1
|
Ni H, Wu W, Yan Y, Fang Y, Wang C, Chen J, Chen S, Wang K, Xu C, Tang X, Wu J. OsABA3 is Crucial for Plant Survival and Resistance to Multiple Stresses in Rice. RICE (NEW YORK, N.Y.) 2024; 17:46. [PMID: 39083143 PMCID: PMC11291934 DOI: 10.1186/s12284-024-00724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Preharvest sprouting (PHS) is a serious problem in rice production as it leads to reductions in grain yield and quality. However, the underlying mechanism of PHS in rice remains unclear. In this study, we identified and characterized a preharvest sprouting and seedling lethal (phssl) mutant. The heterozygous phssl/+ mutant exhibited normal plant development, but severe PHS in paddy fields. However, the homozygous phssl mutant was seedling lethal. Gene cloning and genetic analysis revealed that a point mutation in OsABA3 was responsible for the mutant phenotypes. OsABA3 encodes a molybdenum cofactor (Moco) sulfurase. The activities of the sulfureted Moco-dependent enzymes such as aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) were barely detectable in the phssl mutant. As the final step of abscisic acid (ABA) de novo biosynthesis is catalyzed by AO, it indicated that ABA biosynthesis was interrupted in the phssl mutant. Exogenous application of ABA almost recovered seed dormancy of the phssl mutant. The knock-out (ko) mutants of OsABA3 generated by CRISPR-Cas9 assay, were also seedling lethal, and the heterozygous mutants were similar to the phssl/+ mutant showing reduced seed dormancy and severe PHS in paddy fields. In contrast, the OsABA3 overexpressing (OE) plants displayed a significant increase in seed dormancy and enhanced plant resistance to PHS. The AO and XDH activities were abolished in the ko mutants, whereas they were increased in the OE plants. Notably, the Moco-dependent enzymes including nitrate reductase (NR) and sulfite oxidase (SO) showed reduced activities in the OE plants. Moreover, the OE plants exhibited enhanced resistances to osmotic stress and bacterial blight, and flowered earlier without any reduction in grain yield. Taken together, this study uncovered the crucial functions of OsABA3 in Moco sulfuration, plant development, and stress resistance, and suggested that OsABA3 is a promising target gene for rice breeding.
Collapse
Affiliation(s)
- Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenshi Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanmin Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiyuan Fang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shali Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kaini Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China.
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Zhou H, Wang X, Amar MH, Sheng Y, Shi P, Qiu K, Wang Y, Xie Q, Chen H, Pan H, Zhang J. Abscisic acid induces PpeKIL1 to terminate fruit growth and promote fruit abortion in peach (Prunus persica). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108761. [PMID: 38805756 DOI: 10.1016/j.plaphy.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Abnormal pollination from chance events or hybridization between species leads to unusual embryo development, resulting in fruit abortion. To elucidate the mechanism underlying fruit abortion, we conducted a comprehensive analysis of the transcriptome and hormone profiles in aborting fruits (AF) derived from an interspecific cross between the peach cultivar 'Huangjinmi 3' and the Prunus mume cultivar 'Jiangmei', as well as in normal-seeded fruits (NF) resulting from an intraspecific cross of 'Huangjinmi 3' with the 'Manyuanhong' peach cultivars. Growth of AF was inhibited during the exponential growth phase, with up-regulation of oxidative stress related genes and down-regulation of DNA replication and cell cycle genes. Accumulation of the tissue growth-related hormones auxin and cytokinin was reduced in AF, while levels of the growth inhibiting hormone abscisic acid (ABA) were higher compared to NF. The increased ABA concentration aligned with down-regulation of the ABA catabolism gene CYP707A2, which encodes abscisic acid 8'-hydroxylase. Correlation analysis showed ABA could explain the maximum proportion of differently expressed genes between NF and AF. We also showed that expression of KIRA1-LIKE1 (PpeKIL1), a peach ortholog of the Arabidopsis KIRA1 gene, was up-regulated in AF. PpeKIL1 promotes senescence or delays normal growth in tobacco and Arabidopsis, and its promoter activity increases with exogenous ABA treatment. Our study demonstrates a candidate mechanism where ABA induces expression of PpeKIL1, which further blocks normal fruit growth and triggers fruit abscission.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Xiao Wang
- Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | | | - Yu Sheng
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Pei Shi
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Keli Qiu
- School of Life Science, Anhui Agricultural University, No. 130, Changjiangxi Road, Hefei, 230036, China.
| | - Yunyun Wang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiangxi Road, Hefei, 230036, China.
| | - Qingmei Xie
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Hongli Chen
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Haifa Pan
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Jinyun Zhang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
3
|
Wang W, Zhang T, Liu C, Liu C, Jiang Z, Zhang Z, Ali S, Li Z, Wang J, Sun S, Chen Q, Zhang Q, Xie L. A DNA demethylase reduces seed size by decreasing the DNA methylation of AT-rich transposable elements in soybean. Commun Biol 2024; 7:613. [PMID: 38773248 PMCID: PMC11109123 DOI: 10.1038/s42003-024-06306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Understanding how to increase soybean yield is crucial for global food security. The genetic and epigenetic factors influencing seed size, a major crop yield determinant, are not fully understood. We explore the role of DNA demethylase GmDMEa in soybean seed size. Our research indicates that GmDMEa negatively correlates with soybean seed size. Using CRISPR-Cas9, we edited GmDMEa in the Dongnong soybean cultivar, known for small seeds. Modified plants had larger seeds and greater yields without altering plant architecture or seed nutrition. GmDMEa preferentially demethylates AT-rich transposable elements, thus activating genes and transcription factors associated with the abscisic acid pathway, which typically decreases seed size. Chromosomal substitution lines confirm that these modifications are inheritable, suggesting a stable epigenetic method to boost seed size in future breeding. Our findings provide insights into epigenetic seed size control and suggest a strategy for improving crop yields through the epigenetic regulation of crucial genes. This work implies that targeted epigenetic modification has practical agricultural applications, potentially enhancing food production without compromising crop quality.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunyu Liu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenfeng Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhaohan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shahid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shanwen Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China.
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China.
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Linan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Sahu TK, Verma SK, Gayacharan, Singh NP, Joshi DC, Wankhede DP, Singh M, Bhardwaj R, Singh B, Parida SK, Chattopadhyay D, Singh GP, Singh AK. Transcriptome-wide association mapping provides insights into the genetic basis and candidate genes governing flowering, maturity and seed weight in rice bean (Vigna umbellata). BMC PLANT BIOLOGY 2024; 24:379. [PMID: 38720284 PMCID: PMC11077894 DOI: 10.1186/s12870-024-04976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Sachin Kumar Verma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | | | - Dinesh Chandra Joshi
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - D P Wankhede
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Badal Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
5
|
Xu Y, Qi S, Wang Y, Jia J. Integration of nitrate and abscisic acid signaling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae128. [PMID: 38661493 DOI: 10.1093/jxb/erae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
To meet the demands of the new Green Revolution and sustainable agriculture, it is important to develop crop varieties with improved yield, nitrogen use efficiency, and stress resistance. Nitrate is the major form of inorganic nitrogen available for plant growth in many well-aerated agricultural soils, and acts as a signaling molecule regulating plant development, growth, and stress responses. Abscisic acid (ABA), an important phytohormone, plays vital roles in integrating extrinsic and intrinsic responses and mediating plant growth and development in response to biotic and abiotic stresses. Therefore, elucidating the interplay between nitrate and ABA can contribute to crop breeding and sustainable agriculture. Here, we review studies that have investigated the interplay between nitrate and ABA in root growth modulation, nitrate and ABA transport processes, seed germination regulation, and drought responses. We also focus on nitrate and ABA interplay in several reported omics analyses with some important nodes in the crosstalk between nitrate and ABA. Through these insights, we proposed some research perspectives that could help to develop crop varieties adapted to a changing environment and to improve crop yield with high nitrogen use efficiency and strong stress resistance.
Collapse
Affiliation(s)
- Yiran Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shengdong Qi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingbo Jia
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
6
|
Abley K, Goswami R, Locke JCW. Bet-hedging and variability in plant development: seed germination and beyond. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230048. [PMID: 38432313 PMCID: PMC10909506 DOI: 10.1098/rstb.2023.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 03/05/2024] Open
Abstract
When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - Rituparna Goswami
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - James C. W. Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| |
Collapse
|
7
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
8
|
Krzyszton M, Sacharowski SP, Manjunath VH, Muter K, Bokota G, Wang C, Plewczyński D, Dobisova T, Swiezewski S. Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size. PLANT COMMUNICATIONS 2024; 5:100732. [PMID: 37828740 PMCID: PMC10873894 DOI: 10.1016/j.xplc.2023.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| | - Sebastian P Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Veena Halale Manjunath
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Katarzyna Muter
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ce Wang
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Dariusz Plewczyński
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| |
Collapse
|
9
|
Smolikova G, Krylova E, Petřík I, Vilis P, Vikhorev A, Strygina K, Strnad M, Frolov A, Khlestkina E, Medvedev S. Involvement of Abscisic Acid in Transition of Pea ( Pisum sativum L.) Seeds from Germination to Post-Germination Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:206. [PMID: 38256760 PMCID: PMC10819913 DOI: 10.3390/plants13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Ekaterina Krylova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Ivan Petřík
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Polina Vilis
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Aleksander Vikhorev
- School of Advanced Engineering Studies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Elena Khlestkina
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| |
Collapse
|
10
|
Wang X, Choi YM, Jeon YA, Yi J, Shin MJ, Desta KT, Yoon H. Analysis of Genetic Diversity in Adzuki Beans ( Vigna angularis): Insights into Environmental Adaptation and Early Breeding Strategies for Yield Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:4154. [PMID: 38140482 PMCID: PMC10747723 DOI: 10.3390/plants12244154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Adzuki beans are widely cultivated in East Asia and are one of the earliest domesticated crops. In order to gain a deeper understanding of the genetic diversity and domestication history of adzuki beans, we conducted Genotyping by Sequencing (GBS) analysis on 366 landraces originating from Korea, China, and Japan, resulting in 6586 single-nucleotide polymorphisms (SNPs). Population structure analysis divided these 366 landraces into three subpopulations. These three subpopulations exhibited distinctive distributions, suggesting that they underwent extended domestication processes in their respective regions of origin. Phenotypic variance analysis of the three subpopulations indicated that the Korean-domesticated subpopulation exhibited significantly higher 100-seed weights, the Japanese-domesticated subpopulation showed significantly higher numbers of grains per pod, and the Chinese-domesticated subpopulation displayed significantly higher numbers of pods per plant. We speculate that these differences in yield-related traits may be attributed to varying emphases placed by early breeders in these regions on the selection of traits related to yield. A large number of genes related to biotic/abiotic stress resistance and defense were found in most quantitative trait locus (QTL) for yield-related traits using genome-wide association studies (GWAS). Genomic sliding window analysis of Tajima's D and a genetic differentiation coefficient (Fst) revealed distinct domestication selection signatures and genotype variations on these QTLs within each subpopulation. These findings indicate that each subpopulation would have been subjected to varied biotic/abiotic stress events in different origins, of which these stress events have caused balancing selection differences in the QTL of each subpopulation. In these balancing selections, plants tend to select genotypes with strong resistance under biotic/abiotic stress, but reduce the frequency of high-yield genotypes to varying degrees. These biotic/abiotic stressors impact crop yield and may even lead to selection purging, resulting in the loss of several high-yielding genotypes among landraces. However, this also fuels the flow of crop germplasms. Overall, balancing selection appears to have a more significant impact on the three yield-related traits compared to breeder-driven domestication selection. These findings are crucial for understanding the impact of domestication selection history on landraces and yield-related traits, aiding in the improvement of adzuki bean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (X.W.); (Y.-M.C.); (Y.-a.J.); (J.Y.); (M.-J.S.)
| |
Collapse
|
11
|
Corti F, Festa M, Stein F, Stevanato P, Siroka J, Navazio L, Vothknecht UC, Alboresi A, Novák O, Formentin E, Szabò I. Comparative analysis of wild-type and chloroplast MCU-deficient plants reveals multiple consequences of chloroplast calcium handling under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1228060. [PMID: 37692417 PMCID: PMC10485843 DOI: 10.3389/fpls.2023.1228060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023]
Abstract
Introduction Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.
Collapse
Affiliation(s)
| | | | - Frank Stein
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Jitka Siroka
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ute C. Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Singh R, Shankar R, Yadav SK, Kumar V. Transcriptome analysis of ovules offers early developmental clues after fertilization in Cicer arietinum L.. 3 Biotech 2023; 13:177. [PMID: 37188294 PMCID: PMC10175530 DOI: 10.1007/s13205-023-03599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03599-8.
Collapse
Affiliation(s)
- Reetu Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | - Rama Shankar
- Department of Paediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503 USA
| | | | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
13
|
Nelson SK, Kanno Y, Seo M, Steber CM. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1145414. [PMID: 37275251 PMCID: PMC10232786 DOI: 10.3389/fpls.2023.1145414] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023]
Abstract
Introduction The seeds of many plants are dormant and unable to germinate at maturity, but gain the ability to germinate through after-ripening during dry storage. The hormone abscisic acid (ABA) stimulates seed dormancy, whereas gibberellin A (GA) stimulates dormancy loss and germination. Methods To determine whether dry after-ripening alters the potential to accumulate ABA and GA, hormone levels were measured during an after-ripening time course in dry and imbibing ungerminated seeds of wildtype Landsberg erecta (Ler) and of the highly dormant GA-insensitive mutant sleepy1-2 (sly1-2). Results The elevated sly1-2 dormancy was associated with lower rather than higher ABA levels. Ler germination increased with 2-4 weeks of after-ripening whereas sly1-2 required 21 months to after-ripen. Increasing germination capacity with after-ripening was associated with increasing GA4 levels in imbibing sly1-2 and wild-type Ler seeds. During the same 12 hr imbibition period, after-ripening also resulted in increased ABA levels. Discussion The decreased ABA levels with after-ripening in other studies occurred later in imbibition, just before germination. This suggests a model where GA acts first, stimulating germination before ABA levels decline, and ABA acts as the final checkpoint preventing germination until processes essential to survival, like DNA repair and activation of respiration, are completed. Overexpression of the GA receptor GID1b (GA INSENSITIVE DWARF1b) was associated with increased germination of sly1-2 but decreased germination of wildtype Ler. This reduction of Ler germination was not associated with increased ABA levels. Apparently, GID1b is a positive regulator of germination in one context, but a negative regulator in the other.
Collapse
Affiliation(s)
- Sven K. Nelson
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Plant and Data Science, Heliponix, LLC, Evansville, IN, United States
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Camille M. Steber
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, United States
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
14
|
Wang C, Lyu Y, Zhang Q, Guo H, Chen D, Chen X. Disruption of BG14 results in enhanced callose deposition in developing seeds and decreases seed longevity and seed dormancy in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1080-1094. [PMID: 36625794 DOI: 10.1111/tpj.16102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Seed longevity is an important trait for agriculture and the conservation of genetic resources. β-1,3-Glucanases were first recognized as pathogenesis-related proteins involved in plant defense, but their roles in seeds are largely unknown. Here, we report a glycosylphosphatidylinositol-anchored β-1,3-glucanase, BG14, that degrades callose in seed embryos and functions in seed longevity and dormancy in Arabidopsis. The loss of function of BG14 significantly decreased seed longevity, whereas functional reversion (RE) and overexpression (OE) lines reversed and increased the impaired phenotype, respectively. The loss of function of BG14 enhanced callose deposition in the embryos of mature seeds, confirmed by quantitative determination and the decreased callose degrading ability in bg14. The drop-and-see (DANS) assay revealed that the fluorescence signal in bg14 was significantly lower than that observed in the other three genotypes. BG14 is located on the periphery of the cell wall and can completely merge with callose at the plasmodesmata of epidermal cells. BG14 was highly expressed in developing seeds and was induced by aging and abscisic acid (ABA). The loss of function of BG14 led to a variety of phenotypes related to ABA, including reduced seed dormancy and reduced responses to treatment with ABA or pacolblltrazol, whereas OE lines showed the opposite phenotype. The reduced ABA response is because of the decreased level of ABA and the lowered expression of ABA synthesis genes in bg14. Taken together, this study demonstrated that BG14 is a bona fide BG that mediates callose degradation in the plasmodesmata of embryo cells, transcriptionally influences ABA synthesis genes in developing seeds, and positively affects seed longevity and dormancy in Arabidopsis.
Collapse
Affiliation(s)
- Chengliang Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuanyuan Lyu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongye Guo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Wang X, Song Q, Guo H, Liu Y, Brestic M, Yang X. StICE1 enhances plant cold tolerance by directly upregulating StLTI6A expression. PLANT CELL REPORTS 2023; 42:197-210. [PMID: 36371722 DOI: 10.1007/s00299-022-02949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Under cold conditions, StICE1 enhances plant cold tolerance by upregulating StLTI6A expression to maintain the cell membrane stability. Cold stress affects potato plants growth and development, crop productivity and quality. The ICE-CBF-COR regulatory cascade is the well-known pathway in response to cold stress in plants. ICE1, as a MYC-like bHLH transcription factor, can regulate the expressions of CBFs. However, whether ICE1 could regulate other genes still need to be explored. Our results showed that overexpressing ICE1 from potato in Arabidopsis thaliana could enhance plant cold tolerance. Under cold stress, overexpressed StICE1 in plants improved the stability of cell membrane, enhanced scavenging capacity of reactive oxygen species and increased expression levels of CBFs and COR genes. Furthermore, StICE1 could bind to the promoter of StLTI6A gene, which could maintain the stability of the cell membrane, to upregulate StLTI6A expression under cold conditions. Our findings revealed that StICE1 could directly regulate StLTI6A, CBF and COR genes expression to response to cold stress.
Collapse
Affiliation(s)
- Xipan Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Hao Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
16
|
Shimizu T, Kanno Y, Watanabe S, Seo M. Arabidopsis NPF5.1 regulates ABA homeostasis and seed germination by mediating ABA uptake into the seed coat. PLANT SIGNALING & BEHAVIOR 2022; 17:2095488. [PMID: 35848501 PMCID: PMC9298153 DOI: 10.1080/15592324.2022.2095488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that induces seed dormancy during seed development and inhibits seed germination after imbibition. Although ABA is synthesized in the seed coat (testa), endosperm, and embryo, the physiological roles of the hormone derived from each tissue are not fully understood. We found that the gene encoding an Arabidopsis ABA importer, NPF5.1, was expressed in the seed coat during seed development. Dry seeds of loss-of-function npf5.1 mutants contained significantly higher levels of dihydrophaseic acid (DPA), an inactive ABA metabolite, than the wild type. The npf5.1 mutant also had a slight increase in ABA content. An increase in DPA was prominent in the fraction containing the seed coat and endosperm. Seed germination of the npf5.1 mutant was similar to the wild type in the presence of ABA or the gibberellin biosynthesis inhibitor paclobutrazol. However, a mutation in NPF5.1 suppressed the paclobutrazol-resistant germination of npf4.6, a mutant impaired in an ABA importer expressed in the embryo. These results suggest that ABA uptake into the seed coat mediated by NPF5.1 is important for ABA homeostasis during seed development and for regulating seed germination.
Collapse
Affiliation(s)
- Takafumi Shimizu
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Graduate school of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Research Institute of Innovative Technology for the Earth (RITE), Kizugawa, Kyoto, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| |
Collapse
|
17
|
DELAY OF GERMINATION 1, the Master Regulator of Seed Dormancy, Integrates the Regulatory Network of Phytohormones at the Transcriptional Level to Control Seed Dormancy. Curr Issues Mol Biol 2022; 44:6205-6217. [PMID: 36547084 PMCID: PMC9777134 DOI: 10.3390/cimb44120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Seed dormancy, an important adaptive trait that governs germination timing, is endogenously controlled by phytohormones and genetic factors. DELAY OF GERMINATION 1 (DOG1) is the vital genetic regulator of dormancy, significantly affecting the expression of numerous ABA and GA metabolic genes. However, whether DOG1 could influence the expression of other phytohormone-related genes is still unknown. Here, we comprehensively investigated all well-documented hormone-related genes which might be affected in dog1-2 dry or imbibed seeds by using whole-transcriptome sequencing (RNA-seq). We found that DOG1 could systematically control the expression of phytohormone-related genes. An evident decrease was observed in the endogenous signal intensity of abscisic acid (ABA) and indole-3-acetic acid (IAA), while a dramatic increase appeared in that of gibberellins (GA), brassinosteroids (BR), and cytokinin (CK) in the dog1-2 background, which may contribute considerably to its dormancy-deficient phenotype. Collectively, our data highlight the role of DOG1 in balancing the expression of phytohormone-related genes and provide inspirational evidence that DOG1 may integrate the phytohormones network to control seed dormancy.
Collapse
|
18
|
Gao Z, Zhou Y, He Y. Molecular epigenetic mechanisms for the memory of temperature stresses in plants. J Genet Genomics 2022; 49:991-1001. [PMID: 35870761 DOI: 10.1016/j.jgg.2022.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of 'remembering of prolonged cold in winter' or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| |
Collapse
|
19
|
Krzyszton M, Yatusevich R, Wrona M, Sacharowski SP, Adamska D, Swiezewski S. Single seeds exhibit transcriptional heterogeneity during secondary dormancy induction. PLANT PHYSIOLOGY 2022; 190:211-225. [PMID: 35670742 PMCID: PMC9438484 DOI: 10.1093/plphys/kiac265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Seeds are highly resilient to the external environment, which allows plants to persist in unpredictable and unfavorable conditions. Some plant species have adopted a bet-hedging strategy to germinate a variable fraction of seeds in any given condition, and this could be explained by population-based threshold models. Here, in the model plant Arabidopsis (Arabidopsis thaliana), we induced secondary dormancy (SD) to address the transcriptional heterogeneity among seeds that leads to binary germination/nongermination outcomes. We developed a single-seed RNA-seq strategy that allowed us to observe a reduction in seed transcriptional heterogeneity as seeds enter stress conditions, followed by an increase during recovery. We identified groups of genes whose expression showed a specific pattern through a time course and used these groups to position the individual seeds along the transcriptional gradient of germination competence. In agreement, transcriptomes of dormancy-deficient seeds (mutant of DELAY OF GERMINATION 1) showed a shift toward higher values of the germination competence index. Interestingly, a significant fraction of genes with variable expression encoded translation-related factors. In summary, interrogating hundreds of single-seed transcriptomes during SD-inducing treatment revealed variability among the transcriptomes that could result from the distribution of population-based sensitivity thresholds. Our results also showed that single-seed RNA-seq is the method of choice for analyzing seed bet-hedging-related phenomena.
Collapse
Affiliation(s)
| | | | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Poland
| | - Sebastian P Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw 02-106, Poland
| | - Dorota Adamska
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | | |
Collapse
|
20
|
Niu L, Du C, Wang W, Zhang M, Wang W, Liu H, Zhang J, Wu X. Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation. BMC PLANT BIOLOGY 2022; 22:359. [PMID: 35869440 PMCID: PMC9308322 DOI: 10.1186/s12870-022-03751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Currently, mechanical maize kernel harvesting has not been fully utilized in developing countries including China, partly due to the absence of suitable cultivars capable of rapid desiccation during seed maturation. The initiation of rapid desiccation during seed maturation is regulated by abscisic acid (ABA). For further characterization of ABA-regulated key genes and cellular events, it is necessary to perform transcriptome analysis of maize developing embryos. The ABA synthesis-deficient mutant (vp5) and normal maize (Vp5) seeds are suitable materials for such purpose. RESULTS In the present work, developing vp5 and Vp5 embryos were compared by ABA content and transcriptome analyses. Quantitative analysis revealed the significant difference in ABA synthesis between both genotypes. From 29 days after pollination (DAP), ABA content increased rapidly in Vp5 embryos, but decreased gradually in vp5 embryos. At 36 DAP, ABA level in vp5 decreased to 1/4 that of Vp5, suggesting that the differential ABA levels would affect seed maturation. Comparative transcriptomic analysis has found 1019 differentially expressed genes (DEGs) between both genotypes, with the most DEGs (818) at 36 DAP. Further, weighted correlation network analysis (WGCNA) revealed eight DEGs co-expression modules. Particularly, a module was negatively correlated with ABA content in vp5 embryos. The module was mainly involved in metabolic and cellular processes, and its hub genes encoded thiamine, NPF proteins, calmodulin, metallothionein etc. Moreover, the expression of a set of key genes regulated by ABA was further verified by RT-qPCR. The results of the present work suggested that because of ABA deficiency, the vp5 seeds maintained strong metabolic activities and lacked dormancy initiation during seed maturation. CONCLUSION Transcriptome and WGCNA analyses revealed significant ABA-related changes in metabolic pathways and DEGs between vp5 and Vp5 during seed maturation. The results would provide insights for elucidating the molecular mechanism of ABA signaling and developing high dehydration tolerance maize suitable for mechanical harvesting.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Cui Du
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenrui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Man Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Wang H, Zhang D, Zhou X, Zhou G, Zong W, Chen L, Chang Y, Wu X. Transcription Factor AtOFP1 Involved in ABA-Mediated Seed Germination and Root Growth through Modulation of ROS Homeostasis in Arabidopsis. Int J Mol Sci 2022; 23:ijms23137427. [PMID: 35806432 PMCID: PMC9267126 DOI: 10.3390/ijms23137427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Ovate family proteins (OFPs) are valued as a family of transcription factors that are unique to plants, and they play a pluripotent regulatory role in plant growth and development, including secondary-cell-wall synthesis, DNA repair, gibberellin synthesis, and other biological processes, via their interaction with TALE family proteins. In this study, CHIP-SEQ was used to detect the potential target genes of AtOFP1 and its signal-regulation pathways. On the other hand, Y2H and BIFC were employed to prove that AtOFP1 can participate in ABA signal transduction by interacting with one of the TALE family protein called AtKNAT3. ABA response genes are not only significantly upregulated in the 35S::HAOFP1 OE line, but they also show hypersensitivity to ABA in terms of seed germination and early seedling root elongation. In addition, the AtOFP1-regulated target genes are mainly mitochondrial membranes that are involved in the oxidative–phosphorylation pathway. Further qRT-PCR results showed that the inefficient splicing of the respiratory complex I subunit genes NAD4 and NAD7 may lead to ROS accumulation in 35S::HA-AtOFP1 OE lines. In conclusion, we speculated that the overexpression of AtOFP1 may cause the ABA hypersensitivity response by increasing the intracellular ROS content generated from damage to the intima systems of mitochondria.
Collapse
Affiliation(s)
- Hemeng Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (H.W.); (D.Z.)
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Dongrui Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (H.W.); (D.Z.)
| | - Xi’nan Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China;
| | - Wenbo Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun 130021, China;
| | - Lingling Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ying Chang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (H.W.); (D.Z.)
- Correspondence: (Y.C.); (X.W.)
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.C.); (X.W.)
| |
Collapse
|
22
|
Xu G, Tao Z, He Y. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation. THE PLANT CELL 2022; 34:2205-2221. [PMID: 35234936 PMCID: PMC9134069 DOI: 10.1093/plcell/koac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many over-wintering plants grown in temperate climate acquire competence to flower upon prolonged cold exposure in winter, through vernalization. In Arabidopsis thaliana, prolonged cold exposure induces the silencing of the potent floral repressor FLOWERING LOCUS C (FLC) through repressive chromatin modifications by Polycomb proteins. This repression is maintained to enable flowering after return to warmth, but is reset during seed development. Here, we show that embryonic FLC reactivation occurs in two phases: resetting of cold-induced FLC silencing during embryogenesis and further FLC activation during embryo maturation. We found that the B3 transcription factor (TF) ABSCISIC ACID-INSENSITIVE 3 (ABI3) mediates both FLC resetting in embryogenesis and further activation of FLC expression in embryo maturation. ABI3 binds to the cis-acting cold memory element at FLC and recruits a scaffold protein with active chromatin modifiers to reset FLC chromatin into an active state in late embryogenesis. Moreover, in response to abscisic acid (ABA) accumulation during embryo maturation, ABI3, together with the basic leucine zipper TF ABI5, binds to an ABA-responsive cis-element to further activate FLC expression to high level. Therefore, we have uncovered the molecular circuitries underlying embryonic FLC reactivation following parental vernalization, which ensures that each generation must experience winter cold prior to flowering.
Collapse
|
23
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Li F, Yao J, Hu L, Chen J, Shi J. Multiple Methods Synergistically Promote the Synchronization of Somatic Embryogenesis Through Suspension Culture in the New Hybrid Between Pinus elliottii and Pinus caribaea. FRONTIERS IN PLANT SCIENCE 2022; 13:857972. [PMID: 35548285 PMCID: PMC9083196 DOI: 10.3389/fpls.2022.857972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 05/31/2023]
Abstract
Pinus elliottii × Pinus caribaea is an interspecific pine hybrid of major economic importance. Somatic embryogenesis and plant regeneration in P. elliottii × P. caribaea on solid medium have been reported previously; however, a current limitation is the lack of a stable and effective method for its commercial use. The objective of this study was to establish a suspension culture system and evaluate the effect of multiple methods synergistically on the synchronization of embryo development in P. elliottii × P. caribaea. For the former, a protocol to initiate and establish a suspension culture system of P. elliottii × P. caribaea was presented. Based on biomass growth, the growth of embryogenic calli (EC) followed an S-shape curve in suspensions grown for a 15-day period, and the exponential phase of cell suspensions was reached between days 3 and 6. The initial packed cell volume (PCV) and revolutions per minute (rpm) have a significant effect on the proliferation of EC, and the highest proliferation multiple reached 6.86 (±0.06) at the initial density of 5 ml PCV under a 9-10 days transfer interval in the dark on a rotary shaker at 70 rpm. For the latter, the influence of abscisic acid (ABA), ammonium (NH4 +), nitrate (NO3 -), low temperature, and polyethylene glycol (PEG) on somatic embryogenesis was very significant. When EC were suspended in the medium at a presence of 37.84 μM/L ABA, as many as 274 mature cotyledonary embryos/ml PCV of cells were thereafter formed in the mature medium, and 266 somatic embryos were obtained on mature medium after suspension culture in liquid medium containing 10 mmol/L NH4 + and 30 mmol/L NO3 -. Furthermore, reducing the concentration of 2,4-dichlorophenoxyacetic acid gradually and at 4°C incubation for 12 h in the initial exponential phase could promote the synchronization of somatic embryogenesis, which resulted in 260 mature cotyledonary embryos. This suspension culture system and method of synchronic control can be used in the large-scale production of P. elliottii × P. caribaea seedlings.
Collapse
Affiliation(s)
- Fengqing Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, China
| | - Jiabao Yao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, China
| | - Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Wang X, Song Q, Liu Y, Brestic M, Yang X. The network centered on ICEs play roles in plant cold tolerance, growth and development. PLANTA 2022; 255:81. [PMID: 35249133 DOI: 10.1007/s00425-022-03858-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ICEs are key transcription factors in response to cold in plant, they also balance plant growth and stress tolerance. Thus, we systematize the information about ICEs published to date. Low temperature is an important factor affecting plant growth and development. Exposing to cold condition results in a suit of effects on plants including reduction of plant growth and reproduction, and decrease in crop yield and quality. Plants have evolved a series of strategies to deal with cold stress such as reprogramming of the expression of genes and transcription factors. ICEs (Inducer of CBF Expression), as transcription factors regulating CBFs (C-repeat binding factor), play key roles in balancing plant growth and stress tolerance. Studies on ICEs focused on the function of ICEs on cold tolerance, growth and development; post-translational modifications of ICEs and crosstalk between the ICEs and phytohormones. In this review, we focus on systematizing the information published to date. We summarized the main advances of the functions of ICEs on the cold tolerance, growth and development. And we also elaborated the regulation of ICEs protein stability including phosphorylation, ubiquitination and SUMOylation of ICE. Finally, we described the function of ICEs in the crosstalk among different phytohormone signaling pathway and cold stress. This review provides perspectives for ongoing research about cold tolerance, growth and development in plant.
Collapse
Affiliation(s)
- Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
26
|
Molecular Aspects of Seed Development Controlled by Gibberellins and Abscisic Acids. Int J Mol Sci 2022; 23:ijms23031876. [PMID: 35163798 PMCID: PMC8837179 DOI: 10.3390/ijms23031876] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved seeds to permit the survival and dispersion of their lineages by providing nutrition for embryo growth and resistance to unfavorable environmental conditions. Seed formation is a complicated process that can be roughly divided into embryogenesis and the maturation phase, characterized by accumulation of storage compound, acquisition of desiccation tolerance, arrest of growth, and acquisition of dormancy. Concerted regulation of several signaling pathways, including hormonal and metabolic signals and gene networks, is required to accomplish seed formation. Recent studies have identified the major network of genes and hormonal signals in seed development, mainly in maturation. Gibberellin (GA) and abscisic acids (ABA) are recognized as the main hormones that antagonistically regulate seed development and germination. Especially, knowledge of the molecular mechanism of ABA regulation of seed maturation, including regulation of dormancy, accumulation of storage compounds, and desiccation tolerance, has been accumulated. However, the function of ABA and GA during embryogenesis still remains elusive. In this review, we summarize the current understanding of the sophisticated molecular networks of genes and signaling of GA and ABA in the regulation of seed development from embryogenesis to maturation.
Collapse
|
27
|
Koramutla MK, Tuan PA, Ayele BT. Salicylic Acid Enhances Adventitious Root and Aerenchyma Formation in Wheat under Waterlogged Conditions. Int J Mol Sci 2022; 23:ijms23031243. [PMID: 35163167 PMCID: PMC8835647 DOI: 10.3390/ijms23031243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the role of salicylic acid (SA) in regulating morpho-anatomical adaptive responses of a wheat plant to waterlogging. Our pharmacological study showed that treatment of waterlogged wheat plants with exogenous SA promotes the formation axile roots and surface adventitious roots that originate from basal stem nodes, but inhibits their elongation, leading to the formation of a shallow root system. The treatment also enhanced axile root formation in non-waterlogged plants but with only slight reductions in their length and branch root formation. Exogenous SA enhanced the formation of root aerenchyma, a key anatomical adaptive response of plants to waterlogging. Consistent with these results, waterlogging enhanced SA content in the root via expression of specific isochorismate synthase (ICS; ICS1 and ICS2) and phenylalanine ammonia lyase (PAL; PAL4, PAL5 and PAL6) genes and in the stem nodes via expression of specific PAL (PAL5 and PAL6) genes. Although not to the same level observed in waterlogged plants, exogenous SA also induced aerenchyma formation in non-waterlogged plants. The findings of this study furthermore indicated that inhibition of ethylene synthesis in SA treated non-waterlogged and waterlogged plants does not have any effect on SA-induced emergence of axile and/or surface adventitious roots but represses SA-mediated induction of aerenchyma formation. These results highlight that the role of SA in promoting the development of axile and surface adventitious roots in waterlogged wheat plants is ethylene independent while the induction of aerenchyma formation by SA requires the presence of ethylene.
Collapse
|
28
|
Mácová K, Prabhullachandran U, Štefková M, Spyroglou I, Pěnčík A, Endlová L, Novák O, Robert HS. Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:844292. [PMID: 35528932 PMCID: PMC9075611 DOI: 10.3389/fpls.2022.844292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/29/2022] [Indexed: 05/22/2023]
Abstract
Brassica napus (rapeseed) is the second most important oilseed crop worldwide. Global rise in average ambient temperature and extreme weather severely impact rapeseed seed yield. However, fewer research explained the phenotype changes caused by moderate-to-high temperatures in rapeseed. To investigate these events, we determined the long-term response of three spring cultivars to different temperature regimes (21/18°C, 28/18°C, and 34/18°C) mimicking natural temperature variations. The analysis focused on the plant appearance, seed yield, quality and viability, and embryo development. Our microscopic observations suggest that embryonic development is accelerated and defective in high temperatures. Reduced viable seed yield at warm ambient temperature is due to a reduced fertilization rate, increased abortion rate, defective embryonic development, and pre-harvest sprouting. Reduced auxin levels in young seeds and low ABA and auxin levels in mature seeds may cause embryo pattern defects and reduced seed dormancy, respectively. Glucosinolates and oil composition measurements suggest reduced seed quality. These identified cues help understand seed thermomorphogenesis and pave the way to developing thermoresilient rapeseed.
Collapse
Affiliation(s)
- Kateřina Mácová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Unnikannan Prabhullachandran
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marie Štefková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ioannis Spyroglou
- Plant Sciences Core Facility, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
29
|
Walker M, Pérez M, Steinbrecher T, Gawthrop F, Pavlović I, Novák O, Tarkowská D, Strnad M, Marone F, Nakabayashi K, Leubner-Metzger G. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1020-1036. [PMID: 34510583 DOI: 10.1111/tpj.15489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Tozer Seeds, Tozer Seeds Ltd, Cobham, KT11 3EH, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | | | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University Olomouc, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
30
|
Yu Z, She M, Zheng T, Diepeveen D, Islam S, Zhao Y, Zhang Y, Tang G, Zhang Y, Zhang J, Blanchard CL, Ma W. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun Biol 2021; 4:945. [PMID: 34362999 PMCID: PMC8346565 DOI: 10.1038/s42003-021-02458-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Two challenges that the global wheat industry is facing are a lowering nitrogen-use efficiency (NUE) and an increase in the reporting of wheat-protein related health issues. Sulphur deficiencies in soil has also been reported as a global issue. The current study used large-scale field and glasshouse experiments to investigate the sulphur fertilization impacts on sulphur deficient soil. Here we show that sulphur addition increased NUE by more than 20% through regulating glutamine synthetase. Alleviating the soil sulphur deficiency highly significantly reduced the amount of gliadin proteins indicating that soil sulphur levels may be related to the biosynthesis of proteins involved in wheat-induced human pathologies. The sulphur-dependent wheat gluten biosynthesis network was studied using transcriptome analysis and amino acid metabolomic pathway studies. The study concluded that sulphur deficiency in modern farming systems is not only having a profound negative impact on productivity but is also impacting on population health.
Collapse
Affiliation(s)
- Zitong Yu
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Ting Zheng
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Triticeas Research Institute, Sichuan Agriculture University, Chengdu, China
| | - Dean Diepeveen
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Shahidul Islam
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Yun Zhao
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Yingquan Zhang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guixiang Tang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yujuan Zhang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Christopher L Blanchard
- ARC Industrial Transformation Training Centre for Functional Grain, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Wujun Ma
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
31
|
Albertos P, Tatematsu K, Mateos I, Sánchez-Vicente I, Fernández-Arbaizar A, Nakabayashi K, Nambara E, Godoy M, Franco JM, Solano R, Gerna D, Roach T, Stöggl W, Kranner I, Perea-Resa C, Salinas J, Lorenzo O. Redox feedback regulation of ANAC089 signaling alters seed germination and stress response. Cell Rep 2021; 35:109263. [PMID: 34133931 PMCID: PMC8220255 DOI: 10.1016/j.celrep.2021.109263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.
Collapse
Affiliation(s)
- Pablo Albertos
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Isabel Mateos
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Alejandro Fernández-Arbaizar
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| | - Kazumi Nakabayashi
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Marta Godoy
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José M Franco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Davide Gerna
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain.
| |
Collapse
|
32
|
Shimizu T, Kanno Y, Suzuki H, Watanabe S, Seo M. Arabidopsis NPF4.6 and NPF5.1 Control Leaf Stomatal Aperture by Regulating Abscisic Acid Transport. Genes (Basel) 2021; 12:genes12060885. [PMID: 34201150 PMCID: PMC8227765 DOI: 10.3390/genes12060885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and transported to guard cells to promote stomatal closure. Although several transmembrane ABA transporters have been identified, how the movement of ABA within plants is regulated is not fully understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.
Collapse
Affiliation(s)
- Takafumi Shimizu
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Hiromi Suzuki
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
- Correspondence:
| |
Collapse
|
33
|
Abley K, Formosa-Jordan P, Tavares H, Chan EY, Afsharinafar M, Leyser O, Locke JC. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time. eLife 2021; 10:59485. [PMID: 34059197 PMCID: PMC8169117 DOI: 10.7554/elife.59485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Genetically identical plants growing in the same conditions can display heterogeneous phenotypes. Here we use Arabidopsis seed germination time as a model system to examine phenotypic variability and its underlying mechanisms. We show extensive variation in seed germination time variability between Arabidopsis accessions and use a multiparent recombinant inbred population to identify two genetic loci involved in this trait. Both loci include genes implicated in modulating abscisic acid (ABA) sensitivity. Mutually antagonistic regulation between ABA, which represses germination, and gibberellic acid (GA), which promotes germination, underlies the decision to germinate and can act as a bistable switch. A simple stochastic model of the ABA-GA network shows that modulating ABA sensitivity can generate the range of germination time distributions we observe experimentally. We validate the model by testing its predictions on the effects of exogenous hormone addition. Our work provides a foundation for understanding the mechanism and functional role of phenotypic variability in germination time.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pau Formosa-Jordan
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Hugo Tavares
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Emily Yt Chan
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Mana Afsharinafar
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - James Cw Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Sano N, Marion-Poll A. ABA Metabolism and Homeostasis in Seed Dormancy and Germination. Int J Mol Sci 2021; 22:5069. [PMID: 34064729 PMCID: PMC8151144 DOI: 10.3390/ijms22105069] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8'-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.
Collapse
Affiliation(s)
| | - Annie Marion-Poll
- IJPB Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
35
|
Kaur H, Ozga JA, Reinecke DM. Balancing of hormonal biosynthesis and catabolism pathways, a strategy to ameliorate the negative effects of heat stress on reproductive growth. PLANT, CELL & ENVIRONMENT 2021; 44:1486-1503. [PMID: 32515497 DOI: 10.1111/pce.13820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/29/2020] [Indexed: 05/08/2023]
Abstract
In pea (Pisum sativum L.), moderate heat stress during early flowering/fruit set increased seed/ovule abortion, and concomitantly produced fruits with reduced ovary (pericarp) length, and fewer seeds at maturity. Plant hormonal networks coordinate seed and pericarp growth and development. To determine if these hormonal networks are modulated in response to heat stress, we analyzed the gene expression patterns and associated these patterns with precursors, and bioactive and inactive metabolites of the auxin, gibberellin (GA), abscisic acid (ABA), and ethylene biosynthesis/catabolism pathways in young developing seeds and pericarps of non-stressed and 4-day heat-stressed fruits. Our data suggest that within the developing seeds heat stress decreased bioactive GA levels reducing GA growth-related processes, and that increased ethylene levels may have promoted this inhibitory response. In contrast, heat stress increased auxin biosynthesis gene expression and auxin levels in the seeds and pericarps, and seed ABA levels, both effects can increase seed sink strength. We hypothesize that seeds with higher auxin- and ABA-induced sink strength and adequate bioactive GA levels will set and continue to grow, while the seeds with lower sink strength (low auxin, ABA, and GA levels) will become more sensitive to heat stress-induced ethylene leading to ovule/seed abortion.
Collapse
Affiliation(s)
- Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn A Ozga
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis M Reinecke
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Hu Y, Zhou L, Yang Y, Zhang W, Chen Z, Li X, Qian Q, Kong F, Li Y, Liu X, Hou X. The gibberellin signaling negative regulator RGA-LIKE3 promotes seed storage protein accumulation. PLANT PHYSIOLOGY 2021; 185:1697-1707. [PMID: 33793917 PMCID: PMC8133674 DOI: 10.1093/plphys/kiaa114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Seed storage protein (SSP) acts as one of the main components of seed storage reserves, of which accumulation is tightly mediated by a sophisticated regulatory network. However, whether and how gibberellin (GA) signaling is involved in this important biological event is not fully understood. Here, we show that SSP content in Arabidopsis (Arabidopsis thaliana) is significantly reduced by GA and increased in the GA biosynthesis triple mutant ga3ox1/3/4. Further investigation shows that the DELLA protein RGA-LIKE3 (RGL3), a negative regulator of GA signaling, is important for SSP accumulation. In rgl3 and 35S:RGL3-HA, the expression of SSP genes is down- and upregulated, respectively, compared with that in the wild-type. RGL3 interacts with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor for seed developmental processes governing SSP accumulation, both in vivo and in vitro, thus greatly promoting the transcriptional activating ability of ABI3 on SSP genes. In addition, genetic evidence shows that RGL3 and ABI3 regulate SSP accumulation in an interdependent manner. Therefore, we reveal a function of RGL3, a little studied DELLA member, as a coactivator of ABI3 to promote SSP biosynthesis during seed maturation stage. This finding advances the understanding of mechanisms in GA-mediated seed storage reserve accumulation.
Collapse
Affiliation(s)
- Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Limeng Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qian Qian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
37
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
38
|
Bizouerne E, Buitink J, Vu BL, Vu JL, Esteban E, Pasha A, Provart N, Verdier J, Leprince O. Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC PLANT BIOLOGY 2021; 21:124. [PMID: 33648457 PMCID: PMC7923611 DOI: 10.1186/s12870-021-02889-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND During maturation seeds acquire several physiological traits to enable them to survive drying and disseminate the species. Few studies have addressed the regulatory networks controlling acquisition of these traits at the tissue level particularly in endospermic seeds such as tomato, which matures in a fully hydrated environment and does not undergo maturation drying. Using temporal RNA-seq analyses of the different seed tissues during maturation, gene network and trait-based correlations were used to explore the transcriptome signatures associated with desiccation tolerance, longevity, germination under water stress and dormancy. RESULTS During maturation, 15,173 differentially expressed genes were detected, forming a gene network representing 21 expression modules, with 3 being specific to seed coat and embryo and 5 to the endosperm. A gene-trait significance measure identified a common gene module between endosperm and embryo associated with desiccation tolerance and conserved with non-endospermic seeds. In addition to genes involved in protection such LEA and HSP and ABA response, the module included antioxidant and repair genes. Dormancy was released concomitantly with the increase in longevity throughout fruit ripening until 14 days after the red fruit stage. This was paralleled by an increase in SlDOG1-2 and PROCERA transcripts. The progressive increase in seed vigour was captured by three gene modules, one in common between embryo and endosperm and two tissue-specific. The common module was enriched with genes associated with mRNA processing in chloroplast and mitochondria (including penta- and tetratricopeptide repeat-containing proteins) and post-transcriptional regulation, as well several flowering genes. The embryo-specific module contained homologues of ABI4 and CHOTTO1 as hub genes associated with seed vigour, whereas the endosperm-specific module revealed a diverse set of processes that were related to genome stability, defence against pathogens and ABA/GA response genes. CONCLUSION The spatio-temporal co-expression atlas of tomato seed maturation will serve as a valuable resource for the in-depth understanding of the dynamics of gene expression associated with the acquisition of seed vigour at the tissue level.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Julia Buitink
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Benoît Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Joseph Ly Vu
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Eddi Esteban
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jérôme Verdier
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Olivier Leprince
- Institut Agro, Univ Angers, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| |
Collapse
|
39
|
Vergès V, Dutilleul C, Godin B, Collet B, Lecureuil A, Rajjou L, Guimaraes C, Pinault M, Chevalier S, Giglioli-Guivarc’h N, Ducos E. Protein Farnesylation Takes Part in Arabidopsis Seed Development. FRONTIERS IN PLANT SCIENCE 2021; 12:620325. [PMID: 33584774 PMCID: PMC7876099 DOI: 10.3389/fpls.2021.620325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Protein farnesylation is a post-translational modification regulated by the ERA1 (Enhanced Response to ABA 1) gene encoding the β-subunit of the protein farnesyltransferase in Arabidopsis. The era1 mutants have been described for over two decades and exhibit severe pleiotropic phenotypes, affecting vegetative and flower development. We further investigated the development and quality of era1 seeds. While the era1 ovary contains numerous ovules, the plant produces fewer seeds but larger and heavier, with higher protein contents and a modified fatty acid distribution. Furthermore, era1 pollen grains show lower germination rates and, at flower opening, the pistils are immature and the ovules require one additional day to complete the embryo sac. Hand pollinated flowers confirmed that pollination is a major obstacle to era1 seed phenotypes, and a near wild-type seed morphology was thus restored. Still, era1 seeds conserved peculiar storage protein contents and altered fatty acid distributions. The multiplicity of era1 phenotypes reflects the diversity of proteins targeted by the farnesyltransferase. Our work highlights the involvement of protein farnesylation in seed development and in the control of traits of agronomic interest.
Collapse
Affiliation(s)
- Valentin Vergès
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Christelle Dutilleul
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| | - Béatrice Godin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alain Lecureuil
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Cyrille Guimaraes
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Michelle Pinault
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | - Stéphane Chevalier
- Nutrition, Croissance et Cancer, INSERM UMR 1069, Université de Tours, Tours, France
| | | | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université de Tours, Tours, France
| |
Collapse
|
40
|
Luján-Soto E, Dinkova TD. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020236. [PMID: 33530470 PMCID: PMC7911344 DOI: 10.3390/plants10020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Plants make decisions throughout their lifetime based on complex networks. Phase transitions during seed growth are not an exception. From embryo development through seedling growth, several molecular pathways control genome stability, environmental signal transduction and the transcriptional landscape. Particularly, epigenetic modifications and small non-coding RNAs (sRNAs) have been extensively studied as significant handlers of these processes in plants. Here, we review key epigenetic (histone modifications and methylation patterns) and sRNA-mediated regulatory networks involved in the progression from seed maturation to germination, their relationship with seed traits and crosstalk with environmental inputs.
Collapse
|
41
|
Cortijo S, Locke JCW. Does Gene Expression Noise Play a Functional Role in Plants? TRENDS IN PLANT SCIENCE 2020; 25:1041-1051. [PMID: 32467064 DOI: 10.1016/j.tplants.2020.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 05/20/2023]
Abstract
Gene expression in individual cells can be surprisingly noisy. In unicellular organisms this noise can be functional; for example, by allowing a subfraction of the population to prepare for environmental stress. The role of gene expression noise in multicellular organisms has, however, remained unclear. In this review, we discuss how new techniques are revealing an unexpected level of variability in gene expression between and within genetically identical plants. We describe recent progress as well as speculate on the function of transcriptional noise as a mechanism for generating functional phenotypic diversity in plants.
Collapse
Affiliation(s)
- Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| |
Collapse
|
42
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
43
|
Wu TY, Müller M, Gruissem W, Bhullar NK. Genome Wide Analysis of the Transcriptional Profiles in Different Regions of the Developing Rice Grains. RICE (NEW YORK, N.Y.) 2020; 13:62. [PMID: 32894395 PMCID: PMC7477059 DOI: 10.1186/s12284-020-00421-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/20/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Rice is an important food source for humans worldwide. Because of its nutritional and agricultural significance, a number of studies addressed various aspects of rice grain development and grain filling. Nevertheless, the molecular processes underlying grain filling and development, and in particular the contributions of different grain tissues to these processes, are not understood. MAIN TEXT Using RNA-sequencing, we profiled gene expression activity in grain tissues comprised of cross cells (CC), the nucellar epidermis (NE), ovular vascular trace (OVT), endosperm (EN) and the aleurone layer (AL). These tissues were dissected using laser capture microdissection (LCM) at three distinct grain development stages. The mRNA expression datasets offer comprehensive and new insights into the gene expression patterns in different rice grain tissues and their contributions to grain development. Comparative analysis of the different tissues revealed their similar and/or unique functions, as well as the spatio-temporal regulation of common and tissue-specific genes. The expression patterns of genes encoding hormones and transporters indicate an important role of the OVT tissue in metabolite transport during grain development. Gene co-expression network prediction on OVT-specific genes identified several distinct and common development-specific transcription factors. Further analysis of enriched DNA sequence motifs proximal to OVT-specific genes revealed known and novel DNA sequence motifs relevant to rice grain development. CONCLUSION Together, the dataset of gene expression in rice grain tissues is a novel and useful resource for further work to dissect the molecular and metabolic processes during rice grain development.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
- Present address: Temasek Life Science Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Marlen Müller
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
- Present address: Roche Glycart AG, Wagistrasse 10, 8952, Schlieren, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
44
|
Nonhebel HM, Griffin K. Production and roles of IAA and ABA during development of superior and inferior rice grains. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:716-726. [PMID: 32438973 DOI: 10.1071/fp19291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Current understanding of the role of plant hormones during cereal grain filling is confounded by contradictory reports on hormone production that is based on poor methodology. We report here on the accurate measurement of indole-3-acetic acid (IAA) and abscisic acid (ABA) by combined liquid chromatography-tandem mass spectrometry in multiple reaction-monitoring mode with heavy isotope labelled internal standards. ABA and IAA contents of superior versus inferior rice grains (ABA maxima 159 ng g-1 FW and 109 ng g-1 FW, IAA maxima 2 µg g-1 FW and 1.7 µg g-1 FW respectively) correlated with the expression of biosynthetic genes and with grain fill. Results confirm that grain ABA is produced primarily by OsNCED2(5), but suggest that ABA import and metabolism also play important roles in ABA regulation. The IAA content of grains is primarily influenced by OsYUC9 and OsYUC11. However, the distinct expression profile of OsYUC12 suggests a specific role for IAA produced by this enzyme. Co-expression of OsYUC12 with OsIAA29 indicates their involvement in a common signalling pathway. Co-expression and cis-element analysis identified several aleurone-specific transcriptional regulators as well as glutelin as strong candidates for detailed investigation for direct regulation by the auxin-signalling pathway.
Collapse
Affiliation(s)
- Heather M Nonhebel
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia; and Corresponding author.
| | - Karina Griffin
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia; and Present address: Macadamia Processing Company, 2 Cowlong Road, Lindendale NSW 2480, Australia
| |
Collapse
|
45
|
Matilla AJ. Auxin: Hormonal Signal Required for Seed Development and Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E705. [PMID: 32492815 PMCID: PMC7356396 DOI: 10.3390/plants9060705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
46
|
Ware A, Walker CH, Šimura J, González-Suárez P, Ljung K, Bishopp A, Wilson ZA, Bennett T. Auxin export from proximal fruits drives arrest in temporally competent inflorescences. NATURE PLANTS 2020; 6:699-707. [PMID: 32451444 DOI: 10.1038/s41477-020-0661-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/09/2020] [Indexed: 05/24/2023]
Abstract
A well-defined set of regulatory pathways control entry into the reproductive phase in flowering plants, but little is known about the mechanistic control of the end-of-flowering despite this being a critical process for optimization of fruit and seed production. Complete fruit removal, or lack of fertile fruit-set, prevents timely inflorescence arrest in Arabidopsis, leading to a previous proposal that a cumulative fruit/seed-derived signal causes simultaneous 'global proliferative arrest'. Recent studies have suggested that inflorescence arrest involves gene expression changes in the inflorescence meristem that are, at least in part, controlled by the FRUITFULL-APETALA2 pathway; however, there is limited understanding of how this process is coordinated at the whole-plant level. Here, we provide a framework for the communication previously inferred in the global proliferative arrest model. We show that the end-of-flowering in Arabidopsis is not 'global' and does not occur synchronously between branches, but rather that the arrest of each inflorescence is a local process, driven by auxin export from fruit proximal to the inflorescence apex. Furthermore, we show that inflorescences are competent for arrest only once they reach a certain developmental age. Understanding the regulation of inflorescence arrest will be of major importance to extending and maximizing crop yields.
Collapse
Affiliation(s)
- Alexander Ware
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, UK.
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
47
|
Pellizzaro A, Neveu M, Lalanne D, Ly Vu B, Kanno Y, Seo M, Leprince O, Buitink J. A role for auxin signaling in the acquisition of longevity during seed maturation. THE NEW PHYTOLOGIST 2020; 225:284-296. [PMID: 31461534 DOI: 10.1111/nph.16150] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/14/2019] [Indexed: 05/23/2023]
Abstract
Seed longevity, the maintenance of viability during dry storage, is a crucial factor to preserve plant genetic resources and seed vigor. Inference of a temporal gene-regulatory network of seed maturation identified auxin signaling as a putative mechanism to induce longevity-related genes. Using auxin-response sensors and tryptophan-dependent auxin biosynthesis mutants of Arabidopsis thaliana L., the role of auxin signaling in longevity was studied during seed maturation. DII and DR5 sensors demonstrated that, concomitant with the acquisition of longevity, auxin signaling input and output increased and underwent a spatiotemporal redistribution, spreading throughout the embryo. Longevity of seeds of single auxin biosynthesis mutants with altered auxin signaling activity was affected in a dose-response manner depending on the level of auxin activity. Longevity-associated genes with promoters enriched in auxin response elements and the master regulator ABSCISIC ACID INSENSITIVE3 were induced by auxin in developing embryos and deregulated in auxin biosynthesis mutants. The beneficial effect of exogenous auxin during seed maturation on seed longevity was abolished in abi3-1 mutants. These data suggest a role for auxin signaling activity in the acquisition of longevity during seed maturation.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Martine Neveu
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - David Lalanne
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Benoit Ly Vu
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Olivier Leprince
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| | - Julia Buitink
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, 49070, France
| |
Collapse
|
48
|
Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, Xiao L, Liu J, Li C, Huang S. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:310-323. [PMID: 31536657 DOI: 10.1111/tpj.14542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 05/07/2023]
Abstract
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed-plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed-specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss-of-function atper1 mutants, atper1-1 and atper1-2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild-type seeds. The suppressed primary seed dormancy of atper1-1 was completely reduced by deletion of CYP707A genes. Furthermore, loss-of-function of AtPER1 cannot enhance the seed germination ratio of aba2-1 or ga1-t, suggesting that AtPER1-enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild-type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.
Collapse
Affiliation(s)
- Huhui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128, Changsha, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun YAT-SEN University, 510275, Guangzhou, China
| |
Collapse
|
49
|
Marciniak K, Przedniczek K. Comprehensive Insight into Gibberellin- and Jasmonate-Mediated Stamen Development. Genes (Basel) 2019; 10:genes10100811. [PMID: 31618967 PMCID: PMC6827089 DOI: 10.3390/genes10100811] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| | - Krzysztof Przedniczek
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| |
Collapse
|
50
|
He J, Chen Q, Xin P, Yuan J, Ma Y, Wang X, Xu M, Chu J, Peters RJ, Wang G. CYP72A enzymes catalyse 13-hydrolyzation of gibberellins. NATURE PLANTS 2019; 5:1057-1065. [PMID: 31527846 PMCID: PMC7194175 DOI: 10.1038/s41477-019-0511-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/30/2019] [Indexed: 05/18/2023]
Abstract
Bioactive gibberellins (GAs or diterpenes) are essential hormones in land plants that control many aspects of plant growth and development. In flowering plants, 13-OH GAs (having low bioactivity-for example, GA1) and 13-H GAs (having high bioactivity-for example, GA4) frequently coexist in the same plant. However, the identity of the native Arabidopsis thaliana 13-hydroxylase GA and its physiological functions remain unknown. Here, we report that cytochrome P450 genes (CYP72A9 and its homologues) encode active GA 13-hydroxylases in Brassicaceae. Plants overexpressing CYP72A9 exhibited semi-dwarfism, which was caused by significant reduction in GA4 levels. Biochemical assays revealed that recombinant CYP72A9 protein catalysed the conversion of 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than the wild type, whereas stratification-treated seeds and seeds from long-term storage did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily was also investigated and discussed here.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qingwen Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jia Yuan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xuemei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing, China.
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|