1
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Exploring the contribution of the salivary gland and midgut to digestion in the swede midge (Contarinia nasturtii) through a genomics-guided approach. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22135. [PMID: 39038196 DOI: 10.1002/arch.22135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The larvae of Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), the swede midge, targets the meristem of brassica crops where they induce the formation of galls and disrupt seed and vegetable production. Previously, we examined the salivary gland transcriptome of newly-hatched first instar larvae as they penetrated the host and initiated gall formation. Here we examine the salivary gland and midgut transcriptome of third instar larvae and provide evidence for cooperative nutrient acquisition beginning with secretion of enzymes and feeding facilitators followed by gastrointestinal digestion. Sucrose, presumably obtained from the phloem, appeared to be a major nutrient source as several α-glucosidases (sucrases, maltases) and β-fructofuranosidases (invertases) were identified. Genes encoding β-fructofuranosidases/invertases were among the most highly expressed in both tissues and represented two distinct gene families that may have originated via horizontal gene transfer from bacteria. The importance of the phloem as a nutrient source is underscored by the expression of genes encoding regucalcin and ARMET (arginine-rich mutated in early stages of tumor) which interfere with calcium signalling and prevent sieve tube occlusion. Lipids, proteins, and starch appear to serve as a secondary nutrient sources. Genes encoding enzymes involved in the detoxification of glucosinolates (myrosinases, arylsulfatases, and glutathione-S-transferases) were expressed indicative of Brassicaceae host specialization. The midgut expressed simple peritrophins and mucins typical of those found in Type II peritrophic matrices, the first such description for a gall midge.
Collapse
Affiliation(s)
- Boyd A Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Martin A Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Liu Q, He Q, Yi X, Zhang J, Gao H, Liu X. Uptake, accumulation and translocation mechanisms of organophosphate esters in cucumber (Cucumis sativus) following foliar exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169462. [PMID: 38141974 DOI: 10.1016/j.scitotenv.2023.169462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Organophosphate esters (OPEs) have been frequently detected in crops. However, few studies have focused on the uptake and translocation of OPEs in plants following foliar exposure. Herein, to investigate the foliar uptake, accumulation and translocation mechanisms of OPEs in plant, the cucumber (Cucumis sativus) was selected as a model plant for OPEs exposure via foliar application under control conditions. The results showed that the content of OPEs in the leaf cuticle was higher than that in the mesophyll on exposed leaf. Significant positive correlations were observed between the content of OPEs in the leaf cuticle and their log Kow and log Kcw values (P < 0.01), suggesting that OPEs with high hydrophobicity could not easily move from the cuticle to the mesophyll. The moderately hydrophobic OPEs, such as tris (2-chloroisopropyl) phosphate (TCPP, log Kow = 2.59), were more likely to move not only from the cuticle to the mesophyll but also from the mesophyll to the phloem. The majority of the transported OPEs accumulated in younger leaves (32-45 %), indicating that younger tissue was the primary target organ for OPEs accumulation after foliar exposure. Compared to chlorinated OPEs (except TCPP) and aryl OPEs, alkyl OPEs exhibited the strongest transport capacity in cucumber seedling due to their high hydrophilicity. Interestingly, tri-p-cresyl phosphate was found to be more prone to translocation compared to tri-m-cresyl phosphate and tri-o-cresyl phosphate, despite having same molecular weight and similar log Kow value. These results can contribute to our understanding of foliar uptake and translocation mechanism of OPEs by plant.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qing He
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyue Yi
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jie Zhang
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huixian Gao
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xianbin Liu
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Yang W, Liu W, Niu K, Ma X, Jia Z, Ma H, Wang Y, Liu M. Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in Poa pratensis. DNA Cell Biol 2022; 41:151-168. [PMID: 34813368 DOI: 10.1089/dna.2021.0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A strong rhizome can enhance the ability of a plant to resist drought, low temperature, and other stresses, as it can help plants rapidly obtain water and nutrients. Poa pratensis var. anceps Gaud. cv. Qinghai (QH) is a variant of P. pratensis that is widely distributed in natural grasslands above 3000 m above sea level on the Qinghai-Tibet Plateau. It forms turf easily and has strong soil-fixing ability due to its well-developed rhizomes. Understanding the molecular mechanism of rhizome development in this species is essential for cultivating new varieties of rhizome-type pasture for ecological protection. To clarify the transcriptional regulatory changes in different parts of the rhizome, we analyzed three different rhizome parts (rhizome buds, rhizome nodes, and rhizome internodes) of QH and weak-rhizome wild P. pratensis material (SN) using RNA sequencing. A total of 3806 genes were specifically expressed in Q_B, 1104 genes were specifically expressed in Q_N, and 1181 genes were specifically expressed in Q_I. Analysis showed that MYB, B3, NAC, BBR-BPC, AP2 MIKC_MADS, BSE1, and C2H2 may be key transcription factors regulating rhizome development. These genes interacted with multiple functional genes related to carbohydrate, secondary metabolism, and signal transduction, thus ensuring the normal development of the rhizomes. In particular, SUS (sucrose synthase) [EC:2.4.1.13] is specifically expressed in Q_I, which may be an inducing factor for the production of new plants from Q_B and Q_N. Additionally, PYL, PP2C, and SNRK2, which are involved in the abscisic acid signaling pathway, were differentially expressed in Q_N. In addition, genes related to protein modification and degradation, such as CIPKs, MAPKs, E2, and E3 ubiquitin ligases, were also involved in rhizome development. This study laid a foundation for further functional genomics studies on rhizome development in P. pratensis.
Collapse
Affiliation(s)
- Wei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Xiang Ma
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Zhifeng Jia
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Minjie Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| |
Collapse
|
4
|
Stallmann J, Pons CAA, Schweiger R, Müller C. Time point- and plant part-specific changes in phloem exudate metabolites of leaves and ears of wheat in response to drought and effects on aphids. PLoS One 2022; 17:e0262671. [PMID: 35077467 PMCID: PMC8789166 DOI: 10.1371/journal.pone.0262671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Alterations in the frequency and intensity of drought events are expected due to climate change and might have consequences for plant metabolism and the development of plant antagonists. In this study, the responses of spring wheat (Triticum aestivum) and one of its major pests, the aphid Sitobion avenae, to different drought regimes were investigated, considering different time points and plant parts. Plants were kept well-watered or subjected to either continuous or pulsed drought. Phloem exudates were collected twice from leaves and once from ears during the growth period and concentrations of amino acids, organic acids and sugars were determined. Population growth and survival of the aphid S. avenae were monitored on these plant parts. Relative concentrations of metabolites in the phloem exudates varied with the time point, the plant part as well as the irrigation regime. Pronounced increases in relative concentrations were found for proline, especially in pulsed drought-stressed plants. Moreover, relative concentrations of sucrose were lower in phloem exudates of ears than in those of leaves. The population growth and survival of aphids were decreased on plants subjected to drought and populations grew twice as large on ears compared to leaves. Our study revealed that changes in irrigation frequency and intensity modulate plant-aphid interactions. These effects may at least partly be mediated by changes in the metabolic composition of the phloem sap.
Collapse
Affiliation(s)
- Jana Stallmann
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Analysis of Global Gene Expression in Maize (Zea mays) Vegetative and Reproductive Tissues That Differ in Accumulation of Starch and Sucrose. PLANTS 2022; 11:plants11030238. [PMID: 35161219 PMCID: PMC8838981 DOI: 10.3390/plants11030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Carbon allocation between vegetative and reproductive tissues impacts cereal grain production. Despite great agricultural importance, sink–source relationships have not been fully characterized at the early reproductive stages in maize. Here, we quantify the accumulation of non-structural carbohydrates and patterns of gene expression in the top internode of the stem and the female inflorescence of maize at the onset of grain filling (reproductive stage R1). Top internode stem and female inflorescence tissues of the Puma maize inbred line were collected at reproductive stage R1 (without pollination) and non-structural carbohydrates were quantified by spectrophotometry. The female inflorescence accumulated starch at higher levels than the top internode of the stem. Global mRNA transcript levels were then evaluated in both tissues by RNA sequencing. Gene expression analysis identified 491 genes differentially expressed between the female inflorescence and the top stem internode. Gene ontology classification of differentially expressed genes showed enrichment for sucrose synthesis, the light-dependent reactions of photosynthesis, and transmembrane transporters. Our results suggest that sugar transporters play a key role in sugar partitioning in the maize stem and reveal previously uncharacterized differences between the female inflorescence and the top internode of the stem at early reproductive stages.
Collapse
|
6
|
Stallmann J, Schweiger R. Effects of Arbuscular Mycorrhiza on Primary Metabolites in Phloem Exudates of Plantago major and Poa annua and on a Generalist Aphid. Int J Mol Sci 2021; 22:ijms222313086. [PMID: 34884890 PMCID: PMC8658434 DOI: 10.3390/ijms222313086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022] Open
Abstract
Arbuscular mycorrhiza (AM), i.e., the interaction of plants with arbuscular mycorrhizal fungi (AMF), often influences plant growth, physiology, and metabolism. Effects of AM on the metabolic composition of plant phloem sap may affect aphids. We investigated the impacts of AM on primary metabolites in phloem exudates of the plant species Plantago major and Poa annua and on the aphid Myzus persicae. Plants were grown without or with a generalist AMF species, leaf phloem exudates were collected, and primary metabolites were measured. Additionally, the performance of M. persicae on control and mycorrhizal plants of both species was assessed. While the plant species differed largely in the relative proportions of primary metabolites in their phloem exudates, metabolic effects of AM were less pronounced. Slightly higher proportions of sucrose and shifts in proportions of some amino acids in mycorrhizal plants indicated changes in phloem upload and resource allocation patterns within the plants. Aphids showed a higher performance on P. annua than on P. major. AM negatively affected the survival of aphids on P. major, whereas positive effects of AM were found on P. annua in a subsequent generation. Next to other factors, the metabolic composition of the phloem exudates may partly explain these findings.
Collapse
|
7
|
Blicharz S, Beemster GT, Ragni L, De Diego N, Spíchal L, Hernándiz AE, Marczak Ł, Olszak M, Perlikowski D, Kosmala A, Malinowski R. Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1338-1355. [PMID: 33738886 PMCID: PMC8360158 DOI: 10.1111/tpj.15240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 05/31/2023]
Abstract
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.
Collapse
Affiliation(s)
- Sara Blicharz
- Integrative Plant Biology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| | - Gerrit T.S. Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES)Department of BiologyUniversity of AntwerpGroenenborgerlaan 171Antwerpen2020Belgium
| | - Laura Ragni
- ZMBP‐Center for Plant Molecular BiologyUniversity of TübingenTübingenGermany
| | - Nuria De Diego
- Department of Chemical Biology and GeneticsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Lukas Spíchal
- Department of Chemical Biology and GeneticsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Alba E. Hernándiz
- Department of Chemical Biology and GeneticsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of SciencesNoskowskiego 12/14Poznan61‐704Poland
| | - Marcin Olszak
- Department of Plant BiochemistryInstitute of Biochemistry and Biophysics Polish Academy of Sciencesul. Pawińskiego 5aWarsaw02‐106Poland
| | - Dawid Perlikowski
- Plant Physiology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| | - Arkadiusz Kosmala
- Plant Physiology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| | - Robert Malinowski
- Integrative Plant Biology TeamInstitute of Plant Genetics Polish Academy of Sciencesul. Strzeszyńska 34Poznań60‐479Poland
| |
Collapse
|
8
|
Gyan NM, Yaakov B, Weinblum N, Singh A, Cna’ani A, Ben-Zeev S, Saranga Y, Tzin V. Variation Between Three Eragrostis tef Accessions in Defense Responses to Rhopalosiphum padi Aphid Infestation. FRONTIERS IN PLANT SCIENCE 2020; 11:598483. [PMID: 33363559 PMCID: PMC7752923 DOI: 10.3389/fpls.2020.598483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 05/12/2023]
Abstract
Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.
Collapse
Affiliation(s)
- Nathan M. Gyan
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nati Weinblum
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Alon Cna’ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Shiran Ben-Zeev
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| |
Collapse
|
9
|
Aliche EB, Prusova-Bourke A, Ruiz-Sanchez M, Oortwijn M, Gerkema E, Van As H, Visser RGF, van der Linden CG. Morphological and physiological responses of the potato stem transport tissues to dehydration stress. PLANTA 2020; 251:45. [PMID: 31915930 DOI: 10.1007/s00425-019-03336-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/24/2019] [Indexed: 05/21/2023]
Abstract
Adaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied. In this study, we investigated the response of the stem tissues of cultivated potato grown in the greenhouse to dehydration using a multidisciplinary approach including physiological, biochemical, morphological, microscopic, and magnetic resonance imaging techniques. We observed the most significant effects of water limitation in the lower stem regions of plants. The light microscopy analysis of the potato stem sections revealed that plants exposed to this particular dehydration stress have higher total xylem density per unit area than control plants. This increase in the total xylem density was accompanied by an increase in the number of narrow-diameter xylem vessels and a decrease in the number of large-diameter xylem vessels. Our MRI approach revealed a diurnal rhythm of xylem flux between day and night, with a reduction in xylem flux that is linked to dehydration sensitivity. We also observed that sink strength was the main driver of assimilate transport through the stem in our data set. These findings may present potential breeding targets for drought tolerance in potato.
Collapse
Affiliation(s)
- Ernest B Aliche
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Alena Prusova-Bourke
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Mariam Ruiz-Sanchez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Marian Oortwijn
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Edo Gerkema
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - C Gerard van der Linden
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Aliche EB, Theeuwen TPJM, Oortwijn M, Visser RGF, van der Linden CG. Carbon partitioning mechanisms in POTATO under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:211-219. [PMID: 31756607 DOI: 10.1016/j.plaphy.2019.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 05/23/2023]
Abstract
Potato (Solanum tuberosum) is an important food crop consumed all over the world, but it is generally sensitive to drought conditions. One of the major physiological processes affected by drought stress is carbon partitioning: the plant's choice of where to allocate its photoassimilates. Our aim was to investigate the molecular factors and possible bottlenecks affecting carbon partitioning during drought. We studied potato cultivars with contrasting drought responses in the greenhouse in the years 2013-2015, and further investigated the expression of genes involved in carbon partitioning and metabolite levels. Our results indicate that one of the most severe effects of drought stress on potato is the arrest of stolon differentiation and formation of tubers. We also identified some physiological traits like stomatal conductance and chlorophyll content as affecting carbon assimilation, partitioning and eventual tuber yield. The gene expressions and biochemical analyses highlight the various tissues prioritized by the plant for assimilate transport during drought stress, and give indications of what distinguishes drought tolerance and sensitivity of cultivated potato. Some of the key genes studied (like Sucrose synthase and Sucrose transporters) may be inclusive breeding targets for drought tolerance in potato.
Collapse
Affiliation(s)
- Ernest B Aliche
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands; Graduate School Experimental Plant Sciences, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Tom P J M Theeuwen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Marian Oortwijn
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - C Gerard van der Linden
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Studying Phloem Loading with EDTA-Facilitated Phloem Exudate Collection and Analysis. Methods Mol Biol 2019. [PMID: 31197791 DOI: 10.1007/978-1-4939-9562-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Sugars that are produced by photosynthesis in the leaves are transported in the phloem to heterotrophic sink tissues like roots, fruit, or flowers. Since sugars inside the highly specialized cells of the phloem move by bulk flow, it is the loading and unloading of sugars that determines the rates of allocation between organs. Here, a method is described for the relative quantification of sugars that are loaded into the phloem in leaves. It is based on EDTA-facilitated phloem exudate collection and, therefore, requires control experiments to exclude measurement artifacts. It can be applied to a wide range of plant species, including dicots, monocots, and trees.
Collapse
|
12
|
Smith MR, Merchant A. Limitations to using phloem sap to assess tree water and nutrient status. TREE PHYSIOLOGY 2019; 39:332-339. [PMID: 30551158 DOI: 10.1093/treephys/tpy132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Rapid, reliable tools are needed to infer physiological and nutritional health for managing forest systems. Understanding the processes governing tree health is central to the development of these tools. Non-foliar approaches such as the collection of phloem sap reflect processes governing both the use and acquisition of plant water and nutrients at a wide range of temporal (diurnal to seasonal) and spatial (canopy) scales. Despite this, phloem sap is not commonly employed due to an incomplete understanding of transport and post-photosynthetic processes and their effects on chemical concentrations and carbon isotope discrimination. We highlight the need to characterize the influences of storage, remobilization and transport on the concentrations of metabolites to address the time and spatial decoupling of phloem contents to that of environmental stimuli. A conceptual framework is suggested to focus research on key phenomena regarding metabolite transport and highlight significant advantages, misconceptions and limitations to its application.
Collapse
Affiliation(s)
- Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW, Australia
| | - A Merchant
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW, Australia
| |
Collapse
|
13
|
Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, Eler K, Vodnik D. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. TREE PHYSIOLOGY 2019; 39:222-233. [PMID: 30239939 DOI: 10.1093/treephys/tpy101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Non-structural carbohydrates (NSCs, i.e., starch and soluble sugars) are frequently quantified in the context of tree response to stressful events (e.g., drought), because they serve as a carbon reservoir for growth and respiration, as well as providing a critical osmotic function to maintain turgor and vascular transport under different environmental conditions. We investigated the impact of soil water availability on intra-annual leaf phenology, radial growth dynamics and variation in NSC amounts in the stem of pubescent oak (Quercus pubescens Willd.). from a sub-Mediterranean region. For this purpose, trees growing at two nearby plots differing in bedrock and, consequently, soil characteristics (F-eutric cambisol on eocene flysch bedrock and L-rendzic leptosol on paleogenic limestone bedrock) were sampled. Non-structural carbohydrates were analysed in outer xylem and living phloem (separately for non-collapsed and collapsed parts). Results showed that xylem and phloem increments were 41.6% and 21.2%, respectively, wider in trees from F plot due to a higher rate of cell production. In contrast, the amount of NSCs and of soluble sugars significantly differed among the tissue parts and sampling dates but not between the two plots. Starch amounts were the highest in xylem, which could be explained by the abundance of xylem parenchyma cells. Two clear seasonal peaks of the starch amount were detected in all tissues, the first in September-November, in the period of leaf colouring and falling, and the second in March-April, i.e., at the onset of cambial cell production followed by bud development. The amounts of free sugars were highest in inner phloem + cambium, at the sites of active growth. Soil water availability substantially influenced secondary growth in the stem of Q. pubescens, whereas NSC amounts seemed to be less affected. The results show how the intricate relationships between soil properties, such as water availability, and tree performance should be considered when studying the impact of stressful events on the growth and functioning of trees.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Saša Zavadlav
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tuula Jyske
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Tapio Laakso
- Natural Resources Institute Finland, Production Systems Unit, Biomass Properties and Characterization, Tietotie 2, Espoo, Finland
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, Ljubljana, Slovenia
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| |
Collapse
|
14
|
Abstract
Phytoplasmas colonize specifically the phloem sieve elements (SEs) of plants and influence effectively the plant physiology. To study and understand the interaction of phytoplasmas and host plants an access to the cellular, microscale volume of SEs is demanded. Different methods are suitable to collect phloem sap of phytoplasma-infected plants. The two most common methods are the EDTA-facilitated exudation and the stylectomy. For the EDTA-facilitated method, the cut end of a leaf is placed into an EDTA solution. The EDTA prevents and avoids the Ca2+ dependent (re-) occlusion of SEs by binding Ca2+ ions and the mass flow of SEs is restarted which results in an outflow of the SE content into the EDTA bathing solution. The advantage is on the one hand a simple application and secondly, feasible for all plant species.The stylectomy method requires piercing-sucking insects like any aphids. During phloem-sap ingestion, the stylet is severed by a microcautery device or a laser from the insect body. Due to the high turgor pressure of the SEs the phloem sap is forced out through the remaining stylet and can be collected with a glass capillary, for example. The stylectomy delivers pure phloem sap, however, the collected volumes are in the range of nano liters and the temporal and staff costs are tremendous. A third method is the spontaneous exudation in phytoplasma-infected apple trees providing only in springtime large volumes of vascular sap after cutting along the bark. For the spontaneous exudation the proportion of phloem sap is unclear. Thus, this third method still needs a closer examination in prospective surveys.
Collapse
|
15
|
Juárez-Colunga S, López-González C, Morales-Elías NC, Massange-Sánchez JA, Trachsel S, Tiessen A. Genome-wide analysis of the invertase gene family from maize. PLANT MOLECULAR BIOLOGY 2018; 97:385-406. [PMID: 29948658 DOI: 10.1007/s11103-018-0746-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/04/2018] [Indexed: 05/14/2023]
Abstract
The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.
Collapse
Affiliation(s)
- Sheila Juárez-Colunga
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
| | - Cristal López-González
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
| | - Norma Cecilia Morales-Elías
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
| | - Julio Armando Massange-Sánchez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico
- KWS Group, Grimsehlstrasse 31, 37574, Einbeck, Germany
| | - Samuel Trachsel
- Global Maize Program, Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), Km 45 Carretera Mexico-Veracruz, El Batán, 56130, Texcoco, State Of Mexico, Mexico
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Axel Tiessen
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km 9.6 Libramiento Norte, Irapuato, C.P. 36824, Guanajuato, Mexico.
| |
Collapse
|
16
|
Bessho-Uehara K, Nugroho JE, Kondo H, Angeles-Shim RB, Ashikari M. Sucrose affects the developmental transition of rhizomes in Oryza longistaminata. JOURNAL OF PLANT RESEARCH 2018; 131:693-707. [PMID: 29740707 PMCID: PMC6488557 DOI: 10.1007/s10265-018-1033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/08/2018] [Indexed: 05/29/2023]
Abstract
Oryza longistaminata, the African wild rice, can propagate vegetatively through rhizomes. Rhizomes elongate horizontally underground as sink organs, however, they undergo a developmental transition that shifts their growth to the surface of the ground to become aerial stems. This particular stage is essential for the establishment of new ramets. While several determinants such as abiotic stimuli and plant hormones have been reported as key factors effecting developmental transition in aerial stem, the cause of this phenomenon in rhizome remains elusive. This study shows that depletion of nutrients, particularly sucrose, is the key stimulus that induces the developmental transition in rhizomes, as indicated by the gradient of sugars from the base to the tip of the rhizome. Sugar treatments revealed that sucrose specifically represses the developmental transition from rhizome to aerial stem by inhibiting the expression of sugar metabolism and hormone synthesis genes at the bending point. Sucrose depletion affected several factors contributing to the developmental transition of rhizome including signal transduction, transcriptional regulation and plant hormone balance.
Collapse
Affiliation(s)
- Kanako Bessho-Uehara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Jovano Erris Nugroho
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Hirono Kondo
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Rosalyn B Angeles-Shim
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
17
|
Brauner K, Birami B, Brauner HA, Heyer AG. Diurnal periodicity of assimilate transport shapes resource allocation and whole-plant carbon balance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:776-789. [PMID: 29575337 DOI: 10.1111/tpj.13898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Whole-plant carbon balance comprises diurnal fluctuations of photosynthetic carbon gain and respiratory losses, as well as partitioning of assimilates between phototrophic and heterotrophic organs. Because it is difficult to access, the root system is frequently neglected in growth models, or its metabolism is rated based on generalizations from other organs. Here, whole-plant cuvettes were used for investigating total-plant carbon exchange with the environment over full diurnal cycles. Dynamics of primary metabolism and diurnally resolved phloem exudation profiles, as proxy of assimilate transport, were combined to obtain a full picture of resource allocation. This uncovered a strong impact of periodicity of inter-organ transport on the efficiency of carbon gain. While a sinusoidal fluctuation of the transport rate, with minor diel deflections, minimized respiratory losses in Arabidopsis wild-type plants, triangular or rectangular patterns of transport, found in mutants defective in either starch or sucrose metabolism, increased root respiration at the end or beginning of the day, respectively. Power spectral density and cross-correlation analysis revealed that only the rate of starch synthesis was strictly correlated to the rate of net photosynthesis in wild-type, while in a sucrose-phosphate synthase mutant (spsa1), this applied also to carboxylate synthesis, serving as an alternative carbon pool. In the starchless mutant of plastidial phospho-gluco mutase (pgm), none of these rates, but concentrations of sucrose and glucose in the root, followed the pattern of photosynthesis, indicating direct transduction of shoot sugar levels to the root. The results demonstrate that starch metabolism alone is insufficient to buffer diurnal fluctuations of carbon exchange.
Collapse
Affiliation(s)
- Katrin Brauner
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| | - Benjamin Birami
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| | - Horst A Brauner
- Institute of Electrical Engineering and Informatics, DHBW Ravensburg, Marienplatz 2, Ravensburg, 88212, Germany
| | - Arnd G Heyer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| |
Collapse
|
18
|
Watkins OC, Joyce NI, Gould N, Perry NB. Glycosides of the Neurotoxin Tutin in Toxic Honeys Are from Coriaria arborea Phloem Sap, Not Insect Metabolism. JOURNAL OF NATURAL PRODUCTS 2018; 81:1116-1120. [PMID: 29504746 DOI: 10.1021/acs.jnatprod.8b00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Some honeys contain the neurotoxin tutin (1) plus hyenanchin (2), 2-(β-d-glucopyranosyl)tutin (3), and 2-[6'-(α-d-glucopyranosyl)-β-d-glucopyranosyl]tutin (4). These honeys are made by bees collecting honeydew from passionvine hoppers feeding on the sap of tutu plants ( Coriaria spp.). We report a LC-MS study showing that all these picrotoxanes are of plant, not insect, origin. Hyenanchin was barely detectable and the diglucoside was not detectable in C. arborea leaves, but tutu phloem sap contained all four compounds at concentrations up to the highest found in honeydew. It is proposed that the diglucoside may function as a transport form of tutin, analogous to sucrose transport in phloem.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Chemistry , University of Otago , P.O. Box 56, Dunedin , New Zealand
| | - Nigel I Joyce
- The New Zealand Institute for Plant & Food Research Limited , Private Bag 4704, Christchurch , New Zealand
| | - Nick Gould
- The New Zealand Institute for Plant & Food Research Limited , RD 2, Te Puke , New Zealand
| | - Nigel B Perry
- The New Zealand Institute for Plant & Food Research Limited, Department of Chemistry, University of Otago , P.O. Box 56, Dunedin , New Zealand
| |
Collapse
|
19
|
Yadav UP, Khadilkar AS, Shaikh MA, Turgeon R, Ayre BG. Assessing Rates of Long-distance Carbon Transport in Arabidopsis by Collecting Phloem Exudations into EDTA Solutions after Photosynthetic Labeling with [ 14C]CO 2. Bio Protoc 2017; 7:e2656. [PMID: 34595316 PMCID: PMC8438384 DOI: 10.21769/bioprotoc.2656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/11/2017] [Accepted: 11/28/2017] [Indexed: 11/02/2022] Open
Abstract
Phloem loading and transport of photoassimilate from photoautotrophic source leaves to heterotrophic sink organs are essential physiological processes that help the disparate organs of a plant function as a single, unified organism. We present three protocols we routinely use in combination with each other to assess (1) the relative rates of sucrose (Suc) loading into the phloem vascular system of mature leaves ( Yadav et al., 2017a ), (2) the relative rates of carbon loading and transport through the phloem (this protocol), and (3) the relative rates of carbon unloading into heterotrophic sink organs, specifically roots, after long-distance transport ( Yadav et al., 2017b ), We propose that conducting all three protocols on experimental and control plants provides a reliable comparison of whole-plant carbon partitioning, and minimizes ambiguities associated with a single protocol conducted in isolation ( Dasgupta et al., 2014 ; Khadilkar et al., 2016 ). In this protocol, [14C]CO2 is photoassimilated in source leaves and phloem loading and transport of photoassimilate is quantified by collecting phloem exudates into an EDTA solution followed by scintillation counting.
Collapse
Affiliation(s)
- Umesh P Yadav
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Aswad S Khadilkar
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Mearaj A Shaikh
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Robert Turgeon
- Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Brian G Ayre
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
20
|
Stolpe C, Giehren F, Krämer U, Müller C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. PHYTOCHEMISTRY 2017; 139:109-117. [PMID: 28437705 DOI: 10.1016/j.phytochem.2017.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 05/28/2023]
Abstract
Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences.
Collapse
Affiliation(s)
- Clemens Stolpe
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Franziska Giehren
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
21
|
Zhang Y, Keller M. Discharge of surplus phloem water may be required for normal grape ripening. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:585-595. [PMID: 28082510 PMCID: PMC5444433 DOI: 10.1093/jxb/erw476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
At the onset of ripening, some fleshy fruits shift the dominant water import pathway from the xylem to the phloem, but the cause for the decline in xylem inflow remains obscure. This study found that xylem-mobile dye movement into grape berries decreased despite transient increases in berry growth and transpiration during early ripening, whereas outward dye movement continued unless the roots were pressurized. Modeling berry vascular flows using measurements of pedicel phloem sap sugar concentration, berry growth, solute accumulation, and transpiration showed that a fraction of phloem-derived water was used for berry growth and transpiration; the surplus was recirculated via the xylem. Changing phloem sap sugar concentration to a much higher published value led to model simulations predicting xylem inflow or backflow depending on the developmental stage and genotype. Mathematically preventing net xylem flow resulted in large variations in phloem sap sugar concentration in pedicels serving neighboring berries on the same fruit cluster. Moreover, restricting water discharge via the xylem and/or across the skin impaired berry solute accumulation and color change. Collectively, these results indicate that discharge of surplus phloem water via berry transpiration and/or xylem backflow may be necessary to facilitate normal grape ripening.
Collapse
Affiliation(s)
- Yun Zhang
- Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA, USA
| | - Markus Keller
- Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA, USA
| |
Collapse
|
22
|
Yesbergenova-Cuny Z, Dinant S, Martin-Magniette ML, Quilleré I, Armengaud P, Monfalet P, Lea PJ, Hirel B. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:347-357. [PMID: 27717471 DOI: 10.1016/j.plantsci.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine.
Collapse
Affiliation(s)
- Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Patrick Armengaud
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Priscilla Monfalet
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France; UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France.
| |
Collapse
|
23
|
Smith M, Wild B, Richter A, Simonin K, Merchant A. Carbon Isotope Composition of Carbohydrates and Polyols in Leaf and Phloem Sap of Phaseolus vulgaris L. Influences Predictions of Plant Water Use Efficiency. PLANT & CELL PHYSIOLOGY 2016; 57:1756-1766. [PMID: 27335348 DOI: 10.1093/pcp/pcw099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/06/2016] [Indexed: 06/06/2023]
Abstract
The use of carbon isotope abundance (δ(13)C) to assess plant carbon acquisition and water use has significant potential for use in crop management and plant improvement programs. Utilizing Phaseolus vulgaris L. as a model system, this study demonstrates the occurrence and sensitivity of carbon isotope fractionation during the onset of abiotic stresses between leaf and phloem carbon pools. In addition to gas exchange data, compound-specific measures of carbon isotope abundance and concentrations of soluble components of phloem sap were compared with major carbohydrate and sugar alcohol pools in leaf tissue. Differences in both δ(13)C and concentration of metabolites were found in leaf and phloem tissues, the magnitude of which responded to changing environmental conditions. These changes have inplications for the modeling of leaf-level gas exchange based upon δ(13)C natural abundance. Estimates of δ(13)C of low molecular weight carbohydrates and polyols increased the precision of predictions of water use efficiency compared with those based on bulk soluble carbon. The use of this technique requires consideration of the dynamics of the δ(13)C pool under investigation. Understanding the dynamics of changes in δ(13)C during movement and incorporation into heterotrophic tissues is vital for the continued development of tools that provide information on plant physiological performance relating to water use.
Collapse
Affiliation(s)
- Millicent Smith
- Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney NSW, Australia 2006
| | - Birgit Wild
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria 1090
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria 1090
| | - Kevin Simonin
- Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney NSW, Australia 2006 Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Andrew Merchant
- Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney NSW, Australia 2006
| |
Collapse
|
24
|
Morkunas I, Woźniak A, Formela M, Mai VC, Marczak Ł, Narożna D, Borowiak-Sobkowiak B, Kühn C, Grimm B. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. PROTOPLASMA 2016; 253:1063-79. [PMID: 26239447 DOI: 10.1007/s00709-015-0865-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/23/2015] [Indexed: 05/25/2023]
Abstract
The perception of aphid infestation induces highly coordinated and sequential defensive reactions in plants at the cellular and molecular levels. The aim of the study was to explore kinetics of induced antioxidative defence responses in leaf cells of Pisum sativum L.cv. Cysterski upon infestation of the pea aphid Acyrthosiphon pisum at varying population sizes, including accumulation of flavonoids, changes of carbon metabolism, and expression of nuclear genes involved in sugar transport. Within the first 96 h, after A. pisum infestation, flavonoid accumulation and increased peroxidase activity were observed in leaves. The level of pisatin increased after 48 h of infestation and reached a maximum at 96 h. At this time point, a higher concentration of flavonols was observed in the infested tissue than in the control. Additionally, strong post-infestation accumulation of chalcone synthase (CHS) and isoflavone synthase (IFS) transcription products was also found. The levels of sucrose and fructose in 24-h leaves infested by 10, 20, and 30 aphids were significantly lower than in the control. Moreover, in leaves infested by 30 aphids, the reduced sucrose level observed up to 48 h was accompanied by a considerable increase in the expression level of the PsSUT1 gene encoding the sucrose transporter. In conclusion, A. pisum infestation on pea leads to stimulation of metabolic pathways associated with defence.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| | - Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Magda Formela
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
- Department of Plant Physiology, Vinh University, Le Duan 182, Vinh city, Vietnam
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environment Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Christina Kühn
- Department of Plant Physiology, Institute of Biology, Humboldt University of Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Department of Plant Physiology, Institute of Biology, Humboldt University of Berlin, Philippstrasse 13, 10115, Berlin, Germany
| |
Collapse
|
25
|
Fatangare A, Svatoš A. Applications of 2-deoxy-2-fluoro-D-glucose (FDG) in Plant Imaging: Past, Present, and Future. FRONTIERS IN PLANT SCIENCE 2016; 7:483. [PMID: 27242806 PMCID: PMC4860506 DOI: 10.3389/fpls.2016.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/25/2016] [Indexed: 05/26/2023]
Abstract
The aim of this review article is to explore and establish the current status of 2-deoxy-2-fluoro-D-glucose (FDG) applications in plant imaging. In the present article, we review the previous literature on its experimental merits to formulate a consistent and inclusive picture of FDG applications in plant-imaging research. 2-deoxy-2-fluoro-D-glucose is a [(18)F]fluorine-labeled glucose analog in which C-2 hydroxyl group has been replaced by a positron-emitting [(18)F] radioisotope. As FDG is a positron-emitting radiotracer, it could be used in in vivo imaging studies. FDG mimics glucose chemically and structurally. Its uptake and distribution are found to be similar to those of glucose in animal models. FDG is commonly used as a radiotracer for glucose in medical diagnostics and in vivo animal imaging studies but rarely in plant imaging. Tsuji et al. (2002) first reported FDG uptake and distribution in tomato plants. Later, Hattori et al. (2008) described FDG translocation in intact sorghum plants and suggested that it could be used as a tracer for photoassimilate translocation in plants. These findings raised interest among other plant scientists, which has resulted in a recent surge of articles involving the use of FDG as a tracer in plants. There have been seven studies describing FDG-imaging applications in plants. These studies describe FDG applications ranging from monitoring radiotracer translocation to analyzing solute transport, root uptake, photoassimilate tracing, carbon allocation, and glycoside biosynthesis. Fatangare et al. (2015) recently characterized FDG metabolism in plants; such knowledge is crucial to understanding and validating the application of FDG in plant imaging research. Recent FDG studies significantly advance our understanding of FDG translocation and metabolism in plants but also raise new questions. Here, we take a look at all the previous results to form a comprehensive picture of FDG translocation, metabolism, and applications in plants. In conclusion, we summarize current knowledge, discuss possible implications and limitations of previous studies, point to open questions in the field, and comment on the outlook for FDG applications in plant imaging.
Collapse
Affiliation(s)
- Amol Fatangare
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| |
Collapse
|
26
|
Chen M, Jensen SP, Hill MR, Moore G, He Z, Sumerlin BS. Synthesis of amphiphilic polysuccinimide star copolymers for responsive delivery in plants. Chem Commun (Camb) 2016; 51:9694-7. [PMID: 25978767 DOI: 10.1039/c5cc02726h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
While polymeric nanocarriers are widely used in medicine for controlled release and site-specific delivery, few reports have applied such delivery methods within agriculture, despite the urgent need for specific delivery of pesticides and nutrients. We report the synthesis of stimuli-responsive and biodegradable polymeric nanocarriers designed for delivery to the phloem of plants and describe methods employed to evaluate their toxicity in plant cells.
Collapse
Affiliation(s)
- Mingsheng Chen
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Wang L, Ruan YL. Shoot-root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:105-113. [PMID: 32480445 DOI: 10.1071/fp15249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/24/2015] [Indexed: 05/10/2023]
Abstract
Roots and shoots are distantly located but functionally interdependent. The growth and development of these two organ systems compete for energy and nutrient resource, and yet, they keep a dynamic balance with each other for growth and development. The success of such a relationship depends on efficient root-shoot communication. Aside from the well-known signalling processes mediated by hormones such as auxin and cytokinin, sugars have recently been shown to act as a rapid signal to co-ordinate root and shoot development in response to endogenous and exogenous clues, in parallel to their function as carbon and energy resources for biomass production. New findings from studies on vascular fluids have provided molecular insights into the role of sugars in long-distance communications between shoot and root. In this review, we discussed phloem- and xylem- translocation of sugars and the impacts of sugar allocation and signalling on balancing root-shoot development. Also, we have taken the shoot-root carbon-nitrogen allocation as an example to illustrate the communication between the two organs through multi-layer root-shoot-root signalling circuits, comprising sugar, nitrogen, cytokinin, auxin and vascular small peptide signals.
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
28
|
Characters related to higher starch accumulation in cassava storage roots. Sci Rep 2016; 6:19823. [PMID: 26892156 PMCID: PMC4759534 DOI: 10.1038/srep19823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed.
Collapse
|
29
|
Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, von Arx G, Cochard H, Copini P, Caldeira MC, Delzon S, Gebauer R, Grönlund L, Kiorapostolou N, Lechthaler S, Lobo-do-Vale R, Peters RL, Petit G, Prendin AL, Salmon Y, Steppe K, Urban J, Roig Juan S, Robert EMR, Hölttä T. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe. FRONTIERS IN PLANT SCIENCE 2016; 7:726. [PMID: 27313582 PMCID: PMC4887491 DOI: 10.3389/fpls.2016.00726] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/11/2016] [Indexed: 05/18/2023]
Abstract
Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter acclimation in these cold regions. Present results for the secondary phloem of trees suggest that adjustment with tissue water content plays an important role in osmolality dynamics. Furthermore, trees acclimated to dry and cold climate showed high phloem osmolality and raffinose proportion.
Collapse
Affiliation(s)
- Anna Lintunen
- Department of Forest Sciences, University of HelsinkiHelsinki, Finland
- *Correspondence: Anna Lintunen
| | - Teemu Paljakka
- Department of Forest Sciences, University of HelsinkiHelsinki, Finland
| | - Tuula Jyske
- Natural Resources Institute FinlandVantaa, Finland
| | | | - Frank Sterck
- Forest Ecology and Forest Management Group, Department of Environmental Sciences, Wageningen UniversityWageningen, Netherlands
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Hervé Cochard
- INRA, UMR 547 PIAF, Université Clermont AuvergneClermont-Ferrand, France
| | - Paul Copini
- Forest Ecology and Forest Management Group, Department of Environmental Sciences, Wageningen UniversityWageningen, Netherlands
- Alterra, Wageningen University and Research CentreWageningen, Netherlands
| | - Maria C. Caldeira
- Forest Research Centre, School of Agriculture, University of LisbonLisbon, Portugal
| | - Sylvain Delzon
- INRA, University of Bordeaux, UMR BIOGECOTalence, France
| | - Roman Gebauer
- Department of Forest, Botany, Dendrology and Geobiocenology, Mendel University in BrnoBrno, Czech Republic
| | - Leila Grönlund
- Department of Forest Sciences, University of HelsinkiHelsinki, Finland
| | - Natasa Kiorapostolou
- Forest Ecology and Forest Management Group, Department of Environmental Sciences, Wageningen UniversityWageningen, Netherlands
| | - Silvia Lechthaler
- Department Territorio e Sistemi Agro-Forestali, Legnaro (PD), Università degli Studi di PadovaPadova, Italy
| | - Raquel Lobo-do-Vale
- Forest Research Centre, School of Agriculture, University of LisbonLisbon, Portugal
| | - Richard L. Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Giai Petit
- Department Territorio e Sistemi Agro-Forestali, Legnaro (PD), Università degli Studi di PadovaPadova, Italy
| | - Angela L. Prendin
- Department Territorio e Sistemi Agro-Forestali, Legnaro (PD), Università degli Studi di PadovaPadova, Italy
| | - Yann Salmon
- Department of Physics, University of HelsinkiHelsinki, Finland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent UniversityGent, Belgium
| | - Josef Urban
- Department of Forest, Botany, Dendrology and Geobiocenology, Mendel University in BrnoBrno, Czech Republic
| | | | - Elisabeth M. R. Robert
- Centre for Ecological Research and Forestry Applications (CREAF)Cerdanyola del Vallès, Spain
- Laboratory of Plant Biology and Nature Management (APNA), Vrije Universiteit BrusselBrussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA)Tervuren, Belgium
| | - Teemu Hölttä
- Department of Forest Sciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
30
|
Fettke J, Fernie AR. Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. TRENDS IN PLANT SCIENCE 2015; 20:490-497. [PMID: 26008154 DOI: 10.1016/j.tplants.2015.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances.
Collapse
Affiliation(s)
- Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
31
|
Grimberg Å. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:346-55. [PMID: 25221923 DOI: 10.1016/j.plaphy.2014.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/21/2014] [Indexed: 05/19/2023]
Abstract
Oat (Avena sativa L.) is unusual among the cereal grains in storing high amounts of oil in the endosperm; up to 90% of total grain oil. By using oat as a model species for oil metabolism in the cereal endosperm, we can learn how to develop strategies to redirect carbon from starch to achieve high-oil yielding cereal crops. Carbon precursors for lipid synthesis were compared in two genetically close oat cultivars with different endosperm oil content (about 6% and 10% of grain dw, medium-oil; MO, and high-oil; HO cultivar, respectively) by supplying a variety of (14)C-labelled substrates to the grain from both up- and downstream parts of glycolysis, either through detached oat panicles in vitro or by direct injection in planta. When supplied by direct injection, (14)C from acetate was identified to label the lipid fraction of the grain to the highest extent among substrates tested; 46% of net accumulated (14)C, demonstrating its applicability as a marker for lipids in the endosperm. Time course analyses of injected (14)C acetate during grain development suggested a more efficient transfer of fatty acids from polar lipids to triacylglycerol in the HO as compared to the MO cultivar, and turnover of triacylglycerol was suggested to not play a major role for the final oil content of oat grain endosperm despite the low amount of protective oleosins in this tissue. Moreover, availability of light was shown to drastically affect grain net carbon accumulation from (14)C-sucrose when supplied through detached panicles for the HO cultivar.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-230 53 Alnarp, Sweden.
| |
Collapse
|
32
|
Hijaz F, Killiny N. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange). PLoS One 2014; 9:e101830. [PMID: 25014027 PMCID: PMC4094394 DOI: 10.1371/journal.pone.0101830] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Through utilizing the nutrient-rich phloem sap, sap feeding insects such as psyllids, leafhoppers, and aphids can transmit many phloem-restricted pathogens. On the other hand, multiplication of phloem-limited, uncultivated bacteria such as Candidatus Liberibacter asiaticus (CLas) inside the phloem of citrus indicates that the sap contains all the essential nutrients needed for the pathogen growth. The phloem sap composition of many plants has been studied; however, to our knowledge, there is no available data about citrus phloem sap. In this study, we identified and quantified the chemical components of phloem sap from pineapple sweet orange. Two approaches (EDTA enhanced exudation and centrifugation) were used to collect phloem sap. The collected sap was derivatized with methyl chloroformate (MCF), N-methyl-N- [tert-butyl dimethylsilyl]-trifluroacetamide (MTBSTFA), or trimethylsilyl (TMS) and analyzed with GC-MS revealing 20 amino acids and 8 sugars. Proline, the most abundant amino acid, composed more than 60% of the total amino acids. Tryptophan, tyrosine, leucine, isoleucine, and valine, which are considered essential for phloem sap-sucking insects, were also detected. Sucrose, glucose, fructose, and inositol were the most predominant sugars. In addition, seven organic acids including succinic, fumaric, malic, maleic, threonic, citric, and quinic were detected. All compounds detected in the EDTA-enhanced exudate were also detected in the pure phloem sap using centrifugation. The centrifugation technique allowed estimating the concentration of metabolites. This information expands our knowledge about the nutrition requirement for citrus phloem-limited bacterial pathogen and their vectors, and can help define suitable artificial media to culture them.
Collapse
Affiliation(s)
- Faraj Hijaz
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, United States of America
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mauck KE, De Moraes CM, Mescher MC. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. PLANT, CELL & ENVIRONMENT 2014; 37:1427-39. [PMID: 24329574 DOI: 10.1111/pce.12249] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 05/25/2023]
Abstract
The transmission of insect-vectored diseases entails complex interactions among pathogens, hosts and vectors. Chemistry plays a key role in these interactions; yet, little work has addressed the chemical ecology of insect-vectored diseases, especially in plant pathosystems. Recently, we documented effects of Cucumber mosaic virus (CMV) on the phenotype of its host (Cucurbita pepo) that influence plant-aphid interactions and appear conducive to the non-persistent transmission of this virus. CMV reduces host-plant quality for aphids, causing rapid vector dispersal. Nevertheless, aphids are attracted to the elevated volatile emissions of CMV-infected plants. Here, we show that CMV infection (1) disrupts levels of carbohydrates and amino acids in leaf tissue (where aphids initially probe plants and acquire virions) and in the phloem (where long-term feeding occurs) in ways that reduce plant quality for aphids; (2) causes constitutive up-regulation of salicylic acid; (3) alters herbivore-induced jasmonic acid biosynthesis as well as the sensitivity of downstream defences to jasmonic acid; and (4) elevates ethylene emissions and free fatty acid precursors of volatiles. These findings are consistent with previously documented patterns of aphid performance and behaviour and provide a foundation for further exploration of the genetic mechanisms responsible for these effects and the evolutionary processes that shape them.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, Penn State University, University Park, PA, 16802, USA; Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | | | | |
Collapse
|
34
|
Knoblauch M, Froelich DR, Pickard WF, Peters WS. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1879-93. [PMID: 24591057 DOI: 10.1093/jxb/eru071] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.
Collapse
Affiliation(s)
- Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water stress affects phloem transport in trees, both in terms of the short-term impacts of water stress on phloem sap composition and the longer-term impacts on sieve cell anatomical characteristics. Phloem sieve cell conductivity (kp) was evaluated along a gradient of tree height and xylem water potential in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in order to evaluate the influence of water stress on phloem transport capacity. The Hagen-Poiseuille equation was used with measurements of sieve cell anatomical characteristics, water content of phloem sap, non-structural carbohydrate content of phloem sap and shoot water potential (Ψl) to evaluate impacts of water stress on kp. Based on regression analysis, for each 1 MPa decrease in mean midday Ψl, sieve cell lumen radius decreased by 2.63 µm MPa(-1). Although there was no significant trend in sucrose content with decreasing Ψl, glucose and fructose content increased significantly with water stress and sieve cell relative water content decreased by 13.5% MPa(-1), leading to a significant increase in sugar molar concentration of 0.46 mol l(-1) MPa(-1) and a significant increase in viscosity of 0.27 mPa s MPa(-1). Modeled kp was significantly influenced both by trends in viscosity as well as by water stress-related trends in sieve cell anatomy.
Collapse
Affiliation(s)
- David R Woodruff
- USDA Forest Service, Forestry Sciences Laboratory, Corvallis, OR 97331, USA
| |
Collapse
|
36
|
Tetyuk O, Benning UF, Hoffmann-Benning S. Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated Method. J Vis Exp 2013:e51111. [PMID: 24192764 PMCID: PMC3960974 DOI: 10.3791/51111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The plant phloem is essential for the long-distance transport of (photo-) assimilates as well as of signals conveying biotic or abiotic stress. It contains sugars, amino acids, proteins, RNA, lipids and other metabolites. While there is a large interest in understanding the composition and function of the phloem, the role of many of these molecules and thus, their importance in plant development and stress response has yet to be determined. One barrier to phloem analysis lies in the fact that the phloem seals itself upon wounding. As a result, the number of plants from which phloem sap can be obtained is limited. One method that allows collection of phloem exudates from several plant species without added equipment is the EDTA-facilitated phloem exudate collection described here. While it is easy to use, it does lead to the wounding of cells and care has to be taken to remove contents of damaged cells. In addition, several controls to prove purity of the exudate are necessary. Because it is an exudation rather than a direct collection of the phloem sap (not possible in many species) only relative quantification of its contents can occur. The advantage of this method over others is that it can be used in many herbaceous or woody plant species (Perilla, Arabidopsis, poplar, etc.) and requires minimal equipment and training. It leads to reasonably large amounts of exudates that can be used for subsequent analysis of proteins, sugars, lipids, RNA, viruses and metabolites. It is simple enough that it can be used in both a research as well as in a teaching laboratory.
Collapse
Affiliation(s)
- Olena Tetyuk
- Biochemistry and Molecular Biology, Michigan State Universtiy
| | | | | |
Collapse
|
37
|
Gessler A, Brandes E, Keitel C, Boda S, Kayler ZE, Granier A, Barbour M, Farquhar GD, Treydte K. The oxygen isotope enrichment of leaf-exported assimilates--does it always reflect lamina leaf water enrichment? THE NEW PHYTOLOGIST 2013; 200:144-157. [PMID: 23763637 PMCID: PMC3902987 DOI: 10.1111/nph.12359] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/09/2013] [Indexed: 05/12/2023]
Abstract
The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant-climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected (18)O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem (18)O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.
Collapse
Affiliation(s)
- Arthur Gessler
- Leibniz Centre for Agricultural Landscape Research, Institute for Landscape BiogeochemistryEberswalderstr. 84, 15374, Müncheberg, Germany
- INRA, UMR 1137 Ecologie et Ecophysiologie Forestières INRA/Université de Lorraine54280, Champenoux, France
- Research School of Biology, Australian National UniversityBuilding 46, Acton, ACT, 0200, Autralia
| | - Elke Brandes
- INRA, UMR 1137 Ecologie et Ecophysiologie Forestières INRA/Université de Lorraine54280, Champenoux, France
| | - Claudia Keitel
- Research School of Biology, Australian National UniversityBuilding 46, Acton, ACT, 0200, Autralia
- Faculty of Agriculture and Environment, University of SydneyPrivate Bag 4011, Narellan, NSW, 2567, Australia
| | - Sonja Boda
- Swiss Federal Research Institute WSL, Research Unit Landscape DynamicsZürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Zachary E Kayler
- Leibniz Centre for Agricultural Landscape Research, Institute for Landscape BiogeochemistryEberswalderstr. 84, 15374, Müncheberg, Germany
| | - André Granier
- INRA, UMR 1137 Ecologie et Ecophysiologie Forestières INRA/Université de Lorraine54280, Champenoux, France
| | - Margaret Barbour
- Faculty of Agriculture and Environment, University of SydneyPrivate Bag 4011, Narellan, NSW, 2567, Australia
| | - Graham D Farquhar
- Research School of Biology, Australian National UniversityBuilding 46, Acton, ACT, 0200, Autralia
| | - Kerstin Treydte
- Swiss Federal Research Institute WSL, Research Unit Landscape DynamicsZürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
38
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
39
|
Lattanzio G, Andaluz S, Matros A, Calvete JJ, Kehr J, Abadía A, Abadía J, López-Millán AF. Protein profile of Lupinus texensis phloem sap exudates: searching for Fe- and Zn-containing proteins. Proteomics 2013; 13:2283-96. [PMID: 23712964 DOI: 10.1002/pmic.201200515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 01/19/2023]
Abstract
The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI-MS and ESI-MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19-21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe-containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe-binding proteins in phloem sap: a metallothionein-like protein type 2B identified in the Fe-affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem-specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn-binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins.
Collapse
Affiliation(s)
- Giuseppe Lattanzio
- Department of Plant Nutrition, Aula Dei Experimental Station-CSIC, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kutschera U, Niklas KJ. Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:45-56. [PMID: 23602098 DOI: 10.1016/j.plantsci.2013.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/16/2013] [Accepted: 02/08/2013] [Indexed: 05/23/2023]
Abstract
The growth of hypocotyls and epicotyls has been attributed to the turgor-driven enlargement of cells, a process that is under the control of phytohormones such as auxin. However, the experiments presented here and elsewhere using developing sunflower (Helianthus annuus L.) seedlings raised either in darkness (skotomorphogenesis) or in white light (WL) (photomorphogenesis) indicate that auxin-mediated segment elongation ceases after 1 day, whereas hypocotyl growth continues in the intact system. Based on these results and data from the literature, we propose that hypocotyl growth consists of three inter-related processes: (1) cell division in the apical meristematic regions; (2) turgor-driven cell elongation along the stem; and (3) cell maturation in the basal region of the organ. We document that the closed apical hook (or the corresponding region after opening in WL) is the location where cell division occurs, and suggest that the epidermis and the outer cortex plays an important role in a "pacemaker system" for cell division. Results from the literature support the hypothesis that pectin metabolism in the expansion-limiting epidermal cell wall(s) is involved in wall-loosening and -stiffening. During hypocotyl growth in darkness and WL, turgor pressure is largely maintained, i.e., in H. annuus no hydrostatic pressure-regulated growth occurs. These data do not support the "loss of stability theory" of cell expansion. Finally, we document that turgor maintenance during organ elongation is caused by sucrose catabolism via vacuolar acid invertases, resulting in the generation of hexoses (osmoregulation). Based on these data, we present an integrative model of axial elongation in developing seedlings of dicotyledonous plants and discuss open questions.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| | | |
Collapse
|
41
|
Cao T, Lahiri I, Singh V, Louis J, Shah J, Ayre BG. Metabolic engineering of raffinose-family oligosaccharides in the phloem reveals alterations in carbon partitioning and enhances resistance to green peach aphid. FRONTIERS IN PLANT SCIENCE 2013; 4:263. [PMID: 23882277 PMCID: PMC3715723 DOI: 10.3389/fpls.2013.00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/29/2013] [Indexed: 05/18/2023]
Abstract
Many plants employ energized loading strategies to accumulate osmotically-active solutes into the phloem of source organs to accentuate the hydrostatic pressure gradients that drive the flow of water, nutrients and signals from source to sinks. Proton-coupled symport of sugars from the apoplasm into the phloem symplasm is the best studied phloem-loading mechanism. As an alternative, numerous species use a polymer trapping mechanism to load through symplasm: sucrose enters the phloem through specialized plasmodesmata and is converted to raffinose-family oligosaccharides (RFOs) which accumulate because of their larger size. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which loads from the apoplasm and transports predominantly sucrose, and the fate of the sugars throughout the plant determined. Three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47) were selected for further analysis. Three-week-old plants of both lines had RFO levels approaching 50% of total soluble sugar. RFOs were also identified in exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type (WT) leaves. Differences in starch accumulation between WT and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between WT and engineered plants, but the latter flowered slightly earlier. Finally, since the sugar composition of the translocation stream appeared altered, we tested for an impact on green peach aphid (Myzus persicae Sulzer) feeding. When given a choice between WT and transgenic plants, green peach aphids preferred settling on the WT plants. Furthermore, green peach aphid fecundity was lower on the transgenic plants compared to the WT plants. When added to an artificial diet, RFOs did not have a negative effect on aphid fecundity, suggesting that although aphid resistance in the transgenic plants is enhanced, it is not due to direct toxicity of RFO toward the insect.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian G. Ayre
- *Correspondence: Brian G. Ayre, Department of Biological Sciences, University of North Texas, 1155 Union Circle, 305220, Denton, TX 76203, USA e-mail:
| |
Collapse
|
42
|
Rajendran R, Soora M, Dananjeyan B, Ratering S, Krishnamurthy K, Benckiser G. Microbial community diversity of organically rich cassava sago factory waste waters and their ability to use nitrate and N2O added as external N-sources for enhancing biomethanation and the purification efficiency. J Biotechnol 2012; 164:266-75. [PMID: 23219890 DOI: 10.1016/j.jbiotec.2012.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 11/30/2022]
Abstract
Water shortage necessitated South Indian sago factory owners, extracting starch out of cassava tubers, to install biogas plants where a starch utilizing microbial community multiplies and reduces the biological oxygen demand (BOD) of the waste waters by presently about 30%. The purification efficiency of sago factory waste waters, rich in solid particles and having wide C/N ratios, around 250, through unstirred biogas plants needs to be improved. Our approach was to apply instead of animal slurry nitrate (NO3(-)) and nitrous oxide (N2O) as external N-sources anticipating a better N-distribution in the unstirred biogas plants. Estimated cell numbers, bacterial community changes, on the basis of 16S rRNA gene clone libraries and changing CO2-, CH4-, N2O releases due to the presence of nitrate or N2O suggest that acid tolerant Lactobacillus spp. dominate the biogas plant inflows (pH 3.5). They were very less or not found in the outflows (pH 7.3). Assumingly, the phyla Bacteroidetes (Prevotella spp.), Proteobacteria (Rhizobium spp., Defluvibacter sp.), Firmicutes (Megasphaera spp., Dialister spp., Clostridium spp.) and Synergistetes (Thermanaerovibrio spp.), not-detectable in the biogas plant inflows, replaced them. Anaerobes, about 400cellsml(-1) in the inflows, increased to about 10(6)cellsml(-1) in the outflows. The methane formation, as confirmed by the incubation experiments, suggests that methanogens must have been present among the anaerobes. In the biogas plant in- and outflows also about 300cellsml(-1) denitrifying bacteria and up to 10(4)cfu fungi were found. Despite the low number of denitrifying bacteria nitrate added to the biogas plant in- and outflows was widely consumed and added N2O decreased considerably. Thus, wide C/N ratios substrates like sago factory waste waters keep the N2O emissions low by using N2O either as electron acceptor or by incorporating it into the growing biomass what needs to be confirmed. The biogas plant inflow samples have emitted tentatively more CO2 and the outflow samples released more CH4.
Collapse
|
43
|
Valente P, Boekhout T, Landell MF, Crestani J, Pagnocca FC, Sette LD, Passarini MRZ, Rosa CA, Brandão LR, Pimenta RS, Ribeiro JR, Garcia KM, Lee CF, Suh SO, Péter G, Dlauchy D, Fell JW, Scorzetti G, Theelen B, Vainstein MH. Bandoniozyma gen. nov., a genus of fermentative and non-fermentative tremellaceous yeast species. PLoS One 2012; 7:e46060. [PMID: 23056233 PMCID: PMC3467267 DOI: 10.1371/journal.pone.0046060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species. METHODOLOGY/PRINCIPAL FINDINGS The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts. CONCLUSIONS/SIGNIFICANCE In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364(T) = DBVPG 4489(T)), Bandoniozyma aquatica sp. nov. (UFMG-DH4.20(T) = CBS 12527(T) = ATCC MYA-4876(T)), Bandoniozyma complexa sp. nov. (CBS 11570(T) = ATCC MYA-4603(T) = MA28a(T)), Bandoniozyma fermentans sp. nov. (CBS 12399(T) = NU7M71(T) = BCRC 23267(T)), Bandoniozyma glucofermentans sp. nov. (CBS 10381(T) = NRRL Y-48076(T) = ATCC MYA-4760(T) = BG 02-7-15-015A-1-1(T)), Bandoniozyma tunnelae sp. nov. (CBS 8024(T) = DBVPG 7000(T)), and Bandoniozyma visegradensis sp. nov. (CBS 12505(T) = NRRL Y-48783(T) = NCAIM Y.01952(T)).
Collapse
Affiliation(s)
- Patricia Valente
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barajas-López JDD, Tezycka J, Travaglia CN, Serrato AJ, Chueca A, Thormählen I, Geigenberger P, Sahrawy M. Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4887-900. [PMID: 22791824 PMCID: PMC3427998 DOI: 10.1093/jxb/ers163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Thioredoxins (TRXs) f and m are key components in the light regulation of photosynthetic metabolism via thiol-dithiol modulation in chloroplasts of leaves; however, little is known about the factors modulating the expression of these proteins. To investigate the effect of sugars as photosynthetic products on the expression of PsTRX f and m1 genes, sucrose and glucose were externally supplied to pea plants during the day. There was an increase in the mRNA levels of PsTRX f and m1 genes in response mainly to glucose. When leaf discs were incubated for up to 4h in the dark, glucose also led to an increase in both mRNA and protein levels of TRXs f and m, while sucrose had no substantial effect. Expression of PsDOF7, a carbon metabolism-related transcription factor gene, was also induced by glucose. Protein-DNA interaction showed that PsDOF7 binds specifically to the DOF core located in PsTRX f and m1 gene promoters. Transient expression in agroinfiltrated pea leaves demonstrated that PsDOF7 activated transcription of both promoters. The incubation of leaf discs in dithiotreitol (DTT) to increase the redox status led to a marked increase in the mRNA and protein levels of both TRXs within 4h. The increase in TRX protein levels occurred after 1h DTT feeding, implying a rapid effect of the thiol status on TRX f and m1 protein turnover rates, while transcriptional regulation took 3h to proceed. These results show that the protein levels of both TRXs are under short-term control of the sugar and thiol status in plants.
Collapse
Affiliation(s)
- Juan de Dios Barajas-López
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasC/Profesor Albareda 1, 18008, Granada, Spain
- Present address: Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Justyna Tezycka
- Ludwig-Maximilians-Universität München, Department Biology IGrosshaderner Str. 2–4, D-82152 Martinsried, Germany
| | - Claudia N. Travaglia
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Campus Universitario5800 Río Cuarto, Argentina
| | - Antonio Jesús Serrato
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasC/Profesor Albareda 1, 18008, Granada, Spain
| | - Ana Chueca
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasC/Profesor Albareda 1, 18008, Granada, Spain
| | - Ina Thormählen
- Ludwig-Maximilians-Universität München, Department Biology IGrosshaderner Str. 2–4, D-82152 Martinsried, Germany
| | - Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department Biology IGrosshaderner Str. 2–4, D-82152 Martinsried, Germany
| | - Mariam Sahrawy
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasC/Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
45
|
Liu DD, Chao WM, Turgeon R. Transport of sucrose, not hexose, in the phloem. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4315-20. [PMID: 22553289 PMCID: PMC3398456 DOI: 10.1093/jxb/ers127] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 05/17/2023]
Abstract
Several lines of evidence indicate that glucose and fructose are essentially absent in mobile phloem sap. However, this paradigm has been called into question, especially but not entirely, with respect to species in the Ranunculaceae and Papaveraceae. In the experiments in question, phloem sap was obtained by detaching leaves and placing the cut ends of the petioles in an EDTA solution. More hexose than sucrose was detected. In the present study, these results were confirmed for four species. However, almost identical results were obtained when the leaf blades were removed and only petiole stubs were immersed. This suggests that the sugars in the EDTA solution represent compounds extracted from the petioles, rather than sugars in transit in the phloem. In further experiments, the leaf blades were exposed to (14)CO(2) and, following a chase period, radiolabelled sugars in the petioles and EDTA exudate were identified. Almost all the radiolabel was in the form of [(14)C]sucrose, with little radiolabelled hexose. The data support the long-held contention that sucrose is a ubiquitous transport sugar, but hexoses are essentially absent in the phloem stream.
Collapse
|
46
|
|
47
|
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2011; 2012:185942. [PMID: 22550465 PMCID: PMC3322544 DOI: 10.1100/2012/185942] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/20/2011] [Indexed: 11/21/2022] Open
Abstract
Phytoplasmas are specialised bacteria that are obligate parasites of plant phloem tissue and insects. These bacteria have resisted all attempts of cell-free cultivation. Genome research is of particular importance to analyse the genetic endowment of such bacteria. Here we review the gene content of the four completely sequenced ‘Candidatus Phytoplasma' genomes that include those of ‘Ca. P. asteris' strains OY-M and AY-WB, ‘Ca. P. australiense,' and ‘Ca. P. mali'. These genomes are characterized by chromosome condensation resulting in sizes below 900 kb and a G + C content of less than 28%. Evolutionary adaption of the phytoplasmas to nutrient-rich environments resulted in losses of genetic modules and increased host dependency highlighted by the transport systems and limited metabolic repertoire. On the other hand, duplication and integration events enlarged the chromosomes and contribute to genome instability. Present differences in the content of membrane and secreted proteins reflect the host adaptation in the phytoplasma strains. General differences are obvious between different phylogenetic subgroups. ‘Ca. P. mali' is separated from the other strains by its deviating chromosome organization, the genetic repertoire for recombination and excision repair of nucleotides or the loss of the complete energy-yielding part of the glycolysis. Apart from these differences, comparative analysis exemplified that all four phytoplasmas are likely to encode an alternative pathway to generate pyruvate and ATP.
Collapse
Affiliation(s)
- Michael Kube
- Department of Crop and Animal Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
48
|
van Bel AJE, Knoblauch M, Furch ACU, Hafke JB. (Questions)(n) on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:210-8. [PMID: 21763531 DOI: 10.1016/j.plantsci.2011.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 05/07/2023]
Abstract
This review explores the relationships between electrical long-distance signalling, Ca(2+) influx coincident with propagation of electropotential waves, and cellular responses to Ca(2+) influx including the consequences for sieve-tube conductivity and mass flow. Ca(2+) influx is inherent to electropotential waves and appears to constitute the key link between rapid physical signals and resultant chemical cascades in sieve tubes and adjacent cells. Members of several channel groups are likely involved the regulation of Ca(2+) levels in sieve elements. Among them are hyperpolarization-activated, depolarization-activated, and mechanosensitive Ca(2+) channels located in the plasma membrane and Ca(2+) dependent Ca(2+) channels that reside in ER-membranes of sieve elements. These channels collectively determine intracellular Ca(2+) levels in sieve elements and their neighbour cells. The latter cells react to Ca(2+) elevation by inducing diverse functional responses dependent on the cell type. If the Ca(2+) concentration in sieve elements surpasses a threshold level, dual sieve-plate occlusion by proteins and callose deposition is triggered. Occlusion is reversed when Ca(2+) levels subside. Electrical messages may regulate the degree of sieve plate hydraulic conductivity in intact plants by partial sieve-plate occlusion that has a major impact on volume flow through sieve tubes. Furthermore, complete but temporary occlusion of sieve tubes may modify mass flow patterns in intact plants.
Collapse
Affiliation(s)
- Aart J E van Bel
- Plant Cell Biology Research Group, Institute of General Botany, Justus Liebig University, Senckenbergstrasse 17, 35390 Giessen, Germany.
| | | | | | | |
Collapse
|
49
|
Hewer A, Will T, van Bel AJE. Plant cues for aphid navigation in vascular tissues. ACTA ACUST UNITED AC 2011; 213:4030-42. [PMID: 21075945 DOI: 10.1242/jeb.046326] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of aphids to detect and find sieve tubes suggests that aphids receive cues for sieve-tube recognition by taking samples. Specific natural conditions such as pH value, sugar species and concentration, viscosity, and oxygen pressure may enable sieve-tube detection. We tested the preference of Megoura viciae and Myzus persicae for potential plant-borne orientation parameters in artificial choice-chamber systems. Both species preferred sucrose (in comparison with fructose, glucose, raffinose or sorbitol) at concentrations of 15-22.5% (over a tested range of 0-22.5%) and at approximately pH 7 (over a tested range of pH 5-8). This preference matches the composition of the sieve-tube sap of their host plants. Likewise, Rhopalosiphum padi (normally found on barley plants with sucrose in the phloem sap) and Macrosiphum euphorbiae (normally found on pumpkin plants with raffinose-family oligosaccharides in the phloem sap) showed a significant preference for sucrose. In the absence of sucrose, however, M. euphorbiae strongly preferred raffinose. No clear preference for any carbohydrate was observed for Macrosiphum rosae and Aphis pomi (both normally found on plants with various amounts of sorbitol in the phloem sap). Electrical penetration graph (EPG) measurements of M. persicae feeding on artificial diets confirmed that sieve tubes are recognized solely by a combination of carbohydrate abundance and a neutral to slightly alkaline pH.
Collapse
Affiliation(s)
- Angela Hewer
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig-University, Senckenbergstraße 17-21, D-35390 Gießen, Germany
| | | | | |
Collapse
|
50
|
Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.). Funct Integr Genomics 2011; 11:275-91. [PMID: 21274588 DOI: 10.1007/s10142-010-0206-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 12/18/2010] [Indexed: 12/25/2022]
Abstract
In potatoes and many other crops, drought is one of the most important environmental constraints leading to yield loss. Development of drought-tolerant cultivars is therefore required for maintaining yields under climate change conditions and for the extension of agriculture to sub-optimal cropping areas. Drought tolerance mechanisms have been well described for many crop plants including Native Andean potato. However, knowledge on tolerance traits suitable for commercial potato varieties is scarce. In order to describe drought tolerance mechanisms that sustain potato yield under water stress, we have designed a growth-chamber experiment with two Solanum tuberosum L. cultivars, the more drought tolerant accession 397077.16, and the sensitive variety Canchan. After 21 days of drought exposure, gene expression was studied in leaves using cDNA microarrays. The results showed that the tolerant clone presented more differentially expressed genes than the sensitive one, suggesting greater stress response and adaptation. Moreover, it exhibited a large pool of upregulated genes belonging to cell rescue and detoxication such as LEAs, dehydrins, HSPs, and metallothioneins. Transcription factors related to abiotic stresses and genes belonging to raffinose family oligosaccharide synthesis, involved in desiccation tolerance, were upregulated to a greater extent in the tolerant clone. This latter result was corroborated by biochemical analyses performed at 32 and 49 days after drought that showed an increase in galactinol and raffinose especially in clone 397077.16. The results depict key components for the drought tolerance of this advanced potato clone.
Collapse
|