring
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Coenraad F. N. Koegelenberg
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Brian W. Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Stephanus T. Malherbe
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andriette M. Hiemstra
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitte Glanzmann
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Centre, Cape Town, South Africa
| | - Craig Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Centre, Cape Town, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
41
|
β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Rep 2021; 31:107634. [PMID: 32433977 PMCID: PMC7242907 DOI: 10.1016/j.celrep.2020.107634] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
β-glucan is a potent inducer of epigenetic and functional reprogramming of innate immune cells, a process called “trained immunity,” resulting in an enhanced host response against secondary infections. We investigate whether β-glucan exposure confers protection against pulmonary Mycobacterium tuberculosis (Mtb) infection. β-glucan induces trained immunity via histone modifications at gene promoters in human monocytes, which is accompanied by the enhanced production of proinflammatory cytokines upon secondary Mtb challenge and inhibition of Mtb growth. Mice treated with β-glucan are significantly protected against pulmonary Mtb infection, which is associated with the expansion of hematopoietic stem and progenitor cells in the bone marrow and increased myelopoiesis. The protective signature of β-glucan is mediated via IL-1 signaling, as β-glucan shows no protection in mice lacking a functional IL-1 receptor (IL1R−/−). The administration of β-glucan may be used as a novel strategy in the treatment of mycobacterial infections and possibly as an adjuvant to improve anti-tuberculosis vaccines. β-glucan induces protective trained immunity in human monocytes infected with Mtb β-glucan induces protective trained immunity in mice infected with Mtb β-glucan-mediated protection against Mtb is dependent on IL-1 signaling β-glucan increases expansion of hematopoietic progenitors and myelopoiesis via IL-1
Collapse
|
42
|
Queval CJ, Fearns A, Botella L, Smyth A, Schnettger L, Mitermite M, Wooff E, Villarreal-Ramos B, Garcia-Jimenez W, Heunis T, Trost M, Werling D, Salguero FJ, Gordon SV, Gutierrez MG. Macrophage-specific responses to human- and animal-adapted tubercle bacilli reveal pathogen and host factors driving multinucleated cell formation. PLoS Pathog 2021; 17:e1009410. [PMID: 33720986 PMCID: PMC7993774 DOI: 10.1371/journal.ppat.1009410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process. The identification of host and pathogen factors contributing to host-pathogen interaction is crucial to understand the pathogenesis and dissemination of tuberculosis. This is particularly the case in deciphering the mechanistic basis for host-tropism across the MTBC. Here, we show that in vitro, M. bovis but not M. tuberculosis induces multinucleated cell formation in bovine macrophages. We identified host and pathogen mechanistic drivers of multinucleated cell formation: MPB70 as the M. bovis factor and bovine macrophage extracellular vesicles. Using a cattle experimental infection model, we confirmed differential multinucleated cell formation in vivo. Thus, we have identified host and pathogen factors that contribute to host tropism in human/bovine tuberculosis. Additionally, this work provides an explanation for the long-standing association of multinucleated cells with tuberculosis pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Alicia Smyth
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Morgane Mitermite
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Esen Wooff
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Bernardo Villarreal-Ramos
- Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Waldo Garcia-Jimenez
- Department of Pathology an Infectious Diseases. School of Veterinary Medicine. University of Surrey, Guildford, United Kingdom
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield Hertfordshire, United Kingdom
| | - Francisco J. Salguero
- Department of Pathology an Infectious Diseases. School of Veterinary Medicine. University of Surrey, Guildford, United Kingdom
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, United Kingdom
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
43
|
Luo HL, Pi J, Zhang JA, Yang EZ, Xu H, Luo H, Shen L, Peng Y, Liu GB, Song CM, Li KY, Wu XJ, Zheng BY, Shen HB, Chen ZW, Xu JF. Circular RNA TRAPPC6B inhibits intracellular Mycobacterium tuberculosis growth while inducing autophagy in macrophages by targeting microRNA-874-3p. Clin Transl Immunology 2021; 10:e1254. [PMID: 33708385 PMCID: PMC7890665 DOI: 10.1002/cti2.1254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives Genetic and epigenetic mechanisms regulate antimicrobial immunity against Mycobacterium tuberculosis (Mtb) infection. Methods The present study assessed circular RNA TRAPPC6B (circTRAPPC6B) for antimicrobial immune functions and defined mechanisms wherein circTRAPPC6B regulates Mtb growth, autophagy and microRNA in macrophages. Results The Mtb infection of monocytes/macrophages resulted in a significantly decreased level of circTRAPPC6B that inhibited intracellular Mtb growth in macrophages. Conversely, circTRAPPC6B expression enhanced autophagy or autophagy-associated protein LC3-II production in Mtb-infected macrophages. circTRAPPC6B-enhanced autophagy aggregation or sequestration was also observed in fluorescence in situ hybridisation (FISH) analysis and confocal imaging. Mechanistically, circTRAPPC6B targets an inhibiting element miR-874-3p, as shown by bioinformatics, dual-luciferase reporter gene analysis and pull-down assay, respectively. Notably, miR-874-3p prohibited autophagy via suppressing autophagy protein ATG16L1 by binding to its 3'-untranslated region (UTR) in Mtb-infected macrophages and thus promoting intracellular Mtb growth. Concurrently, circTRAPPC6B enhanced autophagy in Mtb-infected macrophages by blocking the ability of miR-874-3p to inhibit ATG16L1. Thus, circTRAPPC6B antagonises the ability of miR-874-3p to suppress ATG16L1 expression and activate and enhance autophagy sequestration to restrict Mtb growth in macrophages. Conclusion The current findings suggested that both circTRAPPC6B and miR-874-3p mechanisms can be explored as potential therapeutics against Mtb infection.
Collapse
Affiliation(s)
- Hou-Long Luo
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China.,Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL USA
| | - Jiang Pi
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China.,Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL USA
| | - Jun-Ai Zhang
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - En-Zhuo Yang
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL USA
| | - Huan Xu
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - Hong Luo
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - Ling Shen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL USA
| | - Ying Peng
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - Gan-Bin Liu
- Department of Respiration Dongguan 6th Hospital Dongguan China
| | - Cai-Mei Song
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - Ke-Yue Li
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - Xian-Jin Wu
- Department of Clinical Laboratory Huizhou Municipal Central Hospital Huizhou China
| | - Bi-Ying Zheng
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| | - Hong-Bo Shen
- Clinic and Research Center of Tuberculosis Shanghai Key Lab of Tuberculosis Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai China
| | - Zheng W Chen
- Department of Microbiology and Immunology Center for Primate Biomedical Research University of Illinois College of Medicine Chicago IL USA
| | - Jun-Fa Xu
- Department of Clinical Immunology Institute of Laboratory Medicine Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics Guangdong Medical University Dongguan China
| |
Collapse
|
44
|
Ashokcoomar S, Loots DT, Beukes D, van Reenen M, Pillay B, Pillay M. M. tuberculosis curli pili (MTP) is associated with alterations in carbon, fatty acid and amino acid metabolism in a THP-1 macrophage infection model. Microb Pathog 2021; 154:104806. [PMID: 33610716 DOI: 10.1016/j.micpath.2021.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
The initial host-pathogen interaction is crucial for the establishment of infection. An improved understanding of the pathophysiology of Mycobacterium tuberculosis (M. tuberculosis) during macrophage infection can aid the development of intervention therapeutics against tuberculosis. M. tuberculosis curli pili (MTP) is a surface located adhesin, involved in the first point-of-contact between pathogen and host. This study aimed to better understand the role of MTP in modulating the intertwined metabolic pathways of M. tuberculosis and its THP-1 macrophage host. Metabolites were extracted from pelleted wet cell mass of THP-1 macrophages infected with M. tuberculosis wild-type V9124 (WT), Δmtp-deletion mutant and the mtp-complemented strains, respectively, via a whole metabolome extraction method using a 1:3:1 ratio of chloroform:methanol:water. Metabolites were detected by two-dimensional gas chromatography time-of-flight mass spectrometry. Significant metabolites were determined through univariate and multivariate statistical tests and online pathway databases. Relative to the WT, a total of nine and ten metabolites were significantly different in the Δmtp and complement strains, respectively. All nine significant metabolites were found in elevated levels in the Δmtp relative to the WT. Additionally, of the ten significant metabolites, eight were detected in lower levels and two were detected in higher levels in the complement relative to the WT. The absence of the MTP adhesin resulted in reduced virulence of M. tuberculosis leading to alterations in metabolites involved in carbon, fatty acid and amino acid metabolism during macrophage infection, suggesting that MTP plays an important role in the modulation of host metabolic activity. These findings support the prominent role of the MTP adhesin as a virulence factor as well as a promising biomarker for possible diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Shinese Ashokcoomar
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, Private Bag X6001, Box 269, 2531, South Africa.
| | - Balakrishna Pillay
- Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban. 4000, South Africa.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st Floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|
45
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
46
|
Diagnostic Value of Soluble Form of Mer Tyrosine Kinase (sMerTK) in Tuberculous Pleural Effusion and Malignant Pleural Effusion. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/1496935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objectives. With the development of proteomics, it has been indicated that differentially expressed proteins are biological markers for the diagnosis of different types of pleural effusion (PE). The aim of our study was to explore the value of sMerTK (soluble form of Mer tyrosine kinase) in the differential diagnosis of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE). In addition, we also wanted to explore whether MerTK was associated with IL-1β and TNF-α, which are inflammatory factors related to pleural effusion. Methods. We screened all patients who underwent thoracoscopy and had a definite diagnosis. In total, 136 patients were enrolled in this study and classified into two groups, with 64 patients in the TPE group and 72 patients in the MPE group. The concentrations of sMerTK in the TPE and MPE groups were detected by ELISA. The diagnostic accuracy was determined by generating receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC). Correlations between the expression level of sMerTK and those of the inflammatory factors interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were also studied using Pearson’s linear correlation analysis. Results. The concentrations of sMerTK were
and
in the TPE and MPE groups, respectively. The concentration of sMerTK in TPE was shown to be significantly higher than that in MPE (
). The area under the ROC curve for sMerTK in distinguishing TPE from MPE was 0.958, with a cutoff value of 2,122 ng/L. The sensitivity and specificity for sMerTK were 98.61% and 90.63% (
). The expression levels of sMerTK in these two groups were not correlated with those of the inflammatory factors IL-1β and TNF-α (
). Conclusions. The expression level of sMerTK in PE could be a potential biomarker for common use in the diagnosis of TPE and MPE.
Collapse
|
47
|
Nore KG, Jørgensen MJ, Dyrhol-Riise AM, Jenum S, Tonby K. Elevated Levels of Anti-Inflammatory Eicosanoids and Monocyte Heterogeneity in Mycobacterium tuberculosis Infection and Disease. Front Immunol 2020; 11:579849. [PMID: 33304347 PMCID: PMC7693556 DOI: 10.3389/fimmu.2020.579849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Eicosanoids modulate both innate and adaptive immune responses in Mycobacterium tuberculosis (Mtb) infection and have been suggested as possible Host Directed Therapy (HDT) targets, but more knowledge of eicosanoid dynamics in Mtb infection is required. We investigated the levels and ratios of eicosanoid mediators and their cellular sources, monocyte subsets and CD4 T cells in Tuberculosis (TB) patients with various clinical states of Mtb infection. Patients consenting to prospective enrolment in a TB quality registry and biorepository, 16 with pulmonary TB (before and at-end-of treatment), 14 with extrapulmonary TB and 17 latently infected (LTBI) were included. Plasma levels of Prostaglandin E2 (PGE2), Lipoxin A4 (LXA4), and Leukotriene B4 (LTB4) were measured by enzyme-linked immunosorbent assay. Monocyte subsets and CD4 T cells and their expression of Cyclooxygenase-2 (COX-2), Prostaglandin receptor EP2 (EP2), and 5-Lipoxygenase (5-LOX) were analyzed by flow cytometry with and without Purified Protein Derivate (PPD)-stimulation. Pulmonary TB patients had elevated levels of the anti-inflammatory mediator LXA4 at diagnosis compared to LTBI (p < 0.01), while levels of PGE2 and LTB4 showed no difference between clinical states of Mtb infection. LTB4 was the only mediator to be reduced upon treatment (p < 0.05), along with the ratio LTB4/LXA4 (p < 0.01). Pulmonary TB patients had higher levels of total monocytes at diagnosis compared to end-of-treatment and LTBI (both p < 0.05), and a relative increase in the classical monocyte subset. All monocyte subsets had low basal expression of COX-2 and 5-LOX, which were markedly increased upon PPD stimulation. By contrast, the expression of EP2 was reduced upon stimulation. CD4 T cells expressed low basal COX-2 activity that increased modestly upon stimulation, whereas their basal expression of 5-LOX was considerable. In conclusion, the level of eicosanoids in plasma seem to vary between clinical states of Mtb infection. Mediators in the eicosanoid system are present in monocytes and CD4 T cells. The expression of eicosanoids in monocytes are responsive to mycobacterial stimulation independent of Mtb disease state, but subsets are heterogeneous with regard to eicosanoid-mediator expression. Further exploration of eicosanoid mediators as targets for HDT in TB are warranted.
Collapse
Affiliation(s)
- Kristin Grotle Nore
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marthe Jøntvedt Jørgensen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
49
|
He W, Sun J, Zhang Q, Li Y, Fu Y, Zheng Y, Jiang X. Andrographolide exerts anti-inflammatory effects in Mycobacterium tuberculosis-infected macrophages by regulating the Notch1/Akt/NF-κB axis. J Leukoc Biol 2020; 108:1747-1764. [PMID: 32991757 DOI: 10.1002/jlb.3ma1119-584rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a serious public health problem aggravated by the slow progress in the development of new anti-tuberculosis drugs. The hyper-reactive TB patients have suffered from chronic inflammation which could cause deleterious effects on their bodies. Therefore, it is imperative to develop an adjunctive therapy based on inflammatory modulation during Mycobacterium tuberculosis (Mtb) infection. The present study aims to investigate the immune regulatory effects of Andrographolide (Andro) on Mtb-infected macrophages and its underlying mechanisms. The results showed that Andro inhibits the production of IL-1β and other inflammatory cytokines in a dose-dependent manner. The down-regulation of IL-1β expression causes the declining expression of IL-8 and MCP-1 in lung epithelial cells which were co-cultured with Mtb-infected macrophages. The inhibition of the activation of NF-κB pathway, but not the inhibition of MAPK signaling pathway, accounts for the anti-inflammatory role of Andro. Further studies elucidated that Andro could evoke the activation of autophagy to degrade NLRP3, which ultimately inhibited inflammasome activation and subsequent IL-1β production. Finally, the relevant results demonstrated that Andro inhibited the Notch1 pathway to down-regulate the phosphorylation of Akt/mTOR and NF-κB p65 subunit. Taken together, Andro has been found to suppress the Notch1/Akt/NF-κB signaling pathway. Both Akt inhibition-induced autophagy and inhibition of the NF-κB pathway contributed to restraining the activation of NLRP3 inflammasome and subsequent IL-1β production. Then, the decreased production of IL-1β influenced chemokine expression in lung epithelial cells. Based on these results, anti-inflammatory effect of Andro in TB infection is merit further investigation.
Collapse
Affiliation(s)
- Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Department of Inspection and Quarantine, School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P.R. China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| |
Collapse
|
50
|
Graff P, Larsson J, Bryngelsson IL, Wiebert P, Vihlborg P. Sarcoidosis and silica dust exposure among men in Sweden: a case-control study. BMJ Open 2020; 10:e038926. [PMID: 32883739 PMCID: PMC7473614 DOI: 10.1136/bmjopen-2020-038926] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether occupational exposure to silica dust is associated with an increased risk of developing sarcoidosis. DESIGN Case-control study of all individuals between 20 and 65 years of age diagnosed with sarcoidosis (D86) in Sweden between 2007 and 2016. Controls were matched to cases (2:1) based on age, sex and county at the time of diagnosis. A Job Exposure Matrix was used to estimate the occupational silica exposure of all cases and controls. SETTING Medical and occupational data from the National Outpatient Register were used to implement a case-control analysis, while the two controls used for each case were selected from the National Register of the Total Population. Information about occupation and time of employment were collected from the Swedish Occupational Register. PARTICIPANTS All men and women aged 20-65 years old who were diagnosed sarcoidosis (D86) from 2007 to 2016 were included and assigned two controls. MAIN OUTCOMES Silica dust exposure correlates with an increased risk of developing sarcoidosis in men. RESULTS The prevalence of silica exposure at work was statistically significantly higher among male cases than controls (OR 1.27, 95% CI 1.13 to 1.43). For men of an age of 35 years or younger the correlation seems to be stronger (OR 1.48, 95% CI 1.1 to 1.87) than in older men (OR 1.21, 95% CI 1.05 to 1.39). For men older than 35 with exposure to silica the prevalence of sarcoidosis increased with the exposure time, with an OR of 1.44 (95% CI 1.04 to 2.00) for exposure of more than 10 years. CONCLUSIONS Occupational exposure to silica dust seems to increase the risk of sarcoidosis among men between 20 and 65 years of age. The risk is higher among exposed men 35 years or younger and older men with longer exposure (>6 years).
Collapse
Affiliation(s)
- Pål Graff
- Department of Chemical and Biological Work Environment, STAMI, Oslo, Norway
| | - Johanna Larsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Pernilla Wiebert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Vihlborg
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Odensbackens Health Center, Örebro, Sweden
| |
Collapse
|